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In this work, we present a bag-type model within a nonextensive statistics applied to the description
of the properties of a hadronic system with an underlying fractal structure. The nonextensive ideal gas
inside the bag is determined by the grand canonical partition function from which pressure, energy, and
particle density, as well as temperature and chemical potential are obtained for the hadronic system. These
quantities are studied in the approximation of fixed mass for all bag constituents but also for discrete and
continuum masses. In all cases, the freeze-out line, corresponding to the energy per particle equal to 1 GeV,
and the lines corresponding to a fractal structure inside the proton volume are obtained. Finally, the pressure
on the bag surface of the proton is calculated and the resulting value ð0.135 GeVÞ4 is obtained.
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I. INTRODUCTION

The description of the hadron structure is a challenging
task since the strong interaction is not completely under-
stood at the nonperturbative regime. Numerical calcula-
tions, such as lattice QCD, are haunted, at large values of
the chemical potential, by the infamous sign problem and
hence, still unable to provide nonperturbative results in this
regime. This fact allows the investigation of just a few
aspects of the hadronic structure from first principles,
making phenomenological approaches an useful alternative
for studying many aspects of hadronic Physics.
Among several phenomenological models of strong

interacting systems, hadron resonant gas (HRG) models
have been successful in describing several aspects of
high energy collisions. However, these models have been
superseded in recent years by other approaches, such as
hydrodynamical models. One of the reasons for the
decreasing interest in the original HRG was the fact that
it has been shown to be useless to explain the distribution
of high momentum particles generated in high energy
collisions [1]. Recently, though, with the use of nonex-
tensive statistics, more specifically Tsallis statistics, gen-
eralizations of HRG models have proved to be helpful in
describing data, evidencing some clear patterns in the
outcomes of high energy collisions [2].
In the present work, we employ a nonextensive HRG

model to describe some properties of hadrons. To this
end, we assume a fractal structure of hadrons, which leads
to the emergence of nonextensivity of the hadronic thermo-
dynamics, which is then described by Tsallis entropic

formula. The model considers the hadron as a bag inside
which the hadron constituents exert a variable pressure. The
hadron constituents form an ideal gas, in the nonextensive
sense, limited by the hadron volume, and its total energy
represents the hadron mass.
While in high energy collisions, nonextensive effects

have been assumed in several works and are studied in
detail, the use of Tsallis statistics to describe hadronic
structure is seldom observed. Therefore, in the present
work, our main objective is to study possible evidences
that nonextensivity is present in hadronic structure. The
main motivation comes from the fact that a recent work
indicates that Tsallis statistics can be present in Yang-Mills
fields, and which allows the calculation of q from the QCD
field parameters, namely, the number of flavors and the
number of colors, resulting in q ¼ 1.14 [3,4], in good
agreement with the value found in many experimental data
analyses. Also, an extension of the Hagedorn’s thermo-
dynamic approach provided by a nonextensive self-
consistent principle leads to a very good description of
the observed hadron mass spectrum up to masses as small
as the pion mass obtained with a q value that is compatible
with q ¼ 1.14 [5].
We must remark that an analysis of data from high

energy collision experiments with energies above ∼1 TeV,
provides evidence that q may vary slightly with energy [6],
in the range 1.13 ≤ q ≤ 1.16, and with particle species. But
it is also clear that q is strongly dependent on the secondary
particle multiplicity, reaching an approximate constant
value for multiplicities above 5 [7]. For collision energies
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below ∼1 TeV, the q value energy dependence is stronger
[8], but in this case the multiplicity is also small.
Despite the debate about the precise q value, in the present

work, we investigate if there are clear signals that non-
extensivity effects are relevant in hadronic structure. For this
purpose, small variations in the q value are not important,
as far as q remains sufficiently larger than unit, that is,
q ∼ 1.14. Therefore, most of our analysis is carried out with
a constant q value, but this does not mean we discard the
possibility that q may vary under different conditions.
One must keep in mind that the ideal gas is not described

by the Tsallis statistics, but rather some systems with
correlations or interactions can be described by quasipar-
ticles which, when described by Tsallis statistics, leads to
an interaction-free gas of quasiparticles, which obeys the
nonextensive statistics, and are referred to as nonextensive
ideal gas. Effects of interaction or correlations are the ones
included in the description of the quasiparticles and are
responsible for a value of the entropic index, q, different
from unit. One example of system presenting these char-
acteristics is the thermofractal, studied in Refs. [9,10].
In our calculation, the main aspect is the use of Tsallis

statistics instead of Boltzmann-Gibbs statistics. The moti-
vation for such change in the statistical framework is the
results presented in recent works showing that Tsallis
statistics can emerge from a thermofractal structure [3,4]
and that QCD can lead to the formation of such fractal
structure [5].
The fundamental thermodynamical theory for hadrons

was introduced by Hagedorn [11], Chew and Frautschi
[12,13]. The basic idea in both theories is that hadrons are
constituted by internal hadrons in a structure which today
would be called a fractal [14]. This structure implies a self-
consistency constraint that, added to the hypothesis that the
compounding particles of hadrons behave as an ideal gas,
completely defines the thermodynamical properties of such
systems. The unusual hypothesis that an ideal gas could be
formed by strong interacting particles was demonstrated
to be compatible with Schwinger-Dyson expansion [15],
what triggered a fast development of HRG models [16].
Hagedorn’s self-consistent theory gives a hadron mass

spectrum formula, as well as the Chew-Frautisch bootstrap
model, and in addition predicts a limiting temperature for
hadronic matter. Later, based on the MIT-bag model [17],
developed at the Massachussetts Institute of Technology,
this limiting temperature was assumed to be a phase-
transition temperature between the confined and decon-
fined regimes. Of great importance was the fact that
Hagedorn’s theory predicted the exponential behavior of
energy distributions for the outcome of high energy
collisions. Although the experimental data available at that
time confirmed this prediction, with the increase of new
data from collisions at higher center of mass energy, it
became evident that a large tail in the high momentum

distributions could not be described by the theory, what
caused a decrease in interest on the theory.
In the last two decades, the idea of using Tsallis statistics

to extend the distributions obtained from Hagedorn’s
theory has gained importance [18–22]. A theory for the
nonextensive self-consistent thermodynamics was formu-
lated [5,23] where the critical temperature is still obtained,
but it results in new distributions for energy and momentum
of the secondary particles in high energy collisions follow-
ing a power-law distribution that describes correctly the
entire range of momentum distributions measured at high
energy experiments. In addition, a new formula for the
hadron mass spectrum is derived from the extended theory,
which better describes the spectrum of known hadronic
states [24,25]. Interestingly, new patterns for the limiting
temperature and entropic index are obtained, showing that
they are nearly independent of the collision energy or the
particle species.
Recently, it has been shown that a fractal system like the

one proposed byHagedorn and by Chew and Frautischmust
be described by Tsallis statistics instead of the Boltzmann
one [9], giving thus amathematical explanation for the use of
Tsallis statistics in the interpretation of high energy data.
This fractal structure is also in agreement with the informa-
tion about the fractal dimension for multiparticle production
that is obtained from the analysis of intermittency [9].
Evidences that Yang-Mills theory, of which QCD is a
special case, can give rise to fractal structures are inves-
tigated in Refs. [3,4]. Therefore, the use of Tsallis statistics
inHRGmodels is equivalent to the introduction of the fractal
structure evidenced in experimental data. In addition,
applications of Tsallis statistics in systems such as neutron
stars [26] have also been investigated.
In the present work, we investigate the properties of

hadrons by introducing a nonextensive bag-type model. Our
main objective is to investigate how a gas of interacting
fermions and bosons with different masses, restricted to
move inside a constant volume Vp ¼ ð4π=3Þr3o, with
ro ¼ 1.2 fm, and with total energy fixed to the proton mass,
mp ¼ 938 MeV, can give rise to an internal pressure equal
to the external pressure B used in the well-known MIT-bag
model. The interaction is included by considering that the
particles inside the bag follow a nonextensive statistics
[9,10]. We investigate three different scenarios: a gas with
interacting quarks and antiquarks, a gas of fermions and
bosons with different discrete masses, a gas of fermions and
bosons with masses varying continuously.

II. NONEXTENSIVE THERMODYNAMICS

The first step to develop a bag-type model based on a
nonextensive ideal gas is to find the entropy or the partition
function for such gas. Both tasks have already been done
elsewhere, and they lead to equivalent expressions [23,27].
First, let us define the q-logarithm and the q-exponential
functions for particles (þ) and antiparticles (−),
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8<
:

logðþÞ
q ðxÞ ¼ xq−1−1

q−1 ; x ≥ 1

logð−Þq ðxÞ ¼ x1−q−1
1−q ; x < 1

: ð1Þ

The q-exponential functions are then given by

8<
:

eðþÞ
q ðxÞ ¼ ½1þ ðq − 1Þx�1=ðq−1Þ; x ≥ 0

eð−Þq ðxÞ ¼ ½1þ ð1 − qÞx�1=ð1−qÞ; x < 0
: ð2Þ

The following distribution functions are used to write some
of the equations in a more compact form:

8<
:

nðþÞ
q ðxÞ ¼ 1

ðeðþÞ
q ðxÞ−ξÞq ; x ≥ 0

nð−Þq ðxÞ ¼ 1

ðeð−Þq ðxÞ−ξÞ2−q ; x < 0
: ð3Þ

In this study, the properties of the nonextensive ideal gas
are determined by the grand-canonical partition function,

logΞðV; T; μÞq

¼ −ξV
Z

d3p
ð2πÞ3

X
r¼�

ΘðrxÞlogð−rÞq

�
eðrÞq ðxÞ − ξ

eðrÞq ðxÞ

�
; ð4Þ

where x ¼ βðEp −
P

a μaQaÞ, with Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
is the

particle energy, Qa are conserved charges, and μa the
chemical potentials associated to these charges. ξ ¼ �1, for
bosons and fermions, respectively, and Θ is the step
function. In the ðudsÞ flavor sector of QCD, the only
conserved charges are the electric charge Q, the baryon
number B, and the strangeness S.
All thermodynamical functions for such a nonextensive

ideal gas [28] can be obtained by applying the usual
thermodynamics relations, and, for the case of interest in
the present work, the relevant quantities were already
obtained elsewhere [23,27], so here they are only listed.
The thermal expectation value for the charge Qa is

given by

hQai ¼ β−1
∂
∂μa logΞqjβ: ð5Þ

This can be expressed as well in the form

hQai ¼ QahNi; ð6Þ

where hNi is the averaged number of particles. In the
following, we consider only the effects of the baryon
number in the thermal medium, so that we switch on
only the baryonic chemical potential. In the following
explicit expressions, we use x ¼ βðEp − μBBÞ. According
to Eq. (4), and using Eqs. (5) and (6), the average number of
particles is

hNi ¼ V

�
CN;qðμB; B; β; mÞ þ 1

2π2

Z
p�

0

dpp2nð−Þq ðxÞ

þ 1

2π2

Z
∞

p�
dpp2nðþÞ

q ðxÞ
�
; ð7Þ

where p� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμBBÞ2 −m2

p
· ΘðμBB −mÞ and

CN;qðμB; B; β; mÞ ¼ 1

2π2
μBB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμBBÞ2 −m2

p

β

×
2q−1 þ 21−q − 2

q − 1
ΘðμBB −mÞ: ð8Þ

Note that the average baryon number can be computed
from Eqs. (6) and (7). In the case that the constituents
are hadrons, i.e., mesons, baryons, and antibaryons, this
leads to

hBi ¼ hNbaryonsi − hNantibaryonsi: ð9Þ

The average total energy is given by

hEi ¼ −
∂
∂β logΞq

����
μB

þ μB
β

∂
∂μB logΞq

����
β

; ð10Þ

resulting in

hEi ¼ V

�
CE;qðμB; B; β; mÞ þ 1

2π2

Z
p�

0

dpp2Epn
ð−Þ
q ðxÞ

þ 1

2π2

Z
∞

p�
dpp2Epn

ðþÞ
q ðxÞ

�
; ð11Þ

with

CE;qðμB; B; β; mÞ ¼ μBB · CN;qðμB; B; β; mÞ: ð12Þ

The pressure is given by

P ¼ 1

β

∂
∂V logΞq; ð13Þ

which leads to

hPi ¼ −ξ
T
2π2

�Z
p�

0

dpp2logðþÞ
q

�
1

1þ ξnð−Þq ðxÞ1=ð2−qÞ
�

þ
Z

∞

p�
dpp2logð−Þq

�
1

1þ ξnðþÞ
q ðxÞ1=q

��
: ð14Þ

Finally, the entropy is

S ¼ −β2
∂
∂β

�
logΞq

β

�����
μB

; ð15Þ
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and this can be explicitly expressed as

hSi ¼ V

�Z
p�

0

dpp2f−nð−Þq ðxÞlogðþÞ
q ðnð−Þq ðxÞ1=ð2−qÞÞ þ ξð1þ ξnð−Þq ðxÞ1=ð2−qÞÞð2−qÞ × logðþÞ

q ð1þ ξnð−Þq ðxÞ1=ð2−qÞÞg

þ
Z

∞

p�
dpp2f−nðþÞ

q ðxÞlogð−Þq ðnðþÞ
q ðxÞ1=qÞ þ ξð1þ ξnðþÞ

q ðxÞ1=qÞqlogð−Þq ð1þ ξnðþÞ
q ðxÞ1=qÞg

�
: ð16Þ

III. FRACTAL BAG-TYPEMODEL AT DIFFERENT
SCENARIOS—FORMALISM AND RESULTS

For building the fractal bag-type model, we assume that
the hadrons can be described as a bag where a nonextensive
ideal gas at temperature T exerts a pressure on the bag
membrane that confines it. By describing the gas as a
nonextensive gas, interactions between the compound
particles are automatically included. Such interaction is
supposed to form a fractal structure that needs to be
described by Tsallis statistics as shown in [9] and discussed
in the Introduction. In the following, we study the gas in
three different scenarios: fixed mass, where all particles
have the same mass, chosen to be the current quark mass;
the discrete mass, where constituent masses can be differ-
ent, but are constrained to take the value of one of the
observed hadron masses; continuous mass where constitu-
ent masses can vary continuously according to the gener-
alized Hagedorn mass spectrum.
It is interesting to evaluate the temperature at which the

total energy of the system is equal to the proton mass,
mp ¼ 938 MeV. The total energy is obtained by multiply-
ing the proton volume by the energy density, with Vp ¼
ð4π=3Þr3o, with ro ¼ 1.2 fm. We also define the freeze-out
line by imposing that ε=n ¼ 1 GeV. The condition ε=n ¼
1 GeV is imposed because, as shown in Ref. [23], if this
condition does not hold the system would not be confined.
This definition follows from the calculations performed
in [23], where it was shown that this specific curve can
explain heavy ion collision experimental results if
q ¼ 1.14. This picture of the proton as a bag will be
investigated in all three aforementioned mass scenarios.
One important aspect to study is the limits of temperature

and chemical potential within which the proton is supposed
to exist as a confined system, according to our model. In a
T vs μB diagram, the region below the freeze-out line refers
to a confined regime while the entire region above the
freeze-out line refers to a deconfined regime.
Other aspects of this fractal bag-type model are also

examined in the following sections.

A. Fixed mass

The fractal structure we implement when using Tsallis
statistics imposes that the bag is formed by partons which
have also internal structure which are themselves partons.
This is similar to the fireball by Hagedorn, or to the
bootstrap principle by Chew and Frautschi. Therefore, this

first scenario is studied as an exercise since it is based only
on quarks of fixed mass. And since quarks themselves do
not have internal structure, the self-similarity present in
both Hagedorn and Chew and Frautschi models is not
fulfilled here.
As a first step in our calculations, we consider that all the

particles within the gas have a single mass, m, which is
fixed to a light quark mass, that is, m ¼ 2.3 MeV. We
consider for the degeneracy of quarks,

gquarks ¼ 2Nf; ð17Þ

withNf ¼ 3, while the factor 2 comes from the spin. We do
not include a factor Nc in the degeneracy, as it is assumed
that the quarks form color singlet states. The degeneracy
of antiquarks is the same, i.e., gantiquarks ¼ gquarks. Finally,
note that the baryon number of quarks and antiquarks is
Bquarks ¼ 1=3 and Bantiquarks ¼ −1=3. The average baryon
number is computed using the formalism of Sec. II, and the
expression reads

hBi ¼ 1

3
ðhNquarksi − hNantiquarksiÞ: ð18Þ

The energy density of such system depends both on the
temperature T and on the baryonic chemical potential, μB.
In Fig. 1(a), we present different situations: the line

corresponding to the total energy of the system defined as
mentioned above, the freeze-out line and the lines delimit-
ing the region in which the total number of particles inside
a volume Vp are equal to 1, 2, and 3. In all cases, the
temperature decreases as the chemical potential increases,
which results in larger masses at lower temperatures. As the
chemical potential vanishes, the temperature increases up to
T ∼ 180 MeV. This result, although qualitatively correct,
causes some problems in the context of the nonextensive
model of hadrons. According to Ref. [23], we would expect
that the red line would cross the blue line, but this is not the
case here. Indeed, at temperatures above T ∼ 61 MeV, the
system is known to have crossed the phase-transition point;
therefore, no hadrons should exist at such temperature, as
can be seen in Refs. [24,25]. The inconsistency found here
is due, as we will show in the following, to the fact that we
are using a fixed mass for the constituent particles.
In Fig. 1(b), we show the number of quarks and of

antiquarks inside the volumeVp as a function of the baryonic
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chemical potential. We can see that the total number of
particles increases with the chemical potential, as expected.

B. Discrete masses

In the discrete mass scenario, the self-similarity can be
understood in terms of quarks and gluons. If one consider
the hadron as a bag composed of a sea of quarks and
gluons, then one should always find pairs or triplets of
quarks correlated in such a way as to form structures similar
to the hadrons we observe in nature, similar in the sense that
they present the same quantum numbers.
With this picture in mind, we consider the case of

different masses for those particles inside the bag. This
is done by summing the energy and pressure for all
different masses according to the masses and multiplicity
of the known hadrons. Apart from the summation, all the
formulae for the thermodynamical quantities are the same.
The second step is to consider that, according to

Hagedorn’s and Chew-Frautisch models, the compound
particles of hadrons have a variety of masses, and we include
such masses by considering that the gas inside the bag can be
formed by particleswithmasses that correspond to themasses
of known hadrons, and considering their multiplicity. By
dividing the thermodynamical relations mentioned in the
previous section by thevolume and summing over all hadrons
in the bag, we get the particle density of hadrons to be

n ¼ hNi
V

¼
X
i

gi

�
CN;qðμB; Bi; β; miÞ

þ 1

2π2

Z
pi�

0

dpp2nð−Þq ðxiÞ þ
1

2π2

Z
∞

pi�
dpp2nðþÞ

q ðxiÞ
�
;

ð19Þ

where xi ¼ βðEi − μBBiÞ and pi� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμBBiÞ2 −m2

i

p
·

ΘðμBBi −miÞ. Ei ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

i

p
is the energy, gi is the

degeneracy, and Bi the baryon number of the particle i.
Notice that Bi ¼ þ1;−1, 0 for baryons, antibaryons, and
mesons, respectively.1 The baryon density can be computed
from Eq. (19), leading to

hnBi ¼
X
i

Bi
hNii
V

¼ hnbaryonsi − hnantibaryonsi: ð20Þ

The number of (anti)baryons is obtained from Eq. (19)
by restricting the sum over the spectrum of (anti)baryons
only and considering the corresponding quantum numbers.
Finally, the energy density is given by

ε ¼ hEi
V

¼
X
i

gi

�
CE;qðμB; Bi; β; miÞ

þ 1

2π2

Z
pi�

0

dpp2Ein
ð−Þ
q ðxiÞ

þ 1

2π2

Z
∞

pi�
dpp2Ein

ðþÞ
q ðxiÞ

�
; ð21Þ

and the pressure is calculated according to
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FIG. 1. (a) Temperature as a function of baryonic chemical potential for a nonextensive gas with total energy inside a volume Vp equal
to the proton mass. We display as solid red line the freeze-out line ε=n ¼ 1 GeV. The dashed green lines correspond to the region in
which the total number of particles inside a volume Vp are equal to 1, 2, and 3. The inserted figure is a zoom of the of the main figure.
(b) Number of quarks and of antiquarks (inside a volume Vp) as a function of the baryonic chemical potential, along the line of
ε · Vp ¼ mp [blue line in Fig. 1(a)]. The solid black line is Ntotal ¼ Nquarks þ Nantiquarks.

1Note that, when assuming μB ≥ 0, then pi� can have a
nonvanishing value only for baryons. pi� ¼ 0 for antibaryons
ðBi ¼ −1Þ and mesons ðBi ¼ 0Þ, so that in these cases the only
relevant integrals are those involving nðþÞ

q ðxÞ.
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P¼−
T
2π2

X
i

giξi

�Z
pi�

0

dpp2logðþÞ
q

�
1

1þξin
ð−Þ
q ðxiÞ1=ð2−qÞ

�

þ
Z

∞

pi�
dpp2logð−Þq

�
1

1þξin
ðþÞ
q ðxiÞ1=q

��
; ð22Þ

with ξi ¼ −1 for (anti)-baryons and ξi ¼ 1 for mesons.
In Fig. 2, we show the T vs μB diagram for the case of

discrete masses. The critical line, for which ϵ=n ¼ 1 GeV,
is represented by a solid red line, while the solid blue line
represents a gas with total energy equal to the proton mass.
Since a given system is confined only in the region below
the critical line, we can see that the proton can be found
inside a narrow range of baryonic chemical potential,
around μB ¼ 0.96 GeV and for temperatures not higher
than 0.025 GeV.
Figure 3 shows the number of baryons, antibaryons, and

mesons normalized to the total number of particles. As
expected, the number of baryons increase with increasing
baryonic chemical potential as the amount of antibaryons
and mesons decrease. Also, according to Fig. 2, the proton
exists close to μB ¼ 0.96 GeV. At this value of chemical
potential, Fig. 3 shows that the proton is completely
baryonic in content. This result exemplifies the consistency
of the model.

C. Continuous mass

The third step is to consider a continuous mass spectrum
in the computation. It has been argued in some previous

works that the hadron mass spectrum can be understood in
a self-consistent way by using nonextensive statistics. In
particular, the spectrum density is given by [24,25]

ρðmÞ ¼ γm−5=2eðþÞ
q ðm=ToÞ; ð23Þ

where γ and To are parameters to be determined that
characterize the spectrum. In the present work, we are
interested in the thermodynamics at finite temperature and
baryonic chemical potential, so that it is important to
distinguish between mesons and baryons, and we will
use a density for mesons, ρmesonsðmÞ, and a density for
baryons, ρbaryonsðmÞ.
Using these densities, we find for the thermodynamic

quantities expressions similar to Eqs. (19)–(22), but replac-
ing the discrete summation in states by a continuous
integral in the mass, i.e.,

X
i

gi →
Z

Λ

0

dm
X

ξ¼−1;1
ρξðmÞ: ð24Þ

In this formula, we use the notation ρ1ðmÞ ¼ ρmesonsðmÞ
for the density of mesons and ρ−1ðmÞ ¼ ρbaryonsðmÞ for
the density of baryons. In addition, we will consider Λ ¼
2.0 GeV as a cutoff in the spectrum. Then, the thermody-
namic quantities can be computed with the formulas

n ≔
hNi
V

¼
Z

Λ

0

dm
X

ξ¼−1;1
ρξðmÞ

�
CN;qðμB; Bξ; β; mÞ

þ 1

2π2

Z
p�

0

dpp2nð−Þq ðxÞ þ 1

2π2

Z
∞

p�
dpp2nðþÞ

q ðxÞ
�

ð25Þ

for the particle density of hadrons,
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FIG. 3. Number of baryons, antibaryons, and mesons (inside a
volume Vp) as a function of the baryonic chemical potential,
along the line of ε · Vp ¼ mp (blue line in Fig. 2.) These
quantities are normalized to Ntotal ¼ Nbaryons þ Nmesons. The solid
black line in the right panel is Ntotal. See Fig. 2 for further details.
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FIG. 2. Temperature as a function of baryonic chemical
potential for a nonextensive gas with total energy inside a volume
Vp equal to the proton mass (solid blue line). We display as solid
red line the freeze-out line ε=n ¼ 1 GeV. The dashed lines
correspond to the region in which the total number of particles
(dashed green line) and the total number of baryons (dashed cyan
line) inside a volume Vp are equal to 1, respectively. These results
have been obtained for the case of discrete masses and q ¼ 1.14.
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ε ≔
hEi
V

¼
Z

Λ

0

dm
X

ξ¼−1;1
ρξðmÞ

�
CE;qðμB; Bξ; β; mÞ

þ 1

2π2

Z
p�

0

dpp2Enð−Þq ðxÞ þ 1

2π2

Z
∞

p�
dpp2EnðþÞ

q ðxÞ
�

ð26Þ

for the energy density, and

P ¼ −
T
2π2

Z
Λ

0

dm
X

ξ¼−1;1
ξ · ρξðmÞ

×

�Z
p�

0

dpp2logðþÞ
q

�
1

1þ ξnð−Þq ðxÞ1=ð2−qÞ
�

þ
Z

∞

p�
dpp2logð−Þq

�
1

1þ ξnðþÞ
q ðxÞ1=q

��
ð27Þ

for the pressure. Note that in these formulas

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

q
; x ¼ βðE − μBBξÞ; and

p� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμBBξÞ2 −m2

q
· ΘðμBBξ −mÞ ð28Þ

are functions of the continuous parameter m. In addition,
while the baryon number of mesons is zero, i.e., B1 ¼ 0,
half of the baryons have baryon number B−1 ¼ 1, and
the other half have baryon number B−1 ¼ −1, i.e., they
can be particles or antiparticles. This means that in the
previous formulas the density of baryons should be under-
stood as

ρ−1ðmÞ → 1

2
ρ−1ðmÞδB−1¼1 þ

1

2
ρ−1ðmÞδB−1¼−1: ð29Þ

Then, as mentioned above for the discrete mass spectrum, it
is obvious that p� can have a nonvanishing value only for
baryons ðB−1 ¼ 1Þ.

We show in Fig. 4 the cumulative number of mesons and
baryons. It is defined as the number of hadrons below some
mass m, i.e.,

NcumðmÞ ¼
X
i

giΘðm −miÞ; ð30Þ

where gi is the degeneracy factor, and mi is the mass of
the ith hadron. The density of states is given by ρðmÞ ¼
dNcumðmÞ=dm, according to the nonextensive self-
consistent theory.
In order to compute the cumulative number, it is

convenient to add in Eq. (23) some contribution so that
the integral

R
m
ϵ dm̃ρðm̃Þ is finite in the limit ϵ → 0. This

contribution is ρðmÞ → ρðmÞ − γm−5=2ð1þm=ToÞ, and it
only affects appreciably the low m behavior of ρðmÞ, in
particular for masses smaller than the pion mass. Then, the
cumulative number is

NcumðmÞ ¼
Z

m

0

dm̃ρðm̃Þ

¼ 2γ

3m3=2

�
−2F1

�
−
3

2
;−

1

q − 1
;−

1

2
;−ðq − 1Þ m

To

�

þ 1þ 3m
To

�
; ð31Þ

where 2F1 is the ordinary hypergeometric function. As we
are studing the phase diagram in terms of the baryonic
chemical potential, it is convenient to distinguish between
meson and hadron spectrum. The best fit of the meson
spectrum from the PDG (particle data group) with Eq. (31)
leads to the following values:

γ ¼ 10.36 × 10−3; To ¼ 51.05 MeV; ð32Þ

and it is displayed in Fig. 4(a). In this fit, we have imposed
that the theoretical distribution of Eq. (31) reproduces very
well the low m region, i.e., the pion mass regime, as this is
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FIG. 4. Cumulative number of meson spectrum, Fig. 4(a), and baryon spectrum, Fig. 4(b), from the PDG (continuous black lines), and
from the q-exponential fit (continuous blue lines). The fits are performed by using Eq. (31), and the values of the parameters ðγ; ToÞ are
reported in Eq. (32) for mesons and Eq. (34) for baryons. In the latter case, the distribution turns out to be the one given by Eq. (35).
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the most important contribution in the partition function.2

In the case of baryons, the best fit to the experimental
distribution of the PDG corresponds to values

To → 0; γ → 0; so that
To

γq−1
¼ c; ð33Þ

with c ¼ 0.078 GeV, and it is displayed in Fig. 4(b). For
the same reason as in the meson case, we have imposed that
the theoretical distribution reproduces very well the regime
of the nucleon mass. Then, the result of Eq. (33) can be
easily obtained by solving the equation NðmnÞ ¼ gn with
NðmÞ given by Eq. (31) and gn ¼ 8, and taking the limit
To → 0 and γ → 0. This leads to

To

γq−1
¼ c with c ¼ ðq − 1Þ

�
2ðq − 1Þ

ð5 − 3qÞgnm3=2
n

�ðq−1Þ

·mn ≃ 0.078 GeV; ð34Þ

when q ¼ 1.14 and mn ¼ 0.938 GeV. Finally, note that in
the limit of Eq. (33), the baryon-mass density and cumu-
lative number behave as

ρbðmÞ ≃
�
q − 1

c

�
1=ðq−1Þ

m
ð7−5qÞ
2ðq−1Þ;

NcumðbÞðmÞ ≃ 2

�
q − 1

5 − 3q

��
q − 1

c

�
1=ðq−1Þ

m
ð5−3qÞ
2ðq−1Þ; ð35Þ

and NcumðbÞðmnÞ ¼ gn is consistent with the expression for
c given by Eq. (34). Notice that the distributions in Eq. (35)
depend on just one parameter. It is remarkable that the
experimental baryon distribution from the PDG can be
reproduced so well by fitting just one single parameter.
Figure 5 shows a T vs μ diagram similar to the one in

Fig. 2 but for the continuous mass scenario. In this case,
the freeze-out line, again the solid red line, extends itself
in a range of μB similar to the previous case but now reaches
a maximum temperature for confinement of 0.06 GeV
at μB ¼ 0.85 GeV. Here, the proton can be consistently
found at somewhat lower chemical potential, around
μB ¼ 0.75 GeV, but in wider range of temperature, reach-
ing T ¼ 0.05 GeV before phase transition occurs, twice
the transition temperature obtained in the discrete mass
approach.
Figure 6 shows essentially the same as Fig. 3.

Considering that in this scenario the proton is found at
μB ¼ 0.75 GeV, the model states in Fig. 6 that the content
of the bag is solely baryonic which means that the model
remains consistent.

IV. EFFECTS OF NONEXTENSIVITY

In order to evaluate the effects of nonextensivity in the
results obtained here, we present in Figs. 7 and 8 plots of
some relevant quantities as obtained using different values
for the entropic index q, which gives a measure of the
nonextensivity of the system. As q → 1, the system tends to
be extensive and to follow Boltzmann statistics instead of
Tsallis statistics. We observe that the bag energy density
increases faster as the temperature increases for a fixed
value of the chemical potential for systems with higher
entropic indexes with respect to those following extensive
statistics, as shown in Figs. 7(a) and 8(a).
At this point, it is interesting to investigate what would

happen to the system if Boltzmann statistics, instead of
Tsallis one, were used. We made the calculations for the
continuous and discrete mass scenario only since the fixed
mass approach has already been shown to be inadequate.
The results for continuous mass are displayed in Figs. 9
and 10. We notice a striking difference between the results
with Boltzmann-Gibbs statistics in comparison to the
results with Tsallis statistics in the T vs μ diagram, where
the existence of the proton is possible for any value of Tand
μ satisfying the total energy constraint, while in the Tsallis
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FIG. 5. Same plot as Fig. 2, for the continuous mass spectrum.
See caption of Fig. 2 for further details.
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FIG. 6. Same plot as Fig. 3, but for the continuous mass
spectrum. See caption of Fig. 3 for further details.

2This can be done by assuming a very small error bar for the
experimental distribution NPDGðmÞ in the regime m ∼mπ , when
computing the χ2=d:o:f: and its minimization.
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case only a small range of chemical potential would allow
the existence of the system in the confined region. This
results from the fact that the critical temperature is higher
in the BG statistics than in the nonextensive case. The

fractions of fermions and bosons, on the other hand, present
a similar behavior in both cases.
Figures 11 and 12 also show the behavior of the T vs μ

diagram and that of the number of particles, respectively, in
this case for discrete masses. Once more, the number of
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FIG. 8. (a) Energy density as a function of temperature for different values of entropic index, q, in the case μ ¼ 0. (b) Pressure as a
function of chemical potential for different values of q in the case where the temperature T is chosen to keep the total energy fixed to the
value E ¼ mp. We consider the case of discrete masses.
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FIG. 9. Same plot as Fig. 5, but for Boltzmann-Gibbs statistics
(q ¼ 1). We have considered the continuous mass spectrum. See
caption of Fig. 5 for further details.
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FIG. 7. (a) Energy density as a function of temperature for different values of entropic index, q, in the case μ ¼ 0. (b) Pressure as a
function of chemical potential for different values of q in the case where the temperature T is chosen to keep the total energy fixed to the
value E ¼ mp. We consider the case of continuum masses.
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FIG. 10. Same plot as Fig. 6, but for Boltzmann-Gibbs statistics
(q ¼ 1). We have considered the continuous mass spectrum. See
caption of Fig. 6 for further details.

BAG-TYPE MODEL WITH FRACTAL STRUCTURE PHYS. REV. D 101, 054022 (2020)

054022-9



baryons and mesons exhibit a behavior similar to the
previous cases. Figure 11, on the other hand, shows a
clearly nonphysical situation. Following the blue line, for
which the total energy is fixed at the proton mass, from

lower to higher temperature one can see that the system
deconfines after crossing the critical line (red line) at
around μB ¼ 0.9 GeV and T ¼ 0.03 GeV only to confine
itself again at μB ¼ 0.6 GeV and T ¼ 0.11 GeV. This
reconfinement at a higher temperature is not an observed
behavior of systems undergoing a phase transition.
In summary, Fig. 9 implies that the proton never under-

goes a phase transition and Fig. 11 suggests that the proton
can deconfine and reconfine at a higher temperature.
Therefore, these two figures show that Boltzmann-Gibbs
statistics leads to a nonphysical conclusion in both scenarios.
In the following, we study the behavior of T vs μ

diagrams as the value for q changes. Figures 13 and 14
show the behavior of the number of particles, the bag with
the proton mass and of the freeze-out line for selected
values of the entropic index q for the discrete and the
continuous mass scenarios, respectively.
The discrete mass scenario provides physical situations

for all three values considered for q, although the tendency to
a nonphysical solution is visible as the value of q decreases.
In the continuous mass scenario, on the other hand, the
freeze-out line will completely cross the line associated with
the proton for q < 1.07, which means, as in Fig. 9, that the
proton would never undergo a phase transition.
Since a phase transition is observed in high energy pp

collisions, we can conclude that q < 1.07 leads to non-
physical results and therefore represents a limiting value for
this parameter in the context of our model.

V. COMPARISON BETWEEN DISCRETE AND
CONTINUUM MASS SCENARIOS

In Fig. 15, we plot the system energy density as a
function of T and μ. As expected, the energy increases with
the temperature and with the chemical potential, and the
shape reflects the power-law behavior determined by the
q-exponential function.
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FIG. 13. Same plot as Fig. 2, but for selected values of the entropic index q. We have considered the discrete mass spectrum. See
caption of Fig. 2 for further details.
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FIG. 11. Same plot as Fig. 2, but for Boltzmann-Gibbs statistics
(q ¼ 1). We have considered the discrete mass spectrum. See
caption of Fig. 2 for further details.
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FIG. 12. Same plot as Fig. 3, but for Boltzmann-Gibbs statistics
(q ¼ 1). We have considered the discrete mass spectrum. See
caption of Fig. 3 for further details.
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FIG. 15. Energy density (normalized to the ideal gas limit) of a nonextensive ideal gas in the case of fixed mass, for q ¼ 1.14. We show
the result for the continuum mass (a) and discrete mass (b) spectrum.
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FIG. 16. Pressure (normalized to the ideal gas limit) as a function of temperature and baryonic chemical potential in the case of a
nonextensive gas with particles with discrete masses and q ¼ 1.14. Blue dots indicate the region where the gas total energy is equal to
the proton mass. We show the result for the continuum mass (a) and discrete mass (b) spectrum.
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FIG. 14. Same plot as Fig. 5, but for selected values of the entropic index q. We have considered the continuous mass spectrum. See
caption of Fig. 5 for further details.
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In Fig. 16, we show how pressure varies as a function of
T and μ, for the case of discrete masses. The plots in
Figs. 15 and 16 are normalized to the ideal gas limit of the
corresponding thermodynamic quantities, which at finite
temperature and baryon chemical potential read [29]

PidealðT; μBÞ

¼ π2

45
T4

�
N2

c − 1þ NcNf

�
7

4
þ 30μ̄2B þ 60μ̄4B

��
; ð36Þ

for the pressure, and εideal ¼ 3Pideal for the energy
density, where μ̄B ¼ μB=ð6πTÞ. We are considering
Nc ¼ 3 and Nf ¼ 3.
As expected, the pressure increases as T and μ increase.

The curve for which T and μ results in total energy equal to
the proton mass is indicated by red points. It is possible to
observe already in this plot that the region corresponding to
the proton mass is far from the divergent region which
shows that the proton structure can be consistently obtained
in the model we are adopting.
Figure 17 shows a comparison between the discrete

and the continuous mass approach by showing the pressure
as a function of chemical potential and temperature for a
nonextensive gas with total energy equal to the proton mass
and q ¼ 1.14.

VI. COMPARISON WITH THE MIT-BAG MODEL

Since the MIT-bag model was modeled based on a fixed
mass perspective [30], we now reconsider the fixed mass
approach in order to make a useful calculation comparison.
The computation with the fixed mass approach leads to a

constant value of P ≃ 0.332 × 10−3 GeV4 for the pressure
along the line of E ¼ mp. In fact, the system seems to
behave close to the conformal limit, so that the trace
anomaly is vanishing, i.e., ε − 3P ≃ 0. With these ingre-
dients, it is straightforward to compute the bag constant.
Using that E ¼ ε · Vp ¼ mp together with P ¼ ε=3, one
finds

P ¼ mp

3Vp
¼ ð0.135 GeVÞ4: ð37Þ

This value is consistent with the vacuum energy density
obtained in the context of QCD calculations,

ε ¼ ð0.486ΛMSÞ4 ¼ ð0.161 GeVÞ4; ð38Þ

where the world average value Λð3Þ
MS

¼ð0.332�0.017ÞGeV
for Nf ¼ 3 has been considered [31]. Notice that in
Ref. [31] the vacuum energy density of QCD is computed
from the (1=4) of the vacuum expectation value of the
trace of the energy-momentum tensor. This vacuum energy
density is identified with the bag constant B. Let us mention
that common values in the literature for B1=4 lie in the range
0.145–0.250 GeV [27,31,32], so that our result is in perfect
agreement with this range.

VII. CONCLUSIONS

In this work, we presented a bag-type model of a hadron
assuming fractal structure. By adding the hypothesis that
the hadron bag is an ideal gas of strong interacting particles,
the nonextensive thermodynamics was shown to be the
most appropriate theory. Regarding the masses of the
particles inside the bag, three scenarios were considered:
fixed, discrete, and continuous mass, the first one being an
exercise since no structure was considered for the particles.
The discrete and continuous mass scenarios fully applied
the hypothesis above. In all situations, pressure, energy, and
number of particles were calculated along with the temper-
ature vs chemical potential diagram in order to thoroughly
examine the model.
The consistency of this bag-type model with fractal

structure was confronted with a bag containing total energy
equal to the proton mass and same proton volume and also
with a system satisfying the freeze-out line along which
ε=n ¼ 1 GeV. It was shown that the proton can be
consistently found in both discrete and continuous mass
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FIG. 17. Pressure as a function of chemical potential (a) and temperature (b) for a nonextensive gas with total energy equal to the
proton mass and q ¼ 1.14. We display the result for the case of continuum masses (black line) and discrete masses (blue line).
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scenarios as a confined system below the freeze-out line
and below the phase-transition temperature of 61 MeV.
The effects of nonextensivity on energy and pressure

were studied and Boltzmann-Gibbs statistics was also
applied. It was shown that Boltzmann-Gibbs statistics leads
to nonphysical conclusions in both discrete and continuous
mass situations.
Finally, the value of ð0.135 GeVÞ4 calculated for the

pressure on the bag surface of the proton in this model is
consistent with other results found in the literature, includ-
ing QCD calculations [27,31].
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