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Pion valence, glue, and sea distributions are calculated using a continuum approach to the two valence-
body bound-state problem. Since the framework is symmetry preserving, physical features of the distributions
are properly expressed. The analysis reveals that the emergent phenomenon of dynamical chiral symmetry
breaking causes a hardening of the valence-quark distribution function, qπðxÞ. Nevertheless, this distribution
exhibits the x ≃ 1 behavior predicted by quantum chromodynamics (QCD). At the scale ζ2 ≔ 2 GeV, the
following momentum fractions are predicted: hxvalencei ¼ 0.48ð3Þ, hxgluei ¼ 0.41ð2Þ, hxseai ¼ 0.11ð2Þ.
Evolving to ζ ¼ 5.2 GeV, the result for qπðxÞ agrees with that computed using lattice QCD. These outcomes
should both spur improved analyses of existing experiments and stimulate efforts to obtain new data on the
pion distribution functions using available and envisioned facilities.
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I. INTRODUCTION

Simply regarding their valence-quark content, pions are
Nature’s simplest hadrons:

πþ ∼ ud̄; π− ∼ dū; π0 ∼ uū − dd̄; ð1Þ

but this appearance is misleading. Despite being hadrons,
their physical masses are similar to that of the μ-lepton;
and the pion masses vanish in the chiral limit, i.e., in the
absence of a Higgs coupling for u- and d-quarks: they are
the Nambu-Goldstone (NG) modes generated by dynamical
chiral symmetry breaking (DCSB) in the Standard Model.
This dichotomous character—simultaneous existence as
NG-bosons and bound-states—entails that the challenges
of charting and explaining pion structure are of central
importance in modern physics. These problems are made
more difficult by the crucial role of symmetries and their
breaking patterns in determining pion properties, which
must be properly incorporated and veraciously expressed in
any theoretical treatment.
Given the pions’ simple valence-quark content, a basic

quantity in any discussion of their structure is the asso-
ciated distribution function, qπðx; ζÞ. This density charts
the probability that a valence q-quark in the pion carries
a light-front fraction x of the system’s total momentum;
and one of the earliest predictions of the parton model,

augmented by features of perturbative quantum chromo-
dynamics (pQCD), is [1–3]:

qπðx; ζ ¼ ζHÞ ∼ ð1 − xÞ2; ð2Þ

where ζH is an energy scale characteristic of nonperturba-
tive dynamics. Moreover, the exponent evolves as ζ
increases beyond ζH, becoming 2þ γ, where γ ≳ 0 is
an anomalous dimension that increases logarithmically
with ζ. (In the limit of exact G-parity symmetry, which
is a good approximation in the Standard Model, uπ

þðxÞ ¼
d̄π

þðxÞ, etc. Hence it is only necessary to discuss one
unique distribution.)
Owing to the validity of factorization in QCD, qπðxÞ is

measurable in πN Drell-Yan experiments [4–10]. However,
conclusions drawn from analyses of these experiments have
proved controversial [11]. For instance, using a leading-
order (LO) pQCD analysis of their data, Ref. [9] (the E615
experiment) reported (ζ5 ¼ 5.2 GeV):

qπE615ðx; ζ5Þ ∼ ð1 − xÞ1; ð3Þ

a marked contradiction of Eq. (2). Subsequent calculations
[12] confirmed Eq. (2) and eventually prompted reconsid-
eration of the E615 analysis, with the result that, at next-to-
leading order (NLO) and including soft-gluon resummation
[13,14], the E615 data can be viewed as being consistent
with Eq. (2).
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Notwithstanding these advances, uncertainty over
Eq. (2) will remain until other analyses of the E615 data
incorporate threshold resummation effects and, crucially,
new data are obtained. Prospects for the latter are good
because relevant tagged deep-inelastic scattering experi-
ments are approved at the Thomas Jefferson National
Accelerator Facility [15–17] and the goal has high priority
at other existing and anticipated facilities [18–22].
Meanwhile, progress in theory continues. Novel per-

spectives and algorithms within lattice-regularized QCD
(lQCD) [23–27] are beginning to yield results for the
pointwise behavior of the pion’s valence-quark distribution
[28–32], offering promise for information beyond the
lowest few moments [33–36].
Extensions of the continuum analysis in Ref. [12]

are also yielding new insights. For example: a class of
corrections to the handbag-diagram representation of the
virtual-photon–pion forward Compton scattering amplitude
has been identified and shown to restore basic symmetries
in calculations of qπðx; ζÞ [37]; and the corrected expres-
sion has been used to compute all valence-quark distribu-
tion functions in the pion and kaon [38], with the results
indicating that the gluon content of the pion is significantly
greater than that of the kaon.
This last feature owes to the mechanism responsible for

the emergence of mass in the Standard Model. Studies of
meson properties [39–42] indicate that the s-quark defines
a boundary: emergent mass generation dominates for
m̂ < m̂s, but the Higgs-mass prevails on m̂≳ m̂s, where
m̂ is the renormalization group invariant current-mass for a
given quark. Hence, comparisons between the properties
of systems containing only light quarks and those with one
(or more) s-quark(s) are well suited to exposing effects of
dynamical mass generation.
Given its potential for validating such observations,

there is renewed interest in measuring uKðxÞ=uπðxÞ
[15,16,19–22]. Only one data set currently exists [4]. It
is old (from 1980) and limited; hence, needs modernizing
and expanding in order to be effective in this new role.
The theory predictions also need updating, e.g., the

continuum results in Refs. [37,38] were obtained using
algebraic models for the elements needed to describe the
Compton amplitude, i.e., dressed-quark propagators, meson
Bethe-Salpeter amplitudes, and dressed-photon-quark ver-
tex. Therefore, following the recent theory developments,
especially concerning the pion, herein we expand upon the
calculation of pion parton distributions reported in Ref. [43],
providing extensive explanations and including additional
material that should, inter alia, prove valuable in illuminat-
ing the formulation, analyses and results. Notably, this
approach to the two-body bound-state problem has success-
fully unified the treatment of the charged-pion-elastic and
neutral-pion-transition form factors [40,42,44–46]. It has
also been used to correlate continuum and lattice predictions
for the electromagnetic form factors of charged pionlike

mesons, thereby enabling an extrapolation of the lQCD
results to the physical pion mass [41].
Our manuscript is arranged as follows. Section II

describes the connection between pion Compton scattering
and qπðxÞ; and Sec. III recapitulates the analysis of
Ref. [37], explaining the flaws of the handbag diagram
as a tool for calculating valence-quark distributions and
illuminating the corrections that repair its deficiencies
and thus produce a symmetry-preserving approximation.
Section IV reports our calculation of qπðxÞ at ζH: detailing
the kernel used to solve the continuum bound-state prob-
lem; computation of the lowest six independent Mellin-
moments; and reconstruction of qπðxÞ therefrom. It also
explains that, through a connection between the saturation
value of QCD’s process-independent effective charge and
the one-loop running coupling, the hadronic scale is
determined: ζH ¼ 0.30 GeV. Evolution of qπðx; ζHÞ to
ζ=GeV ¼ 2, 5.2 for comparison with data, phenomenol-
ogy, and theory is described in Sec. V; and predictions for
the glue and sea momentum-distributions are obtained
analogously using the singlet evolution equations.
Section VI provides a summary and offers perspectives.

II. QUARK DISTRIBUTION FUNCTION

The hadronic tensor relevant to inclusive deep inelastic
lepton-pion scattering may be expressed via two invariant
structure functions [47]. With the incoming photon pos-
sessing momentum q and the target pion, momentum P,
then in the deep-inelastic (Bjorken) limit [48], viz.

q2 → ∞; P · q → −∞; but x ≔ −q2=½2P · q� fixed;
ð4Þ

that tensor is ðtμν ¼ δμν − qμqν=q2; Pt
μ ¼ tμνPνÞ:

Wμνðq;PÞ ¼ F1ðxÞtμν −
F2ðxÞ
P · q

Pt
μPt

ν; ð5aÞ

F2ðxÞ ¼ 2xF1ðxÞ: ð5bÞ

F1ðxÞ is the pion structure function, which provides access
to the pion’s quark distribution functions:

F1ðxÞ ¼
X
q∈π

e2qqπðxÞ; ð6Þ

where eq is the quark’s electric charge. The sum in Eq. (6)
runs over all quark flavors; but in the πþ it is naturally
dominated by uðxÞ, d̄ðxÞ. Moreover, in the G-parity sym-
metric limit, which we employ throughout, uðxÞ ¼ d̄ðxÞ.
(Bjorken-x is equivalent to the light-front momentum
fraction of the struck parton.) Using the optical theorem,
the structure function is given by the imaginary part of the
virtual-photon–pion forward Compton scattering ampli-
tude: γ�ðqÞ þ πðPÞ → γ�ðqÞ þ πðPÞ.
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III. SYMMETRIES AND THE PION
VALENCE-QUARK DISTRIBUTION FUNCTION

A. Charged-pion form factor

In order to elucidate the role of symmetries in developing
an approximation to the γ�π forward Compton amplitude,
which is the basis for any computation of qπðxÞ, we first
consider the simpler problem of the pion electromagnetic
form factor, FπðQ2Þ. In both cases, one aims to expose
structural features of a system characterized by two
valence-parton degrees-of-freedom. A useful framework
for studying such problems in quantum field theory is
provided by the Dyson-Schwinger equations (DSEs) [49],
with the one-body gap equation and two-body Bethe-
Salpeter equation (BSE) playing leading roles.
The DSEs are a collection of coupled equations and a

tractable problem is obtained once a truncation scheme is
specified. A weak-coupling expansion reproduces pertur-
bation theory; but although valuable in the analysis of
large momentum transfer phenomena in QCD, it cannot be
used to obtain nonperturbative information. A symmetry-
preserving scheme applicable to hadrons was introduced in
Refs. [50,51] and has subsequently been exploited [52–55]
and refined [56–62]. The basic point is that the Bethe-
Salpeter kernel appropriate to a given two-valence-body
problem is computable once that of the one-body gap
equation is specified. Following these procedures, one
guarantees, inter alia, that all Ward-Green-Takahashi
(WGT) identities [63–66] are preserved, without fine-
tuning, and thereby ensures, e.g., current-conservation
and the appearance of NG modes in connection with
DCSB. These qualities are essential in connection with
studies of electromagnetic interactions involving pions (and
other pseudoscalar mesons). (N.B. Calculations, such as
ours, are typically performed using the Poincaré-covariant
Landau gauge because, inter alia, this ensures that pres-
ervation of symmetries is readily tracked and elucidated via
the WGT identities.)
The leading-order term in the procedure of Refs. [50,51]

is the rainbow-ladder (RL) truncation. Widely used, it is
accurate for an array of systems and properties; in par-
ticular, those of ground-state flavor-nonsinglet pseudosca-
lar mesons because corrections in these channels largely
cancel owing to the parameter-free preservation of relevant
WGT identities ensured by this scheme.
Even before it was recognized as part of a systematic

procedure, RL truncation was used as the basis for a
calculation of Fπ [67]. As argued therein, to obtain the form
factor at this level in the symmetry-preserving truncation,
one computes the matrix element depicted in Fig. 1:

KμFπðQ2Þ ¼ Nctr
Z
dk
iχμðkþ q; kÞ

× iΓπðki;PÞSðk − PÞiΓπðkf;−P0Þ; ð7Þ

where q ¼ P0 − P is the incoming photon momentum
(Q2 ¼ q2), 2K¼P0 þP; P2¼−m2

π¼ðP0Þ2; ki¼k−P=2,
kf ¼ k − P=2þ q=2; Nc ¼ 3; the trace is over spinor

indices; and
R
dk ≔

R
d4k
ð2πÞ4 is a translationally invariant

regularization of the integral.
In Eq. (7), S is the u ¼ d dressed-quark propagator,

computed in rainbow truncation; Γπ is the pion Bethe-
Salpeter amplitude, computed with a rainbow-ladder ker-
nel; and χμðkþ q; kÞ ¼ Sðkþ qÞΓμðkþ q; kÞSðkÞ, with Γμ

the amputated dressed-photon-quark vertex, computed
using the same kernel.
In RL truncation, there are no corrections to Eq. (7). To

see this, suppose one were to add a gluon emitted from line
(a) and reabsorbed by line (a). This would be overcounting
because the contribution is already included in the rainbow
truncation computation of the dressed-quark propagator.
Suppose next that a gluon is emitted by line (a) and
absorbed by line (c). That would also be overcounting
because such a contribution is already contained in the RL-
truncation result for Γπ. Indeed, no matter which line or
lines one chooses to emit and reabsorb a single gluon, the
contribution generated is already included in S, Γπ or Γμ.
Consequently, Fig. 1 depicts the complete RL result for
FπðQ2Þ. It is the basis for a calculation of this form factor
on the entire domain of spacelike Q2 [40,41,44], which
agrees with existing data [68–71] and predicts that QCD
scaling violations will be seen in experiments that
reach Q2 ≳ 8 GeV2.

B. Pion valence-quark distribution function

Viewed simply, RL truncation represents Fπ as a three-
point function: there are three compound vertices in Fig. 1.
Counting in the same way, the photon-pion Compton
amplitude is a four-point function; and anyone desiring
to supply predictions for qπðxÞ that are consistent with

FIG. 1. RL truncation for the charged-pion electromagnetic
form factor, Eq. (7): triangles (blue)—pion Bethe-Salpeter
amplitudes; circle (red)—amputated dressed-photon-quark ver-
tex; and interior lines—dressed-quark propagators. Poincaré-
covariance and electromagnetic current conservation, inter alia,
are guaranteed so long as each of these elements is computed in
RL truncation. For later use, we define line (a) to be that carrying
momentum k; line (b), kþ q; and line (c), k − P.
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those for Fπ is immediately presented with the challenge
of writing the complete RL truncation for this four-point
function. The solution to that problem was presented
almost twenty years ago, in connection with the treatment
of ππ → ππ [72,73]. Translated to the pion Compton
amplitude [37], the complete (symmetry-preserving) RL
truncation is given by permutations of the three diagrams
illustrated in Fig. 2. (An extension to nucleon Compton
scattering is described elsewhere [74].)
That the collection of diagrams in Fig. 2 is necessary and

sufficient to generate the complete, symmetry-preserving
RL treatment of γπ → γπ is readily made apparent. For
example, suppose one were to add a gluon emitted from
line (a) and reabsorbed by line (a). This would be over-
counting because the contribution is already included in the
rainbow truncation dressed-quark propagator. Suppose next
that an additional gluon is emitted by line (a) and absorbed
by line (d). That would also be over-counting because
this diagram is already contained in the RL result for Γπ.
Now imagine that a new gluon is emitted by line (a) and
absorbed by line (b). That is overcounting because such
contributions are contained in the RL dressed-photon-quark
vertex. One must also consider a gluon emitted by line (a)
and absorbed by line (c). This is one of the summed
diagrams represented by Fig. 2(A); and Fig. 2(B) represents
the sum of contributions obtained by laddered gluons
between lines (b) and (d) in Fig. 2(C). Allowing only
such one-gluon-like exchange effects, which is the basic
feature of RL truncation, then there are no distinct addi-
tional contributions. On the other hand, if any one of the
contributions described and illustrated here is neglected in a
given calculation, then that calculation explicitly breaks an
array of relevant symmetries.
Consider now the γ�π forward pion Compton amplitude

in the Bjorken limit, Eq. (4). The (S3) permutation of
the diagrams in Fig. 2 corresponds to a collection of

so-called cat’s ears contributions. They are greatly sup-
pressed compared to the other two permutations in the
Bjorken limit; hence may be neglected. The (S2) permu-
tation corresponds simply to symmetrizing the incoming
and outgoing photons and so need not explicitly be
considered further. Consequently, in computing qπðx; ζHÞ,
one may focus solely on those diagrams drawn explicitly in
Fig. 2; namely, in RL truncation [37]:

γ�ðqÞ þ πðPÞ → γ�ðqÞ þ πðPÞ ¼Fig: 2 ðAÞ þ ðBÞ − ðCÞ: ð8Þ

In the forward and Bjorken limits, Fig. 2(C) is the
textbook handbag contribution to γ�π Compton scattering.
It has often been used alone to estimate qπðx; ζHÞ. (See,
e.g., Refs. [12,75–78] and citations therein and thereof.)
If the pion’s Bethe-Salpeter amplitude is assumed to be
momentum-independent1 and a Poincaré-invariant regulari-
zation of the loop-integral is employed, then Fig. 2(C)
yields a result for qπðx; ζHÞ that preserves both the baryon-
number and momentum sum-rules; namely,

Z
1

0

dxqπðx; ζHÞ ¼ 1; ð9aÞ

Z
1

0

dxxqπðx; ζHÞ ¼
1

2
: ð9bÞ

(The right-hand-side of Eq. (9a) remains unity under QCD
evolution—DGLAP [81–84].) In fact, one finds [78]

qπCIðx; ζHÞ ≈ θðxÞθð1 − xÞ; ð10Þ

FIG. 2. Collection of diagrams required to complete a symmetry-preserving RL calculation of pion Compton scattering. Amplitude-
One ðS1Þ ¼ ðAÞ þ ðBÞ − ðCÞ. The “dots” in (A) and (B) indicate summation of infinitely many ladder-like rungs, beginning with zero
rungs. The other two amplitudes are obtained as follows: (S2)—switch vertices to which q and q0 are attached; and (S3)—switch vertex
insertions associated with q0 and P0. In all panels: triangles (blue)—pion Bethe-Salpeter amplitudes; circles (red)—amputated dressed-
photon-quark vertices; and interior lines—dressed-quark propagators. Δ ¼ q0 − q. Poincaré-covariance and electromagnetic current
conservation, inter alia, are guaranteed so long as each of these elements is computed in RL truncation. For later use, using (C), we
define line (a) to be that carrying momentum k; line (b), kþ q; line (c), k − Δ; and line (d), k − P.

1This is the result obtained using an internally-consistent,
symmetry-preserving treatment of a vector ⊗ vector contact
interaction (CI) [79,80].
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where θðxÞ is the Heaviside step function. Equation (10)
describes a structureless pion, in which a given valence-
quark carries all light-front-fractions of the pion’s total
momentum with equal probability.
If the regularization scheme for the loop in Fig. 2(C)

introduces a mass-scale and/or the quark-antiquark inter-
action is momentum-dependent, then the result obtained
violates one or both of the sum rules in Eq. (9) [12,75].
Consequently, Fig. 2(C) alone is a poor approximation
when realistic interactions are used.
Consider now Fig. 2(A), which can be written thus:

qπAðx; ζHÞ ¼ Nctr
Z
dk
δxnðkηÞn · γHπðP; kÞ; ð11Þ

where δxnðkηÞ ≔ δðn · kη − xn · PÞ; n is a lightlike four-
vector, n2 ¼ 0, with n · P ¼ −mπ in the pion rest frame;
and kη ¼ kþ ηP, kη̄ ¼ k − ð1 − ηÞP, η ∈ ½0; 1�. Owing to
Poincaré covariance, no observable can legitimately depend
on η, i.e., the definition of the relative momentum.
In RL truncation, as illustrated in Fig. 2(A), HπðP; kÞ

in Eq. (11) is an infinite sum of laddered gluon-rungs,
beginning with zero rungs. Hence, one may write [85]

qπAðx; ζHÞ ¼ Nctr
Z
dk
iΓπðkη;−PÞSðkηÞiΓnðk; x; ζHÞ

× SðkηÞiΓπðkη̄; PÞSðkη̄Þ; ð12Þ

where Γnðk; x; ζHÞ is a generalization of the quark-photon
vertex, describing a dressed-quark scattering from a zero
momentum photon and determined by a RL Bethe-Salpeter
equation with inhomogeneity n · γδxnðkηÞ.
Equation (12) is depicted in Fig. 3(A′); and now a

comparison with Fig. 1 makes manifest that the RL
treatment of Fig. 2(A) is equivalent to the symmetry
preserving analysis of the pion’s electromagnetic form
factor (at Q2 ¼ 0) [49,86]. Furthermore, Eq. (12) ensures
Eq. (9a) because

Z
1

0

dxΓnðk; x; ζHÞ ¼ nμΓμðk; kÞ=n · P; ð13Þ

thus, using Eq. (7),

Z
1

0

dxqπAðx; ζHÞ ¼ FπðQ2 ¼ 0Þ ¼ 1: ð14Þ

On the other hand, as illustrated by existing calculations,
e.g., Refs. [12,85], Eq. (12) violates Eq. (9b). Hence, as
explained above, any result for qπðx; ζHÞ obtained from
Fig. 2(A) alone—equivalently, Fig. 3(A′)—is flawed
because it violates basic symmetry constraints. Typical
consequences include the following: an overestimate of the
sea and gluon content of a given bound-state; erroneous

estimates of the relative size of the valence-quark momen-
tum fractions within different but related bound-states;
incorrect identification of ζH, if this scale is used as a
parameter to fit an empirically-determined distribution
[87]; and since these errors are transmitted into the evolved
distributions, a lack of credibility in any conclusions and
interpretations drawn from the distributions. Furthermore,
the symmetry violations and associated errors are amplified
by including the HðP; kÞ resummation in Fig. 2(A)
[Fig. 3(A′)] alone because this unbalances the interferences
that a fully-consistent RL truncation is guaranteed to
preserve. Consequently, less damage is done by working
solely with Fig. 2(C).
We turn now to the contribution ðBÞ-ðCÞ in Eq. (8),

which has usually been overlooked in calculations of
qπðx; ζHÞ; but whose importance was stressed and illus-
trated in Ref. [37]. Given that the combination ðBÞ-ðCÞ is
crucial if the WGT identities are to be satisfied in a RL
analysis of Compton scattering, let us consider their
content. A first observation is that ðB0Þ-ðCÞ ¼ 0, i.e., if
one omits all terms from the ladderlike sum in Fig. 2(B)
then it is completely cancelled by subtracting Fig. 2(C).
Hence, ðB0Þ-ðCÞ is a sum of infinitely many ladderlike
rungs, beginning with one rung. This is illustrated in
Fig. 3(B′). Studying this figure, the nature of ðBÞ-ðCÞ
becomes plain, viz. it expresses the impact of the deep-
inelastic event as felt by a dressed-quark line embedded
within the pion bound state. Thinking perturbatively, one
might imagine these processes to represent effects asso-
ciated with initial/final-state interaction corrections to the
handbag diagram and thus to be suppressed. However, so
long as the gluon exchanges are soft, which is the limit

FIG. 3. Employing the optical theorem, the diagrams in Fig. 2
yield these two contributions to qπðxÞ: upper panel, Eq. (12); and
lower panel, Eq. (15). The sum yields the completely symmetry-
preserving RL truncation formula for qπðxÞ.
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exposed by the optical theorem analysis, that is not the case
because the resummation of ladderlike rungs is resonant.
Hence the contribution depicted in Fig. 3(B′) is of precisely
the same order as that from Fig. 3(A′). In fact, akin to the
final state interactions that produce single spin asymmetries
[88], the ðBÞ-ðCÞ contribution is leading-twist and its
appearance and importance signal failure of the impulse
approximation.
These considerations lead to the following form for

the ðBÞ-ðCÞ contribution to qπðx; ζHÞ [37]:

qπBCðx; ζHÞ ¼ Nctr
Z
dk
Γn
πðkη;−P; ζHÞ

× SðkηÞΓπðkη̄; PÞSðkη̄Þ; ð15Þ

where Γn
πðkη;−P; ζHÞ is a “pierced” pion Bethe-Salpeter

amplitude, computed by summing infinitely many inser-
tions of ½δxnðkηÞn · ∂kηSðkηÞ�, between sequentially chosen
adjacent gluon-rungs in the diagrammatic expansion of the
pion amplitude. Notably, independent of ζH, as a conse-
quence of symmetry preservation:

Z
1

0

dxqπBCðx; ζHÞ ¼ 0: ð16Þ

We can now write the complete expression for the pion
valence-quark distribution function in RL truncation:

qπðx; ζHÞ ¼ qπAðx; ζHÞ þ qπBCðx; ζHÞ; ð17Þ

i.e., one sums the terms in Eqs. (12) and (15).

IV. PREDICTION FOR THE PION
VALENCE-QUARK DISTRIBUTION FUNCTION

A. Ward identity approximation for qπðxÞ
As illustrated in Ref. [73], it is challenging to solve for

the complete RL u and t channel scattering amplitudes
depicted in Figs. 2(A), (B) and needed to describe γ�π →
γ�π. Herein, we therefore use a simpler approach, employ-
ing the approximations introduced in Ref. [37]:

iΓnðk; x; ζHÞ ¼ δxnðkηÞn · ∂kηS
−1ðkηÞ; ð18aÞ

Γn
πðkη;−P; ζHÞ ¼ n · ∂kηΓπðkη;−P; ζHÞ; ð18bÞ

in which case

qπðx; ζHÞ ¼ Nctr
Z
dk
δxnðkηÞ

× fn · ∂kη ½Γπðkη;−PÞSðkηÞ�gΓπðkη̄; PÞSðkη̄Þ:
ð19Þ

Improvement upon Eqs. (18) will be canvassed in future,
following Ref. [73]. However, as shown therein, in
Ref. [37], and remarked above: the symmetry-preserving
nature of our treatment, Fig. 2, ensures cancellations
between terms. Hence, corrections in the u channel largely
compensate those at equal order in the t channel thereby
ensuring accuracy of Eq. (19).
It is straightforward to prove algebraically that the result

obtained using Eq. (19) is: independent of η; ensures

qπðx; ζHÞ ¼ qπð1 − x; ζHÞ; ð20Þ

satisfies Eqs. (9); and possesses defined subcomponents
that comply with Eqs. (14), (16).

B. Computing the inputs for qπðxÞ
In order to calculate qπðx; ζHÞ from Eq. (19) one must

know the dressed light-quark propagator and pion Bethe-
Salpeter amplitude. Algebraic Ansätze were employed in
Ref. [37]. In contrast, herein we follow Ref. [41] and use
realistic numerical solutions. Consequently, the result for
qπðx; ζHÞ is completely determined once an interaction
kernel is specified for the RL Bethe-Salpeter equation.
We use the interaction explained in Refs. [89,90]:

Kα1α
0
1
;α2α02

¼ GμνðkÞ½iγμ�α1α01 ½iγν�α2α02 ; ð21aÞ

GμνðkÞ ¼ G̃ðk2ÞTμνðkÞ; ð21bÞ

with k2TμνðkÞ ¼ k2δμν − kμkν and (s ¼ k2)

1

Z2
2

G̃ðsÞ ¼ 8π2D
ω4

e−s=ω
2 þ 8π2γmF ðsÞ

ln½τ þ ð1þ s=Λ2
QCDÞ2�

; ð22Þ

where γm ¼ 4=β0, β0 ¼ 11 − ð2=3Þnf, nf ¼ 4, ΛQCD¼
0.234GeV, τ ¼ e2 − 1 ðln e ¼ 1Þ, and F ðsÞ ¼ f1−
expð−s=½4m2

t �Þg=s, mt ¼ 0.5 GeV. The development of
Eqs. (21), (22) is summarized in Ref. [89] and their
connection with QCD is described in Ref. [59]. Some points
may nevertheless bear repeating. Namely, the interaction is
deliberately consistent with that determined in studies of
QCD’s gauge sector and it preserves the one-loop renorm-
alization group behavior of QCD.
Z2 in Eq. (22) is the dressed-quark wave function

renormalization constant. We employ a mass-independent
momentum-subtraction renormalization scheme for the
gap and inhomogeneous vertex equations, implemented
by using the scalar WGT identity and fixing all renorm-
alization constants in the chiral limit [91]. In the first
applications of this DSE approach to hadron observables
[92,93] (and many that have followed), the renormalization
scale was chosen deep in the spacelike region: ζ ¼ ζ19 ≔
19 GeV, primarily to ensure simplicity in the nonpertur-
bative renormalization procedure. This choice entails that
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the dressed quasiparticles obtained as solutions to the DSEs
remain intact and thus serve as the dominant degrees-of-
freedom for all observables. This is adequate for infrared
quantities, such as hadron masses: flexibility of model
parameters and the bridge with QCD enable valid predic-
tions to be made. However, it generates errors in form
factors and parton distributions. With form factors, the
correct power-law behavior is obtained, but the scaling
violations deriving from anomalous operator dimensions
are wrong (see, e.g., Ref. [94]); and for parton distributions,
the natural connection between the renormalization scale
and the reference scale for evolution equations is lost, again
because parton loops are suppressed when renormalizing
a RL truncation study at deep spacelike momenta so the
computed anomalous dimensions are wrong.
As explained elsewhere [40,42,45], the solution to these

problems is to renormalize the DSE solutions at a typical
hadronic scale, where the dressed quasiparticles are the
correct degrees-of-freedom. This recognizes that a given
meson’s Poincaré covariant wave function and correlated
vertices, too, must evolve with ζ [95–97]. Such evolution
enables the dressed-quark and -antiquark degrees-of-
freedom, in terms of which the wave function is expressed
at a given scale ζ2 ¼ Q2, to split into less well-dressed
partons via the addition of gluons and sea quarks in the
manner prescribed by QCD dynamics. These effects are
automatically incorporated in bound-state problems when
the complete quark-antiquark scattering kernel is used; but
aspects are lost when that kernel is truncated, and so it is
with RL truncation. We therefore renormalize our DSEs at
the hadronic scale ζ ¼ ζH.
A natural value for the hadronic scale, ζH, must now

be determined. To that end, recall that QCD possesses
a process-independent effective charge [98–100]: αPIðk2Þ.
This running-coupling saturates in the infrared: αPIð0Þ=
π ≈ 1, owing to the dynamical generation of a gluon mass-
scale [101,102]. These features and a smooth connection
with pQCD [and hence Eq. (22)] are expressed in the
following algebraic expression:

αPIðk2Þ ¼
πγm

ln½ðm2
α þ k2Þ=Λ2

QCD�
; ð23Þ

mα ¼ 0.30 GeV≳ ΛQCD. Evidently, mα is an essentially
nonperturbative scale whose existence ensures that modes
with k2 ≲m2

α are screened from interactions. It therefore
serves to define the natural boundary between soft and hard
physics; hence, we identify

ζH ¼ mα: ð24Þ
Returning to Eqs. (21), (22), computations [41,89,90]

reveal that observable properties of light-quark ground-
state vector- and flavor-nonsinglet pseudoscalar-mesons are
practically insensitive to variations of ω ∈ ½0.4; 0.6� GeV,
so long as

ς3 ≔ Dω ¼ constant: ð25Þ

This feature extends to numerous properties of the nucleon
andΔ-baryon [103–106]. The value of ς is typically chosen
to reproduce the measured value of the pion’s leptonic
decay constant, fπ . In RL truncation, this requires

ς ¼ 0.82 GeV; ð26Þ

with renormalization-group-invariant current-quark mass

m̂u ¼ m̂d ¼ m̂ ¼ 6.7 MeV; ð27Þ

which corresponds to a one-loop evolved mass of mζ2 ¼
4.6 MeV. In solving the DSEs relevant to pion physics, we
will subsequently employ ω ¼ 0.5 GeV, the midpoint of
the domain of insensitivity.
The next step on the way to obtaining qπðx; ζHÞ is to

perform a coupled solution of the dressed-quark gap- and
pion Bethe-Salpeter-equations, defined via Eqs. (21), (22),
following Ref. [93] and adapting the algorithm improve-
ments from Ref. [107] when necessary.

C. Mellin moments

With S and Γπ in hand, one can calculate the Mellin-
moments:

hxmiπζH ¼
Z

1

0

dxxmqπðx; ζHÞ ð28aÞ

¼ Nc

n · P
tr
Z
dk

�
n · kη
n · P

�
m
Γπðkη̄; PÞSðkη̄Þ

× n · ∂kη ½Γπðkη;−PÞSðkηÞ�; ð28bÞ

and if enough of these moments can be computed, then they
can be used to reconstruct the distribution. Usefully, using
Eq. (20), one finds that the value of any given odd moment,
hxmoiπζH , mo ¼ 2m̄þ 1, m̄ ∈ Z, is known once all lower
even moments are computed, e.g.:

hxiπζH ¼ 1

2
hx0iπζH ¼ 1

2
; ð29aÞ

hx3iπζH ¼ −
1

4
hx0iπζH þ 3

2
hx2iπζH ; ð29bÞ

hx5iπζH ¼ 1

2
hx0iπζH −

5

2
hx2iπζH þ 5

2
hx4iπζH ; ð29cÞ

hx7iπζH ¼ −
17

8
hx0iπζH þ 21

2
hx2iπζH

−
35

4
hx4iπζH þ 7

2
hx6iπζH : ð29dÞ
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Such identities can be used to validate any numerical
method for computing the moments defined by Eq. (28).
Every moment defined by Eq. (28) is finite. However,

direct calculation of these moments using numerically
determined inputs for the propagator and Bethe-Salpeter
amplitude is difficult in practice owing to an amplification
of oscillations produced by the ½n · kη�m factor: in any
perfect procedure, the oscillations cancel; but that is hard to
achieve numerically. We therefore introduce a conver-
gence-factor2

Cmðk2r2Þ ¼ 1=½1þ k2r2�m=2∶ ð30Þ

the moment is computed as a function of r2; and the
final value is obtained by extrapolation to r2 ¼ 0. This
procedure is reliable for the lowest six moments, m ¼
0; 1;…; 5 [108]. According to Eq. (29c), the m ¼ 5
moment is not independent; but its direct calculation
enables one to ensure that the lower even moments are
correct.
One can extend this set of moments by using the

Schlessinger point method (SPM) [109–113] to construct
an analytic function,MSðzÞ, whose values at z ¼ 0; 1;…; 5
agree with the moments computed directly and for which
MSð7Þ satisfies Eq. (29d) when MSð0Þ, MSð2Þ, MSð4Þ,
MSð6Þ are used for the even moments. The function MSðzÞ
then provides an estimate for all moments of the distribu-
tion, which is exact for m ≤ 5.
We illustrate the efficacy of the SPM approach using

the nontrivial algebraic model described in Ref. [28]
(Eqs. (1), (14), (17) and Sec. IV. A). We computed fifty
Mellin moments directly, then used the first six moments
and the procedure described above to obtain the following
SPM approximation:

MSðzÞ ¼
a0 þ a1zþ a2z2

a0 þ b1zþ b2z2 þ b3z3
; ð31Þ

with the coefficients specified in Table I. Figure 4 compares
the moments obtained using the SPM approximation with
the true moments: the magnitude of the relative error is
< 0.2% for m ≤ 10 and < 1% for m ≤ 15, i.e., the SPM
produces accurate approximations to the first sixteen
moments, working with just six. The relative error for
the fiftieth moment is −48%.
Having validated the SPM, we computed the moments

in Eq. (28) for m ¼ 0; 1;…; 5 using the numerical results
for S and Γπ obtained with the DSE kernels specified by
Eqs. (21), (22).3 Then, to compensate for potential propa-
gation of numerical quadrature error in the moment

computations, we constructed two SPM approximations
to the results: one based on the m ¼ 0, 1, 2, 3 four-element
subset; and another using the complete set of six moments.
In each case, the collection of moments is described by a
function of the form in Eq. (31) with the coefficients in the
lower panel of Table I.
Working with the first eleven SPM-approximant

moments in each case, we reconstructed a pion valence-
quark distribution; and subsequently defined our result to
be the average of these functions:

qπðx; ζHÞ ¼ 213.32x2ð1 − xÞ2

×
h
1 − 2.9342

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞ

p
þ 2.2911xð1 − xÞ

i
:

ð32Þ

Notably, the x ≃ 0, 1 endpoint behavior of the hadron-scale
distribution is completely fixed by algebraic analysis [37]:

TABLE I. Computed coefficients for the SPM approximation to
the Mellin moments of the pion valence-quark distribution
function, Eq. (31). Upper panel—algebraic inputs for the propa-
gator and Bethe-Salpeter amplitude. Lower panel—realistic
inputs: column 1, using m¼0;…;3; and column 2, m ¼ 0;…; 5.

Algebraic

a0 22.15848512824146
a1 6.882746278686694
a2 −0.1087281502480409
b1 25.18581743280522
b2 9.520703952313553
b3 1

Realistic: 0–3 Realistic: 0–5
a0 6 24.45939048190962
a1 0.05050505050504085 16.78622673154534
a2 0 −0.8585917712408488
b1 5.101010101010094 36.46584243665940
b2 1 18.84881796585922
b3 0 1

FIG. 4. Comparison between moments evaluated using the
SPM approximation in Eq. (31) with those computed directly
using the algebraic model in Ref. [28]: the magnitude of the
relative error is < 0.1% for m ≤ 10.

2Owing to the nature of the integrand, the convergence factor
can be omitted for m ≤ 2: it only plays a role for m ≥ 3.

3We used the SPM to assist with extrapolation r2 → 0,
Eq. (30), and Eqs. (29b), (29c) to check our results.
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as shown, the exponent is “2”, reproducing Eq. (2). This
feature removes the need to use moments of arbitrarily high
order, enabling one to focus instead on the lower-order
moments which provide information on the mid-x shape.
One remark may be valuable here. This application of the

SPM requires the coefficient of the highest active denom-
inator power in Eq. (31) to be unity. Hence, when one
uses Eq. (31) for m ¼ 0, 1, 2, 3 moments, b2 ¼ 1 and
a2 ¼ 0 ¼ b3. Referring to the lower panels of Table I, this
presents an appearance of sensitivity in the coefficients to
the number of moments employed; but that is misleading.
The relevant measure is not these coefficients, but the
similarity between the curves obtained via reconstruction.
Our result, Eq. (32), is depicted in Fig. 5. The mean
absolute relative error between its first eleven moments and
those of the separate reconstructed distributions is 4(3)%.
Given the remarks in Sec. I, it is worth reiterating that

Eq. (32) exhibits the x ≃ 1 behavior predicted by the QCD
parton model, Eq. (2); and because it is a purely valence
distribution, this same behavior is also evident on x ≃ 0.
However, in contrast to the scale-free valence-quark dis-
tribution computed in Ref. [37]:

qsfðxÞ ≈ 30x2ð1 − xÞ2; ð33Þ

obtained using parton-model-like algebraic representations
of S, Γπ, the distribution computed with realistic inputs
is a much broader function. A similar effect is observed in
the pion’s leading-twist valence-quark distribution ampli-
tude [114] and those of other mesons [108,
115–118]. The cause is the same, viz. the valence-quark
distribution function is hardened owing to DCSB, which is
a realization of the mechanism responsible for the emer-
gence of mass in the Standard Model [119]. Emergent mass
is expressed in the momentum-dependence of all QCD
Schwinger functions. It is therefore manifest in the point-
wise behavior of wave functions, elastic and transition
form factors, etc.; and as we have now displayed, also in
parton distributions. (This was to be expected, given the
connection between light-front wave functions and parton
distributions.)

V. EVOLUTION OF PION DISTRIBUTION
FUNCTIONS

The pion valence-quark distribution in Eq. (32) is
computed at ζH ¼ mα, Eq. (24). On the other hand, existing
lQCD calculations of low-order moments [33–36] and
phenomenological fits to pion parton distributions are
typically quoted at ζ ≈ ζ2 ¼ 2 GeV [120–122]; and the
scale relevant to the E615 data is ζ5 ¼ 5.2 GeV [9,13].
We therefore employ the effective charge in Eq. (23) to
integrate the one-loop DGLAP equations, therewith evolv-
ing qπðx; ζH ¼ mαÞ to obtain results for qπðx; ζ2Þ and
qπðx; ζ5Þ. This procedure ensures that saturation of the
effective charge is expressed, e.g., αPIðζHÞ=ð2πÞ ¼ 0.20,
½αPIðζHÞ=ð2πÞ�2 ¼ 0.04, stabilizing our evolved results on
ζ > ζH. Notably, given that ζH ¼ mα is fixed by our
analysis, all results are predictions. We checked that with
fixed ζH, varying mα → ð1� 0.1Þmα does not measurably
affect the evolved distributions. We therefore report results
with mα fixed and an uncertainty determined by vary-
ing ζH → ð1� 0.1ÞζH.

A. ζH → ζ2
Our prediction for qπðx; ζ2Þ is depicted in Fig. 6. The

solid curve and surrounding bands are described by the
following function, a generalization of Eq. (32):

qπðxÞ ¼ nqπxαð1 − xÞβ
× ½1þ ρxα=4ð1 − xÞβ=4 þ γxα=2ð1 − xÞβ=2�; ð34Þ

where nqπ ensures Eq. (9) and the powers and coefficients
are listed in Table II. Evidently, the large-x exponent is

βðζ2Þ ¼ 2.38ð9Þ: ð35Þ

FIG. 5. Solid (black) curve: pion valence-quark distribution
function at the hadronic scale, ζH , Eq. (32). Dashed (blue) curve:
scale-free distribution, Eq. (33).

FIG. 6. Pion valence-quark momentum distribution function,
xpπðx; ζÞ, p ¼ q, evolved ζH → ζ2 ¼ 2 GeV—solid (blue) curve
embedded in shaded band; and long-dashed (black) curve—ζ2
result from Ref. [12]. Equations (39), (40): gluon momentum
distribution in pion, xgπðx; ζ2Þ—dashed (green) curve within
shaded band; and sea-quark momentum distribution,
xSπðx; ζ2Þ—dot-dashed (red) curve within shaded band. In all
cases, the shaded band indicates the effect of ζH → ζHð1� 0.1Þ.
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Here it is also worth listing an array of associated,
calculated low-order moments in comparison with those
obtained in the more recent lQCD simulations:

ζ2 hxiπu hx2iπu hx3iπu
Ref: ½34� 0.24ð2Þ 0.09ð3Þ 0.053ð15Þ
Ref: ½35� 0.27ð1Þ 0.13ð1Þ 0.074ð10Þ
Ref: ½36� 0.21ð1Þ 0.16ð3Þ
Ref: ½32� 0.254ð03Þ 0.094ð12Þ 0.057ð04Þ
Average 0.24ð2Þ 0.119ð18Þ 0.061ð06Þ
Herein 0.24ð2Þ 0.098ð10Þ 0.049ð07Þ

: ð36Þ

Both continuum and lQCD results agree on the light-front
momentum fraction carried by valence-quarks in the pion
at ζ ¼ ζ2:

h2xiπq ¼ 0.48ð3Þ; ð37Þ

i.e., roughly one-half. This is consistent with a recent
phenomenological analysis of data on π-nucleus Drell-
Yan and leading neutron electroproduction [122]: h2xiπq ¼
0.48ð1Þ at ζ ¼ 2.24 GeV.
As explained above, the pion is purely a bound-state of a

dressed-quark and dressed-antiquark at the hadronic scale,
ζH. Sea and glue distributions are zero at ζH. They are
generated by QCD evolution on ζ > ζH. Using LO
evolution with the coupling in Eq. (23) we obtain the
sea and glue distributions in Fig. 6, from which one
computes the following momentum fractions (ζ ¼ ζ2):

hxiπg ¼ 0.41ð2Þ; hxiπsea ¼ 0.11ð2Þ: ð38Þ

The ordering of these values agrees with that in [122], but
our gluon momentum-fraction is ∼20% larger and that of
the sea is commensurately smaller.
Our computed glue and sea momentum distributions are

fairly approximated using the following simple functional
form:

xpπðx; ζÞ ¼ Axαð1 − xÞβ; ð39Þ

with the coefficient and powers listed here (p ¼ g ¼ glue,
p ¼ S ¼ sea):

p A α β

ζ2 g 0.40 ∓ 0.03 −0.55 ∓ 0.03 3.47� 0.13

S 0.13 ∓ 0.01 −0.53 ∓ 0.05 4.51� 0.03

ζ5 g 0.34 ∓ 0.04 −0.62 ∓ 0.04 3.75� 0.12

S 0.12� 0.02 −0.61 ∓ 0.07 4.77� 0.03

:

ð40Þ

B. ζH → ζ5
Our predictions for the pion parton distributions at a

scale relevant to the E615 experiment, i.e., ζ5 ¼ 5.2 GeV
[9,13], are depicted in Fig. 7. The solid curve and
surrounding bands are described by the function in
Eq. (34) with the powers and coefficients listed in
Table II. Evidently, the large-x exponent is

βðζ5Þ ¼ 2.66ð12Þ: ð41Þ

Working with results obtained in an exploratory lQCD
calculation [31], one finds βlQCDðζ5Þ ¼ 2.45ð58Þ; and also
the following comparison between low-order moments:

ζ5 hxiπu hx2iπu hx3iπu
Ref: ½31� 0.17ð1Þ 0.060ð9Þ 0.028ð7Þ
Herein 0.21ð2Þ 0.076ð9Þ 0.036ð5Þ

: ð42Þ

The data in Fig. 7 is that reported in Ref. [9], rescaled
according to the analysis in Ref. [14]. Our prediction agrees
with the rescaled data. Importantly, no parameters were
varied in order to achieve this outcome.
As above, the predictions for the glue and sea distribu-

tions in Fig. 7 were obtained using LO evolution from
ζH ¼ mα → ζ5 with the coupling in Eq. (23); and from
these distributions one obtains the following momentum
fractions (ζ ¼ ζ5):

hxiπg ¼ 0.45ð1Þ; hxiπsea ¼ 0.14ð2Þ: ð43Þ

The glue and sea momentum distributions are fairly
described by the function in Eq. (39) evaluated using the
coefficient and powers in the lower rows of Eq. (40).4

Figure 7 also displays the lQCD result for the pion
valence-quark distribution function [31] evolved to the
E615 scale: dot-dot-dashed (grey) curve within bands. As
could be anticipated from the comparisons listed in

TABLE II. Coefficients and powers that reproduce the com-
puted pion valence-quark distribution functions, depicted in
Figs. 6, 7, when used in Eq. (34).

nqπ α β ρ γ

ζ2 9.83 −0.080 2.29 −1.27 0.511
8.31 −0.127 2.37 −1.19 0.469
7.01 −0.162 2.47 −1.12 0.453

ζ5 7.81 −0.153 2.54 −1.20 0.505
7.28 −0.169 2.66 −1.21 0.531
6.48 −0.188 2.78 −1.19 0.555

4Recall that in the neighborhood Λ2
QCD=ζ

2 ≃ 0, for any hadron
[123]: hxiq ¼ 0, hxig ¼ 4=7 ≈ 0.57, hxiS ¼ 3=7 ≈ 0.43.
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connection with Eq. (42), the pointwise form of the lQCD
prediction agrees with our result (within errors). This is
significant: two disparate treatments of the pion bound-
state problem have now arrived at the same prediction for
the pion’s valence-quark distribution function.

VI. SUMMARY AND PERSPECTIVE

Using a continuum approach to the two valence-body
bound-state problem in quantum field theory, we presented
a symmetry-preserving calculation of the pion’s valence-
quark distribution function, qπðx; ζHÞ, ζH is the hadronic
scale [Sec. III]; and thereby unified the result with kindred
predictions for the electromagnetic pion elastic and tran-
sition form factors [40–42,44–46] and numerous other
observables (e.g., Refs. [106,124]). Within this framework,
the pion is purely a bound-state of a dressed-quark and
dressed-antiquark at ζH; consequently,

qπðx; ζHÞ ¼ qπð1 − x; ζHÞ: ð44Þ

Capitalizing on this, we directly computed the first three
independent Mellin moments of qπðx; ζHÞ and therefrom
developed analytic approximations that delivered estimates
for the next three. Our prediction for qπðx; ζHÞ was
reconstructed from this information on the first six inde-
pendent moments and the algebraically computed x ≃ 0, 1
endpoint behavior [Sec. IV].
In continuum studies, the value of the hadronic scale, ζH,

has typically been a parameter; usually chosen to obtain
agreement with the value of some Mellin moments deter-
mined in phenomenological analyses of data [87]. That is
not the case herein. Instead, the value ζH ¼ mα, Eq. (23), is
determined at the outset by connecting the one-loop

running coupling with QCD’s process-independent effec-
tive charge [98,99].
Our result for qπðx; ζHÞ [Eq. (32)] exhibits the x ≃ 1

behavior predicted by the QCD parton model, Eq. (2).
Moreover, qπðx; ζHÞ is a broad function. As with meson
distribution amplitudes, this hardening is a consequence of
dynamical chiral symmetry breaking (DCSB), itself a
realization of the mechanism responsible for the emergence
of mass in the Standard Model.
With the hadronic scale fixed, we used the process-

independent effective charge to integrate the evolution
equations and obtain qπðx; ζ2 ¼ 2 GeVÞ and qπðx; ζ5 ¼
5.2 GeVÞ [Sec. V]; and, simultaneously, predictions for the
associated glue and sea quark distribution functions within
the pion. At ζ2, the scale typical of both lattice-QCD studies
and phenomenological analyses of data, we determined the
following momentum budget for the pion:

hxvalencei ¼ 0.48ð3Þ; ð45aÞ

hxgluei ¼ 0.41ð2Þ; ð45bÞ

hxseai ¼ 0.11ð2Þ; ð45cÞ

confirming the large gluon momentum-fraction found in
earlier continuum analyses [12,38]. Furthermore, our pre-
diction for qπðx; ζ5Þ [Fig. 7] agrees with πN Drell-Yan data
[9] rescaled as suggested by the complete next-to-leading-
order (NLO) reanalysis in Ref. [14].
Of particular importance is the agreement between our

parameter-free result for qπðx; ζ5Þ and that obtained in a
recent, exploratory lQCD calculation [31]. With this con-
fluence, two disparate treatments of the pion bound-state
problem have arrived at the same prediction for the pion’s
valence-quark distribution function. This should stimulate a
reconsideration of extant phenomenological analyses so that
the next attempts involve a complete NLO analysis of data,
including the threshold resummation effects which seem so
crucial to obtaining a sound extraction of qπðxÞ. The results
presented herein also support efforts to obtain new data on
pion distribution functions, such as those approved at the
Thomas Jefferson National Accelerator Facility [15–17] and
identified as high priority at other facilities [18–22].
Aworthwhile extension of the analysis described herein is

the calculation of analogous kaon distribution functions.
This will enable a sophisticated reevaluation of predictions
from an earlier algebraic analysis [38], which indicated
that thegluoncontent of thekaon is significantly smaller than
that of the pion and identified the origin of this effect to be
DCSBand its role in forming thealmost-masslesspion[119].
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