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The densest state of matter in the Universe is uniquely realized inside the central cores of the neutron star.
While first-principles evaluation of the equation of state of such matter remains as one of the long-standing
problems in nuclear theory, evaluation in light of neutron star phenomenology is feasible. Here we show
results from a novel theoretical technique to utilize a deep neural network with supervised learning. We
input up-to-date observational data from neutron star x-ray radiations into the trained neural network and
estimate a relation between the pressure and the mass density. Our results are consistent with extrapolation
from the conventional nuclear models and the experimental bound on the tidal deformability inferred from
gravitational wave observation.
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I. INTRODUCTION

Neutron stars provide us with a natural laboratory to
study the densest state of matter in our Universe (see
Refs. [1–5] for recent reviews). The essential ingredient for
neutron star structures is the equation of state (EoS)
p ¼ pðρÞ, i.e., a relation between the pressure p and the
mass density ρ. It is a long-standing challenge to evaluate
the EoS from the first-principles theory.
In the cores of neutron stars, the baryon density may

reach ≳5ρ0, where ρ0 is the normal nuclear density
ρ0 ≃ 2.7 × 1017 kg=m3. At such a high density, properly
dealing with quantum chromodynamics (QCD) is indis-
pensable. Symmetries of QCD imply a speculative duality
at a high density between hadronic and quark states, called
the quark–hadron continuity [6]. The duality at a high
density has been confirmed also in a particular limit of large
colors of quarks, and the dual state was named quarkyonic
matter [7]. The EoS construction founded on quarkyonic
matter has been proposed [8,9], which is consonant with
the phenomenological EoS constructions [4,10–12].
Although QCD is the established theory, the first-

principles calculations of the EoS have serious problems.
Among various theoretical approaches, the most powerful
method is the lattice-QCD simulation; however, the stan-
dard Monte-Carlo algorithm breaks down at finite density,
dubbed the sign problem (see Ref. [13] for a review). The
perturbative QCD (pQCD) calculation is also feasible [14],
but it is valid only at asymptotically high density.

Thanks to the recent advances in observations, the
quality of the neutron star observables is being improved
steadily (see, e.g., Refs. [15,16] for NICER and
GW170817). To circumvent the above-mentioned diffi-
culties, current theoretical efforts are directed toward
the EoS inference from these stellar observables, espe-
cially masses M and radii R (pairs of which are called
M-R relation). This is mediated by the Tolman–
Oppenheimer–Volkoff (TOV) equation, and the mapping
from M-R to the EoS is in one-to-one correspondence
[17]. Now, the Bayesian analysis is one standard
method to implement such an inference [18–22]. If
the number of available observational data is sufficiently
large, the likelihood would be well localized such that a
choice of the prior distribution scarcely affects the
result. In reality, however, the number of data is limited,
as tabulated in Refs. [3,23,24] and plotted in Fig. 1
(left), and we may not exclude such factors. Hence, it
would be complementary to develop an independent
analysis based on a different principle than the Bayesian
analysis.
Here, we propose a new method to utilize the neural

network in the deep learning machinery to estimate the EoS
from real observational M-R data, as an extension from
Ref. [25]. Deep learning provides us with a way to find a
regression function for complex nonlinear systems, and
there are many physics applications, which include QCD
physics [26,27], nuclear physics [28], and gravitational
waves [29] (see also Ref. [30] and references therein). As
we explicate below, an advantage to employ the deep
learning method lies in the fact that the numerical imple-
mentation is straightforward, so we are relatively free from
implicit biases.
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II. METHODS

A. Compilation of observational data

Ideally, with sufficient computational resources, machine
learning would be capable of directly dealing with full
multidimensional data from the observation. Figure 1 (left)
shows only a single contour for each neutron star, but the
full data are available in the form of the probability
distribution as exemplified in Fig. 1 (right) for (arbitrarily
chosen) two representatives out of 14 observations.
In the present work, we simplify our analysis by

approximately characterizing one probability distribution
with four parameters. We project the two-dimensional
distribution onto the one-dimensional M axis (and R axis)
by integrating over R (andM, respectively); in other words,
we make marginal distributions with respect to M and R.
Such marginal distributions are represented by blue shaded
shapes outside the frame on Fig. 1 (right). Then, these two
distributions along the M axis and the R axis are fitted by
Gaussians as overlaid by red curves. Since each Gaussian
has two parameters, namely, the mean and the variance, we
sample 2 × 2 × 14 ¼ 56 parameters out from the raw M-R
data of 14 neutron stars. Now, our task is to find a mapping
from these 56 observational parameters onto the most likely
EoS, i.e., p ¼ pðρÞ.

B. Training and validation data with fluctuations

We will utilize the neural network to represent such a
mapping, and for the optimization, we generate a training
data set; many sets of randomly generated EoS and the
corresponding observational data. It is important to note
that this mapping is not necessarily invertible; even for the

same EoS, the observational data points may fluctuate
according to the probability distributions originating from
observational errors. We need to train the neural network to
“recognize” that the observational data points could depart
from the M-R relation.
Here, we outline how we generated the training and

validation data for our supervised learning. The first step is
the EoS generation; we divide a sufficiently wide density
range, ½ρ0; 8ρ0� in this work, into five segments equally
separated in the logarithmic scale, that is, ½ρi−1; ρi� with
i ¼ 1; 2;…5 and ρ5 ¼ 8ρ0. We then randomly choose an
average sound velocity in each segment, c2s;i, with a
uniform distribution in the causal range ε < c2s;i < 1 − ε
(in the natural units c ¼ 1), where we introduced a
regulator, ε ¼ 0.01, to avoid singular behavior in solving
the TOV equations. Note that the uniform distribution is
chosen to cover wide parameter regions efficiently. Now we
have five pressure values as pi ¼ pi−1 þ c2s;iðρi − ρi−1Þ
for ρ ¼ ρi.
Up to ρ ¼ ρ0, we adopt a conventional nuclear EoS, for

which we chose SLy4 [31], one of the standard EoSs for
nuclear matter [meaning that p0 ¼ pðρ0Þ is fixed by SLy4],
and for ρ > ρ0, the pressure is interpolated with a polytrope
function, i.e., p ¼ pðρÞ ¼ Kiρ

Γi for ρi−1 < ρ < ρi, where
two parameters, Ki and Γi, are solved with two boundary
conditions, pi ¼ pðρiÞ and pi−1 ¼ pðρi−1Þ.
For a given EoS, theM-R relation follows from the TOV

equations, which we call the genuine M-R curve. We
randomly sample 14 data points along the genuine M-R
curve in a region M > M⊙ (whose lower bound M⊙ is
chosen loosely so that the region is large enough to cover
masses from the actual observations). Then, the variances
of the Gaussian distribution, denoted by σMi

and σRi
, are

randomly sampled from the uniform distribution on the
ranges ½0;M⊙Þ and ½0; 5 kmÞ, respectively. These ranges
are sufficient for our purpose in view of Fig. 1. The real data

are not necessarily centered on the bare data point (Rð0Þ
i ,

Mð0Þ
i ), and we shall shift each distribution by ΔMi and ΔRi

that we chose randomly from the Gaussian distributions
with σMi

and σRi
. To summarize the above, one observation

for the training data consists of 14 probability distributions

of the Gaussian shape whose center is ðRð0Þ
i þ ΔRi;M

ð0Þ
i þ

ΔMiÞ and variances are σRi
and σMi

along the R axis and
theM axis, respectively. For the neural network to learn the
correlation between the variances (σRi

, σMi
) and how far the

actual data are off from the genuineM-R curve, we prepare
100 ensembles of different variances for each EoS and
sampled 14 data points, and then prepare 100 ensembles of
shifts, ΔMi and ΔRi, for each generated set of variances.
This means that we prepared 100 × 100 ensembles of data
for each EoS and sampled 14 data points. For the training
data set, we repeated the above process 500 times to cover a
wide variety of EoSs; the total training data set is thus
100 × 100 × 500 ¼ 5, 000, 000 sets of the EoS and the

FIG. 1. (Left) Contour plot of the distributions of M and R for
observed 14 neutron stars. The shaded regions are encircled by
probability contours of 1σ (i.e., 68.27%).1 (Right) Two repre-
sentatives of the neutron star data on the R-M plane.

1The original data is downloadable from http://xtreme.as
.arizona.edu/NeutronStars/.
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14 data points. For the validation data set, we generate 1 ×
1 × 100 sets to monitor the convergence and avoid the
overfitting; for each step of the learning process, we
calculated the loss functions for the training and the
validation data (see Ref. [25] for technicalities).

C. Neural network design

We specify the setups for the actual calculation. For
numerics, we employ a Python library, Keras [32] using a
TensorFlow [33] backend. The design of our feedforward
neural network is summarized in Table I. Our objective is to
construct a network that can convert the neutron star data to
the EoS parameters, so the input and the output layers have
56 and 5 neurons, respectively. These correspond to 56
parameters of observed 14 neutron stars, (Mi, Ri, σM;i, σR;i)
(i ¼ 1; 2;…; 14), and 5 parameters of the EoS, c2s;i
(i ¼ 1; 2;…; 5). We chose the activation function at the
output layer as σð4ÞðxÞ ¼ tanhðxÞ, so that the sound velocity
automatically satisfies the causal bound. For hidden layers,
the activation function is the ReLU, i.e., σðkÞðxÞ ¼
maxf0; xg (k ¼ 1, 2, 3), which is known to evade the
vanishing gradient problem and a standard choice in deep
learning [34]. We implement the loss function by the mean
square logarithmic errors (msle). The optimization
method of our choice is Adam [35] with the batch size
1000. We initialized neural network parameters with the
Glorot uniform distribution [36].

D. Uncertainty estimate from credibility of
reproducibility

In our strategy,we took care of the probability distribution
in the observational side only, but the deduced EoS also has
such a probability distribution around the most likely curve.
To implement that, instead of randomly generating EoSs, we
could have generated some distributions on the ρ-p plane
and sample fluctuating EoSs according to the generated
distribution, which would, however, increase the size of the
training data set tens of thousands larger and require gigantic
computational resources.
Here, we employ an alternative practical way to quantify

the credibility of the deduced EoS with less efforts. We
generate 10 independent training data sets to prepare ten
independent neural network models. For the same real

experimental data, those ten neural network models output
ten deduced EoSs. If a part of the EoS is insensitive to the
M-R observation, different neural network models would
lead to different EoSs in such an unconstrained region.
From the dispersion over ten deduced EoSs, therefore, we
can estimate the credibility of our results. Strictly speaking,
this dispersion is not the probability distribution of the
likely EoS but a measure to quantify how much the same
deduced EoS is reproduced with the same analysis. In other
words, this measure is to be regarded as the credibility of
reproducibility within the present setup of machine learn-
ing. If the physical error bar is large, the credibility band
would be large, but a small credibility band does not always
guarantee a small physical error bar. In this sense, our
uncertainty estimate gives a lower bound. Here, we note
that the uncertainty estimated in this way accounts for the
statistical part (see the band labeled by “10 NNs” in Figs. 2
and 3). Uncertainty including systematics can be quantified
by the root-mean-square deviation between the guessed and
true values using the validation data (see the band labeled
by “validation” in Figs. 2 and 3), as addressed in Ref. [25].
This leads to an uncertainty width of 1.7 km for R at M ¼
1.4 M⊙ in the M-R plane, which is comparable to our
inferred width of 1.3 km (68% C.L.).

III. RESULTS AND DISCUSSIONS

A. Deduced equation of state

In Fig. 2, we present the deduced EoS by the blue line
and its credibility by the light blue shade (labeled by “10

TABLE I. Our neural network architecture in this work. In the
input layer, 56 neurons correspond to parameters of 14 points of
the mass, the radius, and their variances. In the output layer, five
neurons correspond to five parameters of the EoS.

Layer Number of neurons Activation function

0 (input) 56 N/A
1 60 ReLU
2, 3 40 ReLU
4 (output) 5 tanh

FIG. 2. EoS (“ours” drawn by blue line) deduced from the
experimental data of 14 neutron stars as shown in Fig. 1. The light
red and blue shades represent our 68% credibility band (“vali-
dation” and “10 NNs”) evaluated in different ways; see Sec. II D
for the precise meaning. Phenomenological EoS candidates, the
χEFT prediction, and results inferred from Bayesian methods
(Steiner et al. [20] and Özel and Freire [3]) are overlaid for
reference. The former [20] represents 68% C.L., and the latter [3]
shows the contour of e−1 of the maximum likelihood.
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NNs”). Uncertainty quantified in a different way is also
overlaid by the light red shade in Fig. 2 (labeled by
“validation”). Our results are in favor of standard EoSs
calculated within the nuclear many-body model, such as
APR4 [37], BSk20 [38], ENG (Dirac–Brueckner–Hartree–
Fock method) [39], and SLy4 (nonrelativistic potential)
[31], some of which are overlaid on Fig. 2. Our results
indicate that the constraints from currently observed
neutron stars do not have enough resolution to probe a
possibility of the first-order phase transition as encoded in
QHC18 (hybrid phenomenological construction) [4].
The gray band represents an estimate from the chiral
effective theory (χEFT) [40], and our results lie within
this band. In Fig. 2, for reference, we show MS1b
(relativistic mean field) [41], WFF1 (variational) [42],
and several other phenomenological EoSs. The Bayesian
analyses [3,20] are also overlaid in Fig. 2. Note that while
Özel and Freire [3] and our present analysis use the same
astrophysical data, Steiner et al. [20] employ eight x-ray
sources.
It is an interesting question how the corresponding M-R

curve looks like because even the knowledge of the
existence of the M-R curve is not provided to the neural
network during the supervised learning by the M-R points
and the EoS parameters. Figure 3 shows the M-R curves
corresponding to the EoSs in Fig. 2. We see that our
deduced EoS (blue curve) certainly supports massive
neutron stars above two solar mass [43–45].

B. Discussions

One may want to know why the uncertainty band of our
deduced EoS looks such narrow. A part of the reason lies in
the boundary condition in the low density side; we assumed
SLy4 for ρ ≤ ρ0 because up to this density, the EoS is well
constrained by nuclear properties accessible by terrestrial

experiments. So our results should be more precisely
regarded as the most likely extrapolation from SLy4 with
the help of the observational data of 14 neutron stars. It
shall be a future work to inspect a possible bias effect
induced by such a choice of the EoS up to ρ0. Also, we can
in principle remove such an assumption by extending the
neural network architecture including data from nuclear
physics experiments (e.g., symmetry energy; see discus-
sions in Ref. [46]) on top of neutron star data. Such a global
analysis over all available data from astrophysics and
nuclear physics experiments would be an ambitious future
challenge.
At the same time, we can argue from a different point of

view. The light blue band in Fig. 2 may look small at first
glance, but the resolution is not yet good enough to justify/
falsify a first-order phase transition. In view of the light
blue band in Fig. 3, the corresponding uncertainty for the
M-R relation is ∼1 km.
Another important physical quantity derived from the

EoS is the sound velocity, cs, which is plotted in Fig. 4.
Interestingly, the deduced sound velocity is smaller than
1=

ffiffiffi

3
p

(the conformal limit value, viz., a naive upper bound
for massless ultrarelativistic systems) for ρ≲ 2ρ0. With
further increasing ρ > 2ρ0, the sound velocity becomes
significantly greater than 1=

ffiffiffi

3
p

, and eventually, the increas-
ing behavior is saturated beyond ∼4ρ0. Such a sharp
increase of the sound velocity around 2ρ0 appears in
accordance with the recent studies [47,48]. At even higher
densities > 4ρ0, it is likely that the sound velocity starts
decreasing and approaches the conformal limit of asymp-
totically free quarks and gluons. This in turn implies that
the saturation seen around 4ρ0 hints at a transition to
weakly interacting quark matter.
Finally, we shall confirm that our deduced EoS is

consistent with the recent gravitational wave experiment,

FIG. 3. M-R relations corresponding to the deduced EoS (ours)
with phenomenological EoS candidates and Bayesian analyses
(Steiner et al. and Özel and Freire) as shown in Fig. 2.

FIG. 4. Sound velocity in each segment corresponding to
the deduced EoS in Fig. 2. The band represents 68% credibility.
The horizontal dotted line represents the conformal limit of
cs ¼ 1=

ffiffiffi

3
p

.
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specifically the tidal deformability Λ. Once the EoS is
given, the tidal deformability can be calculated following
the method outlined in the Ref. [49]. The experimentally
determined bound,Λð1.4 M⊙Þ ¼ 190þ390

−120 [50], is indicated
by a red bar in Fig. 5. Our deduced EoS leads to
Λð1.4 M⊙Þ ¼ 320� 120, which is entirely consistent with
the GW170817 measurement within the error bar as it
should be. For the moment, we utilize the tidal deform-
ability as a benchmark test, but in the future, the neural
network should be better designed to implement what is

called the multimessenger observation, inclusive of gravi-
tational waves as well as electromagnetic waves.

IV. SUMMARY

In this work, we successfully utilized a new method
based on the machine learning to infer a neutron star EoS in
a way independent of the existing methods. In our method,
the deep neural network can deal with nonlinear mapping
from masses M and radii R of neutron stars to the EoS
parameters. The neural network model was optimized with
training data sets of size 5,000,000, and the convergence
was monitored with an independent validation data set. In
this way, from available M-R data from 14 neutron stars,
we deduced an EoS to find it compatible with the conven-
tional nuclear EoS and the currently existing constraints.
Dealing with two-dimensional M-R distribution for the
neural network input would be an important extension for
the future. Still, our successful results would be a first
step toward further refinements to incorporate the gravita-
tional wave measurements and nuclear physics experi-
ments. Machine learning’s advantage lies in handling such
a large set of complex data, and this direction deserves
investigations.
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