
 

sinð2ϕ−ϕSÞ azimuthal asymmetry in the pion induced Drell-Yan process
within TMD factorization

Hui Li,1 Xiaoyu Wang,2,* and Zhun Lu 1,†

1School of Physics, Southeast University, Nanjing 211189, China
2School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, Henan 450001, China

(Received 17 July 2019; accepted 18 February 2020; published 11 March 2020)

We investigate the single transverse-spin asymmetry with a sinð2ϕ − ϕSÞ modulation in the pion-
induced Drell-Yan process within the theoretical framework of the transverse momentum dependent
(TMD) factorization. The asymmetry is contributed by the convolution of the Boer-Mulders function and
the transversity. We adopt the model results for the distributions of the pion meson and the available
parametrization for the distributions of the proton to numerically estimate the sinð2ϕ − ϕSÞ asymmetry in
π−p Drell-Yan at the kinematics of COMPASS at CERN. To implement the TMD evolution formalism of
the distribution functions, we apply two different parametrizations on the nonperturbative Sudakov form
factors associated with the distribution functions of the proton and the pion. It is found that our prediction
on the single transverse-spin dependent asymmetry sinð2ϕ − ϕSÞ as functions of xp, xπ , xF and q⊥ is
qualitatively consistent with the recent COMPASS measurement in both sign and magnitude.
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I. INTRODUCTION

The Boer-Mulders function, denoted by h⊥1 , is one of the
eight transverse momentum dependent (TMD) parton
distribution functions (PDFs) describing the partonic struc-
ture of hadrons at leading-twist level. It represents the
transversely polarization asymmetry of quarks inside an
unpolarized hadron [1,2] arising from the correlation
between the quark spin and the quark transverse momen-
tum, thereby it manifests the novel structure of hadrons.
However, the very existence of the Boer-Mulders function
was not so obvious. Similar to its chiral-even partner–the
Sivers function f⊥1T [3], the Boer-Mulder function was
initially thought to vanish under the constraint of (naive)
time reversal invariance of QCD [4]. The situation was
changed after explicit model calculations [5–7] incorpo-
rating gluon exchange between the struck quark and the
spectator show that, the T-odd distributions can actually
survive. The crucial ingredient in the argument is the
Wilson lines (or the gauge links) appearing in the full
gange-invariant definition of TMD distributions [8,9].
The presence of the Wilson lines also indicates that the
T-odd distributions, such as the Sivers function and the

Boer-Mulders function, are process dependent. That is,
they change sign [6–8] between the semi-inclusive deeply
inelastic scattering (SIDIS) and Drell-Yan process, a vital
prediction which needs verification by future experimental
measurement. In the last decades, the Boer-Mulders func-
tion of the proton as well as that of the pion has been
studied intensively by models and phenomenological
analysis [7,10–30].
As the Boer-Mulders function is a chiral-odd distribution

function, it has to couple with another chirlal-odd distri-
bution/fragmentation function to survive in a high energy
scattering process. A promising process for accessing the
Boer-Mulders function is the unpolarized Drell-Yan proc-
ess, which displays an azimuthal dependence of the final-
state dilepton with a cos 2ϕ modulation. As proposed by
Boer [2], the coupling of two Boer-Mulder functions from
each incident hadrons can generate such asymmetry.
However, recent studies based on higher order perturbative
QCD [31–33] show that gluon radiation in hard scattering
can also give rise to the cos 2ϕ asymmetry substantially,
making the extraction of the Boer-Mulders function rather
difficult. In the unpolarized SIDIS process, the combination
of the Boer-Mulders function and the Collins fragmentation
function H⊥

1 can lead to a similar cos 2ϕh azimuthal
asymmetry of the final state spin-0 hadron. But this
asymmetry is contaminated by the so-call Cahn effect
[34–36], which is a higher-twist kinematical effect due to
the transverse motion of the unpolarized quarks. A cleaner
process for accessing the Boer-Mulders function is the
single transversely polarized Drell-Yan process. In this
process, the convolution of the Boer-Mulders function and
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the transversity distribution h1 can give rise to a
sinð2ϕ − ϕSÞ asymmetry [2,37] with ϕS the azimuthal
angle of target transverse spin. This makes the transversity
function an ideal probe in analyzing the information of the
Boer-Mulders function from single transversely polarized
Drell-Yan process because of less contribution from
the background. Recently, the first measurement on the
sinð2ϕ − ϕSÞ asymmetry has been performed by the
COMPASS [38], which adopted a pion beam to collide
on the transversely polarized nucleon target. Although no
clear tendency is observed on the sinð2ϕ − ϕSÞ asymmetry
due to relatively large statistical uncertainties, it indeed
indicates negative sign and substantial size.
In this work, we will estimate the sinð2ϕ − ϕSÞ asym-

metry of the pion-nucleon Drell-Yan process by consider-
ing the convolution h⊥1 ⊗ h1. The main purpose is to
investigate the feasibility of accessing the Boer-Mulders
function from single polarized Drell-Yan process. The
theoretical tool we adopt in this study is the TMD
factorization [39–42] which is applicable in the region
the transverse momentum of the dilepton q⊥ is much
smaller than the hard scale Q. The TMD factorization has
been widely applied to various high energy processes,
such as the SIDIS [39,41,43–48], eþe− annihilation
[41,47,49,50], Drell-Yan [37,41,48] and W/Z production
in hadron collision [32,40,41,48]. The TMD factorization
can be also extended to the moderate q⊥ region where an
equivalence [51,52] between the TMD factorization and the
twist-3 collinear factorization is found. From the perspec-
tive of TMD factorization, the physical observables in the
region q⊥ ≪ Q can be expressed as the convolution of the
factors related to hard scattering and the well-defined TMD
distributions or fragmentation functions (collectively called
as TMDs). One of the main features of the TMD formalism
is that it provides a systematic approach to deal with the
evolution of TMDs. In this formalism, the energy evolution
(or the scale dependence) of TMDs are governed by the so-
called Collins-Soper equation [39–41,53]. The solution
of the evolution equation shows the changes of TMDs
from a initial scale to another scale may be determined by
an exponential form of the Sudakov-like form factor
[40,41,44,54], which can be separated to the perturbative
part and nonperturbative part. The former one is perturba-
tively calculable, while the latter one is usually obtained
by phenomenological extraction from experimental data.
In this paper, we will consider the evolution of both the
pion Boer-Mulders function and the proton transversity to
estimate the sinð2ϕ − ϕSÞ asymmetry at the kinematics of
COMPASS and compare the results with recent COMPASS
measurement.
The rest of the paper is organized as follows. In Sec. II, we

provide a detailed review on the TMD evolution formalism
for the unpolarized and polarized TMDs involved in the
calculation. Particularly, we will present our choice on
the nonperturbative Sudakov form factors associated with

the TMDs. In Sec. III, we derive the theoretical expression of
the sinð2ϕ − ϕSÞ asymmetry in the pion-nucleon Drell-Yan
process within the framework of TMD factorization. In
Sec. IV, we estimate the asymmetry at the COMPASS
kinematics using the available model results of the pion
Boer-Mulders function and a parametrization for proton
transversity as inputs. We consider different choices of the
parametrizations on the nonperturbative part of the TMD
evolution as well as different model results of the pion
distributions in the calculation. The dependence of results on
these different choices is also discussed. We summarize the
paper in Sec. V.

II. THE TMD EVOLUTION OF
DISTRIBUTION FUNCTIONS

In this section, we review the evolution formalism of the
unpolarized distribution function f1, the Boer-Mulders
function h⊥1 of the pion as well as the transversity function
h1 of the proton, within the TMD factorization.
TMD evolution is usually performed in the coordinate

b⊥-space, where b⊥ is conjugated to k⊥ in the transverse
momentum space via Fourier transformation [40,41]. One
of the main advantages of b⊥-space is that the cross section
can be expressed as the product of two b⊥-dependent
functions instead of the complicate convolution of func-
tions in k⊥-space. In the TMD factorization based on
different schemes (such as the CS-81 [39], JMY [42,43],
and Collins-11 schemes [41]), the TMD distribution
functions F̃ðx; b; μ; ζFÞ in b⊥ space depend on two energy
scales. One is the renormalization scale μwhich is related to
the corresponding collinear PDFs, the other is the energy
scale ζF used as a cutoff to regularize the light-cone
singularity in the operator definition of the TMD distribu-
tions. The two energy-dependences are encoded in different
evolution equations. For the ζF dependence of the TMD
distributions, it is determined by the Collins-Soper (CS)
equation [39] (b ¼ jb⊥j):

∂ ln F̃ðx; b; μ; ζFÞ
∂ ffiffiffiffiffi

ζF
p ¼ K̃ðb; μÞ; ð1Þ

while the μ dependence is derived from the renormalization
group equation as

dK̃
d ln μ

¼ −γKðαsðμÞÞ; ð2Þ

d ln F̃ðx; b; μ; ζFÞ
d ln μ

¼ γF

�
αsðμÞ;

ζ2F
μ2

�
; ð3Þ

with K̃ the CS evolution kernel, and γK and γF the
anomalous dimensions. Solving those equations, one can
obtain the general solution for the energy dependence
of F̃:
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F̃ðx; b;QÞ ¼ F × e−SðQ;bÞ × F̃ðx; b; μiÞ; ð4Þ

where F is the factor related to the hard scattering,
SðQ; bÞ is the Sudakov form factor. Hereafter, we will
set μ ¼ ffiffiffiffiffi

ζF
p ¼ Q, and express F̃ðx; b; μ ¼ Q; ζF ¼ Q2Þ as

F̃ðx; b;QÞ for simplicity. Equation (4) demonstrates that
the distribution F̃ at an arbitrary scale Q can be determined
by the same distribution at an initial scale μi through the
evolution encoded by the exponential form expð−SðQ; bÞÞ.
Although Eq. (4) provides the general structure for the

evolution of TMD distributions in b space, it is only
possible to calculate the b dependence of F perturbatively
in the small b region. In the large b region, the
b-dependence of F turns to be nonperturbative. A con-
venient way to take into account the evolution behavior of
F̃ðx; b;QÞ in the large b region is to include a non-
perturbative Sudakov-like form factor SNP. The latter one
is usually given in a parameterized form, which can be
obtained by fitting the experimental data. To allow a
smooth transition of b from perturbative region to non-
perturbative region as well as to avoid the hitting on the
Landau pole, one can set a parameter bmax to be the
boundary between the two different regions. The typical
value of bmax is chosen around 1 GeV−1 to guarantee that
b� is always in the perturbative region. A b-dependent
function b�ðbÞ may be also introduced to have the property
b� ≈ b at small b value and b� ≈ bmax at large b value.
There are several different choices on the form of b�ðbÞ
in literature [40,48,55], one of them has the following
form [40,47]

b� ¼ b=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2=b2max

q
; bmax < 1=ΛQCD ð5Þ

Combining the perturbative part and the nonperturbative
part, one can get the complete result for the Sudakov form
factor appearing in Eq. (4):

SðQ; bÞ ¼ SPðQ; bÞ þ SNPðQ; bÞ ð6Þ

with the boundary of the two parts set by the bmax. The
perturbative part SPðQ; bÞ has been studied [46,56–59] in
detail and has the following form:

SPðQ; bÞ ¼
Z

Q2

μ2b

dμ̄2

μ̄2

�
Aðαsðμ̄ÞÞ ln

Q2

μ̄2
þ Bðαsðμ̄ÞÞ

�
; ð7Þ

which is the same for different kinds of distribution
functions, namely, SP is spin-independent. In addition,
the coefficients A and B in Eq. (7) can be expanded as the
series of αs=π:

A ¼
X∞
n¼1

AðnÞ
�
αs
π

�
n
; ð8Þ

B ¼
X∞
n¼1

BðnÞ
�
αs
π

�
n
: ð9Þ

In this work, we will take AðnÞ up to Að2Þ and BðnÞ up to
Bð1Þ in the accuracy of next-to-leading-logarithmic (NLL)
order [40,44,46,57,60,61]:

Að1Þ ¼ CF; ð10Þ

Að2Þ ¼ CF

2

�
CA

�
67

18
−
π2

6

�
−
10

9
TRnf

�
; ð11Þ

Bð1Þ ¼ −
3

2
CF: ð12Þ

A general form of the nonperturbative part of the
Sudakov form factor SNPðQ; bÞ was suggested in Ref. [40]:

SNPðQ; bÞ ¼ g2ðbÞ lnQ=Q0 þ g1ðbÞ: ð13Þ

Here, giðbÞ are the functions of the impact parameter b.
Particularly, g2ðbÞ contains the information on the large b
behavior of the evolution kernel K̃, while g1ðbÞ contains
information about the intrinsic nonperturbative transverse
motion of bound partons, i.e., it depends on the type of the
hadron and quark flavor. It might also depend on the
momentum fraction of the partons x [62]. It is also worth
pointing out that g2ðbÞ is universal for different types of
TMDs and does not depend on the particular process,
which is one of the important predictions of QCD factori-
zation theorems involving TMDs [41,44,47,56].
For SNP associated with the pp collision, a parametriza-

tion that can describe the SIDIS and Drell-Yan data with Q
values ranging from a few to ten GeV has been proposed in
Ref. [62] as

SNP ¼ g1b2 þ g2 ln
b
b�

ln
Q
Q0

þ g3b2ððx0=x1Þλ þ ðx0=x2ÞλÞ:

ð14Þ

The form is different from the traditional parametrization
[60,63,64] in which g2ðbÞ is parametrized as g2ðbÞ ¼
g2b2=2. The parameters gi are fitted from the nucleon-
nucleon Drell-Yan process data [65–71] at the initial scale
of Q2

0 ¼ 2.4 GeV2 yielding g1 ¼ 0.212, g2 ¼ 0.84, g3 ¼ 0

with uncertainty g1¼0.212þ0.006
−0.007 ; g2¼0.84þ0.040

−0.035. Since
the nonperturbative form factor SNP for quarks from one
proton and antiquarks from another proton satisfies [72]

SqNPðQ; bÞ þ Sq̄NPðQ; bÞ ¼ SNPðQ; bÞ; ð15Þ

SNP associated with a single TMD distribution function can
be expressed as (SIYY parametrization)
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S
f1;q=p
NP ðQ; bÞ ¼ g1

2
b2 þ g2

2
ln

b
b�

ln
Q
Q0

: ð16Þ

In our calculation of the pion-proton Drell-Yan process, we
will adopt the above form factor for the unpolarized TMD
distributions of the proton.
For the nonperturbative Sudakov form factors of the

pion distribution function, we adopt the parametrization
proposed in Ref. [73]

S
f1;q=π
NP ¼ gπ1b

2 þ gπ2 ln
b
b�

ln
Q
Q0

; ð17Þ

which has the same form as that for the proton (in the case
g3 ¼ 0). After fitting to the π−N Drell-Yan data [74], the
values of the parameters gπ1 and g

π
2 are obtained at the initial

energy scale Q2
0¼2.4GeV2 as gπ1 ¼ 0.082 and gπ2 ¼ 0.394

with uncertainty gπ1 ¼ 0.082� 0.022, gπ2 ¼ 0.394� 0.103.
In the fit we also chose bmax ¼ 1.5 GeV−1, in consistence

with the choice in Ref. [62]. We note that a form of S
f1;q=π
NP

motivated by the Nambu-Jona-Lasinio model was given
in Ref. [75].
Besides the Sudakov form factor in Eq. (4), another

important element in Eq. (4) is the TMD distribution
function at a fixed scale F̃ðx; b; μÞ. In the small b region
1=Q ≪ b ≪ 1=Λ, the TMD distributions at a fixed scale μ
can be expressed as the convolution of the perturbatively
calculable hard coefficients C and the corresponding
collinear counterparts, which could be the collinear
PDFs or the multiparton correlation functions [39,76]

F̃q=Hðx; b; μÞ ¼
X
i

Cq←i ⊗ Fi=Hðx; μÞ: ð18Þ

The convolution ⊗ regarding the momentum fraction of x
is given by

Cq←i⊗Fi=Hðx;μÞ≡
Z

1

x

dξ
ξ
Cq←iðx=ξ;b;μÞFi=Hðξ;μÞ; ð19Þ

and Fi=Hðξ; μÞ is the corresponding collinear counterpart of
the TMD distribution of flavor i in hadron H at the energy
scale μ, which could be a dynamic scale related to b� by
μb ¼ c0=b�, with c0 ¼ 2e−γE and the Euler constant γE ≈
0.577 [39].

P
i is the sum of both quark and antiquark

flavors.
It is straightforward to rewrite the scale-dependent TMD

distribution function F̃ of the proton and the pion in b space

F̃q=Hðx; b;QÞ ¼ e−
1
2
SPðQ;b�Þ−S

Fq=H
NP ðQ;bÞF ðαsðQÞÞ

×
X
i

CF
q←i ⊗ Fi=Hðx; μbÞ; ð20Þ

The factor of 1
2
in front of SP comes from the fact that SP of

quarks and antiquarks satisfies the relation [72]

SqPðQ; b�Þ ¼ Sq̄PðQ; b�Þ ¼ SPðQ; b�Þ=2: ð21Þ

The hard coefficients CF
q←i and F for f1 and h1 have

been calculated up to next-to-leading order (NLO), while
those for the Boer-Mulders function still remain in the
leading order (LO). For consistency, in this work we will
adopt the LO results of the C coefficients for f1, h⊥1 and h1.
That is, we take F ¼ 1 and CF

q←i ¼ δqiδð1 − xÞ for F ¼
f1; h1 and h⊥1 . We also note that a calculation in Ref. [47]
shows that the NLO C-coefficient for h1 vanishes.
With all the ingredients above, we can obtain the

unpolarized distribution function of the proton and pion
in b space as

f̃1;q=pðx; b;QÞ ¼ e−
1
2
SPðQ;b�Þ−S

f1;q=p
NP ðQ;bÞf1;q=pðx; μbÞ;

f̃1;q=πðx; b;QÞ ¼ e−
1
2
SPðQ;b�Þ−S

f1;q=π
NP ðQ;bÞf1;q=πðx; μbÞ: ð22Þ

The distribution function in the transverse momentum
space can be obtained by performing the Fourier trans-
formation on the f̃1;q=Hðx; b;QÞ

f1;q=pðx; k⊥;QÞ ¼
Z

∞

0

dbb
2π

J0ðk⊥bÞe−1
2
SPðQ;b�Þ−S

f1;q=p
NP ðQ;bÞ

× f1;q=pðx; μbÞ; ð23Þ

f1;q=πðx; k⊥;QÞ ¼
Z

∞

0

dbb
2π

J0ðk⊥bÞe−1
2
SPðQ;b�Þ−S

f1;q=π
NP ðQ;bÞ

× f1;q=πðx; μbÞ; ð24Þ

where J0 is the Bessel function of the first kind, and
k⊥ ¼ jk⊥j.
Similar to the unpolarized distribution function, the

transversity distribution of the proton in b-space and k⊥
space can be obtained as [47]

h̃1;q=pðx; b;QÞ ¼ e−
1
2
SPðQ;b�Þ−S

f1;q=p
NP ðQ;bÞh1;q=pðx; μbÞ; ð25Þ

h1;q=pðx; k⊥;QÞ ¼
Z

∞

0

dbb
2π

J0ðk⊥bÞe−1
2
SPðQ;b�Þ−S

f1;q=p
NP ðQ;bÞ

× h1;q=pðx; μbÞ; ð26Þ

where the factors and coefficients related to the hard
scattering are adopted at LO and the corresponding
collinear distribution is the integrated transversity h1ðxÞ.
The nonperturbative Sudakov form factor associated with
the proton transversity distribution is also assumed to be the
same as that for unpolarized distribution function [47].
According to Eq. (18), in the small b region, we can also

express the Boer-Mulders function of the pion beam at a
fixed energy scale μ in terms of the perturbatively calcu-
lable coefficients and the corresponding collinear correla-
tion function
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h̃α⊥1;q=πðx; b; μÞ ¼
�
−ibα⊥
2

�
TðσÞ
q=π;Fðx; x; μÞ; ð27Þ

where the hard coefficients are calculated up to LO, and the
Boer-Mulders function in the b-space is defined as

h̃⊥αðDYÞ
1;q=π ðx; b; μÞ ¼

Z
d2k⊥e−ik⊥·b⊥

kα⊥
Mπ

h⊥ðDYÞ
1;q=π ðx; k2⊥; μÞ:

ð28Þ

The collinear function TðσÞ
q=π;Fðx; x; μÞ is the chiral-odd

twist-3 quark-gluon-quark correlation function, which is
related to the first transverse moment of the Boer-Mulders

function h⊥ð1Þ
1;q=π by

TðσÞ
q=π;Fðx; x; μÞ ¼

Z
d2k⊥

k2⊥
Mπ

h⊥1;q=πðx; k2⊥; μÞ ¼ 2Mπh
⊥ð1Þ
1;q=π:

ð29Þ
As for the nonperturbative part of the Sudakov

form factor associated with the Boer-Mulders function,
the information still remains unknown. In a practical
calculation, we assume that it is the same as S

f1;q=π
NP , i.e.,

S
h⊥
1;q=π

NP ¼ S
f1;q=π
NP . Therefore, we can obtain the Boer-Mulders

function of the pion in b-space as

h̃α⊥1;q=πðx; b;QÞ

¼
�
−ibα⊥
2

�
e−

1
2
SPðQ;b�Þ−S

f1;q=π
NP ðQ;bÞTðσÞ

q=π;Fðx; x; μbÞ: ð30Þ

After performing the Fourier transformation back to the
transverse momentum space, one can get the Boer-Mulders
function as

k⊥
Mπ

h⊥1;q=πðx;k⊥;QÞ

¼
Z

∞

0

db
�
b2

2π

�
J1ðk⊥bÞe−1

2
SPðQ;b�Þ−S

f1;q=π
NP ðQ;bÞh⊥ð1Þ

1;q=πðx;μbÞ:

ð31Þ
We note that, besides the traditional parametrization

[60,63,64] and the SIYY parametrization, Some alternative
forms have been also proposed [48,77,78] recently.
Particularly, in Ref. [48], a new evolution formalism for
the TMDs was suggested (Bacchetta-Delcarro-Pisano-
Radici-Signori (BDPRS) parametrization):

f̃a1ðx;b2;Q2Þ
¼ fa1ðx;μ2bÞe−SPðμ

2
b;Q

2ÞegKðbÞ lnðQ2=Q2
0
Þf̃a1NPðx;b2Þ; ð32Þ

where gK ¼ −g2b2=2, following the choice in

Refs. [60,63,64], and f̃1NPðx; b2Þ is the intrinsic

nonperturbative part of the TMDs, which is para-
metrized as

f̃1NPðx; b2Þ ¼
1

2π
e−g1

b2
4

�
1 −

λg21
1þ λg1

b2

4

�
; ð33Þ

with

g1ðxÞ ¼ N1

ð1 − xÞαxσ
ð1 − x̂Þαx̂σ ; ð34Þ

where α, σ, and N1 ≡ g1ðx̂Þ with x̂ ¼ 0.1, are free param-
eters fitted to the available data from SIDIS, Drell-Yan, and
Z boson production processes yielding λ ¼ 0.86 GeV−2;
α ¼ 2.95; σ ¼ 0.17; N1 ¼ 0.28 GeV2.
Furthermore, in Ref. [48], a b� prescription different

from Eq. (5) was used:

b� ¼ bmax

�
1 − e−b

4=bmax
4

1 − e−b
4=bmin

4

�
1=4

; ð35Þ

where bmax is again the boundary of the nonperturbative
and perturbative b-space region with fixed value of
bmax ¼ 2e−γE GeV−1 ≈ 1.123 GeV−1. Besides, the authors
in Ref. [48] also chose to saturate b� at the minimum value
bmin ∝ 2e−γE=Q. In this work we will also use the BDPRS
evolution formalism to calculate the sinð2ϕ − ϕSÞ asym-
metry for comparison.

III. FORMALISM OF THE sinð2ϕ−ϕSÞ
ASYMMETRY IN DRELL-YAN PROCESS

In this section, we present the formalism of the
sinð2ϕ − ϕSÞ asymmetry in Drell-Yan process within
TMD factorization following the procedure in Ref. [41].
We take into account the TMD evolution effects to obtain
the theoretical expression of the sinð2ϕ − ϕSÞ asymmetry,
which arises from the convolution of the Boer-Mulders
function of the pion beam and the transversity distribution
function of the proton target at leading twist.
The process we study is the pion-induced Drell-Yan

process

π−ðPπÞ þ p↑ðPpÞ → γ�ðqÞ þ X

→ lþðlÞ þ l−ðl0Þ þ X; ð36Þ

where Pπ , Pp, and q stand for the four-momenta of the
incoming π− meson, the proton target and the virtual
photon, respectively, Q2 ¼ q2 is the invariant mass square
of the lepton pair, and ↑ denotes the transverse polarization
of the target. We adopt the following kinematical variables
to express the experimental observables
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s ¼ ðPπ þ PpÞ2; xπ ¼
Q2

2Pπ · q
; xp ¼ Q2

2Pp · q
;

xF ¼ 2qL=s ¼ xπ − xp; τ ¼ Q2=s ¼ xπxp;

y ¼ 1

2
ln
qþ

q−
¼ 1

2
ln
xπ
xp

; ð37Þ

where s is the total center-of-mass (c.m.) energy squared;
xπ and xp are the Bjorken variables of the pion and proton,
respectively; qL is the longitudinal momentum of the
virtual photon in the c.m. frame of the incident hadrons;
xF is the Feynman x variable; and y is the rapidity of the
lepton pair. Thus, xπ and xp can be expressed as functions
of xF, τ and of y, τ

xπ=p ¼ �xF þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2F þ 4τ

p
2

; xπ=p ¼ ffiffiffi
τ

p
e�y: ð38Þ

In leading twist, the differential cross section in πpDrell-
Yan for a transversely polarized target has the following
general form [79]

dσ
d4qdΩ

¼ α2em
Fq2

σ̂Ufð1þD½sin2θ�A
cos 2ϕ
U cos 2ϕÞ

þ jST j½AsinϕS
T sinϕS

þD½sin2θ�ðAsinð2ϕþϕSÞ
T sinð2ϕþ ϕSÞ

þ Asinð2ϕ−ϕSÞ
T sinð2ϕ − ϕSÞÞ�g: ð39Þ

Here, ϕS represents the azimuthal angle of the target
polarization vector ST in the target rest frame, ϕ and θ
denote the azimuthal and polar angles of the lepton momen-
tum in the Collins-Soper frame, σ̂U ¼ F1

Uð1þ cos2 θÞ, with
F1
U the unpolarized structure function. The symbol D½fðθÞ�

denotes the depolarization factor that depends on θ only, and
at LO it is simplified to sin2 θ=ð1þ cos2 θÞ. Furthermore,

Af½ϕ;ϕS�
P denotes the azimuthal asymmetry with a modulation

off½ϕ;ϕS�, whereP ¼ U orT denotes the polarization of the
target proton (U for unpolarized, T for transversely polar-

ized). The asymmetry Af½ϕ;ϕS�
P can be written as the ratio

between the corresponding structure functionFf½ϕ;ϕS�
P and the

unpolarized structure function. In this work, we focus on the
sinð2ϕ − ϕSÞ asymmetry:

Asinð2ϕ−ϕSÞ
T ðx1; x2; QÞ ¼ Fsinð2ϕ−ϕSÞ

T ðx1; x2; QÞ
F1
Uðx1; x2; QÞ : ð40Þ

The denominator can be expressed as the convolution of the
unpolarized distribution functions from each hadron

F1
U ¼ C½f1;q=πf1;q̄=p�; ð41Þ

while the numerator (h ¼ q̂≡ q⊥=jq⊥j) [2,37]

Fsinð2ϕ−ϕSÞ
T ¼ −C

�
h · ka⊥
Mπ

h⊥1;q=πh1;q̄=p
�

ð42Þ

is the convolution of the pion Boer-Mulders distribution and
the proton transversity distribution. The convolution of
TMDs in the transverse momentum space is defined through
the following notation

C½ωðka⊥;kb⊥Þf1f̄2�

¼ 1

Nc

X
q

e2q

Z
d2ka⊥d2kb⊥δ2ðka⊥þkb⊥−q⊥Þωðka⊥;kb⊥Þ

× ½fq1ðxa;k2a⊥Þfq̄2ðxb;k2b⊥Þþfq̄1ðxa;k2a⊥Þfq2ðxb;k2b⊥Þ�;
ð43Þ

with Nc ¼ 3 being the number of colors, q⊥; ka⊥, and kb⊥
denoting the transverse momenta of the lepton pair, quark
and antiquark in the initial hadrons. Finally,ωðka⊥; kb⊥Þ is an
arbitrary function of ka⊥ and kb⊥.
In general, it is more convenient to study the structure

function first in the b-space, in which the convolution of the
TMD distributions can be resolved to the product of b-
dependent TMDs. Then, the physical observables can be
obtained through a Fourier transformation from the b-space
to the k⊥-space.
Using the property of the followingFourier transformation

δ2ðka⊥ þ kb⊥ − q⊥Þ ¼
1

ð2πÞ2
Z

d2b⊥e−ib⊥·ðka⊥þkb⊥−q⊥Þ;

ð44Þ

One can obtain the spin-dependent structure function

Fsinð2ϕ−ϕSÞ
T as

Fsinð2ϕ−ϕSÞ
T ¼ −

1

Nc

X
q

e2q

Z
d2ka⊥d2kb⊥

Z
d2b⊥
ð2πÞ2 e

−ib⊥·ðka⊥þkb⊥−q⊥Þ h · ka⊥
Mπ

h⊥1;q=πðxπ; k2a⊥Þh1;q̄=pðxp; k2b⊥Þ þ ðq ↔ q̄Þ

¼ −
1

Nc

X
q

e2q

Z
∞

0

db
4π

b2J1ðq⊥bÞh1;q=pðxp; μbÞTðσÞ
q̄=π;Fðxπ; xπ; μbÞe−ðS

f1;q=p
NP þS

f1;q=π
NP þSPÞ þ ðq ↔ q̄Þ; ð45Þ

where we have used Eqs. (26), (28), and (29). The unpolarized structure function can be expressed in a similar
way as
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F1
U ¼ 1

Nc

X
q

e2q

Z
d2ka⊥d2kb⊥

Z
d2b⊥
ð2πÞ2 e

−iðka⊥þkb⊥−q⊥Þ·b⊥f1;q=πðxπ; k2a⊥Þf1;q̄=pðxp; k2b⊥Þ

¼ 1

Nc

X
q

e2q

Z
∞

0

bdb
2π

J0ðq⊥bÞf1;q=πðxπ; μbÞf1;q̄=pðxp; μbÞe−ðS
f1;q=p
NP þS

f1;q=π
NP þSPÞ þ ðq ↔ q̄Þ; ð46Þ

where the expression of the unpolarized distribution func-
tion in Eq. (22) is included and the definition of the
unpolarized distribution function in b-space is

f̃1;q=HðxH; b; μÞ ¼
Z

d2k⊥e−ib⊥·k⊥f1;q=HðxH; k2⊥; μÞ: ð47Þ

IV. NUMERICAL CALCULATION

Using the framework set up above, in this section we
present the numerical calculation of the sinð2ϕ − ϕSÞ
azimuthal asymmetry in the pion-induced transversely
polarized Drell-Yan process. We estimate the asymmetry
at the kinematics of the COMPASS Drell-Yan program and
compare it with the recent experimental measurement [38].
To do this we need to know the corresponding distribution
functions of the pion meson, as well as those of the proton
target. For the former one, as there is no extraction on the
Boer-Mulders function of the pion meson, we apply two
different model calculations for h⊥1π. One is the result based
on the light-cone wave function of the pion meson from
Ref. [30] at the model scale μ20 ¼ 0.25 GeV2:

h⊥1;πðx;k2⊥Þ ¼
CFαs
16π3

mMπffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þk2⊥

p A2

k2⊥
exp

�
−

1

8β2
k2⊥þm2

xð1−xÞ
�

×

�
Γ
�
1

2
;

m2

8β2xð1−xÞ
�
−Γ

�
1

2
;

k2⊥þm2

8β2xð1−xÞ
��

;

ð48Þ

where the values of the parameters are [30,80],

β ¼ 0.41 GeV; mu ¼ md ¼ m ¼ 0.2 GeV;

A ¼ 31.303 GeV−1: ð49Þ

The corresponding collinear twist-3 distribution
Tσ
q;Fðx; x; μ0Þ at the model scale can be obtained by using

Eq. (29). The other is the result from the light-cone
constituent quark model in Ref. [28]. For consistency, in
each calculation of the asymmetry, we apply the unpolar-
ized distribution function of the pion meson f1πðxÞ from
the same model.
For the collinear distributions of the proton, we resort to

existing parametrizations, i.e., we adopt the NLO set of the
CT10 parametrization [81] (central PDF set) for the
unpolarized distribution function f1ðxÞ of the proton,

and we choose the transversity distribution extracted from
SIDIS data [47] via the TMD evolution formalism:

hq1ðx;Q0Þ ¼ Nh
qxaqð1 − xÞbq ðaq þ bqÞaqþbq

a
aq
q b

bq
q

×
1

2
ðfq1ðx;Q0Þ þ gq1ðx;Q0ÞÞ; ð50Þ

where gq1 is helicity distribution function [82].
We apply the QCDNUM package [83] to perform the

evolution of f1;q=π from the model scale μ0 to another
energy. As for the energy evolution of the twist-3 collinear

correlation function TðσÞ
q;F, the evolution effect has been

studied in Refs. [84–88]. For simplicity, we only consider
the homogenous terms in the evolution kernel

P
TðσÞ
q;F

qq ðxÞ ≈ ΔTPqqðxÞ − NCδð1 − xÞ; ð51Þ

ΔTPqqðxÞ ¼ CF

�
2z

ð1 − zÞþ
þ 3

2
δð1 − xÞ

�
; ð52Þ

with ΔTPqq being the evolution kernel for the transversity
distribution function h1ðxÞ. We customize the original code
of QCDNUM to include the approximate kernel in Eq. (51).
Similarly, we also include the kernel in Eq. (52) to solve the
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution equa-
tions for the transversity distribution function of proton.
The COMPASS Collaboration at CERN has reported the

first measurement of the transverse-spin-dependent azimu-
thal asymmetries in the Drell-Yan process [38] in which a
π− beam with Pπ ¼ 190 GeV collides on a polarized NH3

target [38,79] (which can serve as a transversely polarized
nucleon target). The covered kinematical ranges are as
follows

0.05<xN<0.4; 0.05<xπ<0.9; 4.3GeV<Q<8.5GeV;

s¼357GeV2; −0.3<xF<1: ð53Þ

In Fig. 1, we plot our numerical results of the
sinð2ϕ − ϕSÞ azimuthal asymmetry in the pion-induced
Drell-Yan process at the kinematics of COMPASS, based
on the TMD factorization formalism described in Eqs. (40),
(46), and (45). In this calculation we apply the SIYY
parametrization [Eqs. (16) and (17)] for the nonperturbative
Sudakov form factor and the pion Boer-Mulders function
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from Ref. [30]. And we use the b� prescription in Eq. (5).
The solid curves correspond to the results calculated from
the central values of the parameters, while the shaded area
shows the uncertainty band determined by the uncertainties
of the parameters, which include those for the transversity
[47] and the nonperturbative form factor. To make the TMD
factorization valid in the kinematic region q⊥ ≪ Q, the
integration over the transverse momentum q⊥ is performed
in the region of 0 < q⊥ < 2 GeV, which is the same as the
cut in Ref. [89]. The upper panels of Fig. 1 show the
asymmetries as functions of xN (left panel) and xπ (right
panel); and the lower panels depict the xF-dependent and
q⊥-dependent asymmetries, respectively. In the figure the
solid squares show the experimental data measured by
the COMPASS Collaboration [38], with the error bars
corresponding to the sum of the systematic error and the
statistical error.
As shown in Fig. 1, in all the cases the sinð2ϕ − ϕSÞ

azimuthal asymmetry in the π−p Drell-Yan from our
calculation is negative, in agreement with most of the data
from COMPASS. Our estimate also shows that the asym-
metry changes slightly with the change of xN , xπ, or xF, and
the magnitude of the xN-, xπ-, and xF-dependent asymme-
tries is around 0.05 to 0.10. For the q⊥ asymmetry, we find
that its magnitude is about 0.05 to 0.15 and moderately
increases with increasing q⊥ in the region q⊥ < 2 GeV.

To study the impact of different parametrizations of the
nonperturbative part on the asymmetry, we also use the
BDPRS evolution formalism [48] given in Eqs. (32) and
(33) to calculate the sinð2ϕ − ϕSÞ asymmetry as a com-
parison. In the calculation we still use the pion Boer-
Mulders function from Ref. [30] and the transversity
distribution from Ref. [47]. Furthermore, the b� prescrip-
tion in Eq. (35) is used in this calculation. The dashed lines
are the result from the central value of the parameters, the
bands correspond to the uncertainties from the uncertainties
of the parameters. The solid lines show the results in Fig. 1
(central results) for comparison. We find that, in the case of
q⊥-dependent asymmetry, the result from the BDPRS
parametrization is qualitatively different from the result
from the SIYY parametrization, particularly in the region
q⊥ ∈ ½1.5; 2� GeV; while for the xN-, xπ-, and xF-depen-
dent asymmetries the results from the two evolution
formalisms are consistent. We also study the impact of
different b� prescriptions [Eqs. (5) and (35)] on the
asymmetry and find that it only changes the q⊥ dependent
asymmetry slightly.
To study the effect of different pion distribution func-

tions on the numerical calculation of Asinð2ϕ−ϕSÞ
UT , we also

adopt the pion Boer-Mulders function and f1π obtained
from the light-front constituent quark model [28] to
perform the calculation. The corresponding numerical

FIG. 1. The sinð2ϕ − ϕSÞ azimuthal asymmetry in the π−N↑ Drell-Yan process calculated from the SIYY parametrization [Eqs. (16)
and (17)] on the nonperturbative form factor. The four panels plot the asymmetries as functions of xN (upper left), xπ (upper right), xF
(lower left) and q⊥ (lower right). The solid lines correspond to the results from the central values of the parameters, while the shaded area
show the uncertainty bands determined by the uncertainties of the parameters. The solid squares represent the COMPASS data for
comparison.
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FIG. 2. Similar to Fig. 1, but the asymmetry calculated from the BDPRS parametrization [Eqs. (33) and (34)] on the nonperturbative
form factor. The dashed lines plot the central results, while the solid lines are central results in Fig. 1 for comparison.

FIG. 3. Similar to Fig. 1, but the asymmetry calculation from the Boer-Mulders function of the pion in a light-cone constituent model
[28]. The dashed lines plot the central results, while the solid lines are central results in Fig. 1 for comparison.
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results from the SIYY parametrization and the BDPRS
parametrization for the TMD evolution are depicted by
the dashed lines in Figs. 3 and 4, respectively. The solid lines
correspond to the results in Fig. 1 (central results) for
comparison. The bands represent the uncertainty from the
parametrization of the transversity distribution of proton and
the nonperturbative form factors for the TMDs We find that
the sign of the asymmetries from the model results for pion
distributions in Ref. [28] are still negative, while their
magnitudes are generally smaller than those in Figs. 1 and 2.
As a conclusion, our numerical estimates show that the

Asinð2ϕ−ϕSÞ
UT is sizable at the kinematics of COMPASS and is

qualitatively consistent with the COMPASS measurement
after considered the uncertainties of the data. Furthermore,
we find that adopting different parametrizations—the SIYY
parametrization and the BDPRS parametrization—on the
nonperturbative part of the TMD evolution will cause
qualitatively different q⊥ shape of the asymmetry, while
the x-dependence and the xF-dependence of the asymme-
tries are almost unchanged. We also find that different
choice of the pion distributions will lead to different
asymmetry in size and shape. Our study demonstrates that,
with the current knowledge on the distributions of the
proton, it is promising to apply the evolution formalism of
TMD distributions to study the SSA contributed by the
chiral-odd distributions at the kinematics of COMPASS.
Our calculation also indicates that the proton transversity

distribution may be used as a probe to access the pion Boer-
Mulders function as well as the corresponding nonpertur-
bative Sudakov form factor in the context of the current
formalism on the transversely polarized π−p Drell-Yan
process.

V. CONCLUSION

In this work, we have applied the TMD factorization to
study the sinð2ϕ − ϕSÞ azimuthal asymmetry in the single
transversely polarized π−p Drell-Yan process that is
accessible at COMPASS. The asymmetry arises from the
coupling of the Boer-Mulders function of the pion beam
and the transversity distribution of the proton target. We
have taken into account the TMD evolution of the asym-
metry by including the Sudakov form factor for the TMD
distributions of the pion and proton, and we take into
account two different nonperturbative TMD evolution
formalism for comparison. The hard coefficients associated
with the corresponding collinear functions are kept in the
leading-order accuracy. For the transversity distribution of
the proton used in the study, we have employed a recent
parametrization for which the TMD evolution effect is
considered. For the distributions of the pion meson, we
have chosen two different model results. As the non-
perturbative Sudakov form factor associated with the pion
Boer-Mulders function is still unknown, we assume that it

FIG. 4. Similar to Fig. 1, but the asymmetry calculation from the BDPRS parametrization [Eqs. (33) and (34)] on the nonperturbative
form factor and the Boer-Mulders function of the pion in a light-cone constituent model [28]. The dashed lines plot the central results,
while the solid lines are central results in Fig. 1 for comparison.
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is the same as that of the unpolarized distribution function.
We then calculated the sinð2ϕ − ϕSÞ azimuthal asymmetry
in the π−p Drell-Yan process at the kinematics of
COMPASS. we find that the asymmetry is sensitive to
the choice of the pion distribution function, while different
choice of the TMD evolution formalism will only on the
nonperturbative TMD evolution only affect the shape of the
q⊥-dependent of the asymmetry. Our analysis demon-
strated that, within the framework of TMD evolution,
the sinð2ϕ − ϕSÞ asymmetry at COMPASS can be quali-
tatively described (sign and magnitude) by the current
analysis on the TMD distributions of the pion and the

proton. Furthermore, our study may provide a framework to
access the Boer-Mulders function of the pion and the
corresponding nonperturbative Sudakov form factor
through transversely polarized πp data.

ACKNOWLEDGMENTS

This work is partially supported by the NSFC
(China) Grants No. 11575043, 11847217, 11905187,
and 11120101004. X.W. is supported by the China
Postdoctoral Science Foundation under Grant
No. 2018M640680.

[1] D. Boer and P. J. Mulders, Phys. Rev. D 57, 5780 (1998).
[2] D. Boer, Phys. Rev. D 60, 014012 (1999).
[3] D.W. Sivers, Phys. Rev. D 41, 83 (1990).
[4] J. C. Collins, Nucl. Phys. B396, 161 (1993).
[5] S. J. Brodsky, D. S. Hwang, and I. Schmidt, Phys. Lett. B

530, 99 (2002).
[6] S. J. Brodsky, D. S. Hwang, and I. Schmidt, Nucl. Phys.

B642, 344 (2002).
[7] D. Boer, S. J. Brodsky, and D. S. Hwang, Phys. Rev. D 67,

054003 (2003).
[8] J. C. Collins, Phys. Lett. B 536, 43 (2002).
[9] X. d. Ji and F. Yuan, Phys. Lett. B 543, 66 (2002).

[10] L. P. Gamberg, G. R. Goldstein, and K. A. Oganessyan,
Phys. Rev. D 67, 071504 (2003); G. R. Goldstein and L.
Gamberg, arXiv:hep-ph/0209085.

[11] F. Yuan, Phys. Lett. B 575, 45 (2003).
[12] P. V. Pobylitsa, arXiv:hep-ph/0301236.
[13] A. Bacchetta, A. Schaefer, and J. J. Yang, Phys. Lett. B 578,

109 (2004).
[14] Z. Lu and B. Q. Ma, Nucl. Phys. A741, 200 (2004).
[15] Z. Lu, B. Q. Ma, and I. Schmidt, Phys. Lett. B 639, 494

(2006).
[16] L. P. Gamberg, G. R. Goldstein, and M. Schlegel, Phys. Rev.

D 77, 094016 (2008).
[17] M. Burkardt and B. Hannafious, Phys. Lett. B 658, 130

(2008).
[18] A. Bacchetta, F. Conti, and M. Radici, Phys. Rev. D 78,

074010 (2008).
[19] B. Zhang, Z. Lu, B. Q. Ma, and I. Schmidt, Phys. Rev. D 77,

054011 (2008).
[20] S. Meissner, A. Metz, M. Schlegel, and K. Goeke, J. High

Energy Phys. 08 (2008) 038.
[21] A. Courtoy, S. Scopetta, and V. Vento, Phys. Rev. D 80,

074032 (2009).
[22] L. Gamberg and M. Schlegel, Phys. Lett. B 685, 95 (2010).
[23] Z. Lu and I. Schmidt, Phys. Rev. D 81, 034023 (2010).
[24] V. Barone, S. Melis, and A. Prokudin, Phys. Rev. D 81,

114026 (2010).
[25] V. Barone, S. Melis, and A. Prokudin, Phys. Rev. D 82,

114025 (2010).
[26] B. Pasquini and F. Yuan, Phys. Rev. D 81, 114013 (2010).

[27] Z. Lu, B. Q. Ma, and J. Zhu, Phys. Rev. D 86, 094023
(2012).

[28] B. Pasquini and P. Schweitzer, Phys. Rev. D 90, 014050
(2014).

[29] Z. Lu, Front. Phys. Beijing 11, 111204 (2016).
[30] Z. Wang, X. Wang, and Z. Lu, Phys. Rev. D 95, 094004

(2017).
[31] J. C. Peng, W. C. Chang, R. E. McClellan, and O. Teryaev,

Phys. Lett. B 758, 384 (2016).
[32] M. Lambertsen and W. Vogelsang, Phys. Rev. D 93, 114013

(2016).
[33] W. C. Chang, R. E. McClellan, J. C. Peng, and O. Teryaev,

Phys. Rev. D 99, 014032 (2019).
[34] R. N. Cahn, Phys. Lett. B 78 (1978) 269; Phys. Rev. D 40

(1989) 3107.
[35] V. Barone, Z. Lu, and B. Q. Ma, Phys. Lett. B 632, 277

(2006).
[36] V. Barone, A. Prokudin, and B. Q. Ma, Phys. Rev. D 78,

045022 (2008).
[37] S. Arnold, A. Metz, and M. Schlegel, Phys. Rev. D 79,

034005 (2009).
[38] M. Aghasyan et al. (COMPASS Collaboration), Phys. Rev.

Lett. 119, 112002 (2017).
[39] J. C. Collins and D. E. Soper, Nucl. Phys. B193, 381 (1981);

Nucl. Phys.B213, 545(E) (1983).
[40] J. C. Collins, D. E. Soper, and G. F. Sterman, Nucl. Phys.

B250, 199 (1985).
[41] J. Collins, Foundations of Perturbative QCD (Cambridge

University Press, Cambridge, England, 2013).
[42] X. d. Ji, J. P. Ma, and F. Yuan, Phys. Lett. B 597, 299

(2004).
[43] X. D. Ji, J. P. Ma, and F. Yuan, Phys. Rev. D 71, 034005

(2005).
[44] S. M. Aybat and T. C. Rogers, Phys. Rev. D 83, 114042

(2011).
[45] J. C. Collins and T. C. Rogers, Phys. Rev. D 87, 034018

(2013).
[46] M. G. Echevarria, A. Idilbi, A. Schäfer, and I. Scimemi, Eur.

Phys. J. C 73, 2636 (2013).
[47] Z. B. Kang, A. Prokudin, P. Sun, and F. Yuan, Phys. Rev. D

93, 014009 (2016).

sinð2ϕ − ϕsÞ AZIMUTHAL ASYMMETRY IN THE … PHYS. REV. D 101, 054013 (2020)

054013-11

https://doi.org/10.1103/PhysRevD.57.5780
https://doi.org/10.1103/PhysRevD.60.014012
https://doi.org/10.1103/PhysRevD.41.83
https://doi.org/10.1016/0550-3213(93)90262-N
https://doi.org/10.1016/S0370-2693(02)01320-5
https://doi.org/10.1016/S0370-2693(02)01320-5
https://doi.org/10.1016/S0550-3213(02)00617-X
https://doi.org/10.1016/S0550-3213(02)00617-X
https://doi.org/10.1103/PhysRevD.67.054003
https://doi.org/10.1103/PhysRevD.67.054003
https://doi.org/10.1016/S0370-2693(02)01819-1
https://doi.org/10.1016/S0370-2693(02)02384-5
https://doi.org/10.1103/PhysRevD.67.071504
https://arXiv.org/abs/hep-ph/0209085
https://doi.org/10.1016/j.physletb.2003.09.052
https://arXiv.org/abs/hep-ph/0301236
https://doi.org/10.1016/j.physletb.2003.10.045
https://doi.org/10.1016/j.physletb.2003.10.045
https://doi.org/10.1016/j.nuclphysa.2004.06.006
https://doi.org/10.1016/j.physletb.2006.06.053
https://doi.org/10.1016/j.physletb.2006.06.053
https://doi.org/10.1103/PhysRevD.77.094016
https://doi.org/10.1103/PhysRevD.77.094016
https://doi.org/10.1016/j.physletb.2007.09.064
https://doi.org/10.1016/j.physletb.2007.09.064
https://doi.org/10.1103/PhysRevD.78.074010
https://doi.org/10.1103/PhysRevD.78.074010
https://doi.org/10.1103/PhysRevD.77.054011
https://doi.org/10.1103/PhysRevD.77.054011
https://doi.org/10.1088/1126-6708/2008/08/038
https://doi.org/10.1088/1126-6708/2008/08/038
https://doi.org/10.1103/PhysRevD.80.074032
https://doi.org/10.1103/PhysRevD.80.074032
https://doi.org/10.1016/j.physletb.2009.12.067
https://doi.org/10.1103/PhysRevD.81.034023
https://doi.org/10.1103/PhysRevD.81.114026
https://doi.org/10.1103/PhysRevD.81.114026
https://doi.org/10.1103/PhysRevD.82.114025
https://doi.org/10.1103/PhysRevD.82.114025
https://doi.org/10.1103/PhysRevD.81.114013
https://doi.org/10.1103/PhysRevD.86.094023
https://doi.org/10.1103/PhysRevD.86.094023
https://doi.org/10.1103/PhysRevD.90.014050
https://doi.org/10.1103/PhysRevD.90.014050
https://doi.org/10.1007/s11467-015-0525-6
https://doi.org/10.1103/PhysRevD.95.094004
https://doi.org/10.1103/PhysRevD.95.094004
https://doi.org/10.1016/j.physletb.2016.05.035
https://doi.org/10.1103/PhysRevD.93.114013
https://doi.org/10.1103/PhysRevD.93.114013
https://doi.org/10.1103/PhysRevD.99.014032
https://doi.org/10.1016/0370-2693(78)90020-5
https://doi.org/10.1103/PhysRevD.40.3107
https://doi.org/10.1103/PhysRevD.40.3107
https://doi.org/10.1016/j.physletb.2005.10.016
https://doi.org/10.1016/j.physletb.2005.10.016
https://doi.org/10.1103/PhysRevD.78.045022
https://doi.org/10.1103/PhysRevD.78.045022
https://doi.org/10.1103/PhysRevD.79.034005
https://doi.org/10.1103/PhysRevD.79.034005
https://doi.org/10.1103/PhysRevLett.119.112002
https://doi.org/10.1103/PhysRevLett.119.112002
https://doi.org/10.1016/0550-3213(81)90339-4
https://doi.org/10.1016/0550-3213(83)90235-3
https://doi.org/10.1016/0550-3213(85)90479-1
https://doi.org/10.1016/0550-3213(85)90479-1
https://doi.org/10.1016/j.physletb.2004.07.026
https://doi.org/10.1016/j.physletb.2004.07.026
https://doi.org/10.1103/PhysRevD.71.034005
https://doi.org/10.1103/PhysRevD.71.034005
https://doi.org/10.1103/PhysRevD.83.114042
https://doi.org/10.1103/PhysRevD.83.114042
https://doi.org/10.1103/PhysRevD.87.034018
https://doi.org/10.1103/PhysRevD.87.034018
https://doi.org/10.1140/epjc/s10052-013-2636-y
https://doi.org/10.1140/epjc/s10052-013-2636-y
https://doi.org/10.1103/PhysRevD.93.014009
https://doi.org/10.1103/PhysRevD.93.014009


[48] A. Bacchetta, F. Delcarro, C. Pisano, M. Radici, and A.
Signori, J. High Energy Phys. 06 (2017) 081.

[49] D. Pitonyak, M. Schlegel, and A. Metz, Phys. Rev. D 89,
054032 (2014).

[50] D. Boer, Nucl. Phys. B806, 23 (2009).
[51] X. Ji, J. W. Qiu, W. Vogelsang, and F. Yuan, Phys. Rev. Lett.

97, 082002 (2006).
[52] X. Ji, J. W. Qiu, W. Vogelsang, and F. Yuan, Phys. Rev. D

73, 094017 (2006).
[53] A. Idilbi, X. D. Ji, J. P. Ma, and F. Yuan, Phys. Rev. D 70,

074021 (2004).
[54] J. C. Collins and F. Hautmann, Phys. Lett. B 472, 129

(2000).
[55] J. Collins, L. Gamberg, A. Prokudin, T. C. Rogers, N. Sato,

and B. Wang, Phys. Rev. D 94, 034014 (2016).
[56] M. G. Echevarria, A. Idilbi, Z. B. Kang, and I. Vitev, Phys.

Rev. D 89, 074013 (2014).
[57] Z. B. Kang, B. W. Xiao, and F. Yuan, Phys. Rev. Lett. 107,

152002 (2011).
[58] S. M. Aybat, J. C. Collins, J. W. Qiu, and T. C. Rogers, Phys.

Rev. D 85, 034043 (2012).
[59] M. G. Echevarria, A. Idilbi, and I. Scimemi, Phys. Rev. D

90, 014003 (2014).
[60] F. Landry, R. Brock, P. M. Nadolsky, and C. P. Yuan, Phys.

Rev. D 67, 073016 (2003).
[61] J. w. Qiu and X. f. Zhang, Phys. Rev. Lett. 86, 2724 (2001).
[62] P. Sun, J. Isaacson, C.-P. Yuan, and F. Yuan, Int. J. Mod.

Phys. A 33, 1841006 (2018).
[63] P. M. Nadolsky, D. R. Stump, and C. P. Yuan, Phys. Rev. D

61, 014003 (1999); 64, 059903(E) (2001).
[64] A. V. Konychev and P. M. Nadolsky, Phys. Lett. B 633, 710

(2006).
[65] A. S. Ito et al., Phys. Rev. D 23, 604 (1981).
[66] D. Antreasyan et al., Phys. Rev. Lett. 47, 12 (1981).
[67] G. Moreno et al., Phys. Rev. D 43, 2815 (1991).

[68] T. Affolder et al. (CDF Collaboration), Phys. Rev. Lett. 84,
845 (2000).

[69] B. Abbott et al. (D0 Collaboration), Phys. Rev. D 61,
032004 (2000).

[70] V. M. Abazov et al. (D0 Collaboration), Phys. Rev. Lett.
100, 102002 (2008).

[71] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. D 86,
052010 (2012).

[72] A. Prokudin, P. Sun, and F. Yuan, Phys. Lett. B 750, 533
(2015).

[73] X. Wang, Z. Lu, and I. Schmidt, J. High Energy Phys. 08
(2017) 137.

[74] J. S. Conway et al., Phys. Rev. D 39, 92 (1989).
[75] F. A. Ceccopieri, A. Courtoy, S. Noguera, and S. Scopetta,

Eur. Phys. J. C 78, 644 (2018).
[76] A. Bacchetta andA. Prokudin, Nucl. Phys.B875, 536 (2013).
[77] C. A. Aidala, B. Field, L. P. Gamberg, and T. C. Rogers,

Phys. Rev. D 89, 094002 (2014).
[78] J. Collins and T. Rogers, Phys. Rev. D 91, 074020 (2015).
[79] F. Gautheron et al. (COMPASS Collaboration), Reports

No. SPSC-P-340, No. CERN-SPSC-2010-014.
[80] B. W. Xiao and B. Q. Ma, Phys. Rev. D 68, 034020 (2003).
[81] H. L. Lai, M. Guzzi, J. Huston, Z. Li, P. M. Nadolsky, J.

Pumplin, and C.-P. Yuan, Phys. Rev. D 82, 074024 (2010).
[82] D. de Florian, R. Sassot, M. Stratmann, and W. Vogelsang,

Phys. Rev. D 80, 034030 (2009).
[83] M. Botje, Comput. Phys. Commun. 182, 490 (2011).
[84] Z. B. Kang and J. W. Qiu, Phys. Lett. B 713, 273 (2012).
[85] Z. B. Kang and J. W. Qiu, Phys. Rev. D 79, 016003 (2009).
[86] W. Vogelsang and F. Yuan, Phys. Rev. D 79, 094010 (2009).
[87] J. Zhou, F. Yuan, and Z. T. Liang, Phys. Rev. D 79, 114022

(2009).
[88] V. M. Braun, A. N. Manashov, and B. Pirnay, Phys. Rev. D

80, 114002 (2009); 86, 119902(E) (2012).
[89] P. Sun and F. Yuan, Phys. Rev. D 88, 114012 (2013).

HUI LI, XIAOYU WANG, and ZHUN LU PHYS. REV. D 101, 054013 (2020)

054013-12

https://doi.org/10.1007/JHEP06(2017)081
https://doi.org/10.1103/PhysRevD.89.054032
https://doi.org/10.1103/PhysRevD.89.054032
https://doi.org/10.1016/j.nuclphysb.2008.06.011
https://doi.org/10.1103/PhysRevLett.97.082002
https://doi.org/10.1103/PhysRevLett.97.082002
https://doi.org/10.1103/PhysRevD.73.094017
https://doi.org/10.1103/PhysRevD.73.094017
https://doi.org/10.1103/PhysRevD.70.074021
https://doi.org/10.1103/PhysRevD.70.074021
https://doi.org/10.1016/S0370-2693(99)01384-2
https://doi.org/10.1016/S0370-2693(99)01384-2
https://doi.org/10.1103/PhysRevD.94.034014
https://doi.org/10.1103/PhysRevD.89.074013
https://doi.org/10.1103/PhysRevD.89.074013
https://doi.org/10.1103/PhysRevLett.107.152002
https://doi.org/10.1103/PhysRevLett.107.152002
https://doi.org/10.1103/PhysRevD.85.034043
https://doi.org/10.1103/PhysRevD.85.034043
https://doi.org/10.1103/PhysRevD.90.014003
https://doi.org/10.1103/PhysRevD.90.014003
https://doi.org/10.1103/PhysRevD.67.073016
https://doi.org/10.1103/PhysRevD.67.073016
https://doi.org/10.1103/PhysRevLett.86.2724
https://doi.org/10.1142/S0217751X18410063
https://doi.org/10.1142/S0217751X18410063
https://doi.org/10.1103/PhysRevD.61.014003
https://doi.org/10.1103/PhysRevD.61.014003
https://doi.org/10.1103/PhysRevD.64.059903
https://doi.org/10.1016/j.physletb.2005.12.063
https://doi.org/10.1016/j.physletb.2005.12.063
https://doi.org/10.1103/PhysRevD.23.604
https://doi.org/10.1103/PhysRevLett.47.12
https://doi.org/10.1103/PhysRevD.43.2815
https://doi.org/10.1103/PhysRevLett.84.845
https://doi.org/10.1103/PhysRevLett.84.845
https://doi.org/10.1103/PhysRevD.61.032004
https://doi.org/10.1103/PhysRevD.61.032004
https://doi.org/10.1103/PhysRevLett.100.102002
https://doi.org/10.1103/PhysRevLett.100.102002
https://doi.org/10.1103/PhysRevD.86.052010
https://doi.org/10.1103/PhysRevD.86.052010
https://doi.org/10.1016/j.physletb.2015.09.064
https://doi.org/10.1016/j.physletb.2015.09.064
https://doi.org/10.1007/JHEP08(2017)137
https://doi.org/10.1007/JHEP08(2017)137
https://doi.org/10.1103/PhysRevD.39.92
https://doi.org/10.1140/epjc/s10052-018-6115-3
https://doi.org/10.1016/j.nuclphysb.2013.07.013
https://doi.org/10.1103/PhysRevD.89.094002
https://doi.org/10.1103/PhysRevD.91.074020
https://doi.org/10.1103/PhysRevD.68.034020
https://doi.org/10.1103/PhysRevD.82.074024
https://doi.org/10.1103/PhysRevD.80.034030
https://doi.org/10.1016/j.cpc.2010.10.020
https://doi.org/10.1016/j.physletb.2012.06.021
https://doi.org/10.1103/PhysRevD.79.016003
https://doi.org/10.1103/PhysRevD.79.094010
https://doi.org/10.1103/PhysRevD.79.114022
https://doi.org/10.1103/PhysRevD.79.114022
https://doi.org/10.1103/PhysRevD.80.114002
https://doi.org/10.1103/PhysRevD.80.114002
https://doi.org/10.1103/PhysRevD.86.119902
https://doi.org/10.1103/PhysRevD.88.114012

