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We systematically calculate the isospin violating decay, D�
s → Dsπ

0, with heavy meson chiral
perturbation theory up to Oðp3Þ including the loop diagrams. The Oðp3Þ tree-level amplitudes contain
four undetermined low energy constants. We use two strategies to estimate them. Using the nonanalytic
dominance approximation, we get Γ½D�

s → Dsπ
0� ¼ 8.1þ3.0

−2.6 eV. Using the naturalness assumption, we
obtain the range of the isospin violating decay width as [5.2, 11.7] eV. These two strategies give similar
sizes. We find that the contribution of the Oðp3Þ corrections might be significant.

DOI: 10.1103/PhysRevD.101.054019

I. INTRODUCTION

The DðsÞ mesons are composed of one charm quark and
one light antiquark. The dynamics of DðsÞ mesons is
constrained by both the chiral symmetry in the light quark
sector and the heavy quark symmetry in the heavy sector.
The subtle interplay of the light and heavy degrees of
freedom within the DðsÞ mesons renders them a crucial
platform to explore and understand QCD. Note that
D�

s0ð2317Þ and Ds1ð2460Þ are two superstars in the Ds

family due to their unexpected low mass [1,2]. The
coupled-channel effect between the DKð�Þ scattering states
and cs̄ components leads to the mass deviation from the
quark model prediction [3–5]. See Ref. [6] for a recent
review. In addition, the charm quark mass is not very large.
Thus, decay behaviors of DðsÞ mesons will provide us with
very important information about the heavy quark sym-
metry and the light quark dynamics.
The strong and radiative decays of the charmed mesons

have been studied in many different models. For example,
chiral perturbation theory and heavy quark effective theory
are used in Refs. [2,7–15]. Various quark models are
employed in Refs. [1,16–22]. There are also many other
theoretical methods such as the vector meson dominance
hypothesis [23], QCD sum rules [24–28], quark-potential

models [16,29–31], the extended Nambu-Jona-Lasinio
model [32,33], the cloudy bag model [34], the constituent
quark-meson model [35], lattice QCD simulations [36], and
so on.
For the ground states, the mass splittings between D�

ðsÞ
and DðsÞ lie above the pion mass mπ with 2–3 MeV. The
constraint from phase space leads to the dominant pion and
photon emission decaymodes ofD�

ðsÞ, i.e.,D
�
ðsÞ → DðsÞγ and

D�
ðsÞ → DðsÞπ. For the charmed strangemesonD�

s , the decay

modes are particularly interesting. Note that D�
s → Dsπ

0 is
the strong decay process which violates the isospin sym-
metry. The double suppressions from phase space and the
isospin violation make the hadron decay width tiny, at the
order of several eVs. The branching ratio of this strong decay
mode is ð5.8� 0.7Þ%, which is much less than that of the
electromagnetic decay D�

s → Dsγ, about ð93.5� 0.7Þ%
[37]. The decay mode challenges our physical intuition
about the magnitude of strong decay.
The decay ratio of ΓðD�þ

s →Dþ
s þπ0Þ=ΓðD�þ

s →Dþ
s þγÞ

has been measured in by CLEO [38] and BABAR [39],
respectively. Theoretically, this decay channel has been
studied in Refs. [40–42] with chiral symmetry and heavy
quark symmetry, where only the tree-level contributions are
considered. The very exotic hadronic decay mode deserves
a more refined investigation.
Chiral perturbation theory is the effective field theory of

low energy QCD, which is a systematic and model-
independent framework. It is a powerful tool to analyze
the physics associated with the light degrees of freedom
within the DðsÞ mesons below the typical energy scale, mρ.
For the DðsÞ mesons, the charm quark mass mc is much
larger than the light quark mass mqðq ¼ u; d; sÞ; thus, mc

can be integrated out at the low energy scale. The color-
magnetic interaction in the QCD Hamiltonian is suppressed
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by 1=mc and can be omitted at the leading order of the
heavy quark effective theory. Thus, the heavy quark is
regarded as the static color source, and the heavy quark spin
symmetry is kept.
In Refs. [7–9,43–46], the chiral effective theory incorpo-

ratingheavyquark symmetrywas constructed. In the effective
theory, the chiral Lagrangian describes the low energy strong
interactions between the heavy hadrons and light Goldstone
bosons. Naturally, we can exploit this chiral effective theory
to describe the strong decay of D�

ðsÞ → DðsÞπ.
In this work, we focus on the isospin violating decay

D�
s → Dsπ

0. We use heavy meson chiral perturbation
theory to investigate this process. Based on previous work,
we not only calculate the leading order contribution but
also include the next-to-leading order loop diagrams and
tree diagrams. The contributions of the loop diagrams
manifest the complicated light quark dynamics, which
generates some different structures from the leading ones.
In addition, the mπ-dependent analytic expressions might
be useful for the extrapolations in lattice QCD simulations.
This paper is organized as follows. In Sec. II, we give the

effective Lagrangians with respect to the charmed mesons
and light pseudoscalars. In Sec. III, we illustrate the
Feynman diagrams of the decay D�

s → Dsπ
0, the corre-

sponding analytic expression of each diagram, and the
numerical results, respectively. In Sec. IV, we give some
discussions and conclusions.

II. EFFECTIVE LAGRANGIANS

One may use chiral symmetry and heavy quark sym-
metry to construct the Lagrangians that account for the
heavy mesons and light pseudoscalars. The light pseudo-
scalar meson octets are described by the field UðxÞ ¼ u2 ¼
eiϕ=fϕ with

ϕ ¼

0
BBB@

π0 þ 1ffiffi
3

p η
ffiffiffi
2

p
πþ

ffiffiffi
2

p
Kþ

ffiffiffi
2

p
π− −π0 þ 1ffiffi

3
p η

ffiffiffi
2

p
K0

ffiffiffi
2

p
K−

ffiffiffi
2

p
K̄0 − 2ffiffi

3
p η

1
CCCA; ð1Þ

and fϕ is the decay constant of the light pseudoscalars.
Their experimental values are fπ ¼ 92.4 MeV, fK ¼
113 MeV, and fη ¼ 116 MeV, respectively. The chiral
connection is defined as

Γμ ≡ 1

2
ðu†∂μuþ u∂μu†Þ: ð2Þ

The leading order Lagrangian that describes the
self-interaction of the octet pseudoscalars can be written
as [40,47]

Lϕϕ ¼ f2ϕ
4
Tr½∂μU∂μU†� þ f2ϕ

4
Tr½χU† þ Uχ†�; ð3Þ

where Tr½…� denotes the trace in flavor space. The building
block χ ¼ 2B0mq contains the light quark mass matrix mq,

mq ¼

0
B@

mu 0 0

0 md 0

0 0 ms

1
CA; ð4Þ

and B0 ¼ −hq̄qi=ð3f2ϕÞ is a parameter related to the quark
condensate. The second term in Eq. (3) embodies the chiral
symmetry breaking effect, which implies the π0 and η
mixing vertex, i.e.,

Lmixing ¼ −
B0ffiffiffi
3

p ðmu −mdÞηπ0: ð5Þ

This equation demonstrates the origin of the isospin
symmetry violation at the quark level, i.e., the tiny mass
difference between u and d quarks.
The spin doublet of the anticharmed vectors D̄� and

pseudoscalars D̄ can be expressed as the four-velocity
dependent superfield H in the heavy quark limit, i.e.,

H ¼ ½P�
αγ

α þ iPγ5�
ð1 − =vÞ

2
;

H̄ ¼ γ0H†γ0 ¼
1 − =v
2

½P�†
α γα þ iP†γ5�; ð6Þ

where v ¼ ð1; 0Þ is the four-velocity of the heavy mesons,
and the charmed meson fields are denoted as

Pð�Þ ¼ ðD̄0ð�Þ; Dð�Þ−; Dð�Þ−
s Þ: ð7Þ

The leading order Lagrangian describing the low energy
interactions of the anticharmed mesons and light pseudo-
scalars reads

Lð1Þ
P�Pϕ¼−ihH̄v ·DHi−Δ

8
hH̄σμνHσμνiþghH̄=uγ5Hi; ð8Þ

where Dμ ¼ ∂μ þ Γμ, and h…i denotes the trace in spinor
space. Here, Δ ¼ mP� −mP is the mass splitting between
D̄� and D̄, and g ≈ 0.59 represents the axial coupling
constant, which can be determined from the partial decay
width of D�þ → D0πþ [15,37] or lattice QCD [48]. Note
that uμ is the chiral axial-vector current, which reads

uμ ≡ i
2
ðu†∂μu − u∂μu†Þ: ð9Þ

In Eq. (8), the first term describes the kinetic energy of the
heavy mesons. The second term comes from the 1=mQ

correction of the next-to-leading order color-magnetic
interaction in the heavy quark expansion. The third term
gives the coupling vertices of D̄�D̄π and D̄�D̄�π.
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Next, we consider the contribution of the Oðp2Þ tree
diagram. In order to construct such anOðp2Þ Lagrangian to
provide theD�

sDsπ
0 vertex, we need the building blocks χ−

and ∂μuμ. If we use the building block χ−, one should
notice that the parity of this building block is negative; i.e.,
we have to multiply another Oðp0Þ building block with
negative parity to make sure the parity of the Lagrangian is
positive. However, there does not exist such a building
block that can satisfy both the requirement of parity
conservation and Lorentz invariance. For the other building
block ∂μuμ, the same problem exists. Thus, there is no
Oðp2Þ chiral Lagrangian contributing to the isospin violat-
ing process after considering the constraint from Lorentz
invariance and CPT conservation.
In our calculation, we also consider the contribution

from the loop diagrams, which will be presented later.
According to the power counting, the chiral order of the
one-loop diagrams is at least Oðp3Þ. In order to absorb the
divergence in the loop diagrams, the Oðp3Þ tree-level
Lagrangian is constructed as follows,

Lð3Þ
P�Pϕ ¼ b1

Λ2
χ
hH̄=uχ̂þγ5Hi þ b2

Λ2
χ
hH̄=uγ5HiTr½ χþ�

þ i
c1
Λ2
χ
hH̄∂χ̂−γ5Hi þ d

Λ2
χ
hH̄∂ν∂uνγ5Hi

þ i
c2
Λ2
χ
hH̄γμγ5Hi∂μTr½ χ−�; ð10Þ

where Λχ ¼ 4πfπ. Here, b1, b2, c1, c2, and d are five low
energy constants (LECs). The spurions χ� are introduced as

χ� ¼ u†χu† � uχ†u; χ̂� ¼ χ� −
1

3
Tr½ χ��: ð11Þ

The Lagrangian (10) contains all possible relevant
terms satisfying the requirement of the symmetries.
However, the structures of the terms hH̄=uγ5HiTr½ χþ�
and hH̄γμγ5Hi∂μTr½ χ−� are the same as the ones from
the leading order Lagrangian. Thus, they can be absorbed
into Eq. (8) by renormalizing the axial coupling g. The term
hH̄∂ν∂νuμγμγ5Hi is actually the same as the fourth term in
the Lagrangian in our calculation, and we did not write it in
Eq. (10). With the above Lagrangians, we can analytically
calculate the decay process D�

s → Dsπ
0 up to Oðp3Þ.

III. ISOSPIN VIOLATING DECAY

A. Power counting and Feynman diagrams

In chiral perturbation theory, one can use the power
counting to assess the importance of Feynman diagrams
generated by the effective Lagrangians when calculating
the physical matrix element. The standard power counting
for this process yields

O ¼ 4NL − 2IM − IH þ
X
n

nNn; ð12Þ

where NL, IM, and IH are the numbers of loops, internal
light pseudoscalar lines, and internal heavy meson lines,
respectively. Note that Nn is the number of vertices which
are governed by the nth order Lagrangians. Thus, we can
write the decay amplitude as the following expression,

M ¼ Mð1Þ
tree þMð3Þ

tree þMð3Þ
loop; ð13Þ

where the superscripts in parentheses represent the chi-
ral order.
For the OðpÞ tree diagram, the isospin violating effect

comes from the π − η mixing as shown in Fig. 1. From
Eq. (5), the π − η mixing effect comes from the mass
difference between u and d quarks.
The loop diagrams with the vertices from the leading

order Lagrangians [e.g., see Eqs. (3), (8), and (10)] are
shown in Fig. 2, which are Oðp3Þ diagrams according to
the power counting law. The loop diagrams (k) and (l,m)
are the renormalization of the Ds and D�

s wave functions,
respectively.
The vertex with two heavy mesons and one light

pseudoscalar comes from the third term of the OðpÞ
Lagrangian (8). The vertex denoted with the cross is from
the Lagrangian (5). The vertex in the diagrams (e,f)
connecting two heavy mesons and three pseudoscalars
also stems from the third term of Eq. (8), where we need to
expand the axial-vector field uμ to the second order. We can
derive the vertices with two heavy mesons and two light
pseudoscalars in diagrams (g)–(j) from the first term of
Eq. (8). The chiral connection in the covariant derivative
generates this kind of vertex.
For theOðp3Þ loop diagrams, the isospin violating effect

comes from two processes. The graphs (b,d,f,h,j,k,l,m)
contain the η − π mixing vertex which resembles the OðpÞ
tree diagram. The second type of loop diagrams (a,c,e,g,i)
do not have the direct isospin violating vertex, i.e., η − π
mixing. The second type of isospin violation arises from
incomplete cancellation of diagrams, considering the mass
splitting of particles within the same isospin multiplet in
the loops. For example, we consider the internal light

FIG. 1. The tree diagram for the D�
s → Dsπ

0 decay at leading
order. The thick solid, thin solid, and dashed lines represent the
heavy vector meson D�

s , heavy pseudoscalar meson Ds, and light
pseudoscalar mesons, respectively. The solid dot denotes the
OðpÞ D�

sDsη vertex, and the cross represents the η − π mixing
vertex.

ISOSPIN VIOLATING DECAY D�
s → Dsπ

0 … PHYS. REV. D 101, 054019 (2020)

054019-3



pseudoscalars such as K− and K̄0, when calculating the
loop diagram (a). If we ignore the mass splitting between
K− and K̄0, their contributions are exactly the same but
with opposite sign. The graph (a) becomes nonvanishing
and gives the isospin violating effect when the tiny mass
difference δmK

¼ mK̄0 −mK− is kept. The kaon mass
difference δmK

originates from an md −mu difference as
well as an electromagnetic effect. So, in order to avoid the
influence of the electromagnetic effect as much as possible,
we work directly with the π0 − η mixing angle θηπ0 [see the
definition in Eq. (15)] for the tree diagram and loop
diagram which contain the π0 − η mixing vertex. While
for the loop diagram that cannot be expressed with θηπ0 , we
use the physical value of δmK

.
Besides the mass splitting between u and d quarks,

another source of the isospin violating effect stems from the
electromagnetic interaction, the charge difference between
u and d quarks. The Feynman diagram is shown in Fig. 3.
The vertex π0 → 2γ denoted by the solid triangle arises
from the axial-vector current anomaly. However, the
Feynman amplitude of such a diagram is proportional to

α2, where α is the fine structure constant. The contribution
of this diagram is highly suppressed. Thus, it is reasonable
to neglect the isospin violation from the electromagnetic
interaction in our calculation.
The tree diagrams with the vertices coming from the next-

to-leading order Lagrangian (10) are also Oðp3Þ. We show
the diagrams in Fig. 4. The Oðp3Þ tree diagram can contain
the D�

sDsπ
0 vertex, which is different from the OðpÞ one.

B. Analytical results

Using Eqs. (8) and (5), one can easily get the amplitude
of the OðpÞ tree diagram [see Fig. 1], which yields

iMð1Þ ¼ −
g
fη

ðq · εÞ 2ffiffiffi
3

p θηπ0 ; ð14Þ

where q and ε are the momentum of π0 and polarization
vector of D�

s , respectively. Note that θηπ0 is the π0 − η
mixing angle, and it is defined as

θηπ0 ¼
ffiffiffi
3

p

4

md −mu

ms − m̂
; ð15Þ

(a) (b) (c) (d)

(e)

(j) (k) (l) (m)

(f) (g) (h) (i)

FIG. 2. The loop diagrams for the D�
s → Dsπ

0 decay at the next-to-leading order. The notations are the same as those in Fig. 1.

FIG. 3. A diagrammatic presentation of the axial-vector current
anomaly contribution to the D�

s → Dsπ
0 decay at the loop level.

The wiggly line represents the photon, and the solid triangle
denotes the π0γγ coupling vertex. Other notations are the same as
those in Fig. 1.

(a) (b)

FIG. 4. The tree diagrams for theD�
s → Dsπ

0 decay at the next-
to-leading order. The solid square stands for the Oðp3Þ coupling.
Other notations are the same as those in Fig. 1.
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where m̂ ¼ ðmu þmdÞ=2. The values of mu, md, and ms
are taken from the Particle Data Group [37].
The decay amplitudes of the Oðp3Þ loop diagrams in

Fig. 2 are given as follows,

iMð3Þ
ðaÞ ¼

g3

2f2Kfπ
ðq · εÞ

�
−
FðmKþ ;ω1; δ1Þ

q0 þ Δ1

þ FðmK0 ;ω2; δ2Þ
q0 þ Δ2

�
; ð16Þ

iMð3Þ
ðbÞ ¼−

g3ffiffiffi
3

p
fη

ðq · εÞθηπ0
�

1

2f2K

FðmKþ ;ω1;δ1Þ
q0þΔ1

þ 1

2f2K

FðmK0 ;ω2;δ2Þ
q0þΔ2

−
2

3f2η

Fðmη;ω3;δ3Þ
q0þΔ3

�
; ð17Þ

iMð3Þ
ðcÞ ¼

g3

f2Kfπ
ðq · εÞ

�
FðmKþ ;ω1 − Δ1; δ1Þ

q0

−
FðmK0 ;ω2 − Δ2; δ2Þ

q0

�
; ð18Þ

iMð3Þ
ðdÞ ¼ −

g3ðq · εÞffiffiffi
3

p
fη

θηπ0

�
FðmKþ ;ω1 − Δ1; δ1Þ

−q0f2K

−
FðmK0 ;ω2 − Δ2; δ2Þ

q0f2K

þ 4

3

Fðmη;ω3 − Δ3; δ3Þ
q0f2η

�
; ð19Þ

iMð3Þ
ðeÞ ¼

g
6f2Kfπ

ðq · εÞ½Jc0ðmKþÞ − Jc0ðmK0Þ�; ð20Þ

iMð3Þ
ðfÞ ¼ −

gðq · εÞ
2

ffiffiffi
3

p
f2Kfη

θηπ0 ½Jc0ðmK0Þ þ Jc0ðmKþÞ�; ð21Þ

iMð3Þ
ðgÞ ¼ iMð3Þ

ðhÞ ¼ iMð3Þ
ðiÞ ¼ iMð3Þ

ðjÞ ¼ 0: ð22Þ

For the renormalization of the wave functions of the Ds
meson,

iMð3Þ
ðkÞ ¼ iMð1ÞδZDs

; ð23Þ

where

δZDs
¼ ZDs

− 1 ¼ 1

2

∂ΣDS
ðmϕ;ωÞ
∂ω

����
ω¼−Δ3

: ð24Þ

And for the renormalization of the wave functions of theD�
s

meson,

iMð3Þ
ðlþmÞ ¼ iMð1ÞδZD�

s
; ð25Þ

where

δZD�
s
¼ ZD�

s
− 1 ¼ −

1

2

∂ΣD�
s
ðmϕ;ω; δÞ
∂ω

����
ω¼Δ3

δ¼0

: ð26Þ

In Eqs. (24) and (26), the expressions of ΣDs
and ΣD�

s
read

ΣDs
¼ ð1 − dÞg2

�
2

f2K
Ja22ðmK;ωÞ þ

2

3f2η
Ja22ðmη;ωÞ

�
;

ΣD�
s
¼ 2g2

f2K
JA22ðmK;ω; δÞ þ

2g2

3f2η
JA22ðmη;ω; δÞ; ð27Þ

where the functions Fðm;ω; δÞ, J0cðmÞ, and Ja22ðm;ωÞ are
the loop integrals, which are calculated with the dimen-
sional regularization in d dimensions. Their definitions and
expressions are collected in the Appendix. Note that JA22 is
defined as

JA22ðm;ω; δÞ ¼ Ja22ðm;ωÞ þ 2Ja22ðm; δÞ: ð28Þ

The parameters ω1;2;3, δ1;2;3, and Δ1;2;3 are given as

ω1¼E−mD0 ; ω2 ¼E−mD− ; ω3¼E−mDs
; ð29Þ

δ1 ¼ E − q0 −mD0� ; δ2 ¼ E − q0 −mD−� ;

δ3 ¼ E − q0 −mD�
s
; ð30Þ

Δ1¼mD�0 −mD0 ; Δ2 ¼mD�− −mD− ; Δ3¼mD�
s
−mDs

;

ð31Þ

where E is the energy of D�
s , which equals mD�

s
in the

center-of-mass frame of the initial state.
For the Oðp3Þ tree diagrams in Fig. 4, their amplitudes

read

iMð3Þ
tree ¼ iMða1Þ þ iMða2Þ þ iMðbÞ; ð32Þ

with

iMða1Þ ¼ iMð1Þ 1

gΛ2
χ
½2ðb1 − 2c1Þm2

η − ð2b1 þ d1Þm2
π�;

iMða2Þ ¼ iMð1Þ 1

gΛ2
χ
½3ðb2 − 2c2Þm2

η þ 3ðb2 þ 2c2Þm2
π�;

iMðbÞ ¼ iMð1Þ 1

gΛ2
χ
ð4c1 − 6c2Þðm2

η −m2
πÞ; ð33Þ

where Mð1Þ is the OðpÞ amplitude in Eq. (14). The
contribution of the first Oðp3Þ tree diagram contains two
parts, iMða1Þ and iMða2Þ. The second part can be absorbed
into the leading order diagram because they have the same
Lorentz structure except for a constant factor. We ignore the
isospin breaking effect from the decay constants of the light
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pseudoscalar mesons when calculating the contribution of
the loop diagrams because the isospin breaking effect from
the K meson decay constant is about 0.1% [37,49,50].
In addition, we adopt the experimental values for the

decay constants of π, K, and η, respectively; they include
the corrections from all orders. Thus, our analysis is
actually based on the reordered series, which would
introduce some minor errors at the order in which we
are working. The error originates from higher order con-
tributions, which are marginal and negligible considering
the good convergence of the chiral expansion. Therefore,
the errors in our latter analysis are mainly given by the
Oðp3Þ LECs and experimental measurements.
After performing the average over the initial D�

s polari-
zation, the decay width ofD�

s→Dsπ
0 can then be written as

Γ½D�
s → Dsπ

0� ¼ jqj3
24π

mDs

mD�
s

jMj2: ð34Þ

C. Numerical results

We have derived the analytical expressions of the
isospin violating decayD�

s → Dsπ
0 with chiral perturbation

theory up to Oðp3Þ. However, the Oðp3Þ Lagrangian [see
Eq. (10)] contains unknown LECs, which are hard to
determine at present. In order to include the effects of the
Oðp3Þ tree diagrams, we use two different strategies to
estimate their contributions.
Strategy A.—We first adopt the nonanalytic dominance

approximation [51–53] to estimate the Oðp3Þ tree diagram
contributions. We know that in chiral perturbation theory,
the amplitude of a tree diagram includes the polynomials of
m2

ϕ and q2; i.e., it only contains the analytic terms.
However, for a loop diagram, its amplitude might contain
the polynomials of m2

ϕ and q2 but also have the typical
multivalued functions, such as logarithmic and square root
terms, which are called nonanalytic terms. The nonanalytic
dominance approximation assumes that the analytic parts
of Oðp3Þ loop diagrams and Oðp3Þ tree diagrams are
roughly the same. This approximation might be rough, to
some extent, but can give us some clear indications about
the convergence of the chiral expansion.
The contributions are listed in Table I order by order.

The results are given in the cases of Δ ≠ 0 and Δ ¼ 0,
respectively, whereΔ ¼ mD�

ðsÞ
−mDðsÞ . For example, for the

case of Δ ≠ 0, we keep all the physical mass splittings in
the loops, while for the case of Δ ¼ 0, i.e., in the heavy
quark limit, we neglect the mass difference ofD�

ðsÞ andDðsÞ.
From Table I, we see that the variation of the total decay

width of D�
s → Dsπ

0 is not obvious, whereas the change of
contribution from the Oðp3Þ loop diagrams is evident with
Δ ≠ 0 and Δ ¼ 0. In other words, the heavy quark
symmetry breaking effect at the loop level is significant
for the charm sectors. This effect has been noted in some
previous works [15,54]. Additionally, we give the contri-
butions of each Oðp3Þ loop diagram in Table II. We also
notice that the convergence of the chiral expansion is very
good, even if we work in the SU(3) case. The convergence
of the Δ ¼ 0 case is better than that of the Δ ≠ 0 case. In
Eqs. (35) and (36), we adopt the Δ ≠ 0 result to predict the
decay width and total width of D�

s . We then use the largest
loop contribution to estimate the Oðp3Þ tree-level contri-
bution and treat it as the error of our numerical result. Our
calculation yields

Γ½D�
s → Dsπ

0� ¼ 8.1þ3.0
−2.6 eV: ð35Þ

Considering Γ½D�
s → Dsπ

0�=Γ½D�
s � ¼ ð5.8� 0.7Þ%, we

can estimate the total width ofD�
s with the value in Eq. (35),

Γ½D�
s � ¼ 139.0þ77.9

−54.6 eV; ð36Þ

which agrees with the one estimated in Ref. [15].
Strategy B.—We consider the naturalness of chiral

perturbation theory [55,56]. The amplitude can be
expanded generally in a power series of q=Λχ as follows,

M ¼ Mð0ÞX
μ

�
q
Λχ

�
μ

F ðgiÞ; ð37Þ

where Mð0Þ is the leading order amplitude, μ is the chiral
order, and F ðgiÞ is a function of LECs. Therefore, in order
to keep the convergence of the chiral expansion, a natural
assumption requires that the functionF ðgiÞ should be order
one. The above is the naturalness assumption of chiral
perturbation theory.
For the Oðp3Þ tree diagrams with unknown LECs,

except the terms which can be absorbed by the Oðp1Þ
Lagrangian, we can rewrite the remaining two parts as
follows,

TABLE I. The contributions order by order and the decay width
of D�

s → Dsπ
0 with Δ ≠ 0 and Δ ¼ 0, respectively. We give the

numerical results of the structure iM=ðq · ϵÞ in units of
10−3 GeV−1 and the decay width in units of eV.

Mass splitting OðpÞ Oðp3Þloop Oðp3Þtree Total Γ

Δ ≠ 0 −69.5 −7.2 �13.1 −76.7þ13.1
−13.1 8.1þ3.0

−2.6 eV
Δ ¼ 0 −69.5 −5.9 … −75.4 7.8 eV

TABLE II. The contributions of each Oðp3Þ loop diagram with
Δ ≠ 0 and Δ ¼ 0, respectively. We give the numerical results of
the structure iM=ðq · ϵÞ in units of 10−3 GeV−1.

Mass splitting a b c d e f k lþm

Δ ≠ 0 −1.9 −2.4 7.2 4.6 1.5 −7.2 4.5 −13.4
Δ ¼ 0 0.6 −0.4 −1.3 0.8 1.5 −7.2 −6.0 −10.1
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iMð3Þa1
tree ¼ iMð1Þ 1

ð4πFπÞ2
α

�
−m2

η −
3

2
m2

π

�
; ð38Þ

iMð3Þb
tree ¼ iMð1Þ 1

ð4πFπÞ2
αð−m2

η þm2
πÞ: ð39Þ

Here, we replace all of theOðp3Þ LECs as αg=2, where g is
the LEC of the leading order Lagrangian and the parameter
α is an order one number. The effect of theOðp3Þ LECs can
be roughly represented by the size of the parameter α. Thus,
in order to discuss the contribution of the Oðp3Þ tree
diagrams in detail, we change the parameter from −1 to 1.
The change of the total decay width with the parameter is
shown in Fig. 5. When α varies from −1 to 1, the range of
Γ½D�

s → Dsπ
0� is [5.2, 11.7] eV, which is consistent with

the result estimated in strategy A. We can see that the
contribution of the Oðp3Þ tree diagrams could be quite
large. Nominally, the Oðp3Þ tree diagrams should be
suppressed by the factor 1=ð4πFπÞ2. But the η meson mass
is 547.8 MeV, which makes the correction not as small as
one naively guesses. Thus, the Oðp3Þ correction is
important.

IV. SUMMARY

Heavy quark spin symmetry implies that the mass
difference between the vector mesons D� and pseudoscalar
mesons D is small. Their mass splittings lie above the pion
mass with 2–3 MeV. Therefore, the lowest D� mesons only
have two main decay modes. One is the pion emission
strong decay D� → Dπ, and the other one is the electro-
magnetic D� → Dγ decay. Generally, the decay width of
the latter one is usually much smaller than the first one due
to the strength of the interactions. However, for the
charmed strange meson D�

s , the strong decay mode D�
s →

Dsπ
0 is much smaller than the electromagnetic one [37] due

to the double suppression of the phase space and isospin
violation.
In this work, we have systematically calculated the

isospin violating decay D�
s → Dsπ

0 with heavy meson

chiral perturbation theory up to Oðp3Þ including the loop
diagrams. The analytical expressions are derived up to
chiral order Oðp3Þ. For this process, the Oðp2Þ Lagrangian
does not exist under the constraint of the parity and Lorentz
symmetries. The corrections to the leading order contribu-
tion come from the Oðp3Þ tree and loop diagrams. The
vertices of the Oðp3Þ loop diagrams are governed by the
leading order Lagrangians. Thus, the numerical result of
the loop diagrams only depends on one parameter, g, which
has been well determined by experiments and lattice QCD.
Our calculation of the leading order amplitude and Oðp3Þ
loop diagrams shows very good convergence of the chiral
expansion. The convergence in the Δ ¼ 0 case is better
than that in the Δ ≠ 0 one.
The Oðp3Þ tree-level amplitudes contain four undeter-

minedLECs.Weuse two strategies to estimate theuncertainty
of the Oðp3Þ tree-level contributions. With the nonanalytic
dominance approximation, we get Γ½D�

s → Dsπ
0� ¼

8.1þ3.0
−2.6 eV. With the naturalness assumption of chiral per-

turbation theory, we give a possible range of the isospin
violating decay width, [5.2, 11.7] eV. We find that the
contribution of theOðp3Þ tree diagrams might be significant
compared with the leading order one.
The isospin violating decay plays a very important role in

studying the character and structure of the D�
s meson. We

expect that experiments and lattice QCD can provide more
results about the decays of the charmed mesons in the
future. Our analytical expressions can also be helpful for
chiral extrapolation in lattice QCD simulations.
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APPENDIX: DEFINITIONS AND EXPRESSIONS
OF THE LOOP INTEGRALS

The loop functions used in Eqs. (14)–(33) are defined as
follows,

Fðmϕ;ω; δÞ≡ 1

d − 1
½ðm2

ϕ − δ2ÞJa0ðmϕ; δÞ − ðm2
ϕ − ω2Þ

× Ja0ðmϕ;ωÞ þ ðδ − ωÞJc0ðmϕÞ�; ðA1Þ

Jc0ðmϕÞ≡ i
Z

ddkλ4−d

ð2πÞd
1

k2 −m2
ϕ þ iϵ

; ðA2Þ

Ja0ðmϕ;ωÞ≡i
Z

ddkλ4−d

ð2πÞd
1

½k2−m2
ϕþiϵ�½v ·kþωþiϵ�;

ðA3Þ

1.0 0.5 0.0 0.5 1.0
2
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6
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FIG. 5. The change of the decay width of D�
s → Dsπ

0 with the
parameter α.
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i
Z

ddkλ4−d

ð2πÞd
kμkν

½k2 −m2
ϕ þ iϵ�½v · kþ ωþ iϵ�

≡vμvνJa21ðmϕ;ωÞ þ gμνJa22ðmϕ;ωÞ: ðA4Þ

The above loop integrals can be calculated with the
dimensional regularization in d dimensions. Their expres-
sions read

Jc0ðmÞ ¼ −
m2

16π2

�
Lþ ln

λ2

m2

�
; ðA5Þ

Ja22ðm;ωÞ ¼ 1

d − 1
½ðm2 − ω2ÞJa0ðm;ωÞ þ ωJc0ðmÞ�: ðA6Þ

We adopt the MS scheme to renormalize the loop integrals.
Here, L is defined as follows,

L ¼ 2

4 − d
þ ln 4π − γE þ 1; ðA7Þ

where γE ≈ 0.5772 is the Euler-Mascheroni constant.

Ja0ðm;ωÞ ¼

8>>><
>>>:

− ω
8π2

ðLþ ln λ2

m2 þ 1Þ þ 1
4π2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 −m2

p
arccoshðωmÞ − i

4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 −m2

p
ðω > mÞ

− ω
8π2

ðLþ ln λ2

m2 þ 1Þ þ 1
4π2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − ω2

p
arccos ð− ω

mÞ ð−m < ω < mÞ
− ω

8π2
ðLþ ln λ2

m2 þ 1Þ − 1
4π2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 −m2

p
arccoshð− ω

mÞ ðω < −mÞ:
ðA8Þ
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