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We present a dispersive analysis of the double-virtual photon-photon scattering to two pions up to
1.5 GeV. Through unitarity, this process is very sensitive to hadronic final-state interaction. For the s-wave,
we use a coupled-channel ππ, KK̄ analysis which allows for a simultaneous description of both f0ð500Þ
and f0ð980Þ resonances. For higher energies, f2ð1270Þ shows up as a dominant structure which we
approximate by a single-channel ππ rescattering in the d-wave. In the dispersive approach, the latter
requires taking into account t- and u-channel vector-meson exchange left-hand cuts which exhibit an
anomalouslike behavior for large spacelike virtualities. We show how to readily incorporate such behavior
using a contour deformation. Besides, we devote special attention to kinematic constraints of helicity
amplitudes and show their correlations explicitly.
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I. INTRODUCTION

It is still an open question whether a current ultraprecise
ðg − 2Þμ measurement can probe the physics beyond the
Standard Model. The presently observed 3σ to 4σ deviation
between theory [1–3] and experiment [4] has a potential to
become more significant once results from new measure-
ments at both FERMILAB [5] and J-PARC [6] are
available. On the other hand, the current theoretical error
results entirely from hadronic contributions. The hadronic
uncertainties mainly originate from the hadronic vacuum
polarization (HVP) and the hadronic light-by-light (HLBL)
processes. Forthcoming data from the high luminosity
eþe− colliders, in particular, from the BESIII and Belle
II collaborations, will further reduce the uncertainty in the
HVP in the coming years to make it commensurate with the
experimental precision on ðg − 2Þμ. The remaining had-
ronic uncertainty results from HLBL, where, apart from the
pseudoscalar pole contribution, a further nontrivial con-
tribution comes from the two-particle intermediate states
such as ππ, πη, and KK̄.
The rescattering of ππ and πη is responsible for

the contribution from f0ð500Þ, f0ð980Þ, f2ð1270Þ, and
a0ð980Þ, which can be taken into account in a dispersive
framework. Among them, only f2ð1270Þ can be interpreted
within the quark model as a state that does not originate

from long-range interactions [7]. Given the fact that it is
relatively narrow, its contribution to ðg − 2Þμ can be
accounted for in two ways: by using a pole contribution
as it is given in [8] (updated in [9] using recent data from
the Belle Collaboration [10]) or through fully dispersive
formalisms [11] and with input from γ�γ� → ππ [12]. The
comparison will shed light on the effective resonance
description of other resonances such as axial-vector con-
tributions [1,8].
In this paper, we present an analysis of the double-virtual

photon fusion reaction with pions in the final state. Our
approach relies on the modified Muskhelishvili-Omnès
formalism, which proves to be efficient in the description
of the real photon data [13]. Within the maximal analyticity
assumption [14], all of the nonanalytic behavior of the
amplitude should be coming from the unitarity and crossing
symmetry constraints. Therefore, in order to write the
dispersion-integral representation for the partial-wave hel-
icity amplitudes, one needs to make sure that they are free
from kinematic constraints at thresholds or pseudothres-
holds. The critical step in finding these constraints is the
decomposition of the amplitude into Lorentz structures and
invariant amplitudes [15]. The latter are expected to satisfy
the Mandelstam dispersion-integral representation [16].
Once a suitable set of Lorentz structures is found, the
rest is straightforward. Our work is a continuation of a
previous work where, for the first time, the single virtual
case for the d-wave has been studied [17]. In the double-
virtual photon case, there is an additional complication
related to the anomalous threshold behavior, as was pointed
out in [18]. We will show an alternative way of taking
this contribution into account using an appropriate contour
deformation.
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II. FORMALISM

A. Kinematic constraints

The two-photon fusion reaction γ�γ� → ππ is a subprocess
of the unpolarized double tagged process eþðk1Þe−ðk2Þ→
eþðk01Þeþðk02Þπðp1Þπðp2Þ, which is given (in Lorenz
gauge) as

iM ¼ ie2

q21q
2
2

½ῡðk1Þγμυðk01Þ�½ūðk02Þγνuðk2Þ�Hμν;

Hμν ¼ i
Z

d4xe−iq1·xhπðp1Þπðp2ÞjTðjμemðxÞjνemð0ÞÞj0i;

ð1Þ

with q1 ≡ k1 − k01, where the momenta of leptons k01 and k02
are detected. This corresponds to the kinematical situation
where photons with momenta q1 and q2 have finite spacelike
virtualities, q21 ¼ −Q2

1 and q22 ¼ −Q2
2. By contracting the

hadronic tensor Hμν with polarization vectors, one defines
helicity amplitudes Hλ1λ2 , which can be further decomposed
into partial waves

ϵμðq1; λ1Þϵνðq2; λ2ÞHμν

≡ eiϕðλ1−λ2ÞHλ1λ2

¼ eiϕðλ1−λ2ÞN
X
J even

ð2J þ 1ÞhðJÞλ1λ2
ðsÞdðJÞΛ;0ðθÞ; ð2Þ

where Λ ¼ λ1 − λ2, dðJÞΛ;0ðθÞ is a Wigner rotation function,
and θ is the c.m. scattering angle. In Eq. (2),N ¼ 1 for γ�γ� →
ππ and N ¼ 1=

ffiffiffi
2

p
for γ�γ� → KK̄, ensuring the same

unitarity relations for the identical and nonidentical particles
in the case of I ¼ 0.
It is well known that partial-wave (p.w.) amplitudes hðJÞλ1λ2

may have kinematic singularities or may obey kinematic
constraints [19,20]. Therefore, it is important to find a
transformation to a new set of amplitudes which are
more appropriate to use in partial-wave dispersion rela-
tions. The key step is to decompose the scattering ampli-
tude into a complete set of invariant amplitudes [15] (see
also [21])

Hμν ¼
X5
i¼1

FiL
μν
i ; ð3Þ

where

Lμν
1 ¼ qν1q

μ
2 − ðq1; q2Þgμν;

Lμν
2 ¼ ðΔ2ðq1; q2Þ − 2ðq1;ΔÞðq2;ΔÞÞgμν − Δ2qν1q

μ
2

− 2ðq1; q2ÞΔμΔν þ 2ðq2;ΔÞqν1Δμ þ 2ðq1;ΔÞqμ2Δν;

Lμν
3 ¼ ðt − uÞ

�
ðQ2

1ðq2;ΔÞ −Q2
2ðq1;ΔÞÞ

�
gμν −

qν1q
μ
2

ðq1; q2Þ
�

−
�
Δν −

ðq2;ΔÞqν1
ðq1; q2Þ

�
ðQ2

1q
μ
2 þ qμ1ðq1; q2ÞÞ

þ
�
Δμ −

ðq1;ΔÞqμ2
ðq1; q2Þ

�
ðQ2

2q
ν
1 þ qν2ðq1; q2ÞÞ

�
;

Lμν
4 ¼ Q2

1Q
2
2g

μν þQ2
1q

μ
2q

ν
2 þQ2

2q
μ
1q

ν
1 þ qμ1q

ν
2ðq1; q2Þ;

Lμν
5 ¼ ðQ2

1Δμ þ ðq1;ΔÞqμ1ÞðQ2
2Δν þ ðq2;ΔÞqν2Þ; ð4Þ

where Δ≡ p1 − p2 and each Lμν
i satisfies a gauge invari-

ance constraint, i.e., q1μL
μν
i ¼ q2νL

μν
i ¼ 0. The numbering

of the Lorentz structures is chosen such that in the single
virtual case only Lμν

1;2;3 contribute to the process [17], while
in the real photon case, only Lμν

1;2 which coincide with the
tensor structures used in [22,23] are relevant. The invariant
amplitudes Fi are free from kinematic singularities or
constraints and depend on the Mandelstam variables,
which we choose as s ¼ ðq1 þ q2Þ2, t ¼ ðp1 − q1Þ2, and
u ¼ ðp1 − q2Þ2. The prefactor ðt − uÞ in front of the tensor
Lμν
3 is chosen so as to make all five amplitudes Fi even

under pion and photon crossing symmetry ðt ↔ uÞ [21,24].
We note that the Born terms possess a double pole structure
in the soft-photon limit, as a manifestation of Low’s
theorem [25]. The kinematic constraints can be obtained
by analyzing projected helicity amplitudes in terms of the
quantities

AJ
nðsÞ ¼

1

ðpqÞJ
Z

1

−1

dz
2
PJðzÞFnðs; tÞ; ð5Þ

which are free of any singularities due to the properties of
the Legendre polynomials [20]. In Eq. (5), q and p are
initial and final relative momenta in the c.m. frame. Owing
to specifics of our basis (4), all of the results below are
given for the Born subtracted p.w. amplitudes

h̄ðJÞλ1λ2
≡ hðJÞλ1λ2

− hðJÞ;Bornλ1λ2
; ð6Þ

where for the s-wave it holds that [11]

h̄ð0ÞþþðsÞ � h̄ð0Þ00 ðsÞ ∼ ðs − sð∓Þ
kin Þ;

sð�Þ
kin ≡ −ðQ1 �Q2Þ2; ð7Þ

with Qi ≡
ffiffiffiffiffiffi
Q2

i

p
(i ¼ 1, 2). Note that in the single virtual

and real photon cases these constraints are required by the
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soft-photon theorem [25] and have been implemented
already in [24,26,27]. The kinematically uncorrelated
amplitudes for the s-wave can be obtained by dividing
the left-hand side (lhs) of Eq. (7) by its right-hand side (rhs):

h̄ð0Þi¼1;2ðsÞ ¼
h̄ð0ÞþþðsÞ � h̄ð0Þ00 ðsÞ

s − sð∓Þ
kin

: ð8Þ

In [17] the kinematically unconstrained basis of the partial-
wave amplitudes were derived for the single virtual case.
Below we extend this result for the double-virtual case for
J ¼ 2,

ðsþQ2
1 þQ2

2Þh̄ð2Þþ− þ 2
ffiffiffi
2

p
Q2

1Q
2
2h̄− ∼ γ1ðsÞ;ffiffiffi

2
p

h̄ð2Þþ− − h̄þ þ ðQ2
1 þQ2

2Þh̄− ∼ γ1ðsÞ;ffiffiffi
2

p
h̄ð2Þþ− þ ðsþQ2

1 þQ2
2Þh̄− ∼ γ1ðsÞ;ffiffiffi

6
p

sh̄ð2Þþ− − 2
ffiffiffi
3

p
sh̄þ þ 3sðsþQ2

1 þQ2
2Þh̄0 þ 6sh̄ð2Þþþ

þ
ffiffiffi
3

p
ðs2 þ 2ðQ2

1 þQ2
2Þs − ðQ2

1 −Q2
2Þ2Þh̄− ∼ γ2ðsÞ;

6sðsþQ2
1 þQ2

2Þh̄ð2Þþþ þ 12Q2
1Q

2
2sh̄0

−
ffiffiffi
6

p
ðsðQ2

1 þQ2
2Þ þ ðQ2

1 −Q2
2Þ2Þh̄ð2Þþ−

þ 2
ffiffiffi
3

p
ðsðQ2

1 þQ2
2Þ þ ðQ2

1 −Q2
2Þ2Þh̄þ

− 2
ffiffiffi
3

p
ðQ2

1 −Q2
2Þ2ðsþQ2

1 þQ2
2Þh̄− ∼ γ2ðsÞ; ð9Þ

with

γnðsÞ≡ λnðs;−Q2
1;−Q2

2Þðs − 4m2
πÞ; ð10Þ

where λ is the Källén triangle function and h̄þ;−;0 were
introduced for convenience:

h̄þðsÞ≡
ffiffiffi
s

p
Q2

h̄ð2Þþ0ðsÞ þ
ffiffiffi
s

p
Q1

h̄ð2Þ0þðsÞ;

h̄−ðsÞ≡
� ffiffiffi

s
p
Q2

h̄ð2Þþ0ðsÞ −
ffiffiffi
s

p
Q1

h̄ð2Þ0þðsÞ
�

1

Q2
1 −Q2

2

;

h̄0ðsÞ≡ h̄ð2Þ00 ðsÞ
Q1Q2

: ð11Þ

We emphasize that, in addition to the sð�Þ
kin points, the p.w.

amplitudes for J ≠ 0 exhibit a so-called centrifugal barrier

factor at 4m2
π . The new set of amplitudes h̄ð2Þi¼1..5ðsÞ can be

obtained as in (8) by dividing the lhs of Eq. (9) by its rhs.1We

emphasize that Eq. (9) shows the correlation of the p.w.
helicity amplitudes explicitly, as compared with the result
based on theRoy-Steiner equations [18,28],where kinematic
constraints are contained in the integral kernels. The full set
of these off-diagonal kernels is given in [18], and the final
solution is obtained by diagonalization of the kernel matrix.

B. Dispersion relations

The new set of amplitudes h̄ðJÞ1−5 contains only dynamical
singularities. These are right- and left-hand cuts, and one
can write a dispersion relation in the following form
(modulo subtractions which will be discussed in Sec. III),

h̄ðJÞi ðsÞ ¼
Z

0

−∞

ds0

π

Disc h̄ðJÞi ðs0Þ
s0 − s

þ
Z

∞

4m2
π

ds0

π

Disc hðJÞi ðs0Þ
s0 − s

;

ð12Þ

where we used the fact that Disc h̄ðJÞi ðsÞ ¼ DischðJÞi ðsÞ
along the right-hand cut. The latter is determined by the
unitarity condition and in the elastic approximation is
given by

DischðJÞi ðsÞ ¼ tðJÞ�ðsÞρðsÞhðJÞi ðsÞ;

ρðsÞ ¼ pðsÞ
8π

ffiffiffi
s

p θðs − 4m2
πÞ; ð13Þ

where ρðsÞ is a two-body phase-space factor and tðJÞðsÞ is the
hadronic scattering amplitude, which is normalized as
ImðtðJÞÞ−1 ¼ −ρ. For the energy region above 1 GeV, it is
necessary to take into account the inelasticity. The first
relevant inelastic channel isKK̄, which is required to capture
the dynamics of the f0ð980Þ scalar meson. For the coupled-
channel case, the phase-space function ρðsÞ and the ampli-

tude tðJÞðsÞ turn into ð2 × 2Þ matrices, while hðJÞi will be

written in the ð2 × 1Þ formwith elements hðJÞi and kðJÞi which
correspond to the γ�γ� → ππ and γ�γ� → KK̄ amplitudes,
respectively. The solution to Eq. (12) is given by the well-
known Muskhelishvili-Omnès method for treating the final-
state interactions [29]. It is based on writing a dispersion

relation for h̄ðJÞi ðΩðJÞÞ−1 [13], where ΩðJÞ is the Omnès
function which satisfies a similar unitarity constraint,

DiscΩðJÞðsÞ ¼ tðJÞðsÞρðsÞΩðJÞ�ðsÞ: ð14Þ
As a result, we obtain

hðJÞi ðsÞ¼ hðJÞ;Borni ðsÞ

þΩðJÞðsÞ
�
−
Z

∞

4m2
π

ds0

π

DiscðΩðJÞðs0ÞÞ−1hðJÞ;Borni ðs0Þ
s0− s

þ
Z

0

−∞

ds0

π

ðΩðJÞðs0ÞÞ−1Disc h̄ðJÞi ðs0Þ
s0−s

�
; ð15Þ

1Note that when Q2
1 ¼ Q2

2 (and pions are in the final state),
special care is required. In that case, Hþ0 ¼ −H0þ, and only four
Lorentz tensors in Eq. (4) are independent. Therefore, one needs
to reshuffle Eq. (9) in such a way that only four amplitudes h̄ðJÞi
survive. We checked that numerically the results for Q2

1 ≈Q2
2

given by Eq. (9) are consistent with the strict Q2
1 ¼ Q2

2 limit.
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which can be straightforwardly generalized for the coupled-
channel case. The Born subtracted amplitudes along the left-
hand cut (the second term inside the brackets) are given by
multipion exchanges in the t and u channels, which in
practice can be approximated by resonance ðRÞ exchanges
[13]. The dominant contribution is generated by vector
mesons ω and ρ. The contribution from other, heavier
resonances will be absorbed in an effective way by allowing
for a slight adjustment of the VPγ coupling [17].
Herewe note that there is freedom inwriting the dispersion

relation (DR). In principle, one could write a dispersion
relation for the combination ðh̄ðJÞi − hðJÞ;Vi ÞðΩðJÞÞ−1, as was
done for γγ� → ππ in [24]. However, in this case, one needs
to make an assumption about the high-energy dependence of

the real part of hðJÞ;Vi , as was explained in [18]. In this work,
we take out only the Born term in Eq. (15) and therefore need
to know only the high-energy behavior of the imaginary part
of the vector-meson exchange entering the left-hand cut,
which does not have any polynomial ambiguity [13].

C. Left-hand cuts

The generalization of the Born contribution to the case of
off-shell photons is performed by multiplying the scalar
QED result by the electromagnetic pion (kaon) form factors
[21,30] which lead to the following invariant amplitudes:

FBorn
1 ¼ −

e2ð4m2
i þQ2

1 þQ2
2Þ

ðt −m2
i Þðu −m2

i Þ
fiðQ2

1ÞfiðQ2
2Þ;

FBorn
2 ¼ −

e2

ðt −m2
i Þðu −m2

i Þ
fiðQ2

1ÞfiðQ2
2Þ;

FBorn
3 ¼ FBorn

4 ¼ FBorn
5 ¼ 0; ð16Þ

where i ¼ πðKÞ for γ�γ� → ππ (KK̄). As these Born terms
coincide with the pion pole terms obtained in a dispersive
derivation, there is full agreement between the results of
[21,30]. We note that the double pole structure of the Born
amplitudes does not bring extra complications to Eq. (15)
since its singularities lie outside the physical region. The
electromagnetic spacelike pion and kaon form factors in the
region Q2 ≲ 1 GeV2 are parametrized by simple monopole
forms yielding the following mass parameters: Λπ ¼
0.727ð5Þ GeV and ΛK ¼ 0.872ð47Þ GeV with χ2=d:o:f: ¼
1.22 [31] and χ2=d:o:f: ¼ 0.69 [32], respectively.
The vector-meson exchange left-hand cuts are obtained

by the effective Lagrangian which couples photon, vector
(V), and pseudoscalar (P) meson fields,

LVPγ ¼ eCVPγϵ
μναβFμν∂αPVβ; ð17Þ

where Fμν ¼ ∂μAν − ∂νAμ. This Lagrangian density
implies

FVexch
1 ¼−

X
V

e2C2
VPγ

2

�
4tþQ2

1þQ2
2

t−m2
V

þ4uþQ2
1þQ2

2

u−m2
V

�
f̃V;iðQ2

1;Q
2
2Þ;

FVexch
2 ¼

X
V

e2C2
VPγ

2

�
1

t−m2
V
þ 1

u−m2
V

�
f̃V;iðQ2

1;Q
2
2Þ;

FVexch
3 ¼

X
V

e2C2
VPγ

t−u

�
1

u−m2
V
−

1

t−m2
V

�
f̃V;iðQ2

1;Q
2
2Þ;

FVexch
4 ¼

X
V

e2C2
VPγ

�
1

t−m2
V
þ 1

u−m2
V

�
f̃V;iðQ2

1;Q
2
2Þ;

FVexch
5 ¼0;

f̃V;iðQ2
1;Q

2
2Þ≡fV;iðQ2

1ÞfV;iðQ2
2Þ; ð18Þ

where in the following we will use gVPγ ≃ Cρ�;0π�;0γ ≃
Cωπ0γ=3 as the only fit parameter, as discussed in [17],
yielding gVPγ ¼ 0.33 GeV−1. This value lies within 10%
with the Particle Data Group (PDG) average gPDGVPγ ¼
0.37ð2Þ [4], thus justifying the approximation of left-hand
cuts by vector mesons. The slight difference accounts for
the contribution from other heavier left-hand cuts, which
in general should be taken into account by imposing
Regge asymptotics. Such a study is, however, beyond
the scope of this analysis. In Eq. (18), fV;πðQ2

i Þ are
vector-meson transition form factors. For the ω, we use
the dispersive analysis from [33] (see also [34]), while for
the ρ (subdominant) contribution we use the vector-meson
dominance model [35]. We note that the form factors are
well defined only for the pole contribution. Using the
fixed-s Mandelstam representation, one can show that the
vector pole contribution corresponds to replacing t and u
with m2

V in the numerators of Eq. (18). This is different
from Eq. (16), where the pion pole contribution coincides
exactly with the Born contribution, as discussed above. We
emphasize that for the DRs written in the form of Eq. (15)

only Disc hðJÞ;Vλ1λ2
ðsÞ is required as input, which is unique for

the vector pole contribution.

D. Analytic structure of the left-hand cuts

In order to find a solution of the dispersion relations
given in Eq. (15), one needs to understand the singularity
structure of the p.w. amplitudes hðJÞi as a function of the
complex variable s. For spacelike photons, the p.w. Born
amplitudes are real functions above the threshold and do
not bring any complexity. On the other hand, the vector-
meson exchange left-hand cut is determined by four
branching points: s ¼ 0, s ¼ −∞, and
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sð�Þ
L ¼ 1

2

�
2m2

π −Q2
1 −Q2

2 −m2
V −

ðm2
π þQ2

1Þðm2
π þQ2

2Þ
m2

V

�

� λ1=2ðm2
V;m

2
π;−Q2

1Þλ1=2ðm2
V;m

2
π;−Q2

2Þ
2m2

V
: ð19Þ

When one photon is real, the cut consists of two pieces:

ð−∞; sð−ÞL � and ½sðþÞ
L ; 0�. However, when both photons carry

a spacelike virtuality, one has to be careful since for

Q2
1Q

2
2 > ðm2

V −m2
πÞ2 the left-hand branch point sð−ÞL moves

to the right and reaches the pseudothreshold point sðþÞ
kin and

only then moves to the left (see Fig. 1). In this case, the
integration along the cut acquires an additional piece

½sð−ÞL ; sðþÞ
kin �, which is related to an “anomalous” disconti-

nuity [36]. In addition, the integral around sðþÞ
kin , in general,

is nonzero and requires special care [18]. Indeed, according
to Eq. (9), the J ¼ 2 p:w: amplitude that schematically is

hVðsÞ ¼ 1

ðs − sðþÞ
kin Þ2

Z
1

−1

z4dz
tðs; zÞ −m2

V
ð20Þ

behaves like ðs − sðþÞ
kin Þ−9=2. Splitting the contour path into

an integral up to sðþÞ
kin − ϵ and a circular integral of radius ϵ

around sðþÞ
kin (dashed curve in Fig. 1) produces the cancel-

lation of two singular pieces. In [18], this was solved by
using a fit function (which consists of an appropriate
square-root-like behavior and a polynomial) in the vicinity
of the singular point. We follow here a different strategy

and enlarge the contour around sðþÞ
kin such that one stays

away from possible numerical issues related to the anomaly
piece (see Fig. 1). We propose presenting hVðsÞ in the
physical region as

hVðsÞ ¼
Z

sð−ÞL −R

−∞

ds0

π

Disc hVðs0Þ
s0 − s

þ
Z
CR

ds0

2πi
hVðs0Þ
s0 − s

þ
Z

0

sðþÞ
L

ds0

π

Disc hVðs0Þ
s0 − s

; ð21Þ

where R is chosen such that sj ¼ −Q2
1 −Q2

2 þ 2m2
π − 2m2

V
lies inside the circle. The location of sj is determined by the
condition that the imaginary part of the logarithm in
Eq. (20) changes sign and therefore requires a proper
choice of the Riemann sheet which we want to avoid. The
merit of Eq. (21) is such that it works for both anomaly and
nonanomaly cases, so one can use it for any spacelike Qi

including the “transition” line when Q2
1Q

2
2 ¼ ðm2

V −m2
πÞ2.

In addition, it is independent on the degree of singularity
and can be used equally well for a higher p.w. with J > 2.
The generalization to the physical case with Omnès
functions (15) is then straightforward since all of the
quantities are well defined at complex energies.
For timelike virtualities (which are not of interest

in this work), we refer the reader to [24,37], where

different cases of overlapping left- and right-hand cuts
are considered.

E. Hadronic input

For the s-wave isospin I ¼ 0 ðI ¼ 2Þ amplitude we use
the coupled-channel (single-channel) Omnès function from
a dispersive summation scheme [19,38] which implements
constraints from analyticity and unitarity. The method is
based on the N=D ansatz [39], where the set of coupled-
channel (single-channel) integral equations for the N-
function are solved numerically with the input from the
left-hand cuts which we present in a model-independent
form as an expansion in a suitably constructed conformal
mapping variable. These coefficients, in principle, can be
matched to χPT at low energy [40]. Here we use a data-
driven approach and determine these coefficients directly
from fitting to Roy analyses for ππ → ππ [41], ππ → KK̄
(for I ¼ 0) [42], and existing experimental data for these
channels. After solving the linear integral equation for
NðsÞ, theD-function (the inverse of the Omnès function) is
computed; more details will be given elsewhere [43].
For the d-wave I ¼ 0, 2 amplitudes, we use the single-

channel Omnès function in terms of the corresponding
phase shifts,

Ωð2Þ
I ðsÞ ¼ exp

�
s
π

Z
∞

4m2
π

ds0

s0
δð2ÞI ðs0Þ
s0 − s

�
: ð22Þ

Its numerical evaluation requires a high-energy parametri-
zation of the phase shifts. We use a recent Roy analysis [41]
below 1.42 GeV and let the phase smoothly approach πð0Þ
for I ¼ 0 (I ¼ 2).

III. DISCUSSION AND RESULTS

In Figs. 2 and 3, we plot the γ�γ� → ππ cross sections
which involve either two transverse (TT) photon polar-
izations or two longitudinal (LL) photon polarizations or

FIG. 1. Left-hand cut singularities and the integration contour
for nonanomaly case (a) and its deformation for the anomaly
case (b). See text for details.
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one transverse and one longitudinal (TL) photon polari-
zation defined by

dσTT
d cos θ

¼ βππ
64πλ1=2ðs;−Q2

1;−Q2
2Þ
ðjHþþj2 þ jHþ−j2Þ;

dσTL
d cos θ

¼ βππ
32πλ1=2ðs;−Q2

1;−Q2
2Þ
jHþ0j2;

dσLL
d cos θ

¼ βππ
32πλ1=2ðs;−Q2

1;−Q2
2Þ
jH00j2;

βππ ¼
2pffiffiffi
s

p ; ð23Þ

where for the neutral pions one has to include a symmetry
factor of 1=2. The quantities σTT , σTL, σLT , and σLL enter
the cross section for the process eþe− → eþe−ππ given in
Refs. [44,45]. It sets the convention for the flux factor,
while the convention for the wave functions of the
longitudinally polarized photons is chosen as

ϵμðq1;0Þ ¼
1

Q1

ðq;0;0;Eq1Þ;

ϵνðq2;0Þ ¼
1

Q2

ð−q;0;0;Eq2Þ;

Eqi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 −Q2

i

q
; q¼ λ1=2ðs;−Q2

1;−Q2
2Þ

2
ffiffiffi
s

p : ð24Þ

This convention reproduces continuously the real photon
limit.
Using unsubtracted dispersion relations, we present a

postdiction for the cross section for the real photon case and
give predictions for finite virtualities. We implement
rescattering in s- and d-waves, while the partial waves

beyond are approximated by the Born terms. Including
Born left-hand cuts alone predicts a reasonable description
of the f0ð500Þ and f0ð980Þ regions; however, it fails to
describe the f2ð1270Þ resonance. For the latter, the inclu-
sion of heavier left-hands cuts is necessary [13]. Following
our previous work [17], we approximate them with only
vector-meson exchanges and slightly adjust the coupling
gVPγ in Eq. (18) to reproduce the f2ð1270Þ peak in the
γγ → π0π0 cross section. We emphasize that this is the only
parameter that we adjust to the real photon data to get nice
overall agreement (see Fig. 2). We also note that the
convergence of the unsubtracted dispersive integrals for
J ¼ 2 is, in general, better than for J ¼ 0 due to the
centrifugal barrier factor. Therefore, including vector-
meson left-hand cuts in the s-wave requires adding at least
one subtraction, which can be fixed from chiral perturba-
tion theory (χPT). We checked that, for relatively smallQ2,
the results of the two solutions are very similar. Since the
finite Q2 prediction from χPT is expected to show large
corrections for Q2 > 0.25 GeV2, we decided to stay with
the unsubtracted DR. In this paper, we show a selected
result2 for a fixed value Q2

1 ¼ 0.5 GeV2 for one photon
virtuality, and different values Q2

2 ¼ 0.25, 0.5, 0.75,
1.0 GeV2 for the second photon virtuality (see Fig. 3).
The last two Q2

2 points are above the anomaly point. For
σTT and σLL, we emphasize the importance of unitarization,
which significantly increases the pure Born prediction at
low energy. For σTL, we notice that the helicity-1 con-
tribution increases with increasing virtualities.
It is instructive to compare our approach with dispersive

study based on the Roy-Steiner equations. In [18], there is a
different strategy for treating kinematic singularities and
anomalous thresholds. Second, there is a coupling between
s-wave and d-wave with strength related to the high-energy
behavior assumption. Third, the extra subtraction in [18]
leads to a 1=s singular behavior, which is due to the
truncation of the p.w. expansion. In our approach, we solve
a p.w. dispersion relation under the assumption of maximal
analyticity. For the s-wave (d-wave), we perform a
coupled-channel (single-channel) dispersive analysis and
present a simpler implementation of the anomalous thresh-
olds. Furthermore, in this approach, there is no coupling
between s- and d-waves and no extra 1=s singularities. In a
work in preparation [47], the comparison between [18] and
our previous single virtual study [17] together with current
work has been done. Both approaches agree well up to the
details due to a different treatment of the vector-meson
couplings and form factors, and the inclusion of the
coupled channel in the s-wave.

Mark II
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FIG. 2. Total cross sections for γγ → πþπ− (j cos θj < 0.6)
(upper curve) and γγ → π0π0 (j cos θj < 0.8) (lower curve).
The Born result is shown as dashed gray curves. The data are
taken from [46].

2The preliminary plots for Q2
1 ¼ Q2

2 ¼ 0.5 GeV2 shown in [3]
suffered from a numerical instability in the calculation of one of
the five dispersive integrals, which led to an overestimation of
σLL in the f2ð1270Þ region, leaving the predictions for σTT and
σTL mainly unchanged.
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FIG. 3. Predictions for σTT, σTL, σLL cross sections for (left panels) γ�γ� → πþπ− and (right panels) γ�γ� → π0π0 for Q2
1 ¼ 0.5 GeV2

and Q2
2 ¼ 0.25, 0.5, 0.75, 1.0 GeV2 and for full angular coverage j cos θj ≤ 1. The Born results are shown as dotted curves.
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IV. CONCLUSION

In this work, we presented a dispersive analysis of the
γ�γ� → ππ reaction from the threshold up to 1.5 GeV in the
ππ invariant mass. For the s-wave, we used a coupled-
channel dispersive approach in order to simultaneously
describe the scalar f0ð500Þ and f0ð980Þ resonances, while
for the d-wave a single-channel Omnès approach was
adopted. The obtained results will serve as one of the
relevant inputs to constrain the hadronic piece of the light-
by-light scattering contribution to the muon’s aμ [11,12].
Specifically it allows one to estimate the contributions from
f0ð500Þ, f0ð980Þ, and f2ð1270Þ resonances. The latter can
be compared with the narrow resonance result [8,9].
There are still a few open issues before it can imple-

mented in a ðg − 2Þμ calculation. First, one needs to
validate a current treatment of left-hand cuts by forth-
coming BESIII data on the γγ� → πþπ− and γγ� → π0π0

reactions [48]. This is a prerequisite for a data-driven

approach in quantifying the uncertainty of the HLBL
contribution to aμ. Second, for higher Q2, one has to
incorporate constraints from perturbative QCD for the
vector transition from factors fV;πðQ2Þ which is the driving
force governing the Q2 dependence of the f2ð1270Þ
resonance [3]. This will be investigated in a future work.
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