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We perform a systematic study on the twist-3 gluon distribution and fragmentation functions which
appear in the collinear twist-3 factorization for hard inclusive processes. Three types of twist-3 distribution
and fragmentation functions, i.e., intrinsic, kinematical, and dynamical ones, which are necessary to
describe all kinds of twist-3 cross sections, are related to each other by the operator identities based on the
QCD equation of motion and the Lorentz invariance properties of the correlation functions. We derive the
exact relations for all twist-3 gluonic distribution and fragmentation functions for a spin-1/2 hadron. Those
relations allow one to express intrinsic and kinematical twist-3 gluon functions in terms of the twist-2 and
dynamical twist-3 functions, which provides a basis for the renormalization of intrinsic and kinematical
twist-3 functions. In addition, those model independent relations are crucial to guarantee gauge invariance
and frame independence properties of the twist-3 cross sections.
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I. INTRODUCTION

During the past few decades twist-3 effects in (semi-)
inclusive processes have been receiving great attention, in
that they show up as a leading contribution to interesting
spin asymmetries and reveal an important role of multi-
parton correlations in the scattering processes which shed
new lights on the hadron structure. By now theoretical
methods for dealing with those twist-3 effects have been
developed and widely used to derive many relevant twist-3
cross section formulas. Such theoretical studies include
those for g,-structure function of the nucleon measured in
deep-inelastic scattering [1,2], single spin asymmetries
(SSA) for a hadron or (virtual) photon production in
proton-proton (nucleus) collisions with one proton trans-
versely polarized, pr — hX (h=mnr,D,y,y* etc.) [3-17],
plA = hX [18-22], and semi-inclusive deep-inelastic
scattering (SIDIS), epT — ehX [23-32], SSA in trans-
versely polarized hyperon production in the unpolarized
proton-proton collision, pp — ATX [33-38] and in e*e”
-collision, ete™ — ATX [39], the longitudinal-transverse
double spin asymmetry Ayt in the proton-proton collision,
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ppt = {h,y*}X [40—44], etc. Collinear twist-3 parton
distribution functions (DFs) and fragmentation functions
(FFs) which appear in these twist-3 factorization formula
for the cross sections no longer have probability interpre-
tation but represent multiparton (quark-gluon or purely
gluonic) correlations in the hadrons or in the fragmentation
processes. The leading order evolution equations for
the relevant twist-3 functions have been also derived
[10,30,45-58].

Collinear twist-3 DFs and FFs can be, in general,
classified into three types: intrinsic, kinematical, and
dynamical ones [59]. Although they all appear in the
calculation of the twist-3 cross section formula, they are
not independent from each other, but are related by QCD
equation of motion (e.0.m.) and Lorentz invariance proper-
ties of the correlation functions. One of the present authors
(Y. K.) performed a systematic study on the twist-3 quark
DFs and FFs, and presented a complete set of those model
independent relations, which are often called e.o.m. rela-
tions and the Lorentz invariance relations [59]. These
relations allow one to express the intrinsic and kinematical
twist-3 DFs and FFs in terms of the twist-2 functions and
the dynamical twist-3 functions. In addition, they play a
critical role to guarantee the gauge invariance and frame
independence of the twist-3 cross sections [29,59,60]. In
this paper, we extend the study to gluonic twist-3 DFs and
FFs for a spin-1/2 hadron [37-39,61,62] and derive all of
those exact relations. For the twist-3 gluon DFs in the
transversely polarized nucleon, which are relevant to SSAs
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in ep! = eDX [27], p'p - DX [11], ptp —» {r.r}X
[12], and also A; y for p pT — DX [42], one of the present
authors (S. Y.) derived such relations [63], while no such
systematic studies exist for the twist-3 gluon FFs. There are
several purely gluonic twist-3 FFs for a transversely
polarized spin-1/2 hadron, so the present study is particu-
larly important for the study of their contribution to
the polarized hyperon production in the unpolarized
proton-proton collision (pp — A'X) [37,38] and SIDIS
(ep — eATX), etc. Those exact relations for the gluonic
DFs and FFs need to be taken into account in the derivation
of the cross section and will be crucial to guarantee gauge
invariance and the frame independence of the twist-3 cross
sections as in the case of quark DFs and FFs.

The remainder of this paper is organized as follows: In
Sec. II, we derive the relations among the twist-3 gluon
DFs. After summarizing the complete set of purely gluonic
distributions up to twist-3, we derive all the constraint
relations among those functions. In Sec. III, we extend the
study to the twist-3 gluon FFs. There are more twist-3 FFs
|

compared to the twist-3 DFs due to the lack of a constraint
from time reversal invariance. In particular, the dynamical
FFs become complex, and the real and imaginary parts
obey different constraint relations. Section IV will be
devoted to a brief summary.

II. TWIST-3 GLUON DISTRIBUTIONS

A. Intrinsic, kinematical, and dynamical
twist-3 gluon distributions

We first summarize the definition of three types of purely
gluonic distribution functions in the nucleon which has
mass M, momentum P (P> = M?), and the spin vector S
(§? = —M?). As usual, we 1ntroduce two lightlike vectors p
and n, which satisfy P# = p* + > n# and p-n=1.Below
we work in a frame where p* = P*gﬁ andn* = (1/p*)g"
The simplest collinear gluon distribution functions are
defined from the light cone correlation functions of the
gluon’s field strengths F%” with color index a in the
nucleon state |PS) as [61,62]

di .
Dwhi(x) = / 21 e (S| (0)[0, An], , FP* (n) | PS)
T

1
=5 {(=g gL+ g pr —

— (=gl + ¢t PP p"}xG(x)

2 (S - n){ (PP pt — epnam pB) pr — (PP pi — o ph) pa ) x AG(x)

— ——{ (€51 pt — enS1 pP) pv — (P51 pH — €151 pP) po) xAGr(x)

2
iM
2
iM
5 (P (stp = 8 p) -
where +.-- denotes twist-4 or higher, giﬁ =
g — p*n? — pPn®, and the transverse spin vector S|

defined as S¥ = (S-n)p" + (S-p)n* + MS|. [0,/1n] =
Pexp{ig [Y dtA(tn) - n} is the gauge link which guaran-
tees gauge invariance of the correlation function. Here and
below we use the shorthand notation e”"% = e#* p,n,,
etc. G(x) and AG(x) are, respectively, twist-2 unpolarized
and helicity distributions and AGsy(x) and AHz;(x) are
|

O (x) = / jf[ i1 (PS|Fan(0) F () | PS)idY

= lim —leW<PS|(F""( 0)[0, con]),i

e (S p* = S p)}xAHap(x) + -, (1)

the intrinsic twist-3 distributions corresponding, respec-
tively, to (F*LF*+~) and (F*+F*+) correlators. Although
AH7(x) drops from the correlator ®*#"(x) which con-
tributes to a cross section, we need the form (1) to derive
constraint relations among the twist-3 distributions. Each
function in (1) has a support on |x| < 1.

The second type of the twist-3 gluon distributions are the
kinematical ones which are defined as

9 (joon + &.4n + EFP(an + £)),|PS)

>0 | 2r a! dfy

M
_ ?giﬁef’"SUG(Tw(x) _

+ (terms proportional to p*) + - - -,

M
——ermabS AGY (x)

M ,
+ § (€anL{agﬁ_}/ + epny{asi})AHg})(x)
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where - - - denotes twist-4 or higher. These three kinemati-
cal distributions AG(Tl )(x), AG(TI) (x), and AH (Tl )(x) can be
also written as the k3 /M*-moment of the transverse
momentum dependent (TMD) distributions. Note that the
TMD distribution corresponding to AG(T1 ) (x) is naively 7-

|

even, while those for G(T1 >(x) and AH(T1 )(x) are naively
T-odd. Each function in (2) has a support on |x| < 1.
The last distributions (third type) are the dynamical ones
which are defined as the light cone correlation functions of
three field strengths (“F-type” distribution) [27,61]1:

N i) =i [ 52 [ et (pS]igect (74(0)10. ) 9 un) (. 79 ), PS)

= ZlM[—giﬁSyp"SlN(xlvxz) + gV PPN (x0, 00 — x1) + gﬂfeap"SLN(xl,?ﬁ —X)] 4+, (3)

where £ is the antisymmetric structure constant for
color SU(N) and - - - denotes twist-4 or higher. N(x;,x,)
satisfies the symmetry relation N(x,x,) = N(x,,x;) and
N(=x;,—x5) = =N(xy, x,) and has a support on |x; 5| < 1
and |x; — x,| < 1. Replacing if*¢ by d®* (symmetric
structure constants) in N;ﬁ "(x1,x,), one can define other

|

|

3-gluon correlation functions. However, we shall not
consider them, since they are not related to any other
types of twist-3 gluon distributions. We call N(x,x,)
[and Gg(x1,x,) in (17) below] dynamical twist-3 DFs.
Replacing gF"" (un) by the covariant derivative DY (un) =
0" — igA? (un) in (3), one obtains “D-type” distributions as

NP (x1,xy) = l/ / et (PS| (F(0)[0, un]) o (D7 (un) [un. An] " (2n)) .| PS)

= ZIM[— aﬁé‘yanLD <X1 XZ)

_ gay€ﬁaniD2(xl x2 + g/iyeaanlDz (X27 xl)]

1 i
- EQL pVG()c],)cz))c2 + 2€aﬁp”p}’(5 n)AG(xy,x;7)x3 — EMeaﬁ”SLpVAG3T(x1,x2)x% e (4)

where - - - denotes twist-4 or higher. It is easy to see that
[dx;N¥"(x;,x) is reduced to ®*#"(x), and the three
distributions in the last three terms of (4) are thus related to
those in (1) as

/l dx f(x1,x) = f(x), for f=G,AG,AGsr. (5)
-1

Equations (1), (2), (3) and (4) define all necessary collinear
twist-3 gluonic distribution functions in the collinear twist-
3 formalism. Below we shall derive all constraint relations
among those functions.

B. Relations between D- and F-type DFs
and QCD equation of motion

Using the identity

D (un)[un, An] = ig Aﬂ dtlun, tn]F'™ (tn)[tn, An]
+ [un, An]D" (An), (6)

D- and F-type 3-gluon correlators in (4) and (3) are
connected as

'We follow the convention of [27].

Q) 1 Q
NDﬂy(xhxz) =P NFﬂ}/(xleZ)
Xo — X
+ 6(x —xz)@‘éﬂy(xl), (7)

where

O (x) =i / ;M it (p§|Fr(0)[0, An] DY (An) F" (An)| PS)

+ [ e [ duzetu-nies|

x F"(0)gF" (un)F"? (An)|PS), (8)

with e(u —A) =20(u — 4) — 1. Here and below we often
suppress the color indices and gauge links for simplicity:
F"(0)[0, An] D7 (An)F"(An) denotes (F"*(0)[0, An]), x
(DY (An)F"#(in)),, and F"*(0)gF"™ (un)F" (An) represents
£ (F1(0) [0, un]) ,gF" () (un, 2n] F" () . On the
other hand, the correlator for the kinematical twist-3
distributions d)gﬂ ’(x) in (2) can be rewritten as

O (x) = i / 92 i pS| Fr(0)[0. 4n) DY (An) "8 (2m)| PS)

/ l/lx/ d/l PS|

X F"(0)gF"" (un) F"* (an)|PS). ©)
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One thus obtains the relation

Y (x) = O (x) + iaNY" (x, x), (10)
where N%(x,x) defines soft-gluon-pole functions. By

comparing real and imaginary parts of both sides of (7),
one obtains the following relations:

Dl(xl’XZ) :sz_xl N(xl’XZ)’ (11)
Dy (xy,x7) = sz e N(x2, %, = x1)

- — A, (12

G (x) = 4x(N(x.x) = N(x.0)), (13)

HY (x) = —8zN(x.,0). (14)

The first two relations were derived in [63]. They show the
D-type functions are determined by the F-type and kin-
ematical functions. The last two relations (13) and (14) are
the analogs of the relations for the quark distributions that
show the k% -moment of the “naively T-odd” TMD distri-
bution functions, such as Sivers and Boer-Mulders func-
tions, and are proportional to the soft-gluon-pole (SGP)
function of the F-type quark-gluon correlation function. It
has been shown that the SGP functions N(x, x) and N(x, 0)
contribute to SSAs for ep’ —eDX [27], p'p— DX [11],
p'p—{y.,y*}X[12]and p'p — zX [16]. To the best of our
knowledge, the relations (13) and (14) were not explicitly
written in the literature.

To get further relations, we multiply g7 5 o (1),
integrate over x; and use the relation D J_ﬁ(/ln)F " (An) =
—D"(An)F"?(An) + g (An)#t“w(An) which follows from
the QCD equation of motion, (D, F**) = —gyy*t“y. One
then obtains

x2
EAG:;T(X) -+ Dg(x)

1 1
:2/ dx, P [-N(x1,x) + N(x,x — x1)
—1 X — X
1
+2N (.3 = )] =5 AG (x), (15)
where D, (x) is defined as

MD,(x)eaPnS: = / g—iempswga(owun)tﬂﬂw(zn)|Ps>.

(16)

D,(x) is related to the twist-3 quark-gluon correlation
function Gz (x,x,) defined by’

/ / pihxi elﬂ Xp—X1) <PS|V/< )Fg"<ﬂn)taﬂw</1n)|PS>

= Me*P"S.Gp(x1,x,), (17)

as

D) == [ dnGrlxiri=x.  (13)

with the support on |x| < 1. The relation (15) is also new.
From (7), one can obtain another relation involving
AH;7(x) as follows. We first write

—i eiﬂx
e — ;l_iddﬂ (PS|F*(0)[0, An]FP* (An)|PS)
- / ;’i e (PS|F(0)[0, n]
x D"(An)FP (in)|PS), (19)

where we have used the relation [0, An]F(An) =
[0, An] D™ (An)FP#(An) after integration by parts. We then
use the Bianchi identity D" F/# = —DP F#" + DFFP to get

(I)an.ﬂﬂ(x) — ;/dxl{N%ﬂ”(xhx) — Ng‘ﬂ(xl,x)}. (20)

Taking a, f, and u to be transverse, one arrives at the
following relation:

XAH 37 (x) :i/dxl{Dl(xl’x) = Dy(x1, )} (21)

Using the relations, (11) and (12), in this equation one
eventually obtains

1 1
EXZAHH(X) :Z/dxlpﬁ{N(xlvx)+N(X,X—X1)}
—x

+%AG(TI)(x). (22)

This relation was derived here for the first time.

To summarize this subsection, we have obtained two
relations (15) and (22) which relate the two intrinsic
functions, AG;y(x) and AHszy(x), and one kinematical

function, AG(T1 )(x), to the dynamical functions. One needs
another independent relation to express those three func-
tions in terms of the dynamical functions.

*We follow the convention of [24,25] for Gp(x;,x,).
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C. Constraint relations from nonlocal operator
product expansion

Here we derive a relation from the nonlocal version of the
operator product expansion (OPE) for general correlation
functions not necessarily on the light cone. The method was
originally developed in [45,64], and has been frequently used

fragmentation functions [59,67], and the distribution ampli-
tudes for hard exclusive processes [64,68,09], etc. This
method is equivalent to OPE and incorporates all the
constraints from Lorentz invariance property of the correla-
tion functions. Here we apply this method to the twist-3 gluon
distribution functions to derive constraint relations.

for the twist-3 distributions [24.45,63,65.66], the twist-3 We start from the following operator identity:

% [F(=y)[=y. YIFP(y)] = —F®(=y) D’ (=y)[=y. YIFP*(y) + F*(=y)[=y. Y]’ (y) FP*(y)

p

+ i[_l dttFow(_y)[_y, ty]ngy(t)’)[l‘y,y]Fﬁ/‘(y).

(23)

In the left-hand side (1.h.s.) of this equation, one should first make y non-lightlike, and take the light cone limit y* — y~ g
after taking the derivative. From translational invariance, we have another identity,

d
0 =1lim — (PS|F®(—y + &)[—y + &y + EJFP(y + £)|PS)

&=0 d.fp
= <PS|Frxv(_Y)5p(_y)[_y,y]Fliu(y)|ps> + (PS|F(—y) [—y,y]ﬁp(y)F/”ﬂ(y)|p5>
+ i[‘l dt(PS|F‘lV(_y) {_y’ ty]gFf’y(ly)[ty,y]Fﬁ”(y)|P5>. (24)

We take the expectation value of (23) by |PS), and use (24) to eliminate the first term in the right-hand side (r.h.s.). We then
obtain

0

N (PS|F™(=y)[~y, y|FP(y)|PS) = 2(PS|F™(~y)[~y. y|D" (y) F*(y)||PS)

-+<Pswjf‘ldwr+—1>Fm«—y>roazﬂgfwy0y>v%>4Fm«ynPs» (25)

From this equation, one obtains the identity

aiyﬂ (PS|F® (=y)[=y, y]FP*(y)|PS) = (PS|F?,(=y)[=y, y|F* (y)|PS) + 2(PS|F**(—y) g (y) }t“w (y)| PS)

+ <1”S|i[_1 di(t + 1) F™ (=y)[=y, ty|gF (1) [ty, YJF? () |PS), (26)

where we used the QCD e.o.m., Dy(y) F#(y) = —gip(y)y*t“w(y), in the second term of the r.h.s. In order to get a relation
among the twist-3 distributions from (26), one needs inverse Fourier transform of (1), (3), and (17). In particular, to calculate
the 1.h.s. and the first term in the r.h.s. of (26), one has to use the following form:

i 1 Q Q v 17 Vi a
@WmﬁMﬂMWWW$—/wﬂW{ﬁFﬂM+MMM—Fﬁﬂ+%WWhﬂﬂ

.
+ ﬁ {(ePy@ pt — Py pPypv — (PP pt — Py pP) p* L x AG(x)
p-y

M s S 'S S
) {(e®PS1ph — eS1pPYp¥ — (ePYS1 ph — St pP) p® Y x AGr(x)

p-y

iM , , VD w

2y T STPt = S p) — e (S1p* = S p")}xAH s (x)]. (27)
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In taking the derivative of (27) with respect to y”, one should use the form ] = S — % ptand ¢ = ¢ — W, keep

all components of y* with y> # 0, and then take the y# — g#y~ limit. With this procedure, we have eventually obtained the

following relation:

x% (xAGs7(x)) + xAH37(x) + xAG(x)

dD 1
= —2ﬂ+4/dx177

dx X=X

DoV (1,31 =)+ N(xx = x1) = N, )

+4/dx179ﬁ{—N(xl,x, —x)=2N(x,x —x;) + N(x,x)}. (28)

This relation is independent from (15) and (22), and the
three relations (15), (22), and (28) allow one to solve
AGsy(x), AHzp(x) and AG(TI)(x) in terms of AG(x) and
the dynamical functions.

Here we comment on the relations obtained from operator
identities other than (23). One can derive a constraint relation
by considering the following correlation function:

0
o (PSP 3l 0)PS) = (0 <> ) (29

P
We found that this correlator simply gives the relation that is
obtained from (15) and (22), which supplies a good con-
sistency check. We also found that the operator identity for
the correlator

0 -
[ S sl 0)IPS) - (0 < )] 30)
P
with F/* = %eﬂ”’”F e gives the same relation as (28), which
also serves to confirm our result.

It is interesting to compare our approach and that in [63].
The authors of [63] analyzed the correlator (30) to express
AG;7(x) and AG(TI >(x) in terms of AG(x) and the dynami-
cal twist-3 distributions. They started from the identity

v, [§<PS|F>'”<—y>Fﬂy<y>|PS>—<p«>ﬂ>}

P

= (PS|(F"(=y)FP ,(y) = F*(=y)F?,())|PS)

0 -

3y | (PSPPI~ (0 ). G1)
P

The second term in the r.h.s. can be rewritten further to be

expressed in terms of the F-type functions. In our approach,

|

D
xzdiAGy(x) +xAG(x) + Zxdi (ﬁ) = 4/dx177
x

X X

X — X1

the 1.h.s. and the first term in the r.h.s. are calculated by
using (27) and are expressed in terms of the intrinsic
distributions. In this method, AH37(x) does not survive in
the L.h.s., while it does appear in the first term of the r.h.s.
This procedure leads to the same relation as (28). As for the
method of [63], they treated the l.h.s. of (31) in the same
way as ours (although they did not refer to the presence of
the AH;7 term). On the other hand, they analyzed the first
term in the r.h.s. of (31) in a different way. They did not use
the form (27), but rewrote it directly in terms of the F-type
functions. Therefore they could obtain the constraint
relation among the twist-3 distribution functions without
recourse to AH3y(x) contribution at any stage. As we will
see in the next subsection, our results for AGsy(x) and

AG(TI)(x) agree with those in [63]. Our approach can also
supply the expression for AH3;(x). (See next subsection.)

D. Solution for intrinsic and kinematical DFs
in terms of twist-2 and dynamical twist-3 DFs

As we found in previous subsections, Egs. (15), (22), and
(28) constitute a complete set of the independent relations
among the twist-3 intrinsic, kinematical, and dynamical
DFs. Here we provide a solution for the intrinsic and
kinematical functions in terms of the twist-2 and dynamical
twist-3 DFs. Taking the sum of (15) and (22), we obtain

RAH 1 (x) = ~xAGar (x) = 2D, (x)

8 1
+—/dx177
X X — X

X {N(x,x = x;) + N(x;,x; —x)}. (32)

Inserting this into (28) to eliminate AH;7(x), we have

{2V, =)+ Nt =) = N, )

+4/dx177(x_—1x])2{—N(x1,x1 —x) = 2N(x,x = x1) + N(x,x)}

8
e
X X

! {N(x,x = x1) + N(x;,x; —x)}. (33)

_xl
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This equation can be integrated to give

X D X D
AG3T(X) = —/ dxl AG(XI) - 2{ g(X) +/ dx, g(XI)}
2 3
e(x) X1 e(x) Rl
4 [1
—|—2/ dx,P {2N(x,x; = x) + N(x,x —x;) = N(x1,x)}
x* ) X=X
x 8 [1 1
+/ dx2—3/ dx,P {N(xy, 61 = x2) = N(xp,x2) }
e(x) X5 J-1 X2 — X1
X 4 1 1
+ [1 gy [P (WO =) = Nan =), (34)
e(x) X5 J-1 (x2 —X1>

(1)

Combining this result and (15), one obtains the expression for AG;’(x) as

x AG
AG;”(x):xZ/ dx, (x1)+2x2/

(x) X1

dxl
)

Dg(xl)

3
X

x 8 [1 1
— x2 d —_— d N 5 - _N )
X l(x) 273 /_1 xlpxz—xl{ (x1.x1 = x2) (x1,22)}

2

X 4 1 1
_xz/ dxz—z/ dxlfpiz{N(xlvxl —X3) = N(xp, 0 —x1) }. (35)
e(x) X5 J-1 (X2 —xy)

2

The result in (34) and (35) agrees with that in [63]. Insertion of (34) into (32) gives the expression for AH37(x) as

(x) X

x AG x D
AH3T(X) :/ dxlﬂ%-Z/ dxl g(XI)

(x) X1

4 [ 1
—l——2/ dx, P {N(x,x = x;) + N(x;,x)}
x* ) X=X

x I [ 1
- 8/ dx2—3/ dx,P {N(xy, 61 = x2) = N(xp,x2) }
e(x) -1 X2 — X1

X
x I 1
-4 dx; — dxlp—z{N<xl’x1 —x2) = N(x3,% —x1) }. (36)
e(x) X3 J-1 (X2 —x1)

This result is new. As shown in (34), (35), and (36),
the intrinsic and kinematical twist-3 gluonic distributions
are completely determined by AG(x) (often called
Wandzura-Wilczek contribution) and the F-type purely
gluonic correlation function N(x;,x,) and the quark-
gluon correlation function Gpg(x;,x;). Since these
relations are model independent exact relations, they
need to be satisfied in phenomenological applica-
tions. These relations also provide a basis for the renorm-
alization of the intrinsic and the kinematical twist-3
distributions. The evolution equations for N(x;,x,)
and Gp(x;,x,) have already been derived in [55].
The above relations (34), (35), and (36) show it also

determines the scale dependence of AGsy(x), AG<T1 ) and

AH ;37 (x).

III. TWIST-3 GLUON FRAGMENTATION
FUNCTIONS

A. Intrinsic, kinematical, and dynamical
twist-3 gluon fragmentation functions

In this section we extend our analysis in the previous section
to the twist-3 gluon fragmentation function. We consider FFs
for a spin-1/2 baryon with mass M}, four momentum P,
(P7 = M?%), and the spin vector S (S = —M3?). In the twist-3
accuracy, we can treat P, as lightlike and introduce another
lightlike vector w by the relation P;, - w = 1. We again work in
aframe where P = P; ¢, andw! = ¢* / P} . Transverse spin
vector for the baryon § is normalized as §5 = —1. Similarly
to (1), the gluon’s collinear FFs can be defined from the
following fragmentation matrix elements [62]:
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1 di
N>—1] 2z

= {(~g7P, +
+i(S-w){(ePmebpl —
- M, [{(w
—{(w*
— iM,{ (S Pl —
+ M {ePrtr (S5 Py —
+ iM { PP (S5 Py

frdi(z) =

X

P,wS vP,wS H
PPSL P evP) J.)Ph

where N = 3 is the number colors for SU(N) and + - - -
denotes twist-4 or higher. All functions in (37) are defined
as real. Note that the last two terms drop in the correlator
~(F")(F""), but we need this general correlator to derive
relations among the twist-3 gluonic FFs. G(z) and AG(z)
are, respectively, twist-2 unpolarized and helicity FFs, and
other 4 functions AGs;(z), AGsp(z), AHyp(z), and
AH47(z) are intrinsic twist-3 FFs. Compared with the
|

€{lﬂWSl Pﬁ)PZ _
' Pf) + e (S P,

— §4 P}) — P (S P

/0] (oo, O]F™(0)), ) (X (PP (i) w, cow), 0}

gV PPy — (=gP P!+ g PP} G(2)
€PhwaMP£)PZ _ (ephwbﬁpl;l _ ePhwv#Pz)PZ}AG(Z)

aeﬂPthl + Wﬂ€aPhWSi )PIZ

_ (WQG”P"WSL + W”GaPhWSl)PQ}PZ

— (WIS P P PEA Gy (2)

(€U/3WSLPZ — €U,MWSLP/Z)PZ}AG3T(Z)
- S’iPIZ)}AﬁIﬁ(Z)

— S P AR (2) + - -, (37)

[
distribution functions, the number of twist-3 FFs is doubled
due to the absence of the constraint from time reversal
invariance, i.e., naively T-odd FFs AG,7(z) and AH7(z)
survive in addition to “naively T-even” AGsy(z) and
AH;;(z). Each function in (37) has a supporton 0 < z < 1.

The second type of a gluon’s FFs are the kinematical
FFs, which are defined by

& =2 / ¢~ (0) ([oow. OF*(0)) o |X) (X (F™ (4w) [iw. 0]) 0} i
M, . N .M, M .
= _Tth_ﬁeyPthlG(Tl)(Z) —jt 5 a[}Pthy AG( )( ) 8h (eP,,wSJ_{adi}V + €thvy{a5ﬂf_})AH(7}>(Z)

+ (terms proportional toPZ) + ...

’

where - - -

(38)

denotes twist-4 or higher. These three kinematical FFs G(TI ) (2), AG(TI ) (z),and AH <Tl ) (z) can also be written as the

k% /M3-moment of the TMD FFs as in (2) for the distribution functions. Each function has a support on 0 < z < 1.
The third type of twist-3 FFs are the dynamical ones which are defined as the three gluon correlation function [37-39]:

af 1 —l— —l E-4) . rabe wa W W,
i ’<z 5) "o IZ PG e (0] (0) | X) (X FY () gF 2" ) [0)
1 22
— lM |: gaﬂe}’PhWSLN <l _ l l) _|_ gayeﬁPhWSLN (l i) gﬂ}/ aP”WSiNl (l l>:| , (39)
2 U 2 21 2 21 22

where the color indices of the field strength are contracted
by the antisymmetric structure constant if’¢ and the
presence of appropriate gauge links similar to (37) is
implied to guarantee gauge invariance of the FFs. There
are two independent F-type FFs N, (—lz) and N2(7] ,Zz)
which are in general complex, meaning that the number of
independent F-type FFs is four times more than the

distribution case. RNV, 2(21 ZL) are naively T-even, while

|
SK’l,z(z]

on L>1 and
2 §)

) are nalvely T-odd. Ny ,(L, 1) have a support

21’2
Zl > 0. Replacing if?’ by the sym-
metric structure constants d??¢, one can define another
F-type FFs. Although they appear in a certain cross section,
e.g., pp — A'X [37,38], they are not related to other twist-
3 FFs. We therefore do not consider those FFs hereafter.

One can also define another set of twist-3 FFs by the
replacement of gF"(uw) — D?(uw) in (39), which gives
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1

(1) - s [ 5 [ e e Ol O I ) o), )

21 Zz
1

th |:gaﬂ€yPthJ_D (l _) + gayeﬂP,,wSLD (l l) f}’ aPthJ_D (i i):|

21 2

1 1 1
21 22/ 2p

1 1
g (1.1)
21 2

where gauge links are suppressed for simplicity.
D,,2,3(%,}—2) are also complex functions, and are called

D-type FFs. Functions in the last two lines are related to
those in (37): From the relation

1\ « 11
21 1 T

it is easy to see

/d<i>f<1 1) f(z), for f=G,AG,AGyr, AGsz.

21 71 <

=), (41)

(42)

Finally we introduce another dynamical FF defined by

S5 -v 5

x <0|FZ"(W)|hX><hX|wj(ﬂW)t“wi(0)|0>

1 1
= Mh|: aPywS. (Ph) Dy <—,—>

=)

it (L

21 22
11
+ iS¢ (ySPh) GFT<_ _>:|, (43)
21 2

where the spinor indices i, j are shown explicitly. These
two functions Dpy and Gpr are, in general, complex
functions with their naively 7-even real part and the T-
odd i 1mag1nary part. They have a support on _- - > 0, S < 0
and 2 o 5 > 1. As we will see below, constramt relatlons
for the twist-3 gluonic FFs involve these F-type quark-
gluon correlation functions through QCD e.o.m. We

collectively call the functions in (39) and (43) dynamical
twist-3 FFs.

B. Relations between D- and F-type FFs
and QCD equation of motion

The gluon FFs introduced in (37)-(40) are not indepen-
dent but are related by various operator identities. Using the
identity (6), we find D-type and F-type FFs are related as

21 22 71 22
1 1\ 1
— PPl (S W)AG< >
71 Z2 22
v PawS {a, p} 1 1
— — M PP Say I NGy [ —,— ) —, (40)
21 Zz V)

N 1 1 -1 1 1
()2
71 2p —_—Z] 21 2
1 1\ rapy
+o(—-— )t @)
1

An important difference of this relation from the similar
one for the distribution function (7) is that the correlator for
the kinematical FFs appear directly as the coefficient of the
o-function. This is because F-type FFs become 0 at z; = 2z,
due to the support property as shown in [70,71]. From (44),
we have

o 1 1 1 - 1 1
b(1)reieh ()
i1 22 P 31 22

These relations show ﬁ172,3(i,%) are completely deter-
1

mined by N 12(&5) and the kinematical FFs. Following

the same procedure leading to (15) from (7), we can derive
the e.o.m. relation by contracting (44) with gjy as
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L (863(2) + i8Gar(2)) = iDer(2)

~ (1 1 ~ /1 1 1
—Ny|—,— | + Ny| ———,—
1 2 Z 1 Z

(67 () + AR () + 5865 (). (48)

where D7(z) is defined from the dynamical FFs in (43) as

- 2 [V 1) =« 1 1 1
DFT(Z)E—/ Zd<_>DFT<_v___)v (49)
Cr Jo 7y 21 2

with Cp = %, and it has a support on 0 < z < 1. Real

and imaginary parts of (48), respectively, read

~ (11 ~ (1 11
+N2 _5_ _N2 ___7_
<1 < Z 21 Z
1 ~a £ (1
+5(6() + AR (2)). (50)
and
1 .

AGY (). (51)

The relation (51) is the FF version of (15).

We can also derive another relation from (44). Following
a similar step from (19) to (20), we obtain the following
relation:

AH 7 AH
57(2) +i 37(2)
z Z

1 ~ (11 ~ (11
21 71 2 21 2
Using (46) and (47) in the rh.s. of this equation and

comparing real and imaginary parts of both sides, one
obtains the following two relations:

N 1 1 ~ (1 11
71 2 Z 71 <X
AGY(2). (54)

The second one is the FF version of (22) for the distribution
function.

To summarize this section, we have derived two inde-
pendent relations among the intrinsic, kinematical, and
dynamical functions, (51) and (54), for the T-even sector,
and two independent ones (50) and (53) for the 7-odd
sector. One needs another independent relation for the
former and two more relations for the latter.

C. Constraint relations from nonlocal
operator product expansion

In this subsection, we will derive the relations among
the twist-3 gluonic FFs, employing the method used in
Sec. IT C. To this end, we consider operator identities for the
correlation functions away from the light cone which
become the fragmentation matrix element in the lightlike
limit. We need to calculate a matrix element like

%@I([ooy, ] F (=)o [X) BX|(FP(3)]y. coy]),[0).

(55)

for y? # 0 and take the y* — &*y~ limit after differentia-
tion. To calculate (55), we use the following operator
identities:

-

9
a ayp

= (FP"(y)D’(y)[y. o0y]),,

* i/l dit(FP(y)[y, tylgF?* (ty)[ty, 0oy]) ..~ (56)

(e8]

(FP(y)[y, coy])

fyﬂ({ooy,—yww—y»a

= —([coy, —y]|D* (—=y)F¥(=y)),

i / ooy, slg P 1)ty P (=), (57)
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From translational invariance, we also have the relation

d
0 = lim =5 (Ol(fooy + &, —y + EJF=(=y + £))alnX) (hX|(F#(y + &)y + & ooy + £]),[0)
P

= (0[([ooy, =y]F™(=)) 4| hX) (hX|(FP(y) D" (v)[y. 00¥]),0)

+ (0([c0y, =y F*™ (=) .| hX) (hX[i /1 dit(FP(y)[y, ty]gF?> (ty)[ty. 0oy]) ,0)

+ (0[([ooy, =y]D? (=) F™(=y)) .| hX) (hX|(FP*(y)[y, c0y]),|0)
+ <0|i/_jo dt([ooy, =y]gF?* (ty)[ty, =y]F*™(=Y)) | X) (hX|(F¥(y) [y, 00y]) ,|0). (58)

In (55)-(58), we have explicitly written gauge links and color indices. Below we will suppress them for brevity. Inserting
(56) and (57) into (55), and using (58) to eliminate the term containing (0|D”(—y)F®(—y)|hX), one obtains

8%}<0|F“”(—y)\hX><hX|F/’”(y)|0> = 2(0|F(=y)|hX) (hX|F"*(y) D" (v)(0)

+ <0F“”(—y)IhX><hX|i/1 di(t+ 1)FP¥(y)gF* (1y)|0)

[58)

+ (0l /_?o di(t + 1)gF? (ty) F* (=y)|hX) (hX|F"(y)|0). (59)

This equation is the starting point of our analysis in this section. Constraint relations for the twist-3 FFs can be obtained by
expressing each term of (59) in terms of the FFs defined in Sec. III. 1. To calculate the Lh.s. of (59), we need the Fourier
inversion of (37) for non-lightlike separation (y*> # 0), which can be written as

1 1 i ) QY , v 1% 1% a7
S S OF -0 X )10) = [ (L)t (gl 2 PPy = (Pl PR
X

(PPl = o P Py — (P Py o ) P} AG ()

i(S-y)
+ b

(Py-y)?
M,
(Py-y)?
—{(eMSs 4TS P — (e o ye ) PP AG s (2)
iM
Py-y

M,
P

[{(yaeﬁphySL _|_ yﬁeaphySL)PZ — (yaeﬂphySL + y”eaphySL)Pg}Pll;

{(ePrss P — eaﬂySLPQ)P’}; — (e/PrSs Pl - ePySL Pﬁ)PZ}AGg(z)

A (TP = S PR) + e (SLP - S PR YA (2)
g

M .
b op (I (STPY = St PG) = (S|P = SLPL) A (2) 4| (60)

In calculating the derivative of the Lh.s. of (59), one needs to use §| = S — %P’;l and ¢}’ = ¢ — 5 (Py* + Pjy*) in

(60). This way the L.h.s. of (59) can be written in terms of the intrinsic FFs in (60). Likewise the second and the third terms in
the r.h.s. of (59) can be easily expressed by using the dynamical FFs in (39). In order to express the first term in the r.h.s. of
(59) in terms of the dynamical FFs, we introduce two particular contractions with respect to the Lorentz indices which

allows use of the QCD e.o.m. F’,ﬁ“(y)lsﬂ(y) = —gp(y)r*ty(y).
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1. Relations from operator identity 1

We can obtain a constraint relation from the following identity:

0
y/) 8

(O] (=y)|hX) (X[ F,*(y)[0) = (@ <> p) | = (O[F*(=y)|hX) (hX|F,*(y)[0) = (O[F**(=y)|nX) (hX|F,” (y)[0)

P

+2(0lgy (=y) 1w (=) |hX) (hX|F *(¥)]0)

1
—2if"’”<0|Fa“~"(—y)|hX><hX|ig/ dtF " (y)F o (1y)10)

[Se]

—if“bc<0|Fa“y(—y)|hX><hX|i9/ld’(f+1)Fbi(y)Fc“y(W)|0>

—2if“””<0|i9/_:0 diF * (1y) Fy,® (=y) [nX) (RX|F 2(v)|0)

— i (0]ig / (e DFE (1) (Y IX) XIFE 0)]0). (61)

This identity can be obtained as follows: We first use (59) in the 1.h.s. of (61). We then find that the terms corresponding to
the first term in the r.h.s. of (59) read

(O™ (=) |hX) (hX| (F,*(0)D (y)y, = F,”(y) D" (¥)y,)|0),
which is equal to
—(0|F* (=y)|hX) (hX|F* (y)D,,(y)y,|0).
by the Bianchi identity. Then by using the relation (58), it is transformed into
(01ysD, (y)F* (=y)[hX) (hX|F (y)y,|0),

plus terms which contain three field strengths. The former eventually becomes the third term in the r.h.s. of (61) by the QCD
e.o.m., and the latter is shown as the fourth and the sixth terms in the r.h.s. of (61).

Using (60) and the inverse Fourier transform of (39) in (61), one obtains the following relation among the twist-3
fragmentation functions:

o f1, . - )
a(l/z) {E (AGE»T(Z) - ZAG3T(Z))} + 2AG%T a(l/z { AH’;T + lAHBT( ))} — 2AH3T(Z)

)
=i [ (7)o Lwal/z{ (31) (23]
A g () ) (0-4)
“/d(%);—;;—iea(f/z){‘z’v’feb NZC' i)m G %%)}
o @)l d) G2 ©

The real part of this equation reads

NI'—
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0 1, R A
- a1/2) {E(AG3T(Z) — AH37(z ))} + 2(AG;7(z) — AH57(2))

a7 0@+ [ o(5) Sy (e 2) v (-50) )
+/d<§> (%_1%)25{—21%(; 1) +2N2(l_l’l>},

z 7z
and the imaginary part gives

0

30172 & (B(e) + S ()} = g i)+ "@—1 72 () ()}

la(l/z) Z
+/d<zl,>(%_1%/)2m{2ﬁ/l<l 1>+2 2<Zl i)} (64)

Equations (63) and (64) are the constraint relations among the intrinsic and the dynamical FFs. We note that (64) is the
relation obtained as the sum of (51) and (54), while (63) is an independent relation from (50) and (53)

2. Relations from operator identity I1
Here we use the following identity to get independent relations among the twist-3 FFs

8—yﬂ<0|Fy”(—y)|hX><hX|F~""(y)|0> = (O[F,* (=) |hX) (01 F(y)[0) + 2(0]F** (=) [2X) (Ol gy (y) ¥1“w (¥)|0)

1
+if O, ()X Ol |
+ifelig [

-1
This relation is obtained by using (59) in the Lh.s

de(t + 1)F" (y)F ., (ty)|0)

di(t + 1)F o, (1y)F™ (=y)|RX) (0| F - (2y)|0). (65)

of (65), and taking into account of the QCD e.o.m.,
D, (y)Fi*(y) = —qw(y)y*t*w(y). For the calculation of the L.h.s. of this equation, one should use (60) contracted with
y*y” by keeping y? # 0 before taking the derivative:
1

71 O =) X) (X1 ()0

= [ a(Z) e -t vnpiey + Py Py 2P = PG

+i(S - y)eP#AG(z) — iMye St (P, - y)AGsy(2)

2
+M, {Ph 5 (eﬂPhySLPl;l + €vPh,vSLp/;l) — (e"PnySiyv 4 erPrySiyi) }AG3T(Z):| .

(66)
From the identity (65), one obtains the following relation
0 1AG() +i 0 AGs7(2) = 3AG37(2) — AH57(z) + iAH(2) + iAG(2)
- 7 7(z) — 7 i i
8(1/2) |z 37\Z a(1/2) 3r\% 37\Z 37\Z 3r\Z <
1 1 0 (11 (11 (1 11
—D | d| = 2N | =5,= | +No| 5= ) = No| ——=,—
2@ [ (@) ey () R () R
1 1 (11 11 (1T 11
[ d| =) ———=IN] 2N -N3|———=,—| ¢ 67
+z/ @z () 240 -4(-2)) “

The real part of this equation gives
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o (1 4 . A
a1/2) {EAG3T(Z)} —3AG;7(2) = A4 (2)

:_%SDFT(Z)JF/‘ZG)_ : la(la/

while the imaginary part is

i (G @)} + () + A6()

_%mbﬂ(d —/d@ li, (18/

1
Z
1\ 1 11
+/d<y)mm{m (Z— E) + 2K,
4 Z

For consistency check, we have also analyzed the
correlation function

) [% (O1F (—y) [1X) (hX|F, ()]0} — (o > pﬂ . (70)

This operator only gives the relation among the 7-even
functions which is identical to (69).

To summarize this section, from nonlocal OPE we have
derived an independent relation (69) for the T-even sector, and
two independent relations (63) and (68) for the 7-odd sector.

D. Solution for intrinsic and kinematical FFs
in terms of dynamical FFs

Using the constraint relations derived in Secs. III B
and IIIC, we present here expressions for the intrinsic

. . 2 [z (1Y oo 1
AG;7(z) = —z3Dpr(2) —Z_3[ d( )Zg‘SDFT(ZZ) -

Vo) Z

n /1/zd<l> 1
‘ 0 z1) 1/z—=1/z
1/ 1 1/ 1
Zd(—)z/ sz(—
1 2 0 71
1/ 1 1/ 1
Zd(—)z/ sz(—
1 22 0 <]
1/ 1 1/ 1
/ Zd( )z/ sz(—
1 0 21
1/ 1 1/z 1
/ Zd< >z/ zd
1 22 0

+

1

w| S} 'xl N

+

)m
)

1
1

+
N = NN N

1
+

<

1/22—1/21)

(1/z2p = 1/2y)?

~doR 11 (11 (1T 11
AN (7.2 )+ N2 7o) = Na| - — 702
)" 7z 7z z 7z
1 1 (. (11 R
+/d<z—>—l_i)2A9{N1<?,g) +2N2<
Z/

128 (-2
e () (o) ()
()52}

and the kinematical FFs in terms of the twist-2 FFs and

the twist-3 dynarmcal FFs. Since N (—] —) ](]2(% 5) and
N2(3—2_Z 5 )haveasupporton— > 1 and - > 2> 0, they
vanish at the edge of the support, 1.e., N 1,2(O,Z)—

le(— —) N, 2( ,1)=0. Dpy(z) has a support on z < 1

and thus Dz7(1) = 0. Taking these boundary conditions into
account, we can integrate the constraint relations.

1. T-odd fragmentation functions
We first integrate (63) to obtain AGs7(z) — AH57(2).
From that result and (68) one obtains AH;7(z) and
AG47(z) in terms of the dynamical FFs. Since the calcu-
lation is straightforward, we only present the final result.
The result for AG57(z) reads

1/z 1 -
/ d<_>ZgSDFT(Z2>
1 Vo)
~ (1 1 ~ (1 1 ~ (1 11
SI2N( [ —.,- ) + Ny —, =) =N, [———,—
1 Z 2 2 zZ 21z
~ (1 1 ~ (1 1
S Nl I +N2 —,
71 22 21 22
e (11 ~ (1 1
—2"\S Nl I +N2 —,—
( i1 22 21 2

xR 1 1> A 1 1 1)
7/\? _’_ — ___,_
1/z, = 1/z i1 22 ? OS]

N 1 1 N 1 1 1 1 1
A ) wd) G D) o
21 2 71 22 2 1 22
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Integrals in this equation can be rewritten as

[ o)
1 %) 0 2
Similarly the result for AH7(z) is given by
N 2 (1= (1 1 [z /1 =
AH37(Z)=——3/ d( )ZZ‘SDFT(Z2)+ / d<_>Z;~SDFT(Zz)
N1 22 ZJ1 2
e[ o)t ) -]
) —— -
: 0 z) 1/z=1/z : 71 2 : Z 71 Z
4 [1/z 1 /2 1 1 (1 1 (1 1
AL ) )
[ <Zz> : 0 2) 1/z=1/z : 71 22 g 71 22
G2 ) w6 n)]
Z - —;S _’_ —7—
z %)% Jo 21) (1/za—1/2)? "\z" 2 o'z
2 [1/z 1 1/z 1 1 ~ (1 1 ~ (1 1 1
GG e G ) -G s
ZJ1 22 0 1) 1z —=1/z <1 22 X 4 22
1 [z [1 1z (1 1 1 1\ .~ /1 1\ ~ /1 11
—-— d{— z2/ d( )— {N( >+N (—,—)—21\/ <———,—>}. 73
Z[ <Zz> > Jo (/2= 1/z2) " [ "\a "2 'z o 'z 73)
Using (71) and (73) in (50) and (53), one can obtain the kinematical FFs as
A1)y 2/1/z <1> 4/1/z (1) 3/1/12 <1> 1 A{A <1 1) N <1 1 1)]
G =—— d 33D +— d d|— )| —— 3Ny —,— | - N)| ———,—
r (Z> 22 Ji 22 “ FT( ) 2 )i 22 2 0 2) /z—1/z : <1 22 g X 2 2
2 [z [1 1z (1 1 ~ /1 1\ L~ /1 1\ ~ /1 11
2 ) [ (D) (D) (D) am (L L) o
zz[ <Zz> > Jo a) (z=1/202" | "\ar'n 2’z o o'z (74)

N L O e U
+;i4[/zd<zlz>zgll/hd(l>(l/zz_l/m { 1<1 2) <Zl z)] (75)

2. T-even fragmentation function

The solution for AG;7(z), AG( (z) and AH;7(z) can be obtained by integrating the relations (51), (54), and (69).
Actually we can make a shortcut. Slnce they are in parallel with (15), (22), and (28) for the gluon distributions AGs7(x),

AG(T1 ) (x), and AHs7(x), we can read off the desired results from (34), (35), and (36) by a simple replacement. The results
read

N 1 [1/z 1 5 1 [1/z L\ ;.=
AG;7(2) :—/1 d BAG(25) + WD pr(2) + - j d| — |2RDrr(z2)

Z 1) 22

1/ 1 1 ~ (11 N 11 ~ (1 11
[ oo om0 -5 -1
0 21 P 1 2 71 2 Z 1 Z

|
N

2o [ o) gl () - )

ZJ1 22 0 VA i1 22 2 2

)R GG )
1 k%) 0 | (é—i)z i1 22 i1 22
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A1) B 1 /l/z (1) " 2
AG; ' (z) == d| — |z5AG () — —
T ( ) Zz | Z 2 ( 2) Zz
4 [1/ 1 1/ 1
+—§/‘Zd<—)Z;/ Zzd<_
= J1 22 0 <]
2 [l 1 1/ 1
2/ zd()z%/ Z2d<
= J1 22 0 <]
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N 1 [1/z 1 A 1 [1/z 1 -
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2 1/ 1 1/ 1 1
[ )
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-N (78)

This completes the derivation of all the relations among the twist-3 gluonic FFs.

To summarize this section, we have derived all the
constraint relations for twist-3 gluonic FFs, which follow
from the QCD e.o.m. and the operator product expansion.
These relations are exact and need to be taken into account
in deriving a twist-3 cross section to which they contribute,
and should constitute a cornerstone for proving the gauge
invariance and Lorentz invariance of the cross sections. In
particular, the intrinsic and kinematical twist-3 FFs are
completely determined by the twist-2 FF and the dynamical
twist-3 FFs (which equal three-gluon correlation func-
tions), which provides a basis for the renormalization of
the intrinsic and kinematical FFs.

IV. SUMMARY

In this paper, we have performed a systematic study on
the collinear twist-3 gluonic distribution functions (DFs)
and fragmentation functions (FFs). Both DFs and FFs are
classified into three categories, intrinsic, kinematical, and
dynamical functions. Although they are convenient tools to
describe twist-3 cross sections, they are not independent of

each other but are constrained by a set of exact relations
which follow from the QCD e.o.m. and the nonlocal
operator product expansion. We have derived all those
constraint relations for all the gluonic twist-3 DFs and FFs
and have given expressions for the intrinsic and kinematical
DFs and FFs in terms of the dynamical ones. Those
relations are expected to play a critical role to guarantee
gauge invariance and the Lorentz invariance of the twist-3
cross sections to which those DFs and FFs contribute.
Those relations need to be satisfied for phenomenological
analyses.
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