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Nucleon spin structure functions have been investigated mainly by longitudinally polarized ones for
finding the origin of the nucleon spin. Other types of spin structure functions are transversely polarized
ones. In particular, quark transversity distributions in the nucleons have very different properties from the
longitudinally polarized quark distribution functions, especially in scaling violation, because they are
decoupled from the gluon transversity, due to the fact that they are helicity-flip (chiral-odd) distributions.
Such studies are valuable for finding not only the origin of the nucleon spin but also a signature on physics
beyond the standard model, because the electric dipole moment of the neutron is proportional to the
transversity distributions. Now, there is experimental progress on the quark transversity distributions;
however, there is no experimental information on gluon transversity. In fact, the gluon transversity does not
exist for the spin-1=2 nucleon due to the helicity-conservation constraint. One needs a hadron with spin
more than or equal to one, so that the helicity flip of two units is allowed. A stable spin-1 target is, for
example, the deuteron for studying the gluon transversity. In this work, we propose a possibility for finding
the gluon transversity at hadron-accelerator facilities, especially in the proton-deuteron Drell-Yan process
with the linearly polarized deuteron, by showing theoretical formalism and numerical results. In the
experiment, the information on the angular distribution of the dimuon is necessary in the final state;
however, the proton beam does not have to be polarized. We show the dependencies of the Drell-Yan cross
section on the dimuon-mass squared M2

μμ, the dimuon transverse-momentum qT , the dimuon rapidity y in
the center-of-momentum frame, and the magnitude of the gluon transversity ΔTg. We also show typical
spin asymmetries in the Drell-Yan process. Since the internal spin-1=2 nucleons within the deuteron cannot
contribute directly to the gluon transversity, it could be a good observable to find a new non-nucleonic
component beyond the simple bound system of nucleons in nuclei.
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I. INTRODUCTION

Although the nucleon spin is one of fundamental physics
quantities, its origin is not understood yet. It used to be
interpreted by a combination of three spin-1=2 quarks
according to the basic quark model [1]. Namely, if two
quark spins are aligned to the nucleon spin and the other
quark spin is opposite, the nucleon spin should be under-
stood. This simple description had been taken as granted

for a long time until the European Muon Collaboration
(EMC) experiment found that this picture is basically
wrong in 1988 by showing that the contribution from
the quark spin is a small fraction [2]. We now know that
gluon-spin and partonic orbital-angular-momentum contri-
butions could be significant as sources of the nucleon spin.
Since the EMC discovery, studies on high-energy

polarized-hadron reactions have been done to clarify the
origin of the nucleon spin, mainly through longitudinally
polarized structure functions [3]. In addition, there had
been discussions how to decompose the nucleon spin
into quark- and gluon-spin components and orbital-angu-
lar-momentum contributions in a gauge invariant way [4].
There are also studies in lattice QCD on the spin decom-
position [5]. Furthermore, efforts have been made recently
to obtain x-dependent parton distributions from lattice
QCD [6]. Now, experimental clarifications on gluon-spin
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and partonic orbital-angular-momentum contributions
become necessary. For probing the orbital-angular-
momentum part, we need to investigate three-dimensional
structure functions [7], namely, generalized parton distri-
butions (GPDs) [8], generalized distribution amplitudes [9],
and transverse-momentum-dependent parton distributions
(TMDs) [10]. Such experimental studies are under inves-
tigations at experimental facilities in the world [11].
In spite of much progress on longitudinal spin physics,

the transversely polarized structure functions are not known
well [12–17], although there are some recent studies on
quark transversity distributions [18]. Such studies provide
an important and alternative information in solving the
nucleon spin puzzle. In particular, the quark transversity
distributions of the nucleon are decoupled from the gluon
transversity in the Q2 evolution [19,20] due to the helicity-
flip (chiral-odd) property, which is an important difference
from the longitudinal spin. Therefore, studies of the trans-
versity distributions are other tests of our understanding on
nucleon spin by different observables. In addition, since
electric dipole moments of hadrons, such as the neutron, are
proportional to the transversity distributions [21], the
transversity studies are valuable also for searching physics
beyond the standard model by measuring the electric dipole
moments. There are also transversity GPD studies [22].
For understanding of transverse-polarization physics, the

gluon transversity distribution should be investigated in
addition to the quark transversity. The gluon transversity is
not experimentally measured at this stage, whereas we have a
rough idea on the quark transversity distributions [18].
However, there are future experimental projects to measure
them accurately at Thomas Jefferson National Accelerator
Facility (JLab) and Electron-Ion Collider (EIC) [23,24].
Therefore, much progress is expected for the gluon trans-
versity in the near future because of the JLab experiment on
the gluon transversity with the polarized-deuteron target [25].
On the other hand, independent experiments are desir-

able at other experimental facilities, especially at hadron
accelerator facilities, to probe different kinematical regions
of the gluon transversity from the JLab one. In particular,
the large Q2 region (M2

J=ψ < Q2 < M2
ϒ) should be mea-

sured by the Drell-Yan process, in comparison with the
JLabQ2 region typically from a few GeV2 to several GeV2.
The Fermilab spin-physics project SpinQuest is under
preparation as the E1039 experiment [26], and the pro-
ton-deuteron Drell-Yan will be also possible with the
polarized deuteron target.
The purpose of this work is to propose a new process to

measure the gluon transversity for the first time at hadron
facilities. Especially, we propose that the gluon transversity
should be measured in the proton-deuteron Drell-Yan
process by considering the Fermilab-E1039 experimental
project. However, our formalism can be used in principle
for the Drell-Yan experiments at any high-energy hadron
accelerator facilities.

We may remind the reader that a hadron with spin at least
one is necessary for studying the gluon transversity, which
does not exist for the spin-1=2 nucleon, because the change
of two units of spin (Δs ¼ 2) is necessary for the gluon
transversity [17]. The purpose of our work is to propose a
possible process to probe the gluon transversity at hadron
accelerator facilities as an alternative and independent
method from the lepton scattering measurement at JLab
and EIC.
Apart from the spin physics, the gluon transversity is a

theoretically interesting quantity to probe an exotic aspect
of the deuteron, hadrons, and nuclei. For example, the
deuteron is a weak-bound state of a proton and a neutron
mainly in the S wave with a small probability of D-state
admixture. Since the internal nucleons do not contribute
directly to the gluon transversity due to the spin-1=2 nature,
the gluon transversity of the deuteron is expected to be a
small quantity. However, if a finite distribution is found in
future, it could indicate an existence of a non-nucleonic
component or some other exotic hadronic mechanism
within the deuteron. There are theoretical-model [27]
and lattice-QCD [28] studies on this topic. For example,
a contribution from the ΔΔ component in the deuteron was
estimated in Ref. [27] as a possible finite gluon transversity
in the deuteron. Therefore, the gluon transversity distribu-
tions are interesting quantities, which shed light on
unknown exotic aspects in the deuteron and nuclei beyond
the simple bound systems of protons and neutrons.
In addition to the transversity, there are related studies on

polarized deuteron structure functions. For example, the
tensor-polarized structure function b1 will be measured in
the near future at JLab [29–31], and polarized proton-
deuteron reactions [32] could be investigated at Fermilab
for measuring tensor-polarized distribution functions
[26,33]. Since the conventional deuteron model cannot
explain existing experimental measurements by the
HERMES Collaboration [34], a new hadronic mechanism
would be needed for their interpretation [35]. Such new
aspects of the deuteron at high energies may be related
to the gluon transversity distributions because they probe
non-nucleonic component in the deuteron.
In this paper, the transversity distributions are explained

by starting from the basic Pauli-Lubanski operator and
matrix-element forms of local quark current operators in
comparison with the longitudinally polarized parton dis-
tribution functions (PDFs) in Sec. II. Since the quark
transversity distributions are directly related to electric
dipole moments of hadrons, the relation is briefly
explained. Then, the gluon transversity is explained. It
exists in hadrons only with spin larger than or equal to one
due to the helicity conservation. Next, the theoretical
formalism is shown for the proton (p)-deuteron (d)
Drell-Yan process pþ d → μþμþ þ X in Sec. III, includ-
ing kinematical variables, polarizations of spin-1 deuteron,
hadron correlation functions in terms of the PDFs, and
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expression of the cross section pþ d → μþμþ þ X. Then,
partonic matrix elements and actual cross sections are
obtained. The proton-deuteron Drell-Yan cross sections
are numerically shown in Sec. IV, and our study is
summarized in Sec. V.

II. TRANSVERSITY DISTRIBUTIONS

A. Pauli-Lubanski operator in Poincaré group
and quark transversity distributions

The transversity is not a popular terminology outside the
high-energy spin-physics community, and the transverse
spin and polarization are somewhat confusing as shown in
Eqs. (8) and (9), so that its basics are first explained [17].
The four-dimensional space-time coordinate transforma-

tion x0μ ¼ Λμ
νxν þ aμ is called the inhomogeneous Lorentz

transformation or the Poincaré transformation. The invari-
ance under this transformation is a fundamental symmetry in
quantum field theory. Representations of the Poincaré group
are classified by Casimir operatorsp2 andW2 [36]. Here,pμ

is the momentum operator which is the generator of trans-
lations, andWμ is the Pauli-Lubanski operator which is the
generator of Lorentz transformations. The Pauli-Lubanski
operator is defined by the angular-momentum operator Jνρ

and the momentum as

Wμ ¼
1

2
εμνρσJνρpσ; ð1Þ

with the antisymmetric tensor definition ε0123 ¼ þ1. The
angular-momentum operator is given by

Jμν ¼ 1

2
σμν þ ðxμpν − xνpμÞ: ð2Þ

Here, the antisymmetric tensor σμν is defined by σμν ¼
i
2
ðγμγν − γνγμÞ. The eigenvalues of p2 and W2 are M2

N and
−M2

Nsðsþ 1Þ, respectively,

p2jpsi ¼M2
N jpsi; W2jpsi ¼−M2

Nsðsþ 1Þjpsi; ð3Þ

where MN and sð¼1=2Þ are mass and spin of the nucleon.
From the Pauli-Lubanski operator, the polarization

operator Π could be defined for the nucleon as [17]

Π≡ −
1

MN
W · s ¼ 1

2MN
γ5=s=p ¼ 1

2MNi
γ5σμνsμpν; ð4Þ

where it is expressed by the spin and momentum vectors.
The spin vector sμ satisfies s2 ¼ −1 and s · p ¼ 0, and it is
generally expressed as

sμ ¼
�
p⃗ · n̂
MN

; n̂þ p⃗ · n̂
MNðMN þ p0Þ p⃗

�
; ð5Þ

where n̂ is a unit vector in three-dimensional space to
indicate the spin-polarization direction. The longitudinal

polarization is given by n̂ ¼ �p⃗=jp⃗j, and the transverse one
is by n̂ ¼ n̂⊥ where n̂⊥ is a two-dimensional transverse unit
vector. The polarization vector of Eq. (4) becomes the
helicity operator,

Πk ¼
1

2

Σ⃗ · p⃗
jp⃗j ¼ 1

2
Σk ¼

1

2
γ5 γ0γk ¼

σk
2

�
I 0

0 I

�
; ð6Þ

if the nucleon is longitudinally polarized. Here, the longi-
tudinal direction is taken along the third axis (jp⃗j¼pk¼p3).

The spin operator Σ⃗ is defined by

Σ⃗ ¼ γ5γ0γ⃗; ð7Þ

σk is the longitudinal Pauli-spin matrix defined by σk ≡
σ⃗ · p⃗=jp⃗j, and I is the 2 × 2 identity matrix. This helicity
operator commutes with the free-quark Hamiltonian
H0 ¼ α3p3 ¼ γ0γ3p3, so that it is a conserved quantity.
On the other hand, if the nucleon is transversely

polarized, the transverse polarization and spin operators
may be given, from Eqs. (4) and (7), by

Π⊥ ¼ 1

2MN
γ5=s⊥p; Σ⊥ ¼ γ5γ0γ⊥; ð8Þ

where sμ⊥ ¼ ð0; n̂⊥Þ≡ nμ⊥, and Σ⊥ and γ⊥ are defined by
Σ⊥ ¼ n̂⊥ · Σ⃗ and γ⊥ ¼ n̂⊥ · γ⃗ ¼ γ1 cosϕ⊥ þ γ2 sinϕ⊥ with
the azimuthal angle ϕ⊥ of n̂⊥. However, they do not
commute with the free Hamiltonian. It means that there are
no eigenstates of Π⊥ or Σ⃗⊥ with H0, so that the quarks in
the transversely polarized nucleon cannot have a definite
transverse-spin state with the polarization or spin operator
of Eq. (8). However, if the transverse-polarization operator
Π̃⊥ is defined with an extra γ0 with Σ⊥ by

Π̃⊥ ≡ 1

2
γ0Σ⊥ ¼ 1

2
γ5n⊥ · γ ¼ σ⊥

2

�
I 0

0 −I

�
; ð9Þ

it commutes withH0. Here, the transverse Pauli spin matrix
is defined by σ⊥ ¼ n̂⊥ · σ⃗. We call this polarization as
“transversity.” It means that the quarks exist in the nucleon
as a definite transverse-polarization state for Π̃⊥, although
the spin eigenstate does not exist for the operators Π⊥ and
Σ⃗⊥. The transversity distributions are denoted ΔTq for
quarks and ΔTg for gluon throughout this paper. However,
there are other notations hT [12], Δ1q [13], h1 [14], and δq
[15] for quarks and other ones (Δ2G, a, ΔLg, δG, h1TT;g,
ΔTg), as shown later in Eq. (68), for gluon, so that one may
pay attention to the notation in reading past papers on the
transversity.
Since the transverse spin s⊥ was mentioned for the

nucleon, it is briefly explained in the following. The
polarized charged-lepton deep inelastic scattering (DIS)
from a polarized nucleon is described by the antisymmetric
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hadron tensor in terms of two polarized structure functions
g1 and g2,

WðAÞ
μν ¼ 2MN

p · q
εμναβqα

�
sβg1 þ

�
sβ −

s · q
p · q

pβ

�
g2

�

¼ 2MN

p · q
εμναβqαðsβkg1 þ sβ⊥gTÞ; ð10Þ

where gT is defined by

gT ≡ g1 þ g2: ð11Þ

The nucleon spin vector is decomposed into the longi-
tudinal and transverse ones as

sμ ¼ sμk þ sμ⊥ ¼ λN
MN

pμ þ sμ⊥; ð12Þ

where λN is the nucleon helicity. It indicates that the
transverse-spin sμ⊥ contribution to the cross section is sup-
pressed by the factor MN=pþ, where pþ is the lightcone
momentum pþ ¼ ðp0 þ p3Þ= ffiffiffi

2
p

, in comparison with the
longitudinal term. As explained, the transverse spin is not a
conserved quantity, the structure function gT does not allow
a simple probabilistic interpretation of the leading-twist
level, although it can be measured experimentally in the
standard polarized charged-lepton scattering measurement.
Therefore, the transverse-polarization physics is inves-

tigated by the transversity distributions in the twist-2-level
collinear framework. Experimentally, the quark transversity
distributions are determined, for example, by analyzing the
data of semi-inclusive DIS process and proton-proton
collisions with dihadron production [18]. There are other
possibilities such as semi-inclusive hadron-production proc-
esses and Drell-Yan processes for the quark transversity
distribution. However, there is little information on how to
determine the gluon transversity at this stage. Especially,
there is no paper to investigate the gluon transversity by
using hadron experimental facilities as far as we are aware.
Here, a possible process is proposed in this work.

B. Longitudinally polarized and transversity
distributions for quarks

First, we explain quark transversity distributions. The
longitudinally polarized quark distribution functions are
given by the difference between the quark distributions
with spin parallel to the nucleon spin and the ones with
antiparallel spin: ΔqðxÞ ¼ qþðxÞ − q−ðxÞ, where x is the
momentum fraction carried by a quark, as illustrated in
Fig. 1(a). Here, þ and − indicate parallel and antiparallel
quark spins to the longitudinal nucleon spin. They are
relatively well determined now for the nucleon by polarized
lepton DIS and polarized proton-proton collisions. For the
transversely polarized nucleon, similar distributions called

transversity distributions are expressed as ΔTqðxÞ ¼
q↑ðxÞ − q↓ðxÞ, where ↑ and ↓ indicate parallel and anti-
parallel quark polarizations, as defined by the polarization
operator of Eq. (9), to the transversely polarized nucleon
spin, as illustrated in Fig. 1(b).
The unpolarized, longitudinally polarized, and trans-

versity distribution functions are defined for quarks by the
following matrix elements [17]:

qðxÞ ¼
Z

dξ−

4π
eixp

þξ−hpjψ̄ð0ÞγþψðξÞjpiξþ¼ξ⃗⊥¼0
;

ΔqðxÞ ¼
Z

dξ−

4π
eixp

þξ−hpsLjψ̄ð0Þγþγ5ψðξÞjpsLiξþ¼ξ⃗⊥¼0
;

ΔTqðxÞ ¼
Z

dξ−

4π
eixp

þξ−

× hpsTjjψ̄ð0Þiγ5σjþψðξÞjpsTjiξþ¼ξ⃗⊥¼0
; ð13Þ

where sL and sTj (j ¼ 1 or 2) indicate longitudinal and
transverse polarizations of the nucleon, and ψ is the quark
field. Here, gauge links for satisfying the color gauge
invariance are abbreviated because they do not play an
important role in the collinear PDFs. These distribution
functions are leading twist (twist-2) ones. In Sec. II A, we
introduced the structure function gT associated with the
transverse spin. It is also written in an operator matrix
element in the similar way as

gT;qðxÞ ¼
pþ

MN

Z
dξ−

4π
eixp

þξ−

× hpsT jψ̄ð0Þγ⊥γ5ψðξÞjpsTiξþ¼ξ⃗⊥¼0
: ð14Þ

This is a twist-3 structure function, which is suppressed
typically by the kinematical factor of the order of MN=pþ
in cross sections. By defining “good” (þ) and “bad” (−)
components of the field ψ as ψ ¼ ψþ þ ψ−, ψ� ≡
ðγ∓γ�=2Þψ [14], the operator of the longitudinally polar-
ized quark distributions ΔqðxÞ in Eq. (13) is expressed
by ψ̄γþγ5ψ ¼ ψ̄þγþγ5ψþ, namely only by the good
components. For the distribution gT;qðxÞ, it is given only
by the cross combination of ψþ and ψ− as ψ̄γ⊥γ5ψ ¼
ψ̄þγ⊥γ5ψ− þ ψ̄−γ⊥γ5ψþ, which indicates that it is a twist-3
distribution.
As known in the DIS formalism, structure functions of

the nucleon are given by the imaginary part of forward
scattering amplitudes by the optical theorem. The PDFs are

(a) (b)

FIG. 1. Illustration of (a) longitudinally polarized quark dis-
tribution and (b) quark transversity distribution.
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expressed by parton-hadron forward scattering amplitudes
illustrated in Fig. 2. The amplitude is denoted as AΛiλi;Λfλf
with the initial and final hadron helicities Λi and Λf and
parton ones λi and λf. The helicity conservation indicates
the relation [37]

Λi − λi ¼ Λf − λf; ð15Þ

where the minus signs exist for the parton helicities due to
outgoing and incoming particles in comparison with the
hadron helicities. The PDFs are related to the helicity
amplitudes as [17,37]

qðxÞ ¼ qþðxÞ þ q−ðxÞ ∼ Im ðAþþ;þþ þ Aþ−;þ−Þ;
ΔqðxÞ ¼ qþðxÞ − q−ðxÞ ∼ Im ðAþþ;þþ − Aþ−;þ−Þ;
ΔTqðxÞ ¼ q↑ðxÞ − q↓ðxÞ ∼ ImAþþ;−−: ð16Þ

The last relation ΔTq ∼ ImAþþ;−− is given in Ref. [37]. It
should be noted that the helicity amplitudes AΛiλi;Λfλf are
used in this paper and in Ref. [37]. However, one needs to
be careful about a notation difference in some other papers,
because the amplitudes are often defined by spin compo-
nents along the quantization axis as given in Ref. [30]. For
example, the relation is ΔTq ∼ ImA−þ;þ− in the AhH;h0H0−
notation [25,28], where h and H (h0 and H0) are initial
(final) quark and hadron spin components.
If the spin states are defined by the transversity basis j↑i

and j↓i, they are expressed by the longitudinally polarized
states as [17]

j↑i ¼ 1ffiffiffi
2

p ½jþiþj−i�;

j↓i ¼ 1ffiffiffi
2

p ½jþi−j−i�; ð17Þ

where the direction of the polarization ↑ is taken along the
x axis. Therefore, if the amplitudes are defined by the
transversely polarized states, the transversity distribution is
given by

ΔTqðxÞ ¼ q↑ðxÞ − q↓ðxÞ ∼ ImðA↑↑;↑↑ − A↑↓;↑↓Þ: ð18Þ

The transversity distributions are important leading-twist
functions for clarifying the internal structure of the nucleon.

C. Electric dipole moment of neutron

The transversity is an important physics quantity not
only for clarifying the nature and origin of the nucleon spin
but also for finding a signature of beyond the standard
model by observing electric dipole moments of the neutron
and other hadrons. Therefore, its connection to the electric
dipole moment is briefly explained. The neutron electro-
magnetic current is expressed as [21]

hnjJemμ jni ¼ ūðp0Þ½γμF1ðq2Þ þ
κ

2MN
iσμνqνF2ðq2Þ

þ dn
2MN

γ5σμνqνF3ðq2Þ�uðpÞ; ð19Þ

by including the time-reversal odd term with the form
factor F3 in addition to the ordinary parity and time-
reversal even terms with the form factors F1 and F2. Here, κ
is the anomalous magnetic moment, F1 and F2 are
Dirac and Pauli form factors, and they are related to the
electric and magnetic form factors as GEðq2Þ ¼ F1ðq2Þ þ
q2=ð2M2

NÞκF2ðq2Þ and GMðq2Þ ¼ F1ðq2Þ þ κF2ðq2Þ. The
initial and final neutron momenta are denoted as p and p0, q
is the momentum transfer given by q ¼ p − p0, and uðpÞ is
the Dirac spinor for the neutron. The last F3 term is the
time-reversal odd one, in combination with the electro-
magnetic field Aμ for the Hamiltonian [21], with the factor
of the neutron electric dipole moment (EDM) dn in the unit
of e=ð2MNÞ. The electric dipole form factor F3 is normal-
ized as F3ð0Þ ¼ 1 at q2 ¼ 0. Here, we use the function
notation F3 which has been used so far in EDM studies;
however, the function F3 is conventionally used for the
structure function F3 in neutrino scattering. They should
not be confused.
On the other hand, the neutron EDM is expressed by

integrals of the transversity distributions, so-called the
tensor charge ΔTq, as [21]

dn ¼
X
q

dq ΔTq;

ΔTq≡
Z

1

0

dx ½ΔTqðxÞ − ΔTq̄ðxÞ�; ð20Þ

where dq is the quark EDM. Namely, the neutron EDM is
investigated theoretically by calculating the quark EDMs in
the standard model or some models beyond the standard
model, and they should be multiplied by the tensor
charge in order to compare with experimental measure-
ments. Therefore, the studies of transversity distributions
have impact on investigations of physics beyond the
standard model by observing the EDMs of the neutron,
other hadrons, and nuclei.

FIG. 2. Parton-hadron forward scattering amplitude AΛiλi ;Λfλf
with the hadron helicities Λi and Λf and parton ones λi and λf.
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D. Gluon transversity in hadrons with spin ≥ 1

As shown in Eq. (16), the transversity distribution
ΔTqðxÞ is associated with the quark spin flip (λi ¼ þ,
λf ¼ −), so that it is a chiral-odd distribution. The quark
transversity exists in the nucleon because the spin flipΔs ¼
1 is possible in the spin-1=2 nucleon, whereas the gluon
transversity ΔTg does not exist in the nucleon because the
spin flip Δs ¼ 2 is not possible. Therefore, the quark
transversity distributions evolve in the scale Q2 without the
corresponding gluon distribution in the nucleon [19,20].
This situation is very different from the longitudinally
polarized PDFs, where the quark and gluon distributions
couple with each other in the Q2 evolution as we usually
have in the unpolarized PDFs. This is an important test of
perturbative QCD in high-energy spin physics.
In the sameway with the quark transversity expression of

Eq. (18), the gluon transversity is written by the helicity
distribution as [25,28]

ΔTgðxÞ ∼ ImAþþ;−−: ð21Þ

This equation indicates that the spin flip of two units Δs ¼
2 (jλf − λij ¼ jΛf − Λij ¼ 2) is necessary for the gluon
transversity ΔTg, and it is illustrated in Fig. 3. In order to
find the gluon transversity, hadrons with spin ≥ 1 should be
used. The most simple and stable spin-1 hadron or nucleus
is the deuteron, so that it is used first for future experimental
studies of the gluon transversity. There is an experimental
proposal to measure it in the polarized electron-deuteron
DIS by looking at the azimuthal angle of the deuteron-spin
polarization [25]. In our work, we investigate a possibility
to investigate the gluon transversity in the deuteron by
hadron accelerator facilities as an alternative way to the
lepton-facility measurements.
In the similar way with Eq. (13), the gluon transversity

distribution is written in the matrix element form,

ΔTgðxÞ ¼ εTT;αβ

Z
dξ−

2π
xpþeixpþξ−

× hpExjAαð0ÞAβðξÞjpExiξþ¼ξ⃗⊥¼0
; ð22Þ

where εαβTT ¼ þ1 for α ¼ β ¼ 1, εαβTT ¼ −1 for α ¼ β ¼ 2,
and the other components are zero, as defined later in

Eq. (39). The notation Ex indicates the linear polarization
of the deuteron along the positive x-axis. This expression
for ΔTgðxÞ is obtained by using the gluon correlation
function of Eq. (58) and the collinear expression of
Eq. (67). In this equation, Aα is the gluon field Aα ¼
Aα
ata which includes the SU(3) generator ta expressed by

the Gell-Mann matrix as ta ¼ λa=2 with the color index a.
Here, the summation is taken over a. Therefore, ΔTg is
given by the linear-polarization difference εx − εy for the
gluon in the linearly polarized (Ex) deuteron. The linear
polarizations for the deuteron (Ex, Ey) and the gluon (εx, εy)
are explained in Secs. III A and III B. We should mention
that the name “gluon transversity” is misleading in the
sense that it does not mean the transverse polarization of the
gluon but it is actually on the linear polarization.

III. FORMALISM FOR DRELL-YAN
PROCESS p+ d → μ+ μ− +X

Our formalism is explained for describing the Drell-Yan
cross section pþ d → μþμ− þ X in this section. Since this
work is on deuteron spin physics, especially on gluon
transversity, we introduce polarizations of spin-1 deuteron.
Then, the cross section formalism is discussed.

A. Spin-1 deuteron polarizations

Since polarizations of the spin-1 deuteron, which con-
tains tensor polarizations, are not familiar, they are
explained in general by using the spin-density matrix.
Let us consider a spin state jψi for a particle of spin s, and it
is expanded by eigenstates of the z component of the spin
operator sz with the expansion coefficients cm as
jψi ¼P

m cmjsmi [38]. Matrix elements of an operator
Ô are denoted as Om0m ¼ hsm0jÔjsmi, and then expect-
ation value in the state jψi is expressed as
hψ jÔjψi ¼ P

m;m0 c�m0cmOm0m. If the state is an incoherent
mixture of pure states jψ ðiÞi with the probability pðiÞ, the
expectation value is written as hÔi¼P

ip
ðiÞhψ ðiÞjÔjψ ðiÞi¼P

m;m0Om0m
P

ip
ðiÞcðiÞ�m0 c

ðiÞ
m . Defining the spin-density

matrix ρmm0 as

ρmm0 ¼
X
i

pðiÞcðiÞm cðiÞ�m0 ; ð23Þ

we obtain

hÔi ¼
X
m;m0

Om0mρmm0 ¼ TrðOρÞ: ð24Þ

Therefore, if the spin-density matrix is known, the
expectation value over the ensemble can be calculated
for operators.
For example, the density matrix is given by ρ1=2 ¼

ð1þ siσiÞ=2, where the summation is taken over i ¼ 1, 2,
and 3, with the Pauli matrix σi, and the spin-polarization

FIG. 3. Gluon-hadron forward scattering amplitude Aþþ;−−
with the spin flip of 2 (Δs ¼ 2) for finding the gluon transversity.
The hadron spin should be s ≥ 1. For example, it is spin-1
deuteron.
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vector is given by si ¼ hσii ¼ Trðρ1=2σiÞ. In the similar
way, the density matrix for a spin-1 particle is given in the
Cartesian coordinates as [38–40]

ρ ¼ 1

3

�
1þ 3

2
SiΣi þ 3TijΣij

�
; ð25Þ

where Σi (i ¼ 1, 2, 3) are 3 × 3 spin matrices for the spin-1
deuteron,

Σx ¼
1ffiffiffi
2

p

0
B@

0 1 0

1 0 1

0 1 0

1
CA; Σy ¼

iffiffiffi
2

p

0
B@

0 −1 0

1 0 −1
0 1 0

1
CA;

Σz ¼

0
B@

1 0 0

0 0 0

0 0 −1

1
CA; ð26Þ

and Σij are spin tensors defined by

Σij ¼
1

2
ðΣiΣj þ ΣjΣiÞ −

2

3
Iδij: ð27Þ

Here, I is the 3 × 3 identity matrix, and the Σij convention
of Refs. [39,40] is used instead of the one in Ref. [38]. The
spin polarization vector Si is given by

Si ¼ hΣii ¼ TrðρΣiÞ; ð28Þ

and the tensor Tij is a real and traceless one given by

Tij ¼ hΣiji ¼ TrðρΣijÞ: ð29Þ

The spin vector and tensor are parametrized in the rest
frame of the deuteron as [39,41,42]

S ¼ ðSxT; SyT; SLÞ;

T ¼ 1

2

0
B@

− 2
3
SLL þ SxxTT SxyTT SxLT
SxyTT − 2

3
SLL − SxxTT SyLT

SxLT SyLT
4
3
SLL

1
CA: ð30Þ

We use the tensor T in Refs. [39,41,42], whereas the factor
−ð2=3ÞSLL is denoted as SLL in Ref. [40]. The spin vector
and tensor are written in terms of the polarization vector E⃗
of the deuteron as

S⃗ ¼ ImðE⃗� × E⃗Þ; Tij ¼
1

3
δij − ReðE�

i EjÞ; ð31Þ

and their covariant forms are given by [30,31,40]

Sμ ¼ 1

M
εμναβpνImðE�

αEβÞ;

Tμν ¼ −
1

3

�
gμν −

pμpν

p2

�
− ReðEμ�EνÞ: ð32Þ

Here, M and p are the deuteron mass and momentum. At
this stage, the deuteron spin quantization axis is taken as the
z direction; however, −z direction is taken later in calcu-
lating the cross section along the deuteron momentum
direction. Then, the deuteron polarization vector E and also
gluon polarization vector ε are defined as

E� ¼ ε� ¼ 1ffiffiffi
2

p ð0;∓1;−i; 0Þ; E0 ¼ ε0 ¼ ð0; 0; 0; 1Þ;

Ex ¼ εx ¼
1ffiffiffi
2

p ðε− − εþÞ ¼ ð0; 1; 0; 0Þ;

Ey ¼ εy ¼
iffiffiffi
2

p ðε− þ εþÞ ¼ ð0; 0; 1; 0Þ: ð33Þ

Using these quantities, we express the spin-density
matrix of Eq. (25) as [39,41,42]

ρ¼

0
BBB@

1
3
þ SL

2
þ SLL

3

SxT−iS
y
T

2
ffiffi
2

p þ SxLT−iS
y
LT

2
ffiffi
2

p SxxTT−iS
xy
TT

2

SxTþiSyT
2
ffiffi
2

p þ SxLTþiSyLT
2
ffiffi
2

p 1
3
− 2SLL

3

SxT−iS
y
T

2
ffiffi
2

p − SxLT−iS
y
LT

2
ffiffi
2

p

SxxTTþiSxyTT
2

SxTþiSyT
2
ffiffi
2

p − SxLTþiSyLT
2
ffiffi
2

p 1
3
− SL

2
þ SLL

3

1
CCCA:

ð34Þ

The covariant forms of Sμ and Tμν are generally
expressed by the longitudinal and transverse polarizations
as [39,41,42]

Sμ ¼ SL
pþ

M
n̄μ − SL

M
2pþ nμ þ SμT;

Tμν ¼ 1

2

�
4

3
SLL

ðpþÞ2
M2

n̄μn̄ν þ pþ

M
n̄fμSνgLT

−
2

3
SLLðn̄fμnνg − gμνT Þ þ SμνTT −

M
2pþ nfμSνgLT

þ 1

3
SLL

M2

ðpþÞ2 n
μnν

�
; ð35Þ

where afμbνg indicates the symmetrization of the super-
script indices afμbνg ≡ aμbν þ aνbμ, and gαβT is defined by
gαβT ¼ gαβ − n̄fαnβg (g11T ¼ g22T ¼ −1, others ¼ 0). The
lightlike vectors n̄ and n are defined by

n̄μ ¼ 1ffiffiffi
2

p ð1; 0; 0;þ1Þ ¼ ½1; 0; 0⃗T �LC;

nμ ¼ 1ffiffiffi
2

p ð1; 0; 0;−1Þ ¼ ½0; 1; 0⃗T �LC; ð36Þ
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where the lightcone (LC) notation aμ ¼ ½aþ; a−; a⃗T �LC is
used with a� ¼ ða0 � a3Þ= ffiffiffi

2
p

. Replacing SLL in Ref. [40]
by −ð2=3ÞSLL so as to agree with the convention of
Refs. [39,41,42], we have [40]

Sμ¼
�
SL

pþ

M
;−SL

M
2pþ ;S

x
T;S

y
T

�
LC
;

Tμν¼1

2

2
6666664

4ðPþÞ2
3M2 SLL −2

3
SLL

pþ
M SxLT

pþ
M SyLT

−2
3
SLL M2

3ðpþÞ2SLL − M
2PþSxLT − M

2pþS
y
LT

pþ
M SxLT − M

2pþSxLT SxxTT−2
3
SLL SxyTT

pþ
M SyLT − M

2pþS
y
LT SxyTT −SxxTT−2

3
SLL

3
7777775
LC

:

ð37Þ

The lightcone matrix notation means that the first compo-
nent of column or line is aþ, the second is a−, the third is
the transverse coordinate x, and the fourth is the trans-
verse y.
For investigating the gluon transversity distribution in

the deuteron, the linear polarization of the spin-1 deuteron
should be considered. The deuteron is linearly polarized if
its polarization is Ex, Ey, or in between as illustrated in
Fig. 4. In the expression of the general density matrix, the
linear-polarization asymmetry Ex − Ey corresponds to the

spin asymmetry SαβTT in Refs. [39–42]. Therefore, the linear-
polarization asymmetry of the cross section is calculated by
taking ½dσðExÞ − dσðEyÞ�=2 with the polarization SxxTT and
by taking other polarization as zero. Later, the factor of 2 is
multiplied in expressing Eq. (88) because the spin asym-
metry dσðExÞ − dσðEyÞ is used for expressing the cross
section, instead of ½dσðExÞ − dσðEyÞ�=2. As given in
Eq. (35), the spin asymmetry SμνTT is obtained from the
tensor Tμν, by terminating other spin asymmetries
SLL ¼ SxLT ¼ SyLT ¼ SxyTT ¼ 0. Then, using the matrix form
of Eq. (37), we obtain

SαβTT ¼

0
BBB@

0 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 0

1
CCCA; ð38Þ

where SxxTT ¼ −1 is assigned for the linear-polarization
asymmetry Ex − Ey, instead of Ey − Ex in Refs. [39–42].
Next, we explain linear gluon polarizations which are

related to the gluon transversity of the deuteron. As shown
in Eq. (16), the transversity distribution is defined by the
process with the gluon polarizations λi ¼ þ1 and λf ¼ −1
or vice versa. Therefore, the gluon polarization tensor εαβTT is
given by the polarization vectors defined in Eq. (33) as

εαβTT ≡ εαxε
�β
x − εαyε

�β
y ¼ −ðεαþε�β− þ εα−ε

�β
þ Þ: ð39Þ

This relation indicates the helicity flip of 2 in this process.
For investigating the gluon transversity, the parent hadron,
namely the deuteron in this work, should have spin larger
than or equal to one. We notice that this gluon linear-
polarization tensor εαβTT is the same as the linear-polarization
asymmetry SαβTT in Eq. (38) except for the sign

εαβTT ¼ −SαβTT: ð40Þ

The tensor SαβTT (or ε
αβ
TT) appears in calculating the Drell-Yan

production cross section for finding the gluon transversity.

B. Kinematical variables

We express the cross section for the polarized proton-
deuteron Drell-Yan process (pþ d → μþμ− þ X), which is
illustrated in Fig. 5(a), in terms of the PDFs of the proton
and the deuteron [43] including the gluon transversity
distribution. The cross section for AðpÞþBðdÞ→μþμ−þX
is described by the partonic subprocess σab→cd in Fig. 5(b).
The indices A and B indicate the proton (p) and the
deuteron (d), and c is used for the virtual photon (γ�).
Here, kinematical variables are explained for describing

the process. First, the Mandelstam variables for the
reaction pþ d → γ� þ X are given by neglecting proton
and deuteron masses as

Ex

y

z
Ey

x

FIG. 4. Linear polarizations Ex and Ey of spin-1 deuteron.

FIG. 5. (a) Proton-deuteron Drell-Yan process pþ d →
μþμ− þ X. (b) Parton reaction aþ b → cþ d in the center-of-
momentum frame.
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s ¼ ðpA þ pBÞ2 ¼ ðpc þ pXÞ2 ¼ 2pA · pB;

t ¼ ðpA − pcÞ2 ¼ ðpB − pXÞ2 ¼ Q2 − 2pA · pc;

u ¼ ðpA − pXÞ2 ¼ ðpB − pcÞ2 ¼ Q2 − 2pB · pc; ð41Þ

whereQ2 is defined byQ2 ¼ p2
c. It should be noted that the

center-of-mass energy squared s used in the Fermilab-E906
experimental proposal is different from our definition.
Considering interactions with individual nucleons within
the deuteron [26,44], they defined s as

sFermilab-E906 ¼
�
pp þ

pd

2

�
2

¼ s
2

ð42Þ

for the proton-deuteron Drell-Yan process as written in
their proposal. One needs to be careful about the definition
difference in estimating the cross section numerically. This
difference is also related to how to define scaling variables
for partons in the deuteron, and the details of handling this
difference are discussed in Sec. IV for showing numerical
results.
In the proton-deuteron center-of-momentum (c.m.)

frame, we denote the momenta as

pA ¼
ffiffiffi
s

p
2

ð1; 0; 0; 1Þ; pB ¼
ffiffiffi
s

p
2

ð1; 0; 0;−1Þ;
q≡ pc ¼ ðE; qT cosϕ; qT sinϕ; qLÞ;

pd ¼ jq⃗jð1;− sin θ cosϕ;− sin θ sinϕ;− cos θÞ; ð43Þ

where the polar and azimuthal angles of the virtual-photon
momentum are given by θ and ϕ, respectively, jq⃗j is the
photon momentum, and qL ¼ jq⃗j cos θ and qT ¼ jq⃗j sin θ
are longitudinal and transverse momenta of photon. The z
direction is taken as the momentum direction for the proton
(zkp⃗A). The dimuon momentum is equal to the virtual
photon momentum,

q ¼ k1 þ k2; ð44Þ

where k1 and k2 are μ− and μþ momenta, so that the scale
Q2 is the dimuon-mass squared,

M2
μμ ¼ ðk1 þ k2Þ2 ¼ Q2: ð45Þ

The dimensionless variable τ and the dimuon rapidity y are
defined by

τ ¼ Q2

s
ð46Þ

and

y ¼ 1

2
ln
Eþ qL
E − qL

¼ − ln ½tanðθ=2Þ�; ð47Þ

where y is given by the energy E and momentum qL in the
c.m. frame. The photon momentum is also expressed by
using the rapidity, the transverse momentum, and the
transverse mass as

q ¼ ðMT cosh y; qT cosϕ; qT sinϕ;MT sinh yÞ; ð48Þ

where the transverse mass is given by

MT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ q⃗2T

q
: ð49Þ

In addition, the variables x1 and x2 are defined by [43]

x1 ¼ −
u −Q2

s
¼ MTffiffiffi

s
p ey;

x2 ¼ −
t −Q2

s
¼ MTffiffiffi

s
p e−y ð50Þ

for describing the Drell-Yan cross section.
Next, kinematical variables are shown for parton reac-

tions of Fig. 5(b). The initial parton momenta are given by
the momentum fractions of partons, xa and xb, with respect
to their parent-hadron momenta as

pa ¼ xaPA ¼ xa

ffiffiffi
s

p
2

ð1; 0; 0; 1Þ;

pb ¼ xbPB ¼ xb

ffiffiffi
s

p
2

ð1; 0; 0;−1Þ: ð51Þ

Then, the Mandelstam variables in the partonic level for the
reaction aþ b → cþ d are expressed as

ŝ¼ ðpa þpbÞ2 ¼ 2pa ·pb ¼ xaxbs;

t̂¼ ðpa −pcÞ2 ¼Q2 − 2pa · q¼Q2 þ xaðt−Q2Þ;
û¼ ðpb −pcÞ2 ¼Q2 − 2pb · q¼Q2 þ xbðu−Q2Þ: ð52Þ

Since the gluon transversity of the deuteron is studied
in this work, we consider that the deuteron is linearly
polarized with the polarization vectors Ex and Ey in
Eq. (33). In probing the gluon transversity of the deuteron
by the reaction pþ d → μþμ− þ X, this deuteron polari-
zation needs to be considered with the unpolarized proton
beam. In particular, the following combination of the
polarized differential cross sections should be studied:

dσðExÞ − dσðEyÞ: ð53Þ

Then, the linear-polarization tensor ofEqs. (38)–(40) appears
in calculating the cross section asymmetry. Later, there
appears the following contraction:

qμS
μν
TTqν ¼ −q2T cosð2ϕÞ ð54Þ
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in calculating the cross section. Equation (54) is obtained by
using the momentum assignments of Eq. (43).

C. Parton correlation and distribution functions
of proton and deuteron

The cross section for pþ d → μþμ− þ X is expressed in
terms of parton correlation functions and subsequently by
collinear PDFs, so that they are introduced in this section.
Later, the cross section is expressed by the hadron tensor
Wμν multiplied by the photon tensor Lμν in Sec. III D. The
hadron tensor contains parton correlation functions in the
proton and deuteron. There are correlation functions for
quarks, antiquarks, and gluon (h ¼ q; q̄; g) in the hadronH,

Φh=H ¼Φu=H; Φd=H;…; Φū=H; Φd̄=H;…; Φg=H: ð55Þ

The quark correlation functions are illustrated in Fig. 6, and
they are defined by the matrix elements for quarks as

Φij
q=Hðph; pH; sHÞ

¼
Z

d4ξh
ð2πÞ4 e

iph·ξhhpHsHjψ̄ jð0Þψ iðξhÞjpHsHi; ð56Þ

where ψ is the quark field, and ξh is a four-dimensional
space-time coordinate. To be precise, the gauge link should
exist between ψ̄ jð0Þ and ψ iðξhÞ to satisfy the color gauge
invariance; however, they are not explicitly written in this
paper. The correlation function indicates the amplitude to
extract a parton from a hadron and then to insert it into the
hadron at a different space-time point. The correlation
function for the antiquark is given by changing ψ̄ jð0Þψ iðξhÞ
for ψ ið0Þψ̄ jðξhÞ,

Φij
q̄=Hðph; pH; sHÞ

¼
Z

d4ξh
ð2πÞ4 e

iph·ξhhpHsHjψ ið0Þψ̄ jðξhÞjpHsHi: ð57Þ

The quark and antiquark correlation functions in
Refs. [39,41,42] are the same as the one in Eqs. (56)
and (57). However, they are defined without the 1=ð2πÞ4
factor in Ref. [17].
The gluon correlation function is defined in the similar

way by

Φαβ
g=Hðph; pH; sHÞ ¼ Ng=H

Z
d4ξ
ð2πÞ4 e

iph·ξh

× hpHsHjAαð0ÞAβðξÞjpHsHi; ð58Þ

where Aα is given by Aα ¼ Aα
ata as explained below

Eq. (22), and Nh=H is the normalization constant. The
gluon correlation function is often expressed by the gluon-
field strength tensor Fμν

a ¼ ∂μAν
a − ∂νAμ

a þ gfabcA
μ
bA

μ
c

[17,41,42,45]. Let us consider the hadron H with momen-
tum in the positive-z direction. In the lightcone gauge
Aþ ¼ 0, the gluon filed has three components consist of A⃗⊥
and A−, and it satisfies ∂þAμ ¼ Fþμ. Therefore, Eq. (58)
becomes

Φαβ
g=Hðph; pH; sHÞ ¼

1

Ng=H

Z
d4ξ
ð2πÞ4 e

iph·ξh

× hpHsHjFþαð0ÞFþβðξhÞjpHsHi;
ð59Þ

where Fμν is defined with the color factor as Fμν ¼ Fμν
a ta.

One may note that the gluon correlation function in
Eq. (59) is slightly different from the ones in Refs. [41,42]
by the factor of 1=Ng=H: Φαβ

g=Hðph; pH; sHÞour ¼
ð1=Ng=HÞΦαβ

g=Hðph; pH; sHÞ½41;42�. The overall normalization
constant Nh=H is different depending on the hadron momen-
tum direction, namely in the positive- or negative-z direction,

Ng=H ¼
�
pþ
h for H ¼ A

p−
h for H ¼ B

: ð60Þ

Here,p�
h are the lightconemomenta. The details of this gluon

normalization factor are explained in Ref. [46].
Next, we define TMDs and the collinear PDFs from the

correlation functions. The correlation functions are inte-
grated over ph (pa or pb) to obtain the collinear correlation
functions,

Φh=HðxhÞ¼
Z

d2phTΦh=Hðxh;phTÞ

¼
Z

d4phΦh=Hðph;pH;sHÞδðp�
h −xhp�

HÞ; ð61Þ

where p⃗hT is the transverse momentum of the parton h, and
Φh=Hðxh; p⃗hTÞ are transverse-momentum-dependent corre-
lation functions, which are related to the TMDs. The þ=−
indicates the δ function δðpþ

h − xhp
þ
A Þ in the proton A or

δðp−
h − xhp−

BÞ in the deuteron B. The notation � indicates
þ (−) for h ¼ a and H ¼ A (h ¼ b and H ¼ B).
There are some differences from other publication in

kinematical factors [17,39,41,42]. The relations are

pH ,  sH

ph

Φh/ H pH ,  sH

ph

FIG. 6. Quark correlation function Φh=H .
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Φq=Aðpq; pA; sAÞ ¼ Φq=Aðpq; pA; sAÞ½17;39;42�;

Φq=AðxaÞ ¼ Φq=AðxaÞ½42� ¼
1

pþ
A
Φq=AðxaÞ½17;39�; ð62Þ

by taking H ¼ A for the quark correlation functions and
the PDFs. The TMD relations are the same as the ones for
the above PDFs. In the same way, there are differences
for the gluon correlation function and its collinear distri-
bution function as

Φαβ
g=Aðpg;pA;sAÞ¼

1

pþ
g=A

Φαβ
g=Aðpg;pA;sAÞ½39;41;42;47�;

Φαβ
g=AðxaÞ¼

1

xap
þ
A
Φαβ

g=AðxaÞ½42� ¼
1

xa
Φαβ

g=AðxaÞ½39;41;47�; ð63Þ

where pþ
g=A ¼ xap

þ
A is used. Namely, the collinear corre-

lation functions are defined as dimensionless quantities in
this paper.
In this work, the collinear functions are considered for

finding the gluon transversity, so that the parton momenta
are integrated except for theþ or − lightcone component as
given in Eq. (61). Usually, all the possible distribution
functions are listed in the TMD correlation-function form,
so that the TMDs fh=Hðx; p⃗hTÞ are integrated over p⃗hT to
become the PDFs fh=HðxÞ for our work,

fh=HðxÞ ¼
Z

d2phT fh=Hðx; p⃗hTÞ: ð64Þ

fThe quark and gluon correlation functions are expressed
by the TMDs for the proton and deuteron [17,39,41,42],
and they are integrated over p⃗hT. Here, we are interested in
probing the gluon transversity distribution of the deuteron.
For finding it in the collinear formalism, we first consider
the leading-twist part [17],

Φq=AðxaÞ ¼
1

2
½=̄nf1;q=AðxaÞ þ γ5=̄nSA;Lg1;q=AðxaÞ

þ =̄nγ5=sA;Th1;q=AðxaÞ�; ð65Þ

as explained in Sec. III D. Here, f1;q=AðxaÞ, g1;q=AðxaÞ, and
h1;q=AðxaÞ (≡ΔTqðxaÞ in this paper) are twist-2 distribution
functions which indicate unpolarized, longitudinally polar-
ized, and transversity distributions.
For the spin-1 deuteron, one should note that there are

additional structure functions in comparison with the spin-
1=2 nucleon ones due to the spin-1 nature. The twist-2 part
of the quark correlation function for the spin-1 deuteron is
given as [39,42]

Φq=BðxbÞ ¼
1

2
½=nf1;q=BðxbÞ þ γ5=nSB;Lg1;q=BðxbÞ

þ =nγ5=sB;Th1;q=BðxbÞ þ =nSB;LLf1LL;q=BðxbÞ
þ σμνnνS

μ
B;LTh1LT;q=BðxbÞ�; ð66Þ

where f1;q=BðxbÞ is the unpolarized distribution function,
g1;q=BðxbÞ is the longitudinally polarized one, h1;q=BðxbÞ
(¼ΔTqðxbÞ) is the transversity, and f1LL;q=BðxbÞ and
h1LT;q=BðxbÞ are tensor-polarized ones of the deuteron.
The last two terms with SB;LL and SB;LT exist due to the
spin-1 nature of the deuteron, and they do not exist for the
spin-1=2 proton. The correlation functions and the PDFs
for antiquarks are obtained by the replacement q → q̄ in
these expressions.
For the gluon correlation function in the deuteron, the

twist-2 part is similarly given as [41,42]

Φαβ
g=BðxbÞ≡

Z
d2pbT Φ

αβ
g=Bðx; p⃗bTÞ

¼ 1

2
½−gαβT f1;g=BðxbÞ þ iϵαβT SB;Lg1;g=BðxbÞ

− gαβT SB;LLf1LL;g=BðxbÞ
þ SαβB;TTh1TT;g=BðxbÞ�; ð67Þ

where f1;g=B is the unpolarized gluon distribution function,
g1;g=B is the longitudinally polarized one, f1LL;g=B and
h1TT;g=B [41,42] (≡−ΔTgB in this paper) are tensor- and
linearly polarized ones. We have a negative sign for
ΔTgB because the linear polarization for the gluon trans-
versity is defined by εx − εy in Eq. (39) instead of εy − εx in
Refs. [41,42]. There are different definitions on the gluon
transversity and its notation,

Δ2GðxÞ ¼ gx̂=x̂ðxÞ − gŷ=x̂ðxÞ ½13; 47�;
aðxÞ ¼ gx̂=x̂ðxÞ − gŷ=x̂ðxÞ ½25; 27�;

ΔLgðxÞ ¼ gx̂=x̂ðxÞ − gŷ=x̂ðxÞ ½20�;
δGðxÞ ¼ −gx̂=x̂ðxÞ þ gŷ=x̂ðxÞ ½28; 48�;

h1TT;gðxÞ ¼ −gx̂=x̂ðxÞ þ gŷ=x̂ðxÞ ½39; 41; 49�;
ΔTgðxÞ ¼ gx̂=x̂ðxÞ − gŷ=x̂ðxÞ ½50�; this work; ð68Þ

where gĥ=Ĥ indicates the gluon distribution with the gluon

polarization ĥ and the hadron (deuteron) polarization Ĥ. In
Eq. (67), the notation ϵαβT is defined by ϵαβT ≡ ϵαβ−þ

(ϵ12T ¼ −ϵ21T ¼ 1, others ¼ 0). It is different from the
linear-polarization tensor εαβTT. The gluon correlation func-
tion Φαβ

g=BðxÞ is expressed by only the transverse indices α
and β (¼ 1, 2), because other components do not contribute
to the cross section in the leading-twist level. The gluon
correlation functionΦαβ

g=AðxÞ of the proton is the same as the
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one for the deuteron in Eq. (67) by terminating the tensor
terms (SLL ¼ SαβTT ¼ 0). However, its expression is not
explicitly written because it does not contribute to the
Drell-Yan cross section in our current linear-polarization
asymmetry as the leading one.

D. Cross section for Drell-Yan process
p+ d → μ+ μ− +X in parton model

The cross section for the proton-deuteron Drell-Yan
process pþ d → μþμ− þ X of Fig. 5(a) is calculated by
the partonic-subprocess cross section σ̂ab→cd in Fig. 5(b).
The partonic cross section is convoluted with the PDFs of
hadrons, as explained in Ref. [43] for the unpolarized cross
section. Especially, since the correlation-function formal-
ism is used in deriving the polarized cross section, we first
show the Drell-Yan cross section in terms of the parton
correlation functions.
We investigate the dimuon production with finite qT .

First, the qðinpÞq̄ðin dÞ subprocess contribution is consid-
ered as an example to confirm our formalism with the
correlation functions. The unpolarized pd Drell-Yan cross
section dσpd→γX is expressed by the partonic cross section
for qðpÞq̄ðdÞ → γ�g → μþμ−g by the convolution with the
quark and antiquark distribution functions as

dσpd→μþμ−Xjqq̄→γ�g ¼
Z

1

0

dxa

Z
1

0

dxbqðxaÞq̄ðxbÞ

× dσ̂qq̄→μþμ−g: ð69Þ

The partonic cross section for qq̄ → γ�g → μþμ−g is
given by

dσ̂qq̄→μþμ−g ¼
1

4pa · pb

X
spin;
color

X
flavor

jMqq̄→γ�g→μþμ−gj2

× ð2πÞ4δ4ðpa þ pb − k1 − k2 − pdÞ

×
d3k1

2E1ð2πÞ3
d3k2

2E2ð2πÞ3
d3pd

2Edð2πÞ3
; ð70Þ

where k1, k2, and pd are momenta for μ−, μþ, and gluon in
the final state. The three-body phase space for the final state
is written by the two-body phase spaces as [51]

dΦ3ðpa þ pb; k1; k2; pdÞ
¼ dΦ2ðq; k1; k2ÞdΦ2ðpa þ pb; q; pdÞ; ð71Þ

where the n-body phase space is defined by

dΦnðP;p1;…;pnÞ¼ δ4
�
P−

Xn
i¼1

pi

�Yn
i¼1

d3pi

2Eið2πÞ3
: ð72Þ

The matrix element is described by the process qq̄ → γ�g
and subsequent γ� → μþμ− as

Mqq̄→γ�g→μþμ−g¼eMμ
γ�→μþμ−

−1
Q2

eMqq̄→γ�g;μ;

Mμ
γ�→μþμ− ¼ ūðk1;λ1Þγμvðk2;λ2Þ;

Mqq̄→γ�g;μ¼eqε�αðpd;λdÞv̄ðpb;λbÞΓμαuðpa;λaÞ; ð73Þ

where Γμα indicates the qq̄γg interaction part. The dimuon
term is calculated and it becomes the lepton tensor Lμν,

X
λ1;λ2

ðMμ
γ�→μþμ−Þ†Mν

γ�→μþμ−

¼ 2Lμν ¼ 4ðkμ1kν2 þ kν1k
μ
2 − k1 · k2gμνÞ; ð74Þ

where the overall factor of 2 is assigned so that the lepton
tensor agrees with the conventional one used in describing
the deep inelastic lepton-nucleon scattering. Its integral
over the phase space is given by

Z
dΦ2ðq; k1; k2Þ2Lμν ¼ 1

6π
ðqμqν −Q2gμνÞ: ð75Þ

This relation eventually becomes −Q2gμν=ð6πÞ by consid-
ering the current conservation qμMqq̄→γ�g;μ ¼ 0.
From the relations in Eq. (52), the four-momentum

square p2
d becomes

p2
d ¼ ðpa þ pb − qÞ2 ¼ sðxa − x1Þ

�
xb −

xax2 − τ

xa − x1

�
; ð76Þ

where the used kinematical variables (x1; x2;…) are
defined in Sec. III B. Then, using the relations for the
integrals

d3q
2E

¼ 1

4
dq2T dϕ dy;

d3pd

2Ed
¼ d4pdδðp2

dÞ;Z
1

0

dxb δðp2
dÞ ¼

1

sðxa − x1Þ
ð77Þ

and taking the gluon-spin summation, we finally obtain the
cross section expression as

dσpd→μþμ−X

dτdq2Tdϕdy

����
qq̄→γ�g

¼ α2

12ð2πÞ2Q2

X
spin;
color

X
q

e2qgμνgαβ

×
Z

1

minðxaÞ

1

xa − x1
qAðxaÞq̄BðxbÞTr

�
γþ

2
Γνβ

γ−

2
Γ̂μα

�
: ð78Þ

Here, due to the δ function for p2
d in Eqs. (76) and (77) and

also the kinematical constraint of max ðxbÞ ¼ 1, we have
the relations

xb ¼
xax2 − τ

xa − τ
; minðxaÞ ¼

x1 − τ

1 − x2
; ð79Þ

and the notation Ô is defined by

S. KUMANO and QIN-TAO SONG PHYS. REV. D 101, 054011 (2020)

054011-12



Ô≡ γ0O†γ0: ð80Þ

The fine structure constant α is given by α ¼ e2=ð4πÞ.
Next, we try to write the cross section in terms of parton correlation functions in Sec. III C by considering only the

subprocess qðpÞ þ q̄ðdÞ → γ þ g in Fig. 7 as

dσpd→γXjqq̄→γ�g ¼
1

4pA · pB

Z
d4pa

ð2πÞ4
Z

d4pb

ð2πÞ4
X
spin;
color

X
flavor

X
XA;XB

ð2πÞ4δ4ðpA − pa − pAXÞð2πÞ4δ4ðpB − pb − pBXÞ

× jhXBjψ̄b;lð0ÞjpBsBiðΓqq̄→γ�g;μÞlkhXAjψa;kð0ÞjpAsAiMμ
γ�→μþμ− j2

×

�
−e
Q2

�
2

ð2πÞ4δ4ðpa þ pb − k1 − k2 − pdÞ
d3k1

2E1ð2πÞ3
d3k2

2E2ð2πÞ3
d3pd

2Edð2πÞ3
; ð81Þ

where the spin summations are taken for muons, quark,
antiquark, and gluon. The parton-interaction part
Γqq̄→γ�g;μ is given by Γqq̄→γ�g;μ ¼ eqε�αðpd; λdÞΓμα by
extracting out the quark charge eq and the gluon-
polarization vector ε�αðpd; λdÞ from Γqq̄→γ�g;μ. By changing
the three-body phase space to the two-body ones and
repeating the same calculations from Eq. (74) to
Eq. (77), the cross section is written by the lepton tensor
Lμν in Eqs. (74) and (75) multiplied by the hadron
tensor Wμν,

dσpd→μþμ−X

dτ dq2T dϕ dy

¼ α2

2ð2πÞ2Q4

�Z
dΦ2ðq; k1; k2Þ2Lμν

�
Wμν: ð82Þ

This cross section expression, in terms of lepton and hadron
tensors, can be used not only for the process qq̄ → γ�g
under consideration but also for any partonic subprocesses
in the Drell-Yan process. The hadron tensor is given by

Wμνðqq̄Þ ¼
Z

d4pa

ð2πÞ4
Z

d4pb

ð2πÞ4
X
spin;
color

X
q

X
XA;XB

e2qð2πÞ4δ4ðpA − pa − pAXÞð2πÞ4δ4ðpB − pb − pBXÞ

× ½hXBjψ̄b;jð0ÞjpBsBiðΓqq̄→γ�g;μÞjihXAjψa;ið0ÞjpAsAi�†½hXBjψ̄b;lð0ÞjpBsBiðΓqq̄→γ�g;νÞlkhXAjψa;kð0ÞjpAsAi�

× ð2πÞ4δ4ðpa þ pb − q − pdÞ
d3pd

2Edð2πÞ3
; ð83Þ

for the qq̄ → γ�g process.
We try to write the hadron tensor in terms of the

correlation functions. The δ functions δ4ðpH−ph−pHX
Þ

(H ¼ A or B, h ¼ a or b) in Eq. (83) are expressed by the

integrals of exponential functions ð2πÞ4δ4ðpH − ph−
pHX

Þ ¼ R
d4ξhe

−iðpH−ph−pHX
Þ·ξh . Then, the quark field is

given at ξh in the matrix elements with the exponential
factor as eipHX

·ξhψð0Þe−ipH ·ξh ¼ ψðξhÞ. The completeness
relation

P
XH

jXHihXHj ¼ 1 is used to express the hadron
tensor in terms of parton correlation functions
Φh=Hðph; pH; sHÞ, which include parton-spin summations
and averages, as

Wμνðqq̄Þ ¼ 2π
X
λd

X
color

X
q

e2q

Z
d4pa

Z
d4pbδðp2

dÞ

× Tr½Γqq̄→γ�g;νΦq=Aðpa; pA; sAÞ
× Γ̂qq̄→γ�g;μΦq̄=Bðpb; pB; sBÞ�: ð84Þ

Here, the summation is taken over the gluon spin λd. In this
way, the cross section for pþ d → γ� þ X is generally
expressed by the parton correlation functions defined by the

FIG. 7. qþ q̄ → γ� þ g process for cross section of
pþ d → γ� þ X.
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matrix elements of the bilocal operators in Eqs. (56)
and (57).
Using the integrated collinear correlation functions

with the lightcone relations d4ph ¼ dpþ
h dp

−
h d

2phT and
p�
h ¼ xhp�

H, and using the integral
R
dxbδðp2

dÞ of Eq. (76),
we have the hadron tensor,

Wμνðqq̄Þ¼
X
λd

X
color

X
q

e2q

Z
1

minðxaÞ
dxa

π

xa−x1

×Tr½Γqq̄→γ�g;νΦq=AðxaÞΓ̂qq̄→γ�g;μΦq̄=BðxbÞ�: ð85Þ

The momentum fraction xb for a parton in the deuteron is
defined in Eq. (51), so its upper bound is one. However, one
should be careful about this kinematical region. In lepton
DIS, the Bjorken scaling variable for the nucleon xBj ¼
Q2=ð2MNνÞ is usually used also for the deuteron. In this
case, due to the difference between the nucleon and
deuteron masses (Md=MN ≃ 2), the upper bound is
maxðxBjÞ ≃ 2. One should note this convention difference
in numerical estimates. If we provide the correlation
functions Φq=AðxaÞ, Φq̄=BðxbÞ and the parton-interaction
part Γqq̄→γ�g;μ in Eq. (85), the Drell-Yan cross section can be
evaluated. We explained relevant PDFs of the proton and
deuteron in connection with their parton correlation func-
tions in Sec. III C for evaluating the partonic cross section
in Sec. III E. From the hadron tensor of Eq. (85) with the
unpolarized correlation functions Φq=AðxaÞ ¼ n̄fq=AðxaÞ=2
and Φq̄=AðxbÞ ¼ =nfq̄=BðxbÞ=2 with n̄ ¼ γ− and =n ¼ γþ, the
cross section of Eq. (82) becomes identical to Eq. (78).
Before stepping into the cross-section calculation with

the gluon transversity, we comment on the factorization of
the cross section into the soft-physics part of the correlation
functions and the hard part described by perturbative QCD.
As it is explained in Ref. [52], the Drell-Yan cross sections
are factorized in the leading order (LO) of αs if the hard
scaleQ2 is reasonably large. The factorization is satisfied in
the reasonably large Q2 region, so that it is theoretically
meaningful to extract the gluon transversity distribution
from experimental measurements.
In this work, the linear-polarization asymmetry Ex − Ey,

is taken for the deuteron as illustrated in Fig. 8, so that only
the h1TT;g=BðxÞ (≡− ΔTgBðxÞ in this work) term of Eq. (67)

contributes. Actually, the asymmetry is Ex0 − Ey0 because
the deuteron moves in the negative-z direction in the c.m.
frame as shown in Fig. 8. However, according to Eq. (39),
by changing the gluon polarization ε for the deuteron
one E, they are same: Ex0 − Ey0 ¼ E−x − E−y ¼ Ex − Ey.

Namely, we leave only the SαβB;TT term and terminate other
unpolarized and spin-dependent ones, as explained in the
end of Sec. III A, in the correlation function of Eq. (67). In
the collinear formalism, the hadron tensor is given in the
same way with Eq. (85) by

WμνðEx−EyÞ

¼
X
λd

X
color

X
q

e2q

Z
1

minðxaÞ
dxa

π

p−
g ðxa−x1Þ

×Tr½ΓνβfΦq=AðxaÞþΦq̄=AðxaÞgΓ̂μαΦ
αβ
g=BðxbÞ�; ð86Þ

as illustrated in Fig. 9. The summation is taken over the
quark spin λd. Here, only the linear polarization is con-
sidered for the deuteron by taking the SαβB;TT term as the only
one to a finite spin asymmetry. Then, the only contribution
comes from the gluon transversityΔTgBðxÞ in the deuteron.
There is no such polarization term in the quark and
antiquark distributions of the deuteron according to
Eq. (66). In order to have the virtual photon in the
intermediate stage, a charged parton, namely a quark or
an antiquark, needs to be involved in the reaction, so that
only quark and antiquark correlation functions contribute
as the leading process from the proton. The collinear
correlation functions in Eqs. (65) and (67) are used for
calculating the hadron tensor of Eq. (86). Then, we find that
the only contribution from the proton part should be the
twist-2 PDF term f1;q=A.
In this case of polarization, the trace of Eq. (86) typically

looks like

Tr½=pdγβ=piγνfΦq=AðxaÞþΦq̄=AðxaÞg� � �× γμ=piγαΦ
αβ
g=BðxbÞ�;

ð87Þ

FIG. 8. Linear polarizations Ex0 and Ey0 of spin-1 deuteron in
proton(A)-deuteron(B) collision. FIG. 9. Quark-gluon process contribution to the cross section.
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where γα and γβ are from the quark-gluon vertex, and
pi is the intermediate-quark momentum, for example,
pi ¼ pa þ pb. There could be a factor =pa, for example,
in an unpolarized-proton reaction. However, it is included
into the definition of Φq=A, and it corresponds to the first n̄
in Eq. (65). There are seven γ matrices, except for the ones
in Φqðq̄Þ=A, in the trace and there is no γ factor in the gluon
transversity term ΔTgBðxbÞ of Φg=B, so that only odd
numbers of γ in Φq=AðxÞ contribute to the spin asymmetry.
In addition, the unpolarized-proton beam is assumed in
this work, so that only the unpolarized distribution
n̄f1;q=AðxaÞ=2 contributes to the hadron tensor.
In this way, we find that the leading contribution starts

from the twist-2 distribution f1;q=A in the nucleon part by
considering that only the gluon transversity ΔTgB partic-
ipates from the deuteron for the linear-polarization asym-
metry. From Eqs. (65) and (67), they are given by

Φq=AðxaÞ ¼
1

2
=̄nqAðxaÞ;

Φαβ
g=BðxbÞ ¼ −SαβB;TTΔTgBðxbÞ: ð88Þ

Here, Φαβ
g=BðxbÞ is multiplied by the factor of 2 because the

linear polarization Ex − Ey is taken for showing the cross
section instead of ðEx − EyÞ=2, and f1;q=AðxaÞ is denoted
as qAðxaÞ.

E. Parton-interaction processes

For calculating the hadron tensor of Eq. (86) and
subsequently the cross section of Eq. (82), partonic matrix
elements are calculated in this section. We consider the
leading partonic processes in Fig. 10. Since the linear-
polarization spin asymmetry in Eq. (53) is studied in this
work and since unpolarized and polarized gluon distribu-
tions in the proton do not contribute as the leading process,
main contributions come from the partonic reactions of

q=q̄ in protonþ g in deuteron → γ� þ q;

as shown in Fig. 10.

The parton-scattering amplitude of Fig. 10 is given by

Γμα ¼ igðtaÞjiūðpdÞGμα;

Gμα ≡ γμ
=pa þ =pb

ŝ
γα þ γα

=pa − q
t̂

γμ; ð89Þ

where g is the strong coupling constant. Then, the color
factor in Wμν becomes

X
color

ðtaÞjiðtaÞ†ji ¼
1

3 · 8

X
a

ðtaÞjiðtaÞ†ji ¼
1

8
CF;

CF ¼ N2
c − 1

2Nc
; Nc ¼ 3: ð90Þ

Using these expressions, the running coupling constant
given by αs ¼ g2=ð4πÞ, p−

g ¼ xbp−
B, and the correlation

functions in Eq. (88), we write the hadron tensor of Eq. (86)
in terms of the PDFs as

WμνðEx−EyÞ¼−
π2αsCF

4p−
B

X
q

e2q

×
Z

1

minðxaÞ
dxa

1

xbðxa−x1Þ
fqAðxaÞþ q̄AðxaÞg

×ΔTgBðxbÞSαβB;TTTr½=pdGνβ=̄nĜμα�: ð91Þ

Next, the trace should be calculated. We need trace
calculations with eight γ matrices and it is slightly lengthy,
so that their results should be carefully checked. Three
independent methods are used. First, we analytically
calculated the trace by noting the μν and αβ symmetries
of gμν and SαβB;TT together with properties of spin and
momentum vectors within the trace. As the independent
second method, it is calculated by using the FeynCalc code
[53] together with Mathematica. The third one is by using
the Tracer code [54] with also Mathematica. All these
results are consistent with each other.
We divide the trace into s-channel, t-channel, and their

interference terms,

gμνSαβB;TTTr½=pdGνβ=̄nĜμα�

¼ 1

ŝ2
jMsj2 þ

1

t̂2
jMtj2 þ

1

ŝ t̂
ðM�

sMt þMsM�
t Þ: ð92Þ

Each term is calculated as

jMsj2 ¼ gμνSαβB;TTTr½=̄nγαð=pa þ =pbÞγμ=pdγνð=pa þ =pbÞγβ�
¼ 16ŝn̄ζSαB;TT;ζpd;α ¼ 0; ð93Þ

jMtj2 ¼ gμνSαβB;TTTr½n̄γμðpa − pcÞγαpdγβðpa − pcÞγν�
¼ −32ðqαSαβB;TTqβÞn̄ · ðpa − pcÞ; ð94ÞFIG. 10. Leading partonic processes qðpaÞ þ gðpbÞ →

γ�ðpc ¼ qÞ þ qðpdÞ: (1) s-channel and (2) t-channel processes.
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M�
sMt þMsM�

t

¼ gμνSαβB;TTfTr½=̄nγαð=pa þ =pbÞγμ=pdγβð=pa − =pcÞγν�
þTr½=̄nγμð=pa − =pcÞγα=pdγνð=pa þ =pbÞγβ�g

¼ 32ðqαSαβB;TTqβÞn̄ · ðpa þ pbÞ: ð95Þ

Noting Eq. (54) and the relations n̄ · ðpa þ pbÞ ¼
ffiffiffiffiffiffiffi
s=2

p
xb

and n̄ · ðpa − pcÞ ¼ −
ffiffiffiffiffiffiffi
s=2

p
x2, we obtain

gμνSαβB;TTTr½=pdGνβ=̄nĜμα�

¼ −
32Q2q2Tffiffiffi

2
p

s5=2xaðτ − xax2Þ2
cosð2ϕÞ: ð96Þ

Substituting Eq. (96) into Eq. (82), we finally obtain the
cross section as

dσpd→μþμ−X

dτdq2Tdϕdy
ðEx − EyÞ ¼ −

α2αsCFq2T
6πs3

cosð2ϕÞ
Z

1

minðxaÞ
dxa

1

ðxaxbÞ2ðxa − x1Þðτ − xax2Þ2
×
X
q

e2qxa½qAðxaÞ þ q̄AðxaÞ�xbΔTgBðxbÞ: ð97Þ

Here, the deuteron polarization is explicitly written as Ex−Ey, which indicates the polarization asymmetry of Eq. (53).
Actual polarization measurements are usually done by polarization asymmetries. For such estimations, the cross section

dσpd→μþμ−XðEx þ EyÞ should be calculated in the same way. There are two process types, qq̄ → γ�g and
qðor q̄Þg → γ�qðor q̄Þ. For the qq̄ → γ�g processes, the hadron tensor, which corresponds to Eq. (85), is given by

Wμνðqq̄; Ex þ EyÞ ¼
X
λd

X
color

X
q

e2q

Z
1

minðxaÞ
dxa

π

xa − x1
Tr½Γqq̄→γ�g;νΦq=AðxaÞΓ̂qq̄→γ�g;μΦq̄=BðxbÞ

þ Γq̄q→γ�g;νΦq̄=AðxaÞΓ̂q̄q→γ�g;μΦq=BðxbÞ�: ð98Þ

For the qðor q̄Þg → γ�qðor q̄Þ processes, the hadron tensor, which corresponds to Eq. (86), is given by

Wμνðqg; Ex þ EyÞ ¼
X
λd

X
color

X
q

e2q

Z
1

minðxaÞ
dxa

π

xa − x1
Tr

�
1

p−
g
Γqg→γ�q;νβfΦq=AðxaÞ þΦq̄=AðxaÞgΓ̂qg→γ�q;μαΦ

αβ
g=BðxbÞ

þ 1

pþ
g
Γgq→γ�q;νβfΦq=BðxbÞ þΦq̄=BðxbÞgΓ̂gq→γ�q;μαΦ

αβ
g=AðxaÞ

�
:

ð99Þ

Here, the linear polarizations Ex and Ey are considered
for the deuteron. For the polarization Ex (Ey), the spin

vector and tensor of Eq. (31) are given by S⃗ ¼ 0 and Tij ¼
δij=3 − δi1δj1 (Tij ¼ δij=3 − δi2δj2), which indicate SxB;T ¼
SyB;T ¼ SB;L ¼ SxyB;TT ¼ SxB;LT ¼ SyB;LT ¼ 0, SB;LL ¼ 1=2,
and SxxB;TT ¼ −1 (SxxB;TT ¼ 1 for Ey) in Eq. (30) for the
deuteron (B). Then, the correlation functions of Eqs. (66)
and (67) for the deuteron become

Φq=BðxbÞEx
þΦq=BðxbÞEy

¼ =nf1;q=BðxbÞ þ =nSB;LLf1LL;q=BðxbÞ;
Φαβ

g=BðxbÞEx
þΦαβ

g=BðxbÞEy

¼ −gαβT f1;g=BðxbÞ − gαβT SB;LLf1LL;g=BðxbÞ: ð100Þ

Therefore, the collinear quark and gluon correlation func-
tions are expressed by the unpolarized PDFs f1;q=BðxbÞ and
f1;g=BðxbÞ and the tensor-polarized PDFs f1LL;q=BðxbÞ and
f1LL;g=BðxbÞ. Although there is some information of the
tensor-polarized quark distributions f1LL;q=BðxbÞ from the
HERMES measurement [31,34], there are no established
distributions at this stage. A finite tensor-polarized gluon
distribution should appear through the Q2 evolution [33];
however, there is no reliable distribution at this stage. In any
case, the tensor-polarized PDFs are of the order of a few
percent or less in comparison with the unpolarized PDFs
[31,33,34], they are neglected in numerical analysis of this
work by taking Φq=BðxbÞEx

þΦq=BðxbÞEy
¼ =nf1;q=BðxbÞ

and Φαβ
g=BðxbÞEx

þΦαβ
g=BðxbÞEy

¼ −gαβT f1;g=BðxbÞ.
Repeating similar calculations for the cross section, we

obtain
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dσpd→μþμ−X

dτdq2T dϕdy
ðEx þEyÞ ¼

α2αsCF

2πQ2

Z
1

minðxaÞ
dxa

1

xa − x1

X
q

e2q

�
4

9
fqAðxaÞq̄BðxbÞ þ q̄AðxaÞqBðxbÞg

2Q2ŝþ t̂2 þ û2

ŝ t̂ û

−
1

6ŝ

�
fqAðxaÞ þ q̄AðxaÞggBðxbÞ

2Q2ûþ ŝ2 þ t̂2

ŝ t̂
þ gAðxaÞfqBðxbÞ þ q̄BðxbÞg

2Q2t̂þ ŝ2 þ û2

ŝ û

��
:

ð101Þ

In fact, this expression agrees with the one in Ref. [55]. There is an overall factor of 2 in Eq. (101) because dσðExÞ þ
dσðExÞ is calculated instead of the spin average in Ref. [55]. The cross section is expressed by the variables xa; xb; x1; x2 as

dσpd→μþμ−X

dτ dq2T dϕ dy
ðEx þ EyÞ ¼

α2αsCF

2πτs2

Z
1

minðxaÞ
dxa

1

ðxa − x1Þx2ax2b
×
X
q

e2q

�
4

9
fqAðxaÞq̄BðxbÞ þ q̄AðxaÞqBðxbÞg

×
2τfτ − ð−2xaxb þ x1xb þ x2xaÞg þ x2bðxa − x1Þ2 þ x2aðxb − x2Þ2

ðxa − x1Þðxb − x2Þ

þ 1

6
fqAðxaÞ þ q̄AðxaÞggBðxbÞ

2τðτ − x1xbÞ þ x2bfðxa − x1Þ2 þ x2ag
xbðxa − x1Þ

þ 1

6
gAðxaÞfqBðxbÞ þ q̄BðxbÞg

2τðτ − x2xaÞ þ x2afðxb − x2Þ2 þ x2bg
xaðxb − x2Þ

�
: ð102Þ

Then, the polarization asymmetry

AExy
¼ dσpd→μþμ−XðEx − EyÞ=ðdτ dq2T dϕ dyÞ

dσpd→μþμ−XðEx þ EyÞ=ðdτ dq2T dϕ dyÞ ð103Þ

is estimated numerically in Sec. IV.

IV. NUMERICAL RESULTS

By the formula in Eq. (97), the cross section is evaluated
numerically. We need two types of parton distributions for
this calculation. One is the unpolarized PDFs qA and q̄A in
the proton, and the other is the gluon transversity ΔTgB in
the deuteron. Since the unpolarized PDFs are accurately
determined except for extreme kinematical regions, if one
of any recent parametrizations is taken, it provides a
reasonable estimate on the proton part. As one of such a
parametrization, the LO set of the CTEQ14 [56] is used for
our numerical calculations in the leading-order and leading-
twist level. There is a charge squared factor in Eq. (97), so
that the proton part simply becomes the structure function
F2 in the LO.
Next, an appropriate gluon transversity distribution

should be taken. However, due to the lack of experimental
information, there is no realistic gluon transversity distri-
bution for evaluating the cross section. Since it is the
purpose of this work to propose a possible experiment to
find it at hadron accelerator facilities, we need to have a
rough estimate on the magnitude of the cross section for

future experimental proposals. We note that the quark
transversity distributions in the proton are expected to be
equal to the longitudinally polarized quark distributions at
small Q2, where the longitudinal polarization and the
transverse one do not matter. From this consideration,
we may boldly assume at first that the gluon transversity
distribution is the same as the longitudinally polarized
gluon distribution for calculating the cross section, just as a
rough order of magnitude estimate on the cross section.
However, we should note that the longitudinally polarized
gluon distribution and the gluon transversity distribution
have different physics origins, so that the actual cross
section would be different. Of course, such an assumed
distribution should be actually measured by future experi-
ments. Later, we show how the cross section depends on
this assumption.
The longitudinally polarized gluon distribution is notwell

determined at this stage, and it is one of the major purposes
of building the future electron-ion collider. We take one of
recent parametrizations, obtained by global analysis of
world data in polarized proton reactions, on the longitudi-
nally polarized gluon distribution. The employed set is
the neural network (NN) PDFpol1.1 version [57]. The
NNPDFpol gluon distributions are shown in Fig. 11 at
Q2 ¼ 20, 30, and 50 GeV2. Since the dimuon cross sections
are measured in the Fermilab Drell-Yan experiment in the
dimuon-mass region, 42 < M2

μμ ¼ Q2 < 92 GeV2, we con-
sider the scale dependence in this range. The NNPDF
determination reflects the Relativistic Heavy Ion Collider

GLUON TRANSVERSITY IN POLARIZED PROTON-DEUTERON … PHYS. REV. D 101, 054011 (2020)

054011-17



(RHIC) pion- and jet-production measurements, which are
sensitive to the polarized gluon distribution, and it is one of
reliable models at this stage.
There are two factors which need to be carefully

considered in using the nucleonic PDFs for the deuteron
ones. The first point is to assume that the deuteron PDFs are
simply given by the addition of proton and neutron
contributions as the first approximation. In our case, the
gluon transversity of the deuteron is tentatively assumed as
the addition of the longitudinally polarized gluon distribu-
tions for the proton and neutron, ΔTgd ¼ Δgp þ Δgn.
The second point is that one needs to be careful about the

scaling variable or the momentum fraction, as discussed
after Eq. (85). In the Fermilab Drell-Yan experiment, the
momentum fraction for a parton q in the deuteron is defined
by pq ¼ x2ðpd=2Þ, namely by using the deuteron momen-
tum per nucleon, in Fermilab Drell-Yan experiments [44],
so that its kinematical range is, in principle, 0 ≤ x2 ≤ 2.
However, the range 1 ≤ x2 ≤ 2 is usually neglected and it is
not even shown because the PDFs are tiny and it cannot be
reached by experiments [26,44]. This definition of x2
corresponds to the Bjorken scaling variable x ¼
Q2=ð2MNνÞ (0 ≤ x ≤ 2) used in lepton DIS experiments
with the deuteron target.
The momentum fraction xb has been used in this paper

for partons in the deuteron, and its range is given by 0 ≤
xb ≤ 1 by definition. If deuteron structure functions are
assumed to be a simple addition of proton and neutron
ones, finite PDFs exist only in the kinematical region of
0 ≤ xb ≤ 1=2 and they vanish in the region 1=2 ≤ xb ≤ 1.
On the other hand, the nucleonic PDFs are provided in the
Bjorken-x region of 0 ≤ xBj ≤ 1, and the deuteron PDFs
exist in the range 0 ≤ xBj ≤ 2. Since the cross section is
formulated by using the variable xb, we need to express
ΔTgdðxbÞ in Eq. (97) in terms of Δgp;nðxBjÞ for the
proton and neutron. To preserve the parton densities in
changing the scaling variable, we need to take ΔTgdðxbÞ¼
2½ΔgpðxBjÞþΔgnðxBjÞ�, where 0≤xBj≤1 for the nucleon,

in evaluation of the cross section. For calculating this
relation in the cross section, we first define the momentum
fraction x2, in the range 0 ≤ x2 ≤ 2, by x2 ≡ 2xb from xb
which is given by xa in Eq. (79). Then, the only range
0 ≤ x2 ≤ 1 is used as the scaling variable xBj for the
nucleons. Alternatively, one can formulate the Drell-Yan
cross section from the beginning by the independent
addition of proton-proton and proton-neutron cross sec-
tions [58] to check this kinematical factor of 2. We actually
confirmed such a factor of 2, for example, by considering
the simple subprocess qq̄ → γ� → μþμ− for the unpolar-
ized Drell-Yan process. In fact, such a formalism has been
used in the proposals of the Fermilab Drell-Yan experi-
ments with the definition of the c.m. energy of Eq. (42).
Finally, we show the cross sections obtained by using the

CTEQ14 for the proton PDFs and the gluon transversity
distribution, which is assumed to be the longitudinal one in
Fig. 11, as the function of the dimuon-mass squared
(M2

μμ ¼ Q2) in Fig. 12. The dimuon azimuthal angle and
the dimuon rapidity are fixed at ϕ ¼ 0 and y ¼ 0.5. The
dotted, solid, and dashed curves indicate the cross sections
at qT ¼ 0.2, 0.5, and 1.0 GeV, respectively. The hard scale
Q2 for calculating the PDFs is taken as the dimuon-mass
squared Q2 ¼ M2

μμ. The magnitude of the cross section is
typically 0.001 ∼ 0.1 nb=GeV2 in this kinematical range.
The dependence of the cross section on the dimuon
transverse-momentum qT is shown in Fig. 13. The solid,
dashed, and dotted curves indicate the cross sections at
M2

μμ ¼ 20, 30, and 50 GeV2, respectively. In Fig. 14, the
dependence is shown on the dimuon rapidity at qT ¼ 0.2,

1

FIG. 12. The proton-deuteron Drell-Yan cross sections are
shown as the function of the dimuon-mass squared M2

μμ at
qT ¼ 0.2, 0.5, and 1 GeV for the dimuon azimuthal angle
ϕ ¼ 0 and the dimuon rapidity y ¼ 0.5. The CTEQ14 PDFs
are used for the unpolarized PDFs of the proton, and the
longitudinally polarized gluon distribution is taken from the
NNPDF1.1, and the gluon transversity is assumed to be the same
as the longitudinal one for numerical estimates.

FIG. 11. Used longitudinally polarized gluon distributions of
the NNPDFpol1.1 parametrization are shown atQ2 ¼ 20, 30, and
50 GeV2. These gluon distributions are used for a rough estimate
on the Drell-Yan cross sections.
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0.5, and 1.0 GeV by fixing the angle ϕ ¼ 0 and the
dimuon-mass squared M2

μμ ¼ 20 GeV2.
In Figs. 12 and 13, the cross section drops fast as pT and

M2
μμð¼Q2Þ increase. The kinematical factor in the cross

section integrand of Eq. (97) and the integral minimum for
xa are given by

q2T
xaxbðxa − x1Þðτ − xax2Þ2

¼ q2T

xa
	
Q2

s − xa

ffiffiffiffiffiffiffiffiffiffiffi
Q2þq2T

s

q
e−y


3
;

minðxaÞ ¼
x1 − τ

1 − x2
¼

ffiffiffiffiffiffiffiffiffiffiffi
Q2þq2T

s

q
ey − Q2

s

1 −
ffiffiffiffiffiffiffiffiffiffiffi
Q2þq2T

s

q
e−y

: ð104Þ

The first equation indicates that the cross section decreases
with Q2 and qT . In addition, the minimum of xa increases
with Q2 and qT at positive rapidity y, which restricts the
integral region. Since there is a factor 1=ðxaÞ2 in the
integrand, the increase of Q2 and qT significantly reduces
the cross section. Third, the scale Q2 is given by M2

μμ and
the PDFs, qAðxaÞ, q̄AðxaÞ, and ΔTgBðxbÞ, change with Q2.
Furthermore, the running coupling constant αs also
becomes slightly smaller by the increase of Q2.
In Figs. 12–14, the gluon transversity in the deuteron is

assumed to be ΔTg ¼ Δgp þ Δgn for estimating the cross
sections. However, it is just an assumption. As mentioned
before, the order of magnitude of the quark transversity
distributions are expected to be similar to the longitudinally
polarized ones, whereas the gluon transversity in the
deuteron would be very different from the longitudinally
polarized gluon distribution in the nucleon. In Fig. 15, we
show the cross sections also by taking ΔTg ¼ ðΔgp þ
ΔgnÞ=2 or ðΔgp þ ΔgnÞ=4. One should note that the actual
cross sections could be very different from the estimates by
using the assumed gluon transversity ΔTg ¼ Δgp þ Δgn.
So far, we have shown the absolute cross sections.

However, actual measurements will be done in polarization
asymmetries, and their numerical results are shown in
Fig. 16 for the polarization asymmetry defined in Eq. (103)
as the function of the dimuon-mass squaredM2

μμ. Since the
gluon transversity distributions are assumed to be the same
as the longitudinally polarized ones in this figure, the
numerical values are likely to be most optimistic ones. The

FIG. 15. Dependence is shown on the choice of the gluon
transversity for the proton-deuteron Drell-Yan cross section as the
function of the rapidity y at the dimuon transverse momentum
qT ¼ 0.5 GeV for the azimuthal angle ϕ ¼ 0 and the dimuon-
mass squared M2

μμ ¼ 20 GeV2. The NNPDF1.1 gluon distribu-
tion is used. Three gluon transversity distributions are assumed as
ΔTg ¼ Δgp þ Δgn, ðΔgp þ ΔgnÞ=2, and ðΔgp þ ΔgnÞ=4, where
p and n indicate proton and neutron, respectively, for calculating
the cross section.

FIG. 13. The proton-deuteron Drell-Yan cross sections are
shown as the function of the dimuon transverse momentum qT
at the dimuon-mass squared M2

μμ ¼ 20, 30, and 50 GeV2 for the
azimuthal angle ϕ ¼ 0 and the rapidity y ¼ 0.5.

1

FIG. 14. The proton-deuteron Drell-Yan cross sections are
shown as the function of the dimuon rapidity y at the dimuon
transverse momentum qT ¼ 0.2, 0.5, and 1 GeV for the azimuthal
angle ϕ ¼ 0 and the dimuon-mass squared M2

μμ ¼ 20 GeV2.
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asymmetries are likely to be smaller than these vales.
However, the asymmetries could be within the reach of
future experimental measurements.
The measurement of the gluon transversity is considered

at JLab [25]. In the studies of nucleon structure functions,
the measurements of hadron-accelerator facilities have
been often complementary and much better in some aspects
of the PDFs. For example, the pion- and jet-production
measurement in polarized proton-proton collisions at
RHIC provided a constraint on the longitudinally polarized
gluon distribution, namely the gluon-spin contribution
to the nucleon spin. Furthermore, the typical Q2 range
(20 < Q2 < 50 GeV2) of the Drell-Yan experiment is
much higher than the JLab measurements at a few to
several GeV2. In the similar way, it is a good idea to
propose independent experiments to measure the gluon
transversity at hadron facilities. With this motivation, we
proposed the Drell-Yan measurement in the proton-
deuteron reaction with the polarized deuteron. It needs
the linearly polarized deuteron with the unpolarized proton
beam, and the azimuthal-angle information [59] is neces-
sary for the dimuon in the final state. The cross section is
typically 0.001–0.1 nb=GeV2, so that it may not be an
easy experiment. However, there are available hadron
facilities at Fermilab, J-PARC (Japan Proton Accelerator
Research Complex), GSI-FAIR (Gesellschaft für

Schwerionenforschung -Facility for Antiproton and Ion
Research), and NICA (Nuclotron-based Ion Collider
fAcility). In addition, if the fixed-deuteron target becomes
possible at RHIC, Large Hadron Collider, or EIC, there
could be a possibility. We hope that our theoretical proposal
is realized in future experiments at some facility.

V. SUMMARY

Instead of the longitudinally polarized parton distribu-
tion functions, the nucleon spin structure can be inves-
tigated by the transversely polarized ones. The leading-
twist parton-distribution functions in the transversely
polarized nucleon are quark transversity distributions,
which have chiral-odd nature, and there is some exper-
imental information. On the other hand, the gluon trans-
versity does not exist for the spin-1=2 nucleon because the
two unit of spin flip (Δs ¼ 2) is necessary. It exists for the
spin-1 deuteron. There is an experimental project to
measure the gluon transversity by electron scattering;
however, it is valuable if it can be investigated at
hadron-accelerator facilities, as an independent experiment
and to probe the different kinematical region. There was no
theoretical proposal to find it in hadron reactions before
this work.
In this paper, the possibility was proposed to find the

gluon transversity at hadron accelerator facilities, espe-
cially, in the proton-deuteron reactions. We found that it is
possible in the proton-deuteron Drell-Yan process with the
linearly polarized deuteron. For the final dimuon, the
experimental measurement on the azimuthal-angle distri-
bution is necessary. We showed expected dependencies of
the cross section on the dimuon-mass squared M2

μμ, the
dimuon transverse-momentum pT , and the dimuon rapidity
y, and the assumption on the magnitudes of the gluon
transversity ΔTg. The order of cross section was typically
estimated as 0.001–0.1 nb=GeV2. Then, the spin asymme-
tries were shown and they could be within the reach of
experimental measurements. Hopefully, it will be realized
in future experiments at hadron facilities in addition to the
electron scattering experiment at JLab and possibly at EIC.
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FIG. 16. The spin asymmetries jAExy
j for the proton-deuteron

Drell-Yan cross sections are shown as the function of the dimuon-
mass squared M2

μμ at qT ¼ 0.2, 0.5, and 1 GeV for the dimuon
azimuthal angle ϕ ¼ 0 and the dimuon rapidity y ¼ 0.5. The
CTEQ14 PDFs are used for the unpolarized PDFs of the proton
and the deuteron. The longitudinally polarized gluon distribution
is taken from the NNPDF1.1, and the gluon transversity is
assumed to be the same as the longitudinal one for numerical
estimates.
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