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We explore the effect of including quantum fluctuations in the two flavor Nambu–Jona-Lasinio model at
finite temperature. This is accomplished, in a symmetry preserving way, by including collective and
noncollective modes in the one-meson-loop gap equation which originate from poles and branch cuts in the
complex plane, respectively. The inclusion of a boson cutoff, Λb, is necessary to regularize the meson-loop
momenta. This new parameter is used to study the influence of going beyond the usual mean field
approximation in the quark condensate. As the temperature increases, chiral symmetry tends to get
restored, the collective modes melt and only noncollective modes contribute to the quark condensate. With
the inclusion of such modes, the quark condensate at finite temperature has a different behavior than at
mean field level that will be explored.

DOI: 10.1103/PhysRevD.101.054025

I. INTRODUCTION

Introduced by Yoichiro Nambu and Giovanni Jona-
Lasinio in 1961, before the assertion of quantum chromo-
dynamics (QCD) as the theory of strong interactions, the
Nambu–Jona-Lasinio (NJL) model had its debut as a model
of nucleons [1,2]. In the original model, the nucleon fields
interact locally to generate the mass gap in the Dirac
spectrum, in analogy with the Bardeen-Cooper-Schrieffer
theory of superconductivity. After the establishment of
QCD as the theory of strong interactions, the nucleon field
was substituted by a quark field [3,4]. Since then, this
model has been widely used as an effective model of QCD,
as a result of sharing all the global symmetries of strong
interaction, while providing a mechanism for spontaneous
breaking and restoration of chiral symmetry. Several
improvements have been done to the model throughout
the years like the inclusion of finite quark current quark
masses [5–7], extending the model for several quark flavors
and adding six-quark and eight-quark interactions to better
reproduce the hadron spectra [8–10]. One of the most
important extensions of the model was the inclusion of the
Polyakov loop by K. Fukushima [11]. This improvement
allowed the incorporation in the model of the ability to
describe statistical deconfinement with the spontaneous
breaking of ZðNcÞ symmetry at finite temperature [12,13].
Some examples of the application of this model and its

improved versions include hadron phenomenology and
behavior at finite temperature and/or density, modeling

neutron star matter and study of the QCD phase diagram
[14–17]. Understanding the phase diagram of QCD is one
of the most challenging and interesting topics in modern
physics. The experimental study of the QCD phase diagram
is one of the major goals of ongoing heavy ion collision
(HIC) experiments. Current experiments like J-PARC in
Japan, RHIC at the Brookhaven National Laboratory and
SPS at CERN, are not only trying to map the chiral and
deconfinement phase boundaries of QCD but also to study
the properties of the quark-gluon plasma [18]. Another goal
of these experiments is to characterize the nature of the
chiral symmetry restoration and look for the possible
existence of the critical endpoint (CEP), predicted by
several model calculations. The available tools to theoreti-
cally study the QCD phase diagram are limited due to the
nonperturbative nature of the theory at low energies. The
NJL model has been an important tool to study the phase
diagram under different scenarios, for more information on
the NJL model and its applications see the reviews [19–22].
In most of these applications, the NJL was studied in the

standard mean field (MF) approximation, equivalent to the
so-called Hartree plus random phase approximation on
the quark polarization function (RPA) [23]. Within these
schemes, only the quark loop is considered at the effective
action level and quantum fluctuations caused by meson
modes are neglected. Including fluctuations in the NJL
model, however, is not an easy task [23]. For some works,
including beyond MF corrections to the NJL model and
linear sigma model see [24–36].
Studying the model beyond the MF approximation, is

very important to correctly inspect the physical behavior
near the critical region where the system displays long
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range correlations. At low temperatures and densities,
before the restoration of chiral symmetry, it is expected
that a major role is played by the thermal excitations of
the pion modes [37]. These low mass degrees of freedom
are the pseudo-Goldstone modes of the NJL model.
Including quantum fluctuations in QCD effective model
calculations, is also known to smooth the transition and
bring the critical region toward lower values of temperature
[38,39]. The localization of the critical region in model
calculations can be essential to aid experimental efforts to
pinpoint the CEP.
One widely used technique to include quantum fluctua-

tions beyond the MF, is the functional renormalization
group (FRG). The FRG is a powerful nonperturbative
method that incorporates the Wilsonian idea of a gradual
momentum integration. In this method, the central object is
the, scale-dependent, average effective action which acts as
an interpolation functional between two regimes: the
ultraviolet scale, without quantum fluctuations and the
infrared scale, where all quantum fluctuations have been
taken into account. For reviews on the FRG see [40,41].
The FRG has been applied to the NJL model with a scale
dependence incorporated in the four-Fermi interaction
coupling. However, such a scheme leads to a diverging
coupling in the renormalization group flow, that signals
spontaneous breaking of chiral symmetry, for more infor-
mation see [42–44]. Recently, different schemes have been
used to apply the FRG to a theory with four-Fermi
interactions, like the NJL model, see [42–46]. The FRG
technique was also successfully applied to the quark-meson
model to study the QCD phase diagram in both two and
three flavors, as well as used to compute spectral functions
through a simple analytical continuation to imaginary time
[47,48]. However, more recently, it was also found that the
application of the FRG to the 2-flavor QM model leads to
an unphysical behavior at low temperatures and high
chemical potentials: the existence of a region of negative
entropy density near the first-order phase transition of the
model, for more information see [49].
Any calculation scheme used to solve the model, at any

level of approximation, must be symmetry conserving, i.e.,
it has to preserve the symmetries of the model. In the case
of chiral symmetry and its breaking in the vacuum, the
model must have a Goldstone mode in the chiral limit.
The MF or Hartree plus RPA calculations are symmetry
preserving [23,50].
Different symmetry conserving schemes, to take the NJL

model beyond the MF approximation, have been presented
over the years like the 1=Nc expansions, “Φ–derivable”
methods and functional methods [23,51–56]. The MF
approximation represents the leading order in the Nc
expansion and corrections to the MF could be of order
1=Nc. However, the NJL is a nonrenormalizable field
theory in four spacetime dimensions. A regularization
procedure must be applied, which will be directly related

to the absolute size of the corrections. This means that the
magnitude of the corrections is not only dictated by the
expansion parameter [21] but also by the model para-
metrization and phenomenology.
A nonperturbative and symmetry conserving method

was developed by E. Nikolov et al. in [51], based on the
effective action formalism. Such formalism was coined as
the one-meson-loop approximation [51,53] and represents
the next to leading order correction in the Nc expansion of
the NJL effective action. It was later extended to include
low temperature effects in the gap equation [37] using an
approximation: at low temperatures, only the lowest lying
pion pole would contribute.
In this work, we do not deal with the system at finite

density. Hence, vector-type interactions will not be con-
sidered even though these interactions can be present in the
NJL model, specially at finite density. Indeed, vector
interactions are present if one considers the NJL model
as an effective model of QCD, based on the color-current
expansion and the Fierz transformation of the one-gluon
exchange interaction [57,58].
In the present paper, we will take an important step in the

direction of calculating the NJL phase diagram beyond the
MF approximation by extending the symmetry conserving
scheme presented by E. Nikolov et al. to finite temperature
[37,51]. To accomplish this, we will solve the NJL gap
equation including all contributions coming from the one-
meson-loop correction terms. This will allow us to study
the impact of meson fluctuations on the quark condensate
and in the restoration of chiral symmetry at finite temper-
ature. Previous works have only considered the effect of the
one-meson-loop terms in the vacuum quark condensate and
did not develop the formalism of the integration technique
and phenomenology to extend the calculation to finite
temperature [37,50,51,53]. In order to consider all con-
tributions coming from the one-meson-loop correction
terms, we will separate the contour integrations that arise
in the calculation in two distinct contributions: the collec-
tive and noncollective modes [56,59]. This calculation does
not involve meson fields with kinetic boson terms at the
Lagrangian level. In this formalism, mesons are composite
collective and noncollective excitations of the underlying
quark fields.
This paper is organized as follows. In Sec. II the NJL

model and formalism, to derive the one-meson-loop gap
equation, are presented. The separation of the collective
and noncollective modes is laid out. In Sec. III the results
from increasing the meson fluctuations in the vacuum and
at finite temperature are studied. The separated effect of the
collective modes and noncollective modes, on the quark
condensate, is also considered. Finally, in Sec. IV con-
clusions are discussed and further work is planned.
We work with units in which ℏ ¼ c ¼ 1. The following

notation is used along the work for an n–dimensional
integration in momentum space:
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II. MODEL AND FORMALISM

To derive the NJL gap equation including one-meson-
loop corrections, we will use the effective action formalism.
Following [51], we consider the two flavor NJL model,
whose Lagrangian density in Minkowski spacetime is
given by:

Lðψ̄ ;ψÞ ¼ ψ̄ði=∂ − m̂Þψ þ gs
2
ðψ̄ Γ̂αψÞ2: ð1Þ

Here, ψ is the quark field, m̂ is the current quark mass,
which explicitly breaks chiral symmetry and gs is the
coupling constant of the scalar and pseudoscalar four-
fermions interaction. The mass dimension of the coupling
gs is ½D − 6� (where D is the spacetime dimension),
rendering this model nonrenormalizable in D ¼ 4. The
operator Γ̂α, to incorporate both the scalar and pseudoscalar
interactions, is defined as Γ̂0 ¼ 1 and Γ̂j ¼ iγ5τj.
To include temperature we will use the Euclidean

spacetime by performing a Wick rotation from real times
to imaginary times, x0 → −iτ changing the metric, ηab ¼
−δab. The Euclidean action can be written as SE½ψ̄ ;ψ � ¼
−
R 1=T
0 dτ

R
d3xLEðψ̄ ;ψÞ. The generating functional of the

fully connected Green’s functions, for a given temperature
(T), ignoring a normalization factor, can be written as:

W½T; η; η̄� ¼ ln
Z

Dψ̄Dψe−SE½ψ̄ ;ψ �þ
R

1=T

0
dτ
R

d3xðψ̄ηþη̄ψÞ: ð2Þ

When dealing with multiquark interactions one can use the
Hubbard-Stratonovich transformation to absorb these non-
quadratic interactions with the use of auxiliary fields with
the same quantum numbers as the quark bilinears operators.
In the case of the NJL model, it can be written as [60]:

exp

�Z
1=T

0

dτ
Z

d3x
gs
2
ðψ̄ Γ̂αψÞ2

�

∝
Z

Dϕα exp

�
−
Z

1=T

0

dτ
Z

d3x

�
ϕ2
α

2gs
þ ðψ̄ Γ̂αψÞϕα

��
:

ð3Þ

This exact transformation leads to a partially bosonized
version of the model with Yukawa-type of interactions
between the fermions and the auxiliary fields without
kinetic terms. The quadratic fermionic term can then be
integrated out exactly. In this model the zeroth component
of the field ϕ0, correspond to a scalar meson field and the
other three ϕ, to a pseudoscalar meson field.

After using this transformation and shifting variables as
ϕα → ϕα −mδα0, the quark fields can be integrated out to
yield the completely bosonic energy functional,

W½T; J� ¼ ln
Z

Dϕα e
−SE½ϕα�þ

R
1=T

0
dτ
R

d3xJαϕα : ð4Þ

As pointed out in [51,61], for two quark flavors the
complex part of the fermionic determinant vanishes and we
are allowed to write tr lnD ¼ 1=2tr lnD†D. Hence, the
bosonic action SE½ϕ�, can be written as:

SE½ϕ� ¼ −
Nc

2
tr lnD†D

þ
Z

1=T

0

dτ
Z

d3x

�
ϕ2
α

2gs
−
mϕ0

gs
þ m2

2gs

�
: ð5Þ

Where the operator D†D is given by:

D†D ¼ −∂a∂a þ iγaΓ̂bð∂aϕbÞ þ ϕaϕa: ð6Þ

Following the Wick rotation, the partial differential oper-
ator is defined as ∂a ¼ ð−i∂0;∇Þ ¼ ð∂τ; ∂xÞ and the
Euclidean Dirac matrices are γa ¼ ðiγ0; γÞ ¼ ðγτ; γÞ, which
respect the anticommutation relation fγa; γbg ¼ −2δab.
The effective action of the model can be obtained

through a Legendre transformation,

Γ½T;φ� ¼
Z

dτ
Z

d3xJaφa −W½T; J�; ð7Þ

where φa is the vacuum expectation value of the fields in
the presence of an external source,

φ ¼ hϕiJ ¼
δW½J�
δJ

: ð8Þ

Considering small fluctuations around the background field,
one can expand the effective action in terms of the action
given by Eq. (5) and its functional derivatives [61]. Using
such expansion, the one-meson-loop effective action is

Γ½T;φ� ¼ SE½φ� þ
1

2
tr ln

δ2SE½φ�
δφ2

: ð9Þ

Keeping only the first term corresponds to the mean field
approximation.
The NJL one-meson-loop gap equation can be derived

by requiring that, for a given constant field configuration,
the effective action in Eq. (9) is stationary. To respect the
symmetries of the vacuum, only the scalar field can have a
nonvanishing expectation value, φ̄ ¼ ðS; 0Þ. One writes:

δΓ½φ�
δφc

����
φ̄

¼ δSE½φ�
δφc

þ 1

2
trΔab

δ3SE½φ�
δφaδφbδφc

¼ 0: ð10Þ
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The first term in the gap equation is the MF contribution
while the remaining terms correspond to the contribution
coming from the meson fluctuations.
In the MF approximation, the pole of the quark propa-

gator is given by φ0 ¼ S, meaning that the constituent
MF-quark mass mψ , is given by mψ ¼ S. As already
pointed out by other authors [51,53], the same does not
occur on the one-meson-loop calculation and S is no longer
identifiable with the quark mass. However, we will
continue to call S the Hartree mass, since it can still be
interpreted as a mass scale and it is essential on the
definition of the masses of collective and noncollective
modes that will contribute to the quark condensate, which
can be calculated using [51,53]:

hψ̄ψi ¼ −
ðS −mÞ

gs
: ð11Þ

Using the interpretation of S as the MF or Hartree quark
mass, will be important to understand the behavior of the
meson modes with increasing temperature.
The function Δ−1

abðS; qÞ, needed to solve Eq. (10), is the
second variation of the bosonic action SE½φ�, with respect
to the fields at the stationary point. It can be calculated to
yield:

Δ−1
abðS; qÞ ¼ δab½2NcNff1ðS; qÞðq2 þ 4S2δ0σÞ

− 4NcNff0ðSÞ þ g−1s �: ð12Þ

This is the meson propagator in the MF approximation
which also agrees with the RPA meson propagator. The
functions f0ðSÞ and f1ðS; qÞ are so-called quark-loop
functions (they are presented in Appendixes B and C,
respectively).
As suggested first by E. Nikolov [51] and after by

M. Oertel [53], in order to have a symmetry conserving
calculation, ensuring the pion as the Goldstone mode in the
chiral limit, the quantity in Eq. (12), in every expression,
has to be substituted by:

Δ̃−1
M ðS; qÞ ¼ 2NcNff1ðS; qÞðq2 þ 4S2δMσÞ þ

m
gsS

; ð13Þ

the meson-loop propagator, yielding the so-called meson-
loop-approximation (withM ¼ fσ; πg). This substitution is
exact in the MF approximation, where the MF-gap equation
ensures its validity. In the first derivation of the one-meson-
loop gap equation by E. Nikolov et al. [51], this sub-
stitution is justified in the basis of an Nc counting scheme.
The first term in the gap equation (the quark loop term) is of
order Nc. The second term will be of order 1=N0

c. Using the
definition given in Eq. (12) would lead to contributions in
the gap equation of order 1=Nc, introducing higher order
corrections in the calculation and ruining the Nc counting
scheme. Substituting by Eq. (13) makes the calculation

consistent and leads to massless pion in the chiral limit, as
shown by the authors. For more details on their argument,
see [51]. This substitution was also employed by M. Oertel
et al. [53], where it is argued to be necessary in order to
make the argument of the logarithm in Eq. (9) positive
definite, yielding a real and positive solution to the one-
meson-loop gap equation. (For more details see Ref. [53]).
In the present work we use this approximation since it is
necessary to have a symmetry conserving approximation
when adding meson loops in the effective action formalism.
The functions Δ̃σðS; qÞ and Δ̃πðS; qÞ do not correspond to
the meson propagators with one-meson-loop corrections.
To effectively calculate the meson propagators with one-
meson-loop corrections, one would have to calculate the
second functional derivative of the effective action includ-
ing the one-meson-loop term, generating third and fourth
order functional derivatives of the bosonic action given in
Eq. (5). This is beyond the scope of the present work.
As already stated, the NJL model is nonrenormalizable

and some regularization scheme is needed in order to
mathematically define the model. Here we will apply a
3-momentum regularization in all momentum integrations,
effectively truncating the Hilbert space of the fields [62].
The quark loop momentum can be regularized with a
hard 3D-momentum cutoff, Λf, the fermion cutoff. When
including quantum fluctuations in the calculation, due to
the nonrenormalizable nature of the model, a new param-
eter has to be introduced in order to regularize the meson
loops, Λb, the boson cutoff. Trivially, when Λb ¼ 0, one
recovers the MF approximation. Upon studying the effect
of quantum fluctuations beyond the mean field, in the NJL
model, several authors have studied the ratio α ¼ Λb=Λf,
or even fixed this ratio to an arbitrary value when building
NJL models which dealt with meson loop corrections
[37,51,53,56,63,64]. In this study, we independently
choose the values of Λf and Λb because the mathematical
relation between them are not well determined in the NJL
model at present.
In this work we fix the ratio α ¼ Λb=Λf by fixing the

energy scale of the model. The one-meson-loop contribu-
tion has a clear connection with the quark loop term: the
mesons in this formalism are composite collective and
noncollective excitations of the underlying quark fields and
are not meson fields with kinetic boson terms at the
Lagrangian level. This is clear from the explicit dependence
on the f1ðS; qÞ loop function in the one-meson-loop terms.
In fact, the largest energy in the system will now be fixed by
the f1ðS; qÞ loop function. In this function there will be a
dispersion relation with total momentum P ¼ qþ k, with k
the quark momentum (integrated up to Λf) and q the
external meson momentum (integrated up to Λb). It is clear
that the maximum momentum in the system will be the
sum Pmax ¼ Λf þ Λb ¼ ð1þ αÞΛf. If one considers that
the NJL model is valid up to a momentum scale of
Pmax ¼ 1 GeV, then α is limited by this energy scale for
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a given Λf. Hence, we will consider parametrizations
where the ratio α, yields a maximum momentum scale
of the order of 1 GeV. More details will be given in Sec. III.

A. The one-meson-loop gap equation
at finite temperature

Calculating explicitly the functional derivatives in
Eq. (10), one can arrive at the one-meson-loop gap
equation, first derived in [51]:

ΣqðSÞ þ ΣσðSÞ þ ΣπðSÞ ¼ 0: ð14Þ

The first term is the usual one-quark loop contribution
while the remaining correspond to the σ and π one-meson-
loop contributions to the gap equation. Each contribution is
explicitly given by:

ΣqðSÞ ¼
1

gs
ðS −mÞ − 4NcNfSf0ðSÞ; ð15Þ

ΣσðSÞ ¼ 2NcNfSf4I1σðSÞ þ 2f1ðS; 0ÞIσðSÞ þ I2σðSÞg;
ð16Þ

ΣπðSÞ ¼ 6NcNfSf2f1ðS; 0ÞIπðSÞ þ I2πðSÞg; ð17Þ

where IMðSÞ, I1MðSÞ, and I2MðSÞ, with M ¼ fσ; πg, are
defined as:

IMðSÞ ¼
Z

d4q
ð2πÞ4 Δ̃MðS; qÞ; ð18Þ

I1MðSÞ ¼
Z

d4q
ð2πÞ4 f1ðS; qÞΔ̃MðS; qÞ; ð19Þ

I2MðSÞ ¼ −2
Z

d4q
ð2πÞ4 ðq

2 þ 4S2Þf2ðS; qÞΔ̃MðS; qÞ: ð20Þ

The function f2ðS; qÞ can be written as a derivative of the
f1ðS; qÞ loop function with respect to S2. In the chiral limit,
the one-loop corrections, Σσ and Σπ , are explicitly sup-
pressed by an overall Nc factor, due to the extraNc factor in
the meson-loop propagator, Δ̃MðS; qÞ, meaning that these
terms are of OðN0

cÞ [37,51].
In the meson loop corrections terms present in the gap

equation [Eqs. (16) and (17)], one is integrating over the
meson four momentum q, i.e., summing over all kinematic
meson fluctuations that can contribute to the system.
At finite temperature, the meson-loop contributions can

be calculated following the usual Matsubara sum technique
and the vacuum can be calculated by taking the T → 0
limit. These infinite sums over residues, of a previous
singular integrand, can be transformed into a contour
integration in the complex plane which avoid poles located
at the Matsubara frequencies. However, the available

contours in the complex plane are constrained by the
analytical structure of the integrand. In this calculation,
the meson propagator, more specifically the loop function
f1ðS; qÞ, imposes restrictions on the possible contours in
the complex plane. Hence, due to the analytic properties
of such a function, the Matsubara sum will be trans-
formed into a contour integration as suggested in Fig. 1
(see Ref. [50]).
Each one-meson-loop term in the gap equation can be

brought to a form of a contour integration of the function
hðwÞ of a complex variable, w. The integral over the closed
contour C in the complex plane (see Fig. 1), of the complex
function hðwÞ can be written as:

I ¼
I
C

dw
2πi

hðwÞ: ð21Þ

Defining the real part of w as ω, we can define the real and
imaginary parts of the function hðwÞ, near the real axis
(small ϵ > 0), by writing:

hðω� iϵÞ ¼ Re½hðωÞ� � iIm½hðωÞ�: ð22Þ

The integration in Eq. (21), can then be written as an
integration around the real axis as:

I ¼ 1

π

Z þ∞

−∞
dωIm½hðωÞ�: ð23Þ

Only the imaginary part of the function under the original
contour integration, Im½hðωÞ�, will contribute to the result.
In our framework, to calculate the meson contributions

for a given meson channel M, two distinct contributions
will be considered, the collective and noncollective modes
(see Refs. [56,59]). This separation is depicted in Fig. 2,
where the first comes from the isolated pole in the complex
plane while the latter, from the branch cuts.
In the chiral limit, Eq. (13) can be viewed as the

propagator of a meson with effective mass 4S2δMσ and a

FIG. 1. Contour used to calculate the meson-loop contributions
to the gap equation. The dots in the vertical axis are poles that
represent the bosonic Matsubara frequencies. The poles and
branch cuts on the horizontal axis are due to the analytical
structure of the f1ðS; qÞ loop function.
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wave function renormalization proportional to f1ðS; qÞ.
The function f1ðS; qÞ amounts for the internal interacting
quark substructure of the collective meson excitation. For
convenience, we define the collective meson propagator in
Eq. (13) as:

kMðS; q; q0Þ ¼
1

ðq2 þ 4S2δMσÞ
¼ 1

q20 þ E2
MðS; qÞ

; ð24Þ

where the dispersion relation E2
M ¼ q2 þ 4S2δMσ , is a real

quantity.
The collective mode contributions will be calculated by

considering that only the collective meson propagator,
kMðS; q;−iwÞ, has a nonvanishing imaginary part and
f1ðS; q;−iwÞ is a real quantity. These pole terms will
appear as delta functions and will correspond to excitations
of the underlying quark system with a precise dispersion
relation. The noncollective modes come from the branch
cuts, corresponding to the kinematic region where the
imaginary part of f1ðS; q;−iwÞ is nonzero and the collec-
tivemeson propagator, kMðS; q;−iwÞ is a real quantity. The
analytic continuation of the functions f1ðS; q; q0Þ to
f1ðS; q;−iq0Þ and kMðS; q; q0Þ to kMðS; q;−iq0Þ have been
defined as FðS; q;ωÞ and KMðS; q;ωÞ, respectively, for real
ω (see Appendixes C and D).
As pointed out by K. Yamazaki et al. in Refs. [56,59],

when chiral symmetry is not explicitly broken at the
Lagrangian level, i.e., when m ¼ 0, these contributions
are easily separated. When including the quark current
mass however, these contributions get mixed and the
separation must be done with care.
As the temperature increases, one expects chiral sym-

metry to get restored. This means that the absolute value of
the quark condensate decreases, as well as the value for the
expectation value of the scalar field, S. This implies that,
both the position of the meson propagator pole in the
complex plane, as well as the onset of the branch cuts, can
change with the temperature and S.
In the MF calculation of meson masses and decays, one

can define the Mott temperature at which the mass of a

given meson channel, is smaller then the sum of the
constituent mass of its composing quarks (for a detailed
discussion in the two flavor NJL model, see [13]). At this
point the decay width of such a meson channel is nonzero
and the previous quarks bound state, becomes a resonance.
In the present paper, this corresponds to the meson pole
reaching the branch cut. At this point, both the collective
meson propagator, kMðS; q;−iwÞ and the loop function
f1ðS; q;−iwÞ have nonvanishing imaginary parts. To cal-
culate exactly such contributions, one should use a keyhole
contour, avoiding both the pole as well as the branch cut
singularity. However, that would introduce in the calcu-
lation a mixture between the imaginary contribution com-
ing from the pole with the one coming from the cut, making
it very difficult to clearly separate both contributions. To
avoid this, in the present framework, for a given kinematic
contribution where the pole lies on top of the branch cut,
only the noncollective mode will be calculated.
A collective meson mode exists, if there is an ωþ value,

in-between the branch cuts, where Eq. (13) is zero. This
condition can be written as:

−ω2þ þ E2
MðS; qÞ þ

m̃
Re½FðS; q;ωþÞ�

¼ 0; ð25Þ

where,

m̃ ¼ m
2gsNcNfS

: ð26Þ

Analyzing Im½FðS; q;ωÞ�, one can recognize that the

region in-between cuts is given by
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðΛf þ qÞ2 þ S2
q

−ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2
f þ S2

q
; Eσ

i
. One can also observe that the real part of

FðS; q;ωÞ is always greater then zero in the ω–region
in-between the branch cuts. Thus, considering a finite
current quark mass, Eq. (25) only has a zero for the pion
meson mode. This means that excitations with the same
quantum numbers as the σ field will not have collective
mode contributions, only noncollective ones.
In the following, the integrations defined in Eqs. (18),

(19), and (20), will be separated in the collective and
noncollective contributions.
Consider the contribution IMðSÞ, for a given meson

channel M ¼ fσ; πg, given in Eq. (18) (for more details on
this calculation, see Sec. D). As discussed earlier, it can be
divided in the collective and noncollective contributions,
i.e., the pole PMðSÞ and a branch cut, BMðSÞ terms. This
separation can be written as:

IMðSÞ ¼ PMðSÞ þ BMðSÞ: ð27Þ

The first term is the contribution coming from the collective
modes. It can be calculated, as already stated, by consid-
ering that near the real axis, the loop function f1ðS; q;−iwÞ

FIG. 2. Definition of the collective meson mode (pole) and the
noncollective meson mode (branch cut) terms in the meson-loop
corrections.

RENAN CÂMARA PEREIRA and PEDRO COSTA PHYS. REV. D 101, 054025 (2020)

054025-6



is purely real and k−1M ðS; q;−iwÞ has both a real and an
imaginary part. It can be calculated to yield:

PMðSÞ ¼
1

4NcNf

Z
q

cothðβωþ=2Þ
Re½FðS; q;ωþÞ�

j∂ωχþðS; q;ωÞj−1ωþ

ẼMðS; q;ωþÞ
:

ð28Þ

Here, the collective mode dispersion relation Ẽ2
MðS; q;ωÞ

and the function χþðS; q;ωÞ, are defined as:

Ẽ2
MðS; q;ωÞ ¼ E2

MðS; qÞ þ
m̃

Re½FðS; q;ωÞ� ; ð29Þ

χþðS; q;ωÞ ¼ ω − ẼMðS; q;ωÞ; ð30Þ

while ωþ ¼ ωþðS; qÞ is the location of the pole on the real
line of the ω–complex plane. It can be calculated as a
solution of

χþðS; q;ωþÞ ¼ 0: ð31Þ

Now, one of the difficulties of including composite
meson fluctuations in the calculation becomes evident.
The pole location ωþ, from which one calculates the
collective mode dispersion relation Ẽ2

MðS; q;ωþÞ, depends
on the Hartree mass (S), on the meson 3-momentum (q) and
implicitly on the temperature (T), through Re½FðS; q;ωÞ�,
which is related to the quark substructure of the collec-
tive mode.
From this, one can see that the pole contribution, does

not simply correspond to a integration over the meson
fluctuation momentum with a fixed collective meson mass.
When integrating over the meson momentum, a certain
value of Hartree mass and temperature are fixed and the
pole location, for a single value of q, is calculated self-
consistently. We highlight that, in our calculation, the pole
contributions are only nonzero if ωþ exists in between
the cuts.
The second term, BMðSÞ, can be calculated by consid-

ering that, near the real axis, k−1M ðS; q;−iwÞ is real while
f1ðS; q;−iwÞ is complex. One can write:

BMðSÞ ¼
1

2πNcNf

Z
q

Z þ∞

0

dω
cothðβω=2Þ

−ω2 þ E2
MðS; qÞ

×
−Im½FðS; q;ωÞ�

Re½GðS; q;ωÞ�2 þ Im½FðS; q;ωÞ�2 : ð32Þ

The function Im½FðS; q;ωÞ� have an Heaviside step func-
tion, which restricts the integration to the branch cuts in
Fig. 2. The function Re½GðS; q;ωÞ�, is defined as:

Re½GðS; q;ωÞ� ¼ Re½FðS; q;ωÞ� þ m̃KMðS; q;ωÞ: ð33Þ

The integral in Eq. (19), only appears in the σ gap
equation. Considering a finite quark current mass m, only

the branch cut contribution will be nonzero, I1σðSÞ ¼
B1σðSÞ since, as previously stated, the σ mode does not
have a pole. One can write this term as (see Sec. E for more
details on this derivation):

B1σðSÞ ¼
m̃

2πNcNf

Z
q

Z þ∞

0

dω
cothðβω=2Þ

−ω2 þ E2
σðS; qÞ

×
KσðS; q;ωÞIm½FðS; q;ωÞ�

Re½GðS; q;ωÞ�2 þ Im½FðS; q;ωÞ�2 : ð34Þ

It is clear that this contribution vanishes in the chiral limit,
due to the overall factor m̃.
The last integration that needs attention, is given by

Eq. (20) (for more details see Sec. F). It will have
contributions coming both from the collective and non-
collective modes:

I2MðSÞ ¼ P2MðSÞ þ B2MðSÞ: ð35Þ

To simplify the calculations one can write the integrand in
terms of the f1ðS; qÞ loop function using the identity:

f2ðS; qÞ ¼ −
1

2

∂
∂ξ2 f1ðξ; qÞξ¼S: ð36Þ

This will remove double poles that would otherwise appear
when using the Matsubara sum technique.
Repeating the same process i.e., consider that

f1ðS; q;−iwÞ is purely real and k−1M ðS; q;−iwÞ is complex,
near the real axis, after some calculations, one can arrive at:

P2MðSÞ ¼ −
m̃

4NcNf

Z
q

cothðβωþ=2Þ
ẼMðS; q;ωþÞ

∂S2Re½FðS; q;ωþÞ�
Re½FðS; q;ωþÞ�2

× j∂ωχþðS; q;ωÞj−1ωþ : ð37Þ

The noncollective contribution to I2MðSÞ can be calcu-
lated as before, near the real axis, the branch cut term is

B2MðSÞ ¼
1

2πNcNf

Z
q

Z þ∞

0

dω
cothðβω=2Þ

1þ AðS; q;ωÞ2
× ∂ξ2Aðξ; q;ωÞξ¼S: ð38Þ

Here, the function AðS; q;ωÞ is defined as

Aðξ; q;ωÞ ¼ Im½Fðξ; q;ωÞ�
Re½Fðξ; q;ωÞ� þ m̃KMðS; q;ωÞ

: ð39Þ

III. RESULTS

In this section we present our results and discuss the
influence of the one-meson-loop terms, separated in col-
lective and noncollective contributions, on the quark
condensate in the vacuum and at finite temperature.
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We also study the effect of including only the collective and
noncollective contributions in the restoration of chiral
symmetry with increasing temperature.
Here, we point out that, concerning the numerical

calculations, the inclusion of the one-meson-loop terms
is completely self-consistent: upon solving the gap equa-
tion for a given parametrization, for each value of Hatree
mass, S, and temperature, T, one has to numerically check
the existence of the collective modes and their influence on
the noncollective modes.

A. Vacuum

To start our study, we find a parameter set which, at the
MF level, reproduces the value of the quark condensate
obtained by two-flavor lattice QCD [65], hl̄li1=3 ¼
−256 MeV, the pion mass, mπ ¼ 135 MeV and the pion
decay constant, fπ ¼ 93 MeV. This parameter set is dis-
played in Table I.
To study the effect of the inclusion of meson-loop

corrections in the vacuum condensate, we use the afore-
mentioned MF parameter set and increase the value
of α, the ratio between the boson and fermion cutoff,
α ¼ Λb=Λf, from zero (MF calculation) to a finite value.
The results of such calculation can be seen in Fig. 3. Three
different scenarios were considered:

(i) Quark loop and the collective modes, ΣqðSÞ þ
ΣPðSÞ ¼ 0;

(ii) Quark loop and the noncollective modes, ΣqðSÞ þ
ΣBðSÞ ¼ 0;

(iii) Quark loop and collective and noncollective
modes, ΣqðSÞ þ ΣPðSÞ þ ΣBðSÞ ¼ 0.

Setting the boson cutoff to a nonzero value is equivalent
to include the one-meson-loop correction terms. As one
can see in the left panel of Fig. 3, by solving the gap
equation with increasing α, the value of the quark
condensate decreases. For reference, the gray dashed line
in the left panel of Fig. 3, corresponds to an 1=Nc-
reduction of the MF vacuum quark condensate. This
decreasing behavior is expected since the inclusion of
bosonic degrees of freedom is known to restore chiral
symmetry. The decreasing of the quark condensate with
increasing α happens until a point where, to further
decrease the quark condensate, the boson cutoff has also
to decrease. This behavior of decreasing quark condensate
with decreasing α, continues up to the point where the
pion collective mode with zero momentum reaches the
branch cut, i.e., Ẽπð0Þ ¼ Eσð0Þ. This can been seen more
clearly in the right panel of Fig. 3. After this point (red-
dashed line in the right panel of Fig. 3) a smaller number
of momentum modes will contribute to the collective
modes and the quark condensate cannot decrease again
with increasing α. When the highest momentum mode,
with q ¼ Λb, reaches the branch cut, i.e., ẼπðΛbÞ ¼
EσðΛbÞ, the collective modes do not contribute any more
to the calculation (full red line in the right panel of Fig. 3).
At this point, no more solutions can be found for the gap
equations. These points are represented in the right panel
of Fig. 3 by the respective colored dots.

TABLE I. Mean field parameter set and MF quark mass, S, in
the vacuum.

Λf [MeV] m [MeV] gsΛ2
f=2 S [MeV]

690.3 4.72 2.014 288.4
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FIG. 3. Ratio between the MF vacuum quark condensate and the one-meson-loop vacuum quark condensate, as a function of the ratio
α ¼ Λb=Λf. The green line is the result of solving the gap equation with the collective contributions, the blue line with the noncollective
contributions and the black line is the complete calculation. The gray dashed line in the left panel, corresponds to an 1=Nc-reduction of
the MF vacuum quark condensate. The red-dashed and red-full lines in the right panel, correspond to the Hartree mass points where the π
collective mode reaches the branch cut, with q ¼ 0 and q ¼ Λb, respectively.
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B. Finite temperature

In this section we solve the gap equation at finite
temperature for different sets of parameters that include
one-meson-loop corrections and compare the results with
the usual MF calculation.
To solve the gap equation at finite temperature it is

necessary to evaluate the q → 0 limit of the f1ðS; qÞ loop
function, i.e., f1ðS; 0Þ [see Eqs. (16) and (17)]. This
operation implies two distinct limits, q0 → 0 and q → 0.
After the extension of the discrete Matsubara frequencies to
continuum values q0, the function f1ðS; qÞ is no longer
analytic in the origin [66]. This can easily be demonstrated
by noticing that the limiting operations, q → 0 and q0 → 0,
do not commute i.e.,

lim
q→0

lim
q0→0

f1ðS; q; q0Þ ≠ lim
q0→0

lim
q→0

f1ðS; q; q0Þ: ð40Þ

This is a consequence of the breaking of Lorentz symmetry
by the heat bath. In fact, this feature is a well-known
property of finite temperature field theory and the limiting
operations in Eq. (40) are related to two distinct approx-
imations. The left-hand side order of limiting operations is
known as the static limit while, the one in the right-hand
side, is known as the plasmon limit. The analytical result
for both limits is presented in Appendix C. For more details
see [66]. We consider both the static and plasmon limits
and compare both results in the calculation of the quark
condensate as a function of temperature including collec-
tive and noncollective modes.
To study the finite temperature behavior of the quark

condensate and restoration of chiral symmetry with the
one-meson-loops contribution, a set of parameters has to be
provided which include the boson cutoff. In order to do so,
we fix the ratio between the boson and fermion cutoffs, α,
to different values and search for parametrizations which
reproduce the same vacuum observables as in the MF case:
the two flavor quark condensate, the pion mass and the pion
decay constant given previously. We also search for para-
metrizations in the three scenarios presented earlier, con-
sidering the complete one-meson-loop gap equation, and
considering the quark loop with the collective excitations or
with the noncollective excitations. The obtained parameter
sets are displayed in Table II.
To obtain the model parametrization, the pion mass and

pion decay constant are calculated using the meson-loop
pion propagator given in Eq. (13). We highlight that this is
an approximation since the vacuum quantities are not
calculated using the one-meson-loop pion propagator
i.e., the second functional derivative of the one-loop
effective action. This approximation only changes the
parametrization of the model and does not modify the
qualitative effects of including collective and noncollective
modes on the quark condensate and on the restoration of
chiral symmetry.

When calculating the collective modes contributions to
the gap equation at finite temperature, for a given pair of
values ðT; SÞ, one is integrating over the meson momen-
tum, from 0 to Λb. However, as temperature increases, the
value of S decreases and chiral symmetry tends to get
restored. As a consequence, the poles that originate the
collective contributions and the branch cuts, move in
the complex plane. Indeed, at a specific value of ðT0; S0Þ
the pole with momentum q ¼ 0, enters the branch cut (see
Fig. 2) and the mode with that dispersion relation no longer
contributes as a collective excitation. As temperature
continues to increase, more and more momentum modes
generate pole contributions that overlap with the branch
cuts and are not included as collective excitations. So,
collective excitations are considered until the highest boson
momentum mode, with momentum q ¼ Λb, enters the
branch cut.
In Fig. 4, we present the results of solving the one meson

loop gap equation, at finite temperature, increasing the
boson cutoff. In all the panels we present the result of the
MF model, using the parameters of Table I, for reference.
We also present the so-called pion melting lines for pion
collective modes with momentum q ¼ 0 and q ¼ Λb
(dashed and full red lines of Fig. 4). For a given Hartree
mass, these lines provide the respective melting temper-
ature of the pion collective mode i.e., the temperature at
which the poles with momentum modes q ¼ 0 and q ¼ Λb,
enter the branch cut. For q ¼ 0, this is known as the pion
Mott temperature. The q ¼ 0 melting line, contrary to the
q ¼ Λb one, depends only on the fermionic parameters i.e.,
it does not depend on the boson cutoff. This means that
these lines are almost the same in all scenarios presented in
Fig. 4. Upon solving these complete gap equation, once
the quark condensate reaches this temperature, a smaller
number of momentum modes will contribute to the
collective modes.

TABLE II. Parameter sets for different values of α, considering
three different scenarios: the complete calculation, considering
only the quark sector and collective fluctuations and quark sector
and noncollective fluctuations.

α
P

P

P
B Λf [MeV] m [MeV] gsΛ2

f=2 S [MeV]

0.1 ✓ ✓ 690.9 4.72 2.015 288.1
✓ ✗ 690.8 4.72 2.015 288.2
✗ ✓ 690.4 4.72 2.015 288.4

0.2 ✓ ✓ 694.4 4.72 2.022 286.2
✓ ✗ 693.7 4.72 2.021 286.5
✗ ✓ 691.0 4.72 2.016 288.1

0.3 ✓ ✓ 702.2 4.72 2.038 282.1
✓ ✗ 693.7 4.72 2.021 286.5
✗ ✓ 692.6 4.72 2.019 287.2

0.4 ✓ ✓ 714.7 4.72 2.065 276.0
✓ ✗ 709.2 4.72 2.053 278.6
✗ ✓ 695.7 4.72 2.025 285.5
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In both the plasmon and static limits, the quark con-
densate at finite temperature, has a different behavior with
meson loop corrections, when compared to MF, see Fig. 5.
There is a bending behavior not seen at MF level: because
of the inclusion of collective and noncollective modes in
the system and the crossing of cuts in the complex plane
the quark condensate is not an analytical function of
temperature.
Figure 5 also shows that this behavior is present when

solving the gap equation with both collective and non-
collective excitations (red line) or when considering these
contributions separately (green and blue lines). Such
observation leads us to conclude that this behavior is a
consequence of considering beyond MF corrections within
this formalism, independently if they are collective or
noncollective excitations.
Due to the presence of this bend, the critical temperature

of the crossover transition cannot be defined as the zero of

the second derivative of the quark condensate with respect
to temperature, as usual. Still, one can clearly distinguish
two phases, one with a large quark condensate and the other
with a small quark condensate. These phases are also
separated by the Mott temperature line of the q ¼ 0 pion
collective mode (see Fig. 4). Hence, in this calculation, it
would be natural to associate this temperature with the
partial restoration of chiral symmetry.
A nonstandard quark condensate as a function of

temperature was also obtained in [67] for a nonlocal
version of the Polyakov–Nambu–Jona-Lasinio model
beyond mean field. In that work, the authors found a
“wiggle” and attributed such a behavior to the beyond MF
correction to the quark self-energy.
In conclusion, we expect to show that the inclusion of

quantum fluctuations in the NJL model needs to be done
with care, especially if one is trying to reproduce lattice
QCD results. If one wants to have a consistent model
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FIG. 4. Solution of the gap equation at finite temperature including collective and noncollective fluctuations. Each panel represents the
solution for a given ratio between the boson and fermion cutoff, α ¼ Λb=Λf. Both the plasmon and static limits are presented as well as
the collective excitation melting lines for q ¼ 0 and q ¼ Λb.
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beyond the mean field, including collective and noncol-
lective excitations, one should also include in the gap
equation contributions coming from these modes, as
performed in this work. We found, however, that such a
calculation leads to a strange behavior near the critical
temperature of the model. This might indicate that the one-
meson-loop NJL model, should be used with care as an
effective model of QCD: taking our results into account, we
conclude that to use the NJL with one-meson-loop cor-
rections, the overall contribution from meson loops is very
small, i.e., α, should be of the order of α ¼ 0.1–0.2, to get a
chiral condensate which is bounded by the error bars
coming from 2-flavor lattice QCD calculations [68].

IV. CONCLUSIONS

In the present work, we have studied the effect of the
inclusion of collective and noncollective modes in the
quark condensate of the NJL model using a symmetry
conserving approximation. This approximation is based on
the effective action formalism and guarantees that the pion
is the Goldstone mode in the chiral limit.
Adding quantum fluctuations, in asymmetric conserving

way, by considering the influence of collective and non-
collective modes in the NJL model is not a simple task [23].
The composite nature of the meson modes leads to a
dynamical scenario where, depending on the temperature
and Hartree mass, collective modes may, or may not exist.
From the practical point of view, even evaluating some
integrations analytically, one ends up effectively solving
four dimensional integrals, numerically.
In the vacuum, using a mean field parametrization and

adding the meson sector by increasing the boson cutoff, it
was found a decreasing value for the quark condensate.

This result is expected: the inclusion of boson degrees of
freedom is known to drag the system into a state of restored
chiral symmetry. It was also found that this decrease is
limited by the existence of the collective modes.
Decreasing the value of the condensate too much leads
to the absence of pole contributions to the vacuum gap
equation, which are essential to balance the gap equation,
providing the existence of a solution, beyond the MF
approximation.
This calculation shows that adding meson-loop correc-

tion terms to the NJL model, in a consistent way, is a very
delicate process. There is a backreaction in the quark
condensate and restoration of chiral symmetry, due to
the existence of composite collective and noncollective
modes. As temperature increases and chiral symmetry gets
restored, the collective modes melt and its contribution to
the gap equation vanishes.
As future work, testing the robustness of the results with

different regularization procedures for the quark and meson
loops, like the Pauli-Villars scheme, could be insightful.
The calculation can be extended to finite density by
including a finite chemical potential. With such an exten-
sion one could study in-medium behavior of the collective
and noncollective modes and their influence on the resto-
ration of chiral symmetry at finite density. This would also
allow us to obtain the phase diagram of the NJL model at
one-meson-loop level and check the existence of a critical
end-point and its robustness against increasing α ¼ Λb=Λf.
Another interesting extension would be to include the
Polyakov loop and study the influence of the collective and
noncollective modes on the breaking of ZðNcÞ symmetry
and statistical deconfinement. Finally, the developed for-
malism can also be applied to the calculation of transport
coefficients at finite temperature.
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FIG. 5. Solution of the gap equation at finite temperature with α ¼ Λb=Λf ¼ 0.4. The left panel is the result in the plasmon limit while
the right panel is the static limit. The green line is the result of solving the gap equation with the collective contributions, the blue line
with the noncollective contributions and the red line is the complete calculation. The black line is the MF result using the parameters of
Table I.
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APPENDIX A: SOKHOTSKI-PLEMELJ
FORMULA

The Sokhotski-Plemelj formula is given by,

1

x − x0 � iϵ
¼ p:v:

1

x − x0
∓ iπδðx − x0Þ; ðA1Þ

where, ϵ ≥ 0 is an infinitesimal constant, p.v. stands for the
Cauchy principal value and δ is the Dirac delta function.

APPENDIX B: f 0ðSÞ LOOP FUNCTION
AT FINITE TEMPERATURE

The thermal loop function f0ðSÞ is defined as:

f0ðSÞ ¼
Z
k

1

k2 þ S2
: ðB1Þ

We can separate the time dependence by defining,

E2
k ¼ k2 þ S2: ðB2Þ

Writing the k0 integrations as a sum over the fermionic
Matsubara frequencies, ωn ¼ ð2nþ 1Þπ=β; n ∈ Z and
using the contour integral technique to evaluate the sum,
one gets:

f0ðSÞ ¼
Z
k

1

2Ek
½1 − 2nFðEkÞ�: ðB3Þ

APPENDIX C: f 1ðS;qÞ LOOP FUNCTION AT
FINITE TEMPERATURE

The thermal loop function f1ðS; qÞ is defined as:

f1ðS; qÞ ¼
Z
k

1

ððk − qÞ2 þ S2Þðk2 þ S2Þ : ðC1Þ

We can separate the time dependence by using Eq. (B2) and
defining,

E2
k−q ¼ ðk − qÞ2 þ S2: ðC2Þ

To perform the integration over k0, we write the integral
as a sum over the allowed Matsubara frequencies,
ωn ¼ ð2nþ 1Þπ=β; n ∈ Z, for fermionic fields. The sum
is then evaluated using the usual contour technique [69,70].
This process will generate terms proportional to,

nFðiq0 þ Ek−qÞ ¼
1

eβiq0eβEk−q þ 1
; ðC3Þ

the Fermi distribution function with an external momentum
q0. This momentum corresponds to the Matsubara fre-
quency of an external particle. In this case, the external
particles are bosons (σ and π modes). Hence, q0 ¼ 2nπ=β,
n ∈ Z. Making use of Euler’s identity one writes,

nFðiq0 þEk−qÞ ¼
1

eβiq0eβEk−q þ 1
¼ 1

eβEk−q þ 1
¼ nFðEk−qÞ:

After some calculations, one can finally arrive at,

f1ðS; q; q0Þ ¼
Z
k

1

4EkEk−q

�
Gþ

iq0 þ Eþ
−

Gþ
iq0 − Eþ

þ G−

iq0 þ E−
−

G−

iq0 − E−

�
; ðC4Þ

where:

Eþ ¼ Ek þ Ek−q; ðC5Þ

E− ¼ Ek − Ek−q; ðC6Þ

Gþ ¼ 1 − nFðEkÞ − nFðEk−qÞ; ðC7Þ

G− ¼ nFðEkÞ − nFðEk−qÞ: ðC8Þ

This function is nonanalytical at the origin, leading to
two distinct results in the q → 0 limit: the plasmon and
static limits. For the plasmon limit one can get:

lim
q0→0

lim
q→0

f1ðS; q; q0Þ ¼
Z

d3k
ð2πÞ3

1 − 2nFðEkÞ
4E3

k

: ðC9Þ

The static limit can be calculate to yield,

lim
q→0

lim
q0→0

f1ðS;q; q0Þ ¼
Z

d3k
ð2πÞ3

1

4E3
k

�
1− 2nFðEkÞ

þ 2Ek

T
nFðEkÞ½nFðEkÞ− 1�

�
: ðC10Þ

Both expressions agree in the zero temperature limit, as
expected. For more details see [66].
In the calculations we are interested in the

function f1ðS; q;−iωÞ with q0 a pure imaginary number.
Consider a Wick rotation q0 ¼ −iω, for real ω and define
FðS; q;ωÞ as:
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FðS; q;ωÞ ¼ f1ðS; q;−iωÞ

¼
Z
k

1

4EkEk−q

×

�
Gþ

ωþ Eþ
−

Gþ
ω − Eþ

þ G−

ωþ E−
−

G−

ω − E−

�
:

ðC11Þ

The real and imaginary parts of FðS; q;ωÞ can be defined,
near the real axis, with an analytical continuation.
Following [56,59], we write:

FðS; q;ωÞ → FðS; q;ω� iϵÞ
¼ Re½FðS; q;ωÞ� � iIm½FðS; q;ωÞ�: ðC12Þ

The function FðS; q;ωÞ in Eq. (C11), is an even
function with respect to ω i.e., FðS; q;ω� iϵÞ ¼
FðS; q;−ðω� iϵÞÞ. By defining the real and imaginary
parts as in Eq. (C12), this property implies that, near the
real axis, the real part will be an even function of ω while,
the imaginary part will be an odd function [71]. Indeed one
can write:

Re½FðS; q;ωÞ� ¼ Re½FðS; q;−ωÞ�; ðC13Þ

Im½FðS; q;ωÞ� ¼ −Im½FðS; q;−ωÞ�: ðC14Þ

Each contribution defined in Eq. (C12) can be explicitly
calculated by applying the Sokhotski-Plemelj formula for
distributions defined in Eq. (A1).

APPENDIX D: THE IMðSÞ CONTRIBUTION

Consider the term given in Eq. (18), for a given meson
channel M ¼ fσ; πg. We can write it as:

IMðSÞ ¼
1

2NcNf

Z
q

Z
dq0
2π

½f1ðS;q; q0Þk−1M ðS;q; q0Þ þ m̃�−1:

ðD1Þ

Changing the integration over q0 into a sum over
Matsubara frequencies ωn, one gets,

IMðSÞ ¼
1

2NcNf

×
Z
q

1

β

X∞
n¼−∞

½f1ðS; q;ωnÞk−1M ðS; q;ωnÞ þ m̃�−1:

ðD2Þ

As already stated, q corresponds to the momentum of a
composite boson hence, ωn ¼ 2nπ

β , the bosonic Matsubara
frequencies. This sum can be converted into a contour
integration, using contour C of Fig. 1. One gets,

IMðSÞ ¼
1

2NcNf

Z
q

1

2

I
C

dw
2πi

coth

�
βw
2

	

× ½f1ðS; q;−iwÞk−1M ðS; q;−iwÞ þ m̃�−1: ðD3Þ

Applying the formalism discussed earlier through Eq. (23),
the contour integral can be converted into an integration
around the real axis, in which only the imaginary part of the
integrand will contribute to the final result. The integral can
then be divided in the collective and noncollective con-
tributions as indicated in Eq. (27).
The first term, PMðSÞ, can be calculated by considering

that, near the real axis, the loop function f1ðS; q;−iwÞ is
purely real and k−1M ðS; q;−iwÞ as an imaginary part. One
can write,

PMðSÞ ¼
1

4πNcNf

Z
q

Z þ∞

−∞
dω

cothðβω=2Þ
Re½FðS;q;ωÞ�

× Im

��
KMðS;q;ωþ iϵÞ−1 þ m̃

Re½FðS;q;ωÞ�
	

−1
�
:

ðD4Þ

Using the Sokhotski-Plemelj formula and the properties
of the Dirac delta function, the imaginary part of the
integrand is,

Im

��
KMðS; q;ωþ iϵÞ−1 þ m̃

Re½FðS; q;ωÞ�
	

−1
�

¼ π

2ẼMðS; q;ωÞ
X
η¼�1

η
δðω − ωηÞ

j∂ωχηðS; q;ωÞjωη

; ðD5Þ

where the quantity χηðS; q;ωÞ and its ω-derivative are
given by:

χηðS; q;ωÞ ¼ ω − ηẼMðS; q;ωÞ; ðD6Þ

∂ωχηðS; q;ωÞ ¼ 1þ ηm̃

2ẼMðS; q;ωÞ
∂ωRe½FðS; q;ωÞ�
ðRe½FðS; q;ωÞ�Þ2 ;

ðD7Þ

with ωη a solution to Eq. (31). Plugging the imaginary part
in the integral, and using the delta function to integrate over
ω yields the final result:

PMðSÞ ¼
1

4NcNf

Z
q

cothðβωþ=2Þ
Re½FðS; q;ωþÞ�

j∂ωχþðS; q;ωÞj−1ωþ

ẼMðS; q;ωþÞ
:

ðD8Þ

Considering that k−1M ðS; q;−iwÞ is realwhilef1ðS; q;−iwÞ
is complex will give the branch cut contribution. One can
write,
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BMðSÞ ¼
1

4πNcNf

Z
q

Z þ∞

−∞
dω

cothðβω=2Þ
−ω2 þ E2

MðS; qÞ
Im½ðFðS; q;ωÞ þ m̃KMðS; q;ωÞÞ−1�: ðD9Þ

Using Eq. (33), near the real axis, the quotient in the integrand can be written as,

½FðS; q;ωþ iϵÞ þ m̃KMðS; q;ωÞ�−1 ¼
Re½GðS; q;ωÞ� − iIm½FðS; q;ωÞ�
Re½GðS; q;ωÞ�2 þ Im½FðS; q;ωÞ�2 :

One can drop the real part of this expression and write,

BMðSÞ ¼
1

2πNcNf

Z
q

Z þ∞

0

dω
cothðβω=2Þ

−ω2 þ E2
MðS; qÞ

−Im½FðS; q;ωÞ�
Re½GðS; q;ωÞ�2 þ Im½FðS; q;ωÞ�2 ; ðD10Þ

where we used the fact that the integrand is even in ω.

APPENDIX E: THE I1MðSÞ CONTRIBUTION

As already stated, only the branch cut contribution of the I1σðSÞ integral needs to be calculated. Consider,

I1σðSÞ ¼
1

2NcNf

Z
q

Z
dq0
2π

f1ðS; q; q0Þ½f1ðS; q; q0Þk−1σ ðS; q; q0Þ þ m̃�−1: ðE1Þ

By changing the integral into a Matsubara sum and then to a contour integration using contour C, one gets:

I1σðSÞ ¼
1

2NcNf

Z
q

1

2

I
C

dw
2πi

coth

�
βw
2

	
f1ðS; q;−iwÞ½f1ðS; q;−iwÞk−1σ ðS; q;−iwÞ þ m̃�−1: ðE2Þ

Following the usual recipe to calculate the noncollective mode contribution, B1σðSÞ is given by,

B1σðSÞ ¼
1

4πNcNf

Z
q

Z þ∞

−∞
dω

cothðβω=2Þ
−ω2 þ E2

σðS; qÞ
Im

�
FðS; q;ωÞ

FðS; q;ωÞ þ m̃KMðS; q;ωÞ
�
: ðE3Þ

Near the real axis, one can write:

FðS; q;ωþ iϵÞ
FðS; q;ωþ iϵÞ þ m̃KMðS; q;ωÞ

¼ 1 − m̃KMðS; q;ωÞ
Re½GðS; q;ωÞ� − iIm½FðS; q;ωÞ�
Re½GðS; q;ωÞ�2 þ Im½FðS; q;ωÞ�2 : ðE4Þ

Considering only the imaginary part of the above quotient, one gets:

B1σðSÞ ¼
m̃

2πNcNf

Z
q

Z þ∞

0

dω
cothðβω=2Þ

−ω2 þ E2
σðS; qÞ

KσðS; q;ωÞIm½FðS; q;ωÞ�
Re½GðS; q;ωÞ�2 þ Im½FðS; q;ωÞ�2 : ðE5Þ

APPENDIX F: THE I2MðSÞ CONTRIBUTION

The final and more complicated contribution comes from integrals I2σðSÞ and I2πðSÞ. We can define the quantity, I2MðSÞ,
which depends on the meson channel M ¼ fσ; πg as:

I2MðSÞ ¼ −2
Z

d4q
ð2πÞ4 ðq

2 þ 4S2δMσÞf2ðS; qÞΔ̃MðS; qÞ:

To simplify the calculations, we use the identity presented in Eq. (36) and write,

I2MðSÞ ¼
1

2NcNf

Z
q

∂
∂ξ2

Z
dq0
2π

lnff1ðξ; q; q0Þk−1M ðS; q; q0Þ þ m̃gξ¼S: ðF1Þ
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Here, the ξ2 derivative commutes with the integration since the integral bounds are ξ-independent. Following the usual
recipe, the q0 integration can be transformed into a Matsubara sum. The sum is then converted into a contour integration,
using contour C. We can now write,

I2MðSÞ ¼
1

2NcNf

Z
q

∂
∂ξ2

1

2

I
C

dw
2πi

coth

�
βw
2

	
lnff1ðξ; q;−iwÞk−1M ðS; q;−iwÞ þ m̃gξ¼S: ðF2Þ

The separation in the pole and branch cut contributions is performed using Eq. (35).
For the pole contribution P2MðSÞ, one can write:

P2MðSÞ ¼
1

4πNcNf

Z
q

∂
∂ξ2

Z þ∞

−∞
dω coth

�
βω

2

	
Im½lnfRe½Fðξ; q;ωÞ�K−1

M ðS; q;ωÞ þ m̃g�ξ¼S: ðF3Þ

The logarithm in the integrand can be written as,

lnfRe½Fðξ; q;ωÞ�K−1
M ðS; q;ωÞ þ m̃g ¼ ln Re½Fðξ; q;ωÞ� þ ln

�
K−1

M ðS; q;ωÞ þ m̃
Re½Fðξ; q;ωÞ�

�
: ðF4Þ

The first term is real and can be dropped. Hence,

P2MðSÞ ¼
1

4πNcNf

Z
q

∂
∂ξ2

Z þ∞

−∞
dω coth

�
βω

2

	
Im

�
ln
�
K−1

M ðS; q;ωÞ þ m̃
Re½Fðξ; q;ωÞ�

��
ξ¼S

:

Calculating the derivative yields:

P2MðSÞ ¼
1

4πNcNf

Z
q

Z þ∞

−∞
dω coth

�
βω

2

	
Im

��
K−1

M ðS; q;ωÞ þ m̃
Re½FðS; q;ωÞ�

�
−1
� ∂
∂ξ2

m̃
Re½Fðξ; q;ωÞ�ξ¼S

:

Using Eq. (D5) and defining RFðS; q;ωÞ ¼ 16π2qRe½FðS; q;ωÞ�, the final result is given by:

P2MðSÞ ¼ −
4π2m̃
NcNf

Z
q
q
cothðβωþ=2Þ
ẼMðS; q;ωþÞ

∂S2RFðS; q;ωþÞ
RFðS; q;ωþÞ2

j∂ωχþðS; q;ωÞj−1ωþ : ðF5Þ

For the branch cut contribution B2MðSÞ, consider,

B2MðSÞ ¼
1

4πNcNf

Z
q

∂
∂ξ2

Z þ∞

−∞
dω coth

�
βω

2

	
Im½lnfFðξ; q;ωÞK−1

M ðS; q;ωÞ þ m̃g�ξ¼S: ðF6Þ

The logarithm can be written as:

lnfFðξ; q;ωÞK−1
M ðS; q;ωÞ þ m̃g ¼ − lnKMðS; q;ωÞ þ fFðξ; q;ωÞ þ m̃KMðS; q;ωÞg: ðF7Þ

The first term can be dropped since it a pure real number and B2MðSÞ can be written as:

B2MðSÞ ¼
1

4πNcNf

Z
q

∂
∂ξ2

Z þ∞

−∞
dω coth

�
βω

2

	
Im½lnfFðξ; q;ωÞ þ m̃KMðS; q;ωÞg�ξ¼S: ðF8Þ

To calculate this term, the definition of Re½Gðξ; q;ωÞ� is slightly different from the one in Eq. (33). The term coming from
m̃KMðS; q;ωÞ does not depend on ξ,

Re½Gðξ; q;ωÞ� ¼ Re½Fðξ; q;ωÞ� þMðS; q;ωÞ: ðF9Þ

The argument of the logarithm, near the real axis, can be written as:
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Fðξ; q;ωþ iϵÞ þ m̃KMðS; q;ωÞ ¼ Re½Gðξ; q;ωÞ� þ iIm½Fðξ; q;ωÞ�:

The real part of the function FðS; q;ωÞ is even and its imaginary part is odd, with respect to ω. Using these properties, the
integration is broken at ω ¼ 0 and a variable change in the integration for negative ω as ω ¼ −ω, provides:

B2MðSÞ ¼
1

4πNcNf

Z
q

∂
∂ξ2

Z þ∞

0

dω coth

�
βω

2

	
Im

�
ln

�
Re½Gðξ; q;ωÞ� þ iIm½Fðξ; q;ωÞ�
Re½Gðξ; q;ωÞ� − iIm½Fðξ; q;ωÞ�

��
ξ¼S

:

The complex numbers in the logarithm argument can be written in the polar representation by defining their absolute value
Lðξ; q;ωÞ and argument Aðξ; q;ωÞ as,

Lðξ; q;ωÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re½Gðξ; q;ωÞ�2 þ Im½Fðξ; q;ωÞ�2

q
; ðF10Þ

Aðξ; q;ωÞ ¼ Im½Fðξ; q;ωÞ�
Re½Gðξ; q;ωÞ� ; ðF11Þ

which allows to write,

Re½Gðξ; q;ωÞ� � iIm½Fðξ; q;ωÞ� ¼ Lðξ; q;ωÞ exp½�iarctgAðξ; q;ωÞ�:

Using the polar representation and commuting the ξ2 derivative with the ω integral, it gives:

B2MðSÞ ¼
1

2πNcNf

Z
q

Z þ∞

0

dω
cothðβω=2Þ

1þ AðS; q;ωÞ2 ∂ξ2Aðξ; q;ωÞξ¼S: ðF12Þ
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