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SU(3) vector currents in baryon chiral perturbation theory
combined with the 1/N, expansion
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Baryon chiral perturbation theory (BChPT) combined with the 1/N,. expansion is applied to the SU(3)
vector currents. In terms of the £ power counting linking the low-energy and 1/N,. expansions according to
O(&) = O(p) = O(1/N,.), the study is carried out to next-to-next-to-leading order, and it includes SU(3)
breaking corrections to the |AS| = 1 vector charges, charge radii, and magnetic moments and radii. The
results are obtained for generic N, allowing for investigating the various scalings in N,.

DOI: 10.1103/PhysRevD.101.054026

I. INTRODUCTION

Vector currents, being intimately related to the flavor
SU(3) symmetry of QCD, represent a fundamental probe
for hadron structure as well as for the breaking of SU(3) by
quark masses. This is particularly interesting for baryons, in
which the electromagnetic current for nucleons, known
empirically to remarkable accuracy [1], along with the
magnetic moments of hyperons allow for an almost
complete description of all the SU(3) vector currents to
the order in the low-energy expansion considered in the
present work. The charged vector currents are relevant in /3
decays, where both SU(3) breaking in the |AS| =1
charges and weak magnetism are still open problems. To
the present level of experimental accuracy in hyperon S
decays, there is not sufficient sensitivity to the SU(3)
breaking in the charges [2]. The reason is that f decay has a
branching fraction of about 1073, being dominated by the
nonleptonic component. Fortunately, lattice QCD is pro-
ducing results [3—6] which can be compared with the
predictions of the approach in the present work. The
experimental information on charge form factors is limited
to the electric form factors of nucleons and the charge
radius of the ™. This is, however, sufficient to predict the
rest of the charge radii, the SU(3) breaking effects of which
are, at the order of the present calculation, finite nonana-
Iytic in quark masses. The octet baryons’ electromagnetic
(EM) magnetic moments and nucleons’ magnetic radii give
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an almost complete prediction for the rest of the currents
but for one low-energy constant (LEC) which requires
knowledge of at least one weak magnetic moment of a
AS =1 current. In the approach followed here, results
automatically extend to the vector current observables of
the decuplet baryons and to EM transitions, e.g., the M,
transition A — Ny, most of which remain empirically
unknown or poorly known. The study of electric currents
in baryon chiral perturbation theory (BChPT) with inclu-
sion of the spin-3/2 baryons dates back a quarter century
[7,8], and numerous works have since been produced in
various versions of that framework; among those close in
spirit to the present one are found in Refs. [9-15], and
works with additional constraints imposed by consistency
with the 1/N. expansion are those of Refs. [16-21]. The
present work formalizes the combination of BChPT and
the 1/N,. expansion [22] for the vector currents following
the rigorous power counting scheme of the & expansion
[23,24] based on the linking O(p) = O(1/N.) = O(¢).
The combined framework was first applied to the SU(3)
vector charges in Ref. [20], in which the & expansion was
not strictly implemented; however, for the purpose of
calculating the corrections of SU(3) breaking to the vector
charges, restricted by the Ademollo-Gatto theorem (AGT),
such omission has no very significant effect.' Here, a com-
plete study is presented to O(£%) and O(&*) (depending on
the observable) of the SU(3) vector currents. The present
work provides results for generic N, permitting in this way
sorting out in particular the large N, behavior of nonana-
lytic terms in £ stemming from one-loop corrections, which
gives additional understanding, as has been shown for
instance in the case of the Gell-Mann-Okubo relation and
the o terms discussed in Refs. [25,26]. The subject of

Tn Ref. [20], the baryon-Goldstone Boson (GB) vertices
included higher-order terms in 1/N..
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magnetic moments has been addressed in the context of the
1/N,. expansion in works limited to a tree-level expansion
in composite operators [27-30] and in works including
one-loop corrections in BChPT, Refs. [17-19,21]. In
addition to BChPT, dispersive approaches have been
implemented [31-33], in which constraints imposed by
consistency with the 1/N_ expansion have been incorpo-
rated [34-38]. Such works naturally give a range of
applicability beyond the present one, which is limited up
to the form factor radii.

This work is organized as follows. Section II presents the
baryon chiral Lagrangians needed for the present work.
Section III summarizes the one-loop corrections to the
vector currents. Section IV presents the analysis of the
vector charges and radii. Section V does the same for
the magnetic moments and radii. A summary is presented
in Sec. VI. Several Appendixes are included for the benefit
of readers intending to implement similar calculations.

II. BARYON CHIRAL LAGRANGIAN

This section summarizes the pieces of the baryon chiral
Lagrangian up to O(&*) relevant to the calculations in this
work. The details on the construction of the Lagrangians and
the notations are given in Ref. [24], and Appendix B of the
present paper displays the building blocks. To ensure the
validity of the Okubo-Zweig-lizuka (OZI) rule for the quark
mass dependency of baryon masses, namely, that the non-
strange baryon mass dependence on m; be O(N?), the
following combination of the source y, is defined by [see
Egs.(B2)and (B3)in Appendix B and also Ref. [24] for details]

I+=X+ +Nc)((i, (1)

whichis O(N,.) buthas dependence on m,, whichis O(N?) for
all states with strangeness O(N?). For convenience,
|

£y =B (L ppe 7o 4 L
B A2 + 2AN,
Ly =B

N A2
1

Bi4S'T" 4

a scale A is introduced and can be chosen to be a typical
QCD scale, in order to render most of the LECs dimensionless.
In the calculations, A = m,, will be chosen. The quark mass
matrix is defined by M, = m® + m® %, where in the physical
case, m’=1%(m,+mg+m;), m>=m,—m,; and
md = \/% (m, + my — 2m,), and the rest of the m®’s vanish.

Collecting the baryons in a spin-flavor multiplet denoted
by B, and using standard notation for the chiral building
blocks (for details, see Appendix B and Ref. [24]), the
leading-order (LO) O(¢) Lagrangian reads

(I)ZBT iD _CHF 2 iaia B 2
Ly <10N8+guG+2A>, (2)

c

where the hyperfine mass shifts are given by the second
term, G are the spin-flavor generators (see Appendix A),
and the axial coupling is at LO ;A :ggA, with g4 =
1.2732(23) being the nucleon’s axial coupling. The rel-
evant terms in the O(&?) Lagrangian are

L: BT C2 0 +CA laSiTa Blana ... |B
B =P AN TN, oA ’

(3)

where the flavor SU(3) electric and magnetic fields are
denoted by E, and B, and given by E, = F% and B, =
1el*FI¥ [see Eq. (B2) in Appendix B]. The term propor-
tional to x gives at LO the magnetic moments associated
with all vector currents. The O(£%) and O(&*) Lagrangians

needed for the one-loop renormalization of the vector
currents are the following:

..>B

S K, L
(9:D:ES;S/GH + g3DiEL {S', GI}72) + S5 DB G

4 _( 2)(+Bme + lKFfabc JrBtbGzc + KDdabc)(+Bthzc + K%)l,(:l‘rBl(lSl)

2A

2A2

The LECs g, and g, will be determined by charge radii; the
term proportional to g3 gives electric quadrupole moments
for decuplet baryons and for transitions between decuplet to
octet baryons, which will not be discussed here; and the
term proportional to k, gives a contribution to magnetic
radii (D?B, = D,D*B being the covariant divergence of

(k4B'*{8?, G'*} 4 ksBiaSiSIGIv) + . )B. (4)

I
the magnetic field). The rest are quark mass and higher
order in 1/N, corrections to the magnetic moments.
Throughout, spin-flavor operators in the Lagrangians are
scaled by appropriate powers of 1/N, such that all LECs
start at zeroth order in N.. Of course, LECs themselves
have an expansion in 1/N,, kept implicit, which requires
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information for N. > 3 to be determined. In that sense, each
Lagrangian term has a leading power in 1 /N ., which is used
to assign its order in the &£ power counting, followed by
subleading terms in 1/N_. due to the expansion of the
corresponding LEC. In addition, each term in the Lagrangian
is explicitly chiral invariant, and its expansion in powers
of the Goldstone boson fields yields factors 1/F, =
O(1//N.) for each additional factor of a GB field.

For convenience, the following definition is used:

CHng_ €1, (5)

on = — ..
MENC T oAk

1

N
Via(A,) = i(%) S 6P, 1P, G

n ny,ny

1 A
vra (AZ) = 5 {Fﬂa’ 521—100[7}

q0 — 5m,12 + 51’)’1"]

Note that 671 gives rise to mass splittings between baryons
which are the O(1/N,) hyperfine term in Eq. (2) and the
O(p?) quark mass term. The O(m,N,.) term in 7, becomes
immaterial in the loop calculations as only differences of
baryon masses appear for which such terms exactly cancel.

III. ONE-LOOP CORRECTIONS TO CURRENTS

The one-loop corrections to the vector currents are given
by the two sets of gauge invariant diagrams A and B in
Fig. 1, where the vertices appearing in those diagrams are
displayed in Appendix D, Fig. 2. The explicit results are

(H'(po = 6m,, . My,) — H (po + qo — 6m,,,, M)

o 2
Vi (As) = (%) FN GPP,GIH I (py = Sm,, q, My, M,)

Y

VI(By) = =5 O PTH (0,1, M)
i
V”H(Bz) = Q”Omf”bcbede(%zK((]’Mb, M,)+ 4‘10K0(61, M, Mc) + 4K00(‘]’Mb, Mc))’ (6)

where P, are projectors onto the corresponding baryon in
the loop, p is the residual energy of the initial baryon, g is
the incoming energy in the current, and I'** = g#0T“ 4
i X €0 wij fabe gebd gi Gid contains both the electric charge and
magnetic moment components. The one-loop wave func-
tion renormalization factor 67 I-loop €an be found in
Ref. [24], and the loop integrals I, K, K*, K*, H, and
HH are given in Appendix C. Since the temporal compo-
nent of the current can only connect baryons with the same
spin, ¢, is equal to the SU(3) breaking mass difference
between them plus the kinetic energy transferred by the
current, which are all O(£?) or higher and must therefore
be neglected in this calculation. In the evaluations, one
sets po — omy, and py + gy — Omyy,. In particular, for

PR g . ° ° ; |
Po Po Po
qpa qpa qHa

Al A?
—_— K ' 1 R s
po % n L

Po
a a a
q As q B, q B,

FIG. 1. Diagrams contributing to the one-loop corrections to the
vector currents.

|
diagram Ay, if it requires evaluation at g, = 0, such a limit
must be taken in the end of the evaluation. The U(1)
baryon number current can be used to check the calcu-
lation; only diagrams A;,, contribute, and as required,
they cancel each other.

For a generic current vertex I', the combined UV
divergent and polynomial piece of diagrams A, can be
written as

M = s () (56+ DMlG™ 6% 1]
430+ 2)(2lG T, o, (5. G])
RGN BRG] ). )

where 1. = % —y + log4x. The first term is proportional
to quark masses through the GB mass-square matrix
M2, = m°5%’ +1d*m¢, and the second involves the
baryon hyperfine mass splittings 6 which are O(1/N..),
and following the strict & power counting, the O(p?) terms
due to SU(3) breaking in &m are disregarded. The con-
sistency with the 1/N_. power counting can be readily
checked. Diagrams A; and B, are separately consistent
with the 1/N, power counting. Their polynomial contri-
butions are the following:
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Re duction formulas that can be found in Ref. [25] are used
to express the above in a base of irreducible operators,
Egs. (9) and (12) below.

IV. VECTOR CHARGES

In this section, the SU(3) vector current charges and
corresponding radii are analyzed. The SU(3) breaking cor-
rections to the charges already presented in Refs. [20,24]
are discussed for completeness. At lowest order, the
charges are represented by the flavor generators 7¢. The
one-loop corrections are UV finite at Q> = —¢> = 0, and
since up to O(&%) the AGT is satisfied, the corrections to the
charges are unambiguously given by UV finite one-loop
contributions. Note that the AGT applies to the whole
baryon spin-flavor multiplet. On the other hand, at finite
Q?, the one-loop correction has a UV divergent piece,
which is independent of quark masses and is renormalized
via the terms ¢g; and g, in L; one of them removes the UV
divergence (g;), and the other one is a finite counter-
term (g,).

Combining the polynomial pieces in Eqs. (7) and (8) and
using that [, T] = [61#1, G?| = [61h, GPT*G™] = 0, one
obtains the polynomial loop contributions to vector
charges, which are proportional to Q% = §°,

TABLE 1. SU(3) breaking corrections to the AS =1 vector
charges. The LQCD results are from Ref. [4].

of1

f1

One-loop LQCD

Ap —0.067(15) —-0.05(2)
X n —0.025(10) —-0.02(3)
E°A —0.053(10) —-0.06(4)
=30 —0.068(17) —-0.05(2)

1
1)914030 (mol'wa + Z dab(?mbryc>

—g”OVOH(Bl)POIY. (8)

Ao =3 2
F1(Apay3)Po = (4n)? (4F > 0T
de+1 02

[{(Bis)PoN = — @n?4r2

©)

where f¢ = V0.
The corrections to the |AS| = 1 charges, already dis-
cussed in Ref. [20], are evaluated using the physical values

f;A = % x 1.27 and F, = 92 MeV; however, one needs to
be aware that their values are effected by the NLO cor-
rections, leading to a theoretical uncertainty. With the usual
notation for those charges [20], evaluating the ratios 61/ f
in the large N, limit, one finds that §f,/f; = O(1/N.).
Since the corrections are entirely given by nonanalytic
terms in &, the naive 1/N, scaling sets in rather slowly at
N, ~ 20, emphasizing that the noncommutativity of the
low-energy and 1/N,. expansions is very important at
the physical N, = 3. The results are shown in Table I,
in which the errors are estimated from the above-mentioned
theoretical uncertainty. The agreement with recent Lattice
QCD (LQCD) calculations [4] is encouraging, and further
improvement in the precision of those calculations would
be very useful.

For the charge radii, the loop contributions are from
diagrams Az and B,, and the renormalization is provided by

the LECs g, and g, in £1<;) and c}_;", respectively, of which
only g, is required for canceling the loop UV divergence
according to Eq. (9).> As is the case with form factors in
ChPT, the charge radii depend logarithmically in the GB
masses. They can be determined by fitting to the known
electric charge radii of proton, neutron, and X, or simply
fixed using the first two. If one wishes to study also the

’In Ref. [24], the finite term proportional to g, was overlooked.
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large N limit, an assignment at generic N, of the quark
electric charges has to be done. One such an assignment
that respects all gauge and gauge-gravitational anomaly
cancellations in the Standard Model is given by [39]
Q =73+ %TS + 36_1\1,\1 <B. The last term comes from the

baryon number charge B and can be implemented by
simply adding to the Lagrangians the corresponding terms
with an SU(3) singlet vector source field. This charge
operator gives for the states identified with the physical
octet and decuplet the same electric charges as the physical
ones for any N, The analysis of the charge radii in the
present framework is revealing: in the strict large N, limit,
one finds that the nonanalytic loop contributions to the T3
charge radius of nucleons by diagram A5 is O(N?), where
the contribution is driven by the hyperfine mass splitting
term, i.e, for Cyp — 0, the contribution becomes O(1/N..),
and diagram B, gives only contributions O(1/N..). For the
charge T®, the loop contributions are O(N?). One, however,
notes that for the physical # and K meson masses the
nonanalytic terms join the large N, scaling at rather large
N.. The charge radii of the neutral baryons receive only UV
finite loop contributions and are renormalized only by the
finite g, term.

Using the three known charge radii, g, , are determined
modulo the main uncertainty stemming from the value used

for &A. At the renormalization scale 4 = m,,, using the value

0>
of g4 ~ 1 obtained by the analysis of the axial couplings
[24], Cyp ~200 MeV, and with A = m,, one finds g, ~
1.33 and ¢, ~0.74. g, is sensitive to Cypr, which can be
understood as a result that the nonanalytic contributions to
the neutron radius are very important, and thus sensitive
to that parameter, while g; is not. One also observes that
both LECs are crucial for obtaining a good description of
the radii. For the used value of y, the fraction of the loop
contribution to the proton’s (r?) is 15%, and 60% for the
neutron’s one. The short distance contributions are thus
very important in both cases. The dominant nonanalytic
contributions to the radii are proportional to log m,, with
other nonanalytic terms involving the LEC Cyr giving
almost negligible contributions, making the results insen-
sitive to it. Table II shows the results for the charge radii
of the baryon octet along with the contributions by the
Counter Terms (CT). The latter contributions to (1) satisfy
the exact linear relation, in obvious notation,
aA+p+3F +1a-4)(n++ )+ +E =0,

valid for any a and resulting from the electric charge being
a U-spin singlet; it is violated only by finite SU(3) breaking
loop contributions. The isotriplet nucleon charge radius is
O(NY), while the isosinglet one receives loop and g,
contributions O(N?) and a g, contribution O(N,), where
the O(N,) term contribution to the EM charge radius must
be canceled by adding to the Lagrangian a finite charge-
radius CT proportional to baryon number and weighted

TABLE II. Electric charge radii of octet baryons. The proton
and neutron radii are inputs. The proton radius used is the one
resulting from the muonic hydrogen Lamb shift [40]. The second
column shows the contribution by contact terms g, , for u = m,,.

(r?)(fm?)

Full CT Exp
p 0.707 0.596 0.7071(7)
n ~0.116 —0.049 ~0.116(2)
A ~0.029 ~0.024 -
T+ 0.742 0.596
>0 0.029 0.024 -
¥ 0.683 0.548 0.608(156)
20 —0.016 —0.049 -
B 0.633 0.548

according to the electric charge assignment at arbitrary N,
mentioned above.

At the present order in the £ expansion, the curvature of

2
preats
by the one-loop nonanalytic terms with contributions that
are inversely proportional to quark masses. The curvature
is nominally an effect O(&*) in the form factor, which
therefore receives contributions from terms O(£°) in the
Lagrangian, and only in the limit of sufficiently small quark
masses will the nonanalytic contributions obtained here
be dominant. In the recent work of Ref. [38], the electric
charge higher moments have been studied, where t-channel
elastic unitarity has been implemented in the EFT along
with the constraints of the 1/N . expansion [34-38]. In par-
ticular, for the curvature, they find (r*)? = 0.735(35) fm*
and (r*)" = —0.540(35) fm*, to be compared with the one-
loop contributions found here, 0.032 and —0.021 fm*,
respectively, roughly a factor 25 smaller in magnitude in
each case. Clearly, the description of the curvature must be
primarily given by higher-order contact terms, and to the
order of the expansion followed here, the failure to account
for the curvature limits the present description of charge
form factors to the expected range given by the radii,
0% £0.05 GeV2.

the form factors, proportional to (r*) = 60

is given

V. MAGNETIC MOMENTS

As mentioned earlier, at lowest order, the magnetic
moments of all vector currents are given in terms of the
single LEC «. In particular, using the EM current, the LO
value of § can be fixed from the proton’s magnetic moment
Hp in units of the nuclear magneton uy, namely,
€55 = Hp = 2.7928 uy. Also, the M, radiative decay width
of the A at LO is given by

e’ (k\2my
Tawy = o (X)) 3, 10
A=Nr " 9g <A> mAw (10)
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where w is the photon energy. Using the above result for &
gives ;2\ = 0.38 MeV, to be compared with the exper-

imental value 0.70 4 0.06 MeV. In terms of the transition

magnetic moment, the LO result is pp+, = 23—‘/5 Hp» While
the experimental one from Eq. (10) and from the helicity
N — A photocouplings [41] are 3.58(10)uy and 3.46(3)uy,
respectively. This shows the need for a significant spin-
symmetry breaking effect of 30% to be accounted for by the
higher-order corrections.

The LO magnetic moment operator G’ is proportional
to the LO axial currents, and the next-to-leading-order
(NLO) effects stem from quark masses and spin-symmetry
breaking. In the strict large N . limit, those corrections scale
as follows: SU(3) breaking corrections O((m, — ri)N.,),
i.e., the same scaling in N_. as the LO term, and spin-
symmetry breaking corrections O(1/N,), i.e., O(1/N?)
with respect to the LO term, well known from tree-level
analyses in Refs. [42,43].

The experimentally available magnetic moment ratios
and the corresponding LO results are represented in
Table III. It is evident that there are significant SU(3)
breaking effects, which together with the important spin-
symmetry breaking observed, in particular in the AN M;
amplitude, indicate the relevance of the next-to-NLO
(NNLO) calculation. Note that all weak magnetic moments,
i.e., magnetic moments associated with the AS =1 cur-
rents, are also fixed at LO, as they are empirically
unknown. In the case of the neutron f decay, the weak
magnetic term is obtained from the isovector part of the EM
magnetic moments of the proton and neutron, which in this
case, due to isospin symmetry, is quite accurate. On the
other hand, in hyperon beta decay, the effect of weak
|

TABLE III. LO ratios of magnetic moments.

Exp LO
p/n —1.46 -1.5
/2 -2.12 -3
AJTF -0.25 -1
p/Et 1.14 1
20/8 1.92
p/E° -2.23 -1.5
ATH/AT 1.4(2.8) 2
Q /A" -0.75 -1
p/AT 1.03 1
p/(A"p) 0.78 2
p/(ZO0A) 1.02 \/%
p/(ZTET) —0.88 _ﬁi

magnetism is too small to be at present experimentally
accessible. Fortunately, the advent of LQCD calculations of
magnetic moments with increasing accuracy will allow the
study of weak magnetism.

The one-loop corrections to the magnetic moments are
obtained from the spatial components of the vector currents
depicted in Fig. 1, in which the contributions stem from
diagrams A and B;. Diagrams A , involve I' « G, which
is similar to the axial currents already analyzed in Ref. [24].
The loop contributions to the Q dependence of the
magnetic form factors stem from diagram A;.

The UV divergencies of the one-loop diagrams contrib-
uting to the magnetic moments after the reduction of the
corresponding expressions (7) and (8) using a basis of spin-
flavor operators read as

2

Ae K 23 11 5

a UV_ € ijk 0 ka abc ,,,b (ke a Qk
Vl]:h;g(AH»Z) = 4”) A( ) J ql <_BO <6m G +ﬁd m°’G +Em S )
2 A 11
+3 > ( N (N, +6) —3)G* + 8{8?, G~} + 8SksmG™a — 5 (N. + 3)SkT”>>

A C N.+3

V/M A uv _ i € HF ljk J ka -2 kTa
Mag( 3) ( ) < ) NC q > G S
Ae k1 . 3
uv _ _; ijk 0 ka abc ,,,b (ke

VMag( ) = -1 (4 )2 2[\?6/ quO <6m G +§d m’G ), (11)

adding up to

o ideqlek 1 1. 5 o 2 L, 5o,
VMZg _W (—EKB ((4 ga +9> ka d b + (23QA +36)m0Gk +3g m Sk)
02
C .
+ 6’}’\; %‘ (2kCyp((N (N, + 6) — 3)G** + 8{S* G**}) + 3AN (N, + 3)G*
+ 16xS" G Sk — S¥T(11xChp(N, + 3) + 12ANC)> > (12)
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TABLE IV. fp functions of LECs associated with magnetic
moments and radii. The renormalized LECs are defined accord-

ingto X =X(u) + <fx) Ae-

LEC fx F2
K AGA S (S (N +3) + (NN, +6) - 3) £5r)
ki _AgACHF(2 +8(N.+3)% CHF)
K2 _AZK(3 =+ %2 gA)
02

< ~WK(+ J7)
Kp O
K3 _A2 %gA
Kq §gAKCHF

)
Ks e
K, 0

The renormalization of the magnetic moments is pro-
vided by the Lagrangians with the LECs xp, r; . 5, and the
magnetic radii receive only finite one-loop contributions
and a finite renormalization by the term «,.. The f functions
of the magnetic LECs resulting from Eq. (12) are shown in
Table IV.

For N, = 3, the set of local terms that contribute to the
magnetic moments remains linearly independent. If one
only considers the EM current, the term proportional to
does not contribute, and for the known magnetic moments
together with the information on the M| transition A — Ny,
one can fit the rest of the LECs. Note that in the absence of
information on the SU(3) singlet quark mass m° depend-
ence the LEC «, is subsumed into k, and the lack of
knowledge on the AS = 1 weak magnetic moments pre-
vents at present a determination of kp.

The results of the fits are shown in Table V. The input
magnetic moments have errors (much) smaller than the
theoretical error of the present calculation, estimated to be
given by the magnitude of next-to-NNLO (NNNLO)
corrections, about 5% to 10%. Here, the proton and neutron
magnetic moments are used as exact inputs giving the
following relations between the parameters:

K| = —19.662 + 6.926 k — 0.833 <K4 n "—25> 42550k
Ky = —5.136 + 1.648 k — 0.218 <K4 +K—25> trp (13)

The y? is then given by fitting to the rest of the magnetic
moments, where still the errors of the inputs are smaller
than the theoretical error. Errors can be assigned to the
fitted LECs by defining them in terms of the expected
magnitude of the NNNLO corrections. For such an esti-
mation of the parameters’ errors, the minimum obtained for
the y? per degree of freedom is normalized to unity, or
alternatively the experimental inputs are assigned larger

TABLE V. Results from fits to the electric current magnetic
moments, in units of the nuclear magneton . The renormaliza-

tion scale was set to u=A=m

’E

magnetic moments to be determined.

kr requires AS =1 weak

LEC x % LO NNLO

K 2.80 2.887

K 0 3.29

K 0 0.00

Kp 0 0.397

Kp 0 .

K3 0 0.53

Ky 0 -2.85

Ks 0 1.05

HrLo HNNLO HExp

p 2.691 Input 2.792847356(23)

n —1.794 Input —1.9130427(5)

>t 2.691 2.367 2. 458(10)

>0 0.897 0.869

- —0.897 —0.629 —1. 160(25)

A —-0.897 —-0.611 —0.613(4)

= —1.794 —-1.275 —1.250(14)

S —0.897 —0.652 —0.6507(25)

Atp 2.537 3.65 3.58(10)

SOA 1.553 1.57 1.61(8)

SOA 2.197 2.68 2.73(25)"

syt -2.537 -235 -3.17(36)"
HLO HNNLO HExp

ATT 5.381 5.962 3.7-17.5

AT 2.691 3.049 2.7(3.6)

A° 0 0.136 e

A~ —2.691 =2.771

=t 2.691 3.151

>0 0 0.343

e -2.691 —2.465

=0 0 0.490

S —2.691 —2.208 ce

Q —2.691 —2.005 —2.02(5)

Empmcal results are from PDG and Ref. [44].
Empmcal results are from PDG and Ref. [45].

errors compatible with the mentioned magnitude of
NNNLO corrections, which leads to a similar result.
Here, the first procedure is followed. Important correlation
is found within the following pairs of LECs: k — kp, and
k4 — k5. The eigenvectors of the correlation matrix of the
first pair are (0.8x + 0.6xp) and (0.6kx —0.8kp), with
respective errors £0.004 and +0.04, and of the second pair
are (0.9x4 +0.19ks) and (v/0.19x4 —09«ks) with
respective errors £0.3 and +2.1. This provides the neces-
sary information for the LEC’s error analysis.

As mentioned earlier, the ANy amplitude at LO is too
small by roughly 30%, a manifestation of an important
spin-symmetry breaking effect. The effect receives a small
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nonanalytic contribution (at 4 = m,), and the contributions
from the contact terms are as follows: kp : O((mg;—7)N,.),
and x;: O(1/N.). From the fit, one finds a modest
contribution from «; and a dominant contribution from
k4. Since the latter is a 1/N?2 correction with respect to the
LO magnetic moment, it seems to be unnaturally large.
This is a bit surprising as a similar kind of effect in the AN
axial vector coupling is actually unnaturally small. This
contrast remains to be understood. Finally, a fit where the
AN transition is not an input shows an enhancement but
only by about half of what is needed.

An interesting case is the magnetic moment of *0: all
LO and NLO tree-level and quark mass independent
contributions vanish, receiving only NNLO tree and loop
contributions, which vanish in the SU(3) symmetry limit.
On the other hand, the experimental value of the magnetic
moment of £~ quoted as average by the PDG [40] cannot
be described; U-spin symmetry implies that it must be
equal to the magnetic moment of the Z~ up to NNLO
SU(3) breaking by quark masses. The experimental results
imply a very large effect which is very difficult to reconcile
with the other U-spin multiplets, where the effect is
between 12% and 25% per unit of strangeness, while for
the pair £~ E~ case, it is 44%. The present analysis shows
that us- is an outlier.

One of the early tests of the magnetic moments in SU(3)
was provided by the Coleman-Glashow (CG) relation,
namely, p, — p, — ps+ + ps- + pzo — pz- = 0. This rela-
tion remains valid at tree-level NNLO and receives only a
finite correction from the one-loop contributions. Explicit
calculation gives the deviation with estimated theoretical
error Acg = 1.09 £0.25uy to be compared with the
experimental deviation 0.49 &+ 0.03 u, affected, however,
by the X~ issue.

Finally, the weak interaction magnetic moments for
hyperon decays turn out to depend on the LEC xr, which
does not appear in the EM case. The result for the LECs
from the EM case gives the predictions py-, = (0.516 —

O.ISOKF)% and pp, = (—=1.41 4 0.66kf) 52

Ty’
g=-e/sinfy. At LO, one has the large hierarchy
Hap/Ms-n = —+/27/2. A determination of xy will require
a LQCD calculation.

where

A. Magnetic radii

The magnetic radii are theoretically very constrained at
the order of the present calculation. For all the vector
currents and baryons, they are determined only by UV
finite loop contributions and the single available finite
counterterm fixed by the LEC «,. Since only the magnetic
radii of the proton and neutron are experimentally known,
one can use these to fit that LEC, leading to the results shown
in Table VI. The rest of the radii are then predictions which
can hopefully be tested in the future with LQCD calcu-
lations. Note that the lion’s share of the magnetic radii is

TABLE VI. Magnetic radii from a fit to nucleons.
(r?)(fm?)

K, = —2.63 Exp Th Loop
P 0.724 0.718 0.134
n 0.746 0.747 0.179
=+ e 0.766 0.100
>0 e 0.698 0.061
X e 0.922 0.189
A e 0.895 0.079
=0 e 0.872 0.081
B e 0.796 0.035
Afp e 0.875 0.226

from the short distance terms proportional to k, with the loop
contribution from diagram A5 in Fig. 1 giving up to 20% for
the proton, neutron, and X~ and less than 10% for the rest.

Finally, a calculation of the curvature of the EM
magnetic moments yields (r*)? = 0.38 fm* and (r*)" =
0.54 fm* to be compared with those obtained in Ref. [38],
which are, respectively, 1.72(6) and 2.04(1) fm*, leading to
a similar assessment as in the case of the electric charge
already discussed, although less dramatic.

VI. SUMMARY

This work presented the study of the SU(3) vector
currents in baryons based on the combined chiral and 1/N ..
expansion. It was carried out in the context of the & power
counting to one loop. This corresponds to a calculation of
the charges, magnetic moments, and their radii for both
octet and decuplet baryons. The calculations have been
provided for generic N, which permits an exploration of
the behavior of those observables with respect to the
number of colors. Only two LECs are needed to determine
all SU(3) charge radii, while the magnetic moments need to
be renormalized involving eight LECs, of which all but two
can be fixed solely in terms of the known EM magnetic
moments. Of the two remaining LECs, one needs infor-
mation about AS =1 weak magnetic moments, and the
second requires knowledge of magnetic moments at differ-
ent values of quark masses, which can be obtained from
LQCD calculations. The fits to the magnetic moments
indicate that the values of the LECs are within the range of
natural magnitude, although there is a puzzling issue,
namely, the unnaturally large spin-symmetry breaking
required for the description of the AN transition magnetic
moment. On the other hand, the magnetic radii involve only
one LEC, which according to the its determination from the
proton and neutron magnetic radii, gives the dominant
contribution to all magnetic radii. Finally, the curvature of
form factors are given at the order of the calculation by
nonanalytic terms in m,, which turn out to be very small,
and therefore require for their description an extension of
the present work to higher order.
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APPENDIX A: SPIN-FLAVOR ALGEBRA

The 4N} — 1 generators of the spin-flavor group SU (2N ;)
consist of the three spin generators S, the N% — 1 flavor

SU(Ny) generators T¢, and the remaining 3(sz€ — 1) spin-
flavor generators G'*. The commutation relations are
[Si, 87] = ielk Sk,
[Si, Gja] — ieijkaa’

[Ta’ Tb] — l'fabcTc’ [Ta,Si] — O,
[Ta Gib} — ifachic
. . i .. i . i ..
Gm’ G]b — 5l abcTc _5(11) l_]kSk - 1]kdachkc.
[ ] 2 f +3 N, € +ae
(A1)
In spin-flavor representations with N, indices corre-

sponding to baryons, the generators G'“ have matrix
|

elements O(N,.) on states with § = O(N?). The ground
state baryons furnish the totally symmetric irreducible
representation of SU(6) with N, Young boxes, which
decomposes into the following SU(2),;, x SU(3) irreduc-
ible representations: [S, (p. q)] =[S, (25,4 (N, —25))],
S=1/2,...,N./2 (assumed N, is odd). The baryon states
can then be denoted by |SS;, Y113), where the spin S of the
baryon determines its SU(3) multiplet.

The matrix elements of a SU(2), x SU(3) C SU(6)
tensor operator between ground state baryons are given by
the Wigner-Eckart theorem, with obvious notation,

(S'S,, R'Y'I'T,| 0573 . |SS5, RYII3)

RYIIL
1
= SSs, 7458,
5 Tam R S IS
R R R’
X S, R'||0O%]|S, R < . >
;< || R| >y YII3 YII3 Y/I/Ig ,

(A2)

where R represents the SU(3) multiplet of the baryon and y
indicates the possible recouplings in SU(3). Applying this
to the matrix elements of the generators of SU(6) one
obtains:

(S'S4. Y'I'15]S™|SS5. YII5) = 855 8yy 6,067, /S(S + 1)(SS5. 1m|S'Sh)

1

<S/Sg, Y/I/113|Tyii3|SS3s YII,§> = 555’5S3S’

(SITLS)

YII,

‘ \/dim(2S, L(N, - 25))
o S e29)

(1, 1)

yii3

(28,1 (N, —25)) >
Y'I'l, -

(SS5. 1m|S'SY)

('S4, Y'I'T,|G™a|SS5, YIIS) =

V25 11 \/dim(ZS, L(N, -25))

% Z(S/HGHS) (28’%(1\70_2‘3)) (lvl) (25’%(NC_2S))> (A3)
5 ! YIl, yiis Y'I't, )
where the reduced matrix elements are [here, p = 2§, g = %(N . —29)]
(SIIT(1S) = v/dim(p, 4)Ca(p. q)
@S+ 1)(N.—25+2)(N. +2S+4)(N.(N. +6) + 125(S + 1))
4/6
e . V(42— 1)((N,+2)2—4S8%) (N +4)2—4S%)
if S=8+1: - 57
. A (4S(8+2)+3)(N.—28)(N.—25+2)(N425+4)(N.+25+6)
(SIGIIS),_ = if s=5—1: -V -
Fs— sign(N, — 25 — 0%) (N +3)(25+1)4/S(S+1)(N . ~25+2) (N, +25+4)
/6N (N +6)+128(S+1)
25+ 1)\/(N. = 2S)(N. + 28 + 6)((N, +2)*> —4S?)((N, + 4)* — 452
SUGIS), 2 = —0sg 5 H DV TN -GN T2 3NN+ AP =45

8V2\/N (N, +6) +125(S+ 1)
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APPENDIX B: BUILDING BLOCKS

The fundamental building blocks of the effective theory
are the generators of SU(6) detailed in Appendix A and
tensor products thereof and the baryon and Goldstone
boson fields and sources associated with the different
current densities. The GB fields are parametrized as the
coordinates of the coset SU; (3) x SUR(3)/SU(3) where
here one uses the exponential parametrization

ara

u(x) =e"rr,

(B1)

where 7¢ are the octet of GBs, 7“ are the generators of
flavor SU(3), and F, is the pion decay constant. The
baryon fields denoted by B belong into a multiplet of
SU(6), which transforms as the totally symmetric
|

irreducible representation with N, indices, which organized
in multiplets of spin-flavor SU(2) x SU(3) contain the
multiplets [S, (p = 2S.,¢q =3 (N, —25))] as mentioned in
Appendix A. The effective baryon Lagrangian can be
expressed in the usual way as a series of terms which
are SU;(3) x SUR(3) invariant (upon introduction of
appropriate sources; see, for instance, Ref. [46] for details).

The fields in the effective Lagrangian are the Goldstone
bosons parametrized by the unitary SU(3) matrix field u
and the baryons given by the symmetric SU(6) multiplet B.
The building blocks for the effective theory consist of low-
energy operators composed in terms of the GB fields,
derivatives and sources (chiral tensors), and spin-flavor
composite operators (spin-flavor tensors).

The low-energy operators are the usual ones, namely,

. Lo .
D,=09,—1iT,, r,=I)= 3 (u(i0, + r,)u+ u(id, + ¢,)u’),

u, = uy, = u*(i0, + r,)u —u(id, + ¢,)u’,

x =2By(s +ip),
P = grev — ren — ifen, oY),

FY =uFu’ £ u' Fu,

where D, is the chiral covariant derivative, s and p are
scalar and pseudoscalar sources, and ¢, and r, are gauge
sources. It is convenient to define the SU(3) singlet and
octet components of y* using the fundamental SU(3)
irreducible representation, namely,

1
)((l 3 )
a
Xe =X+ —)(?tzﬂ?iz~ (B3)
Displaying explicitly the quark masses,
Ko = 4B M+ (B4)

where the quark mass matrix M, is given in terms of the
three quark mass combinations, namely SU(3) singlet,
isosinglet, and isotriplet, respectively defined by

| —

1
$ = —3(7)’1” + mg — 2mx)’

m® =~ (m, +my + my), m

S W

? = (my, —my). (B5)

XY+ = u'I')(u"' + u)("'u,

Fi =o' = ovrt — i, 1Y)

(B2)

|
Under SU,(3) x SUg(3) chiral transformations, D,, u*,
X+, and F® transform as X — h(u,L,R)Xh'(u,L,R),
where h is the nonlinear realization of the corresponding
transformation. Note that all the chiral building blocks
when acting on a particular baryon need to be written in
terms of the SU(3) generators in the representation of that
baryon. In particular, the building blocks discussed here
will be written as [neglecting any SU(3) singlet compo-
nent] X“T, where one obtains X* = 1 Tr(4°X), where X
is given in the fundamental representation and A% is a
Gell-Mann matrix.

The leading-order equations of motion are used in the
construction of the higher-order terms in the Lagrangian,

namely, iDyB = (% §? +%)?+)B, and V, u = %X—'

APPENDIX C: LOOP INTEGRALS

The one-loop integrals needed in this work are provided

here. The definition d% = d’k/(2x)¢ is used.
The scalar and tensor one-loop integrals are
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— g 1 T(n+
Ina,A) = [ dik—s—r— = i(=1)"
N B E 7T

INa—n-—

g

9
I(
1 M(a—n-9)

k k : n—a n—a+4
free (a’ A> - /ddkﬁ B l(_l) (471')%1 4””! F(Ol) <A2 - Zg“ﬂ/‘ﬁz g”f’zn 1Moz,

_ 1T I(n.a,A))
a 4"p! F(n + %) o = gﬂ"lﬂ”Z ”‘gﬂ”zn—lﬂﬂzn ’

where ¢ are the permutations of {1,...,2n}.
The Feynman parametrizations needed when heavy propagators are in the loop are

1
A ---A,B; -

o 1
=2mr(m+n)/ d/ll---dxlm/ da;---da,6(1 —a; —---—ay)
Bn 0 0

1
X b
LA + - +24,A, + @By + - + a,B,)" "

where the A; are heavy particle static propagators denominators and the B; are relativistic ones.
The integration over a Feynman parameter 4 is of the general form

J(Co, C1 g, dov) = / (Co+ Cy(2— /10)2)_”%'(1'/1,
0

which satisfies the recurrence relation:

—20(Co 4+ C1 221 + (3 +d = 20)J(Cy. Cy. Ao dov — 1)

H(Co. Crodo.dv) = (d—2v+2)C,

d—v

J(Co, C1 4, d,v) = Cop——7——
(Co.Cy. 4. d.v) 07 20+ 1

J(Co.Cy. Ag dov+ 1) +—2
(Co. C1. 4 y+)+d—2y+1

Integrals with factors of 4 in the numerator are obtained by using

J(Co.Cr g doven = 1) = / (A= dg)(Co + €1 (= 29))Hdi
0

1 d
e C +C/12 f+1_
2C1(%+1—z/)( 0+ Ci)

and the recurrence relations

1
J(Co,Cl,ﬂo,d,u,n) :C_(‘](COvCl’/IO’d’V_ l,n— 1) — CoJ(Co,Cl,lo,d,I/,n —2>>

1

For convenience in some of the calculations for the currents, the following integral is defined:
J(Cy, Cy, 2. d,v,1) = J(Cy, Cy, Ao, d, v, 1) + 4 J (Co, Cy, Ao, d, V).

For the calculations in this work, the following integrals are needed at d = 4 — 2e:

1 /4 C1
J(Cy, Cy, 49, d,3) = = t Aon| =
(0 1,40 ) m<2+arcan<o CO>>

1 da
J(Co,Cy,2.d,2) = (ﬂo(CO +C /12)_]_2 (d—4)CyJ(Cy, Cy, 2, d.3))

1
J(Co. Cy.hg.d, 1) = (AO(CO—FCMZ) +(d=2)J(Cy.Cy.2.d.2)).
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1. Specific integrals

Here, a summary of relevant one-loop integrals for the calculations in this work is provided for the convenience of the
reader.

1) Loop integrals involving only relativistic propagators are

' d
10,1, M) = —’dr<1 - >Md—2
(47r)7 2

1(0,2, M) = (4”) <2_§>Md 4

K(q.M,, M,) /ddk

1 1
T T ) 402 A@)

Ki(g, M, M) / Tt (':+ T /0 L daa = 1)g"1(0,2, Aa))
oy
K (q. Mo My) E/ddk T ie)((k+ q) — M3 + ic)
:/Old(x( (1-a)’q"q*1(0,2, A(a)) —l—%l(l,Z,A(a})), (C9)

where

Ala) = \/aMf, + (1 =a)M; —a(l —a)g*.
2) Loop integrals involving one heavy propagator are

1
(po — ko + i€) (k> — M? + ie)

2i d
= (477)‘71F<2 —2>J<M2 - p3.1,po.d,2)

kk/
(po — ko + i€) (€ — M7 + ic)

H(po.M) = [ d'k

Hij<p0’M)E 2‘7];

i d

y N ; i p
H””(po,q,Ma,Mb)z/ddk _ kz(k+2q) (.k+q) N
(po — ko + i€)(k* — M +ie)((k+ q)* — M}, + ie)

ity -

x (1 =2a)g"J(Cy, Cy, 2, d,3) —2¢"°T(Cy, Cy, A9, d,3,1))

+0(2-5) (=1 = 200 + 2ag?'a! - (1= @4 )I(Co €140 d.2)

+ 29" g"°J(Cy, Cy, Ay. d, 2, 1)) } (C10)

where
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Co = aMz + (1 — a)Mj — p5 —2(1 — a) pogo — (1 — a)(ag® + (1 — a)q3)
C, =1

Ao = po+ (1 —a)qo. (C11)
The polynomial pieces of the integrals are
i
H(py. M)PY = 2po(A +2
(pO ) (477:)2 PO( + )
Hi(pog, MPY = L0 (302 _ 2527 4 7M2 — — p2
(p() ) (4”)2 3 (( PO) €+ 3 p())
. i .
H"(po, q. M, M,)PY = %6 (Ae(g" (¢"°(=3(M2% + M3) + 12po(po + q0) + 4* + 443) — 909")

—24'(3po + 2q0)9" + 247 ((3po + q0)9"" + 4'¢"°))
+ g7 (g (=3(M% + M3) + 24po(po + q0) + 4* + 845) — 2q04")
—44'(3po +2q0)9 + 44’ (3po + 90)9"). (C12)

where the UV divergence is given by the terms proportional to 1. = 1/e —y + log4x, where d = 4 — 2e¢.

APPENDIX D: INTERACTION AND VECTOR CURRENT VERTICES
NEEDED IN LOOP CALCULATIONS

The interaction and currents vertices needed in the one-loop calculations are given for completeness.

! A 7’
1 \ v
[ A} 7’
A ka ko w 1 kb
1 Y v
Y ’
> . > —r
%ktGia %(kg _ k%])f(lb(:Tc
]{‘1 b /{Jz(!
[ —_—— == > X >
qra AN , qua
kb “kye
if“b("(kl + kQ);L 1 "\ ,4 2 [ha
’
- >
qua

’_)ITT? fm?r[fdha Tre

FIG. 2. The vector current vertices indicated with a square are the magnetic ones. The momentum ¢ is incoming, and I'** =
guOTa + i%SO ﬂijfabc'fcbdinjd.
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