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equation approach of QCD
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We calculate the variation of the chiral condensate in medium with respect to the quark chemical
potential and evaluate the pion-nucleon sigma term via the Hellmann-Feynman theorem. The variation of
the chiral condensate in medium is obtained by solving the truncated Dyson-Schwinger equation for the
quark propagator at finite chemical potential, with various ansétz for the quark-gluon vertex and gluon
propagator. We obtain the value of the sigma term o,y = 62(1) MeV, where the (1) represents the
systematic error due to our different ansétz for the quark-gluon vertex and gluon propagator. Our result
favors a relatively large value and is rather consistent with the recent data obtained by analyzing pion-

nucleon scattering and pionic-atom experiments.
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I. INTRODUCTION

The pion-nucleon sigma term o,y is of fundamental
importance for understanding the chiral symmetry breaking
effects in the nucleon [1,2] and the origin of the mass of
observable matter [3,4]. Recently, special attention has been
paid to oy, since it is also significant in searches for the
Higgs boson, supersymmetric particles, cold dark matter
[5-7], and CP violation [8,9]. 6,5 can be obtained indirectly
in experiments, such as pion-nucleon scattering or pionic-
atom experiments [10—13]. Several recent analyses [11-13]
gave 50 MeV < o,y < 70 MeV, which is relatively larger
than the widely used value o,y ~ 45 MeV [14]. In particu-
lar, Refs. [11,12] gave a value around 60 MeV with quite
small error bars. Theoretically, the pion-nucleon sigma term
could be calculated in chiral perturbation theory [15-18],
lattice QCD [19-24], the Dyson-Schwinger equation (DSE)
approach of QCD [25-27] and various other models
[28-31]. However, theoretical results vary widely with
different methods. Notably, the values from lattice QCD
are around 30 to 40 MeV, which are much smaller than those
from the above experimental analyses. Conversely, some
other works gave relatively large values, even up to 80 MeV
[29] or 95 MeV [27]. Thus, further effort is needed in the
theoretical calculations of the sigma term. In this work, we
evaluate the pion-nucleon sigma term in the DSE approach
of QCD, via the Hellmann-Feynman theorem.

Theoretically, the pion-nucleon sigma term o,y is
usually written via the Hellmann-Feynman theorem as
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where My is the nucleon mass and m,, is the average current-
quark mass for u and d quarks (see Sec. III for details).

It has been known that the nucleon mass M, comes
almost entirely from the dynamical chiral symmetry breaking
(DCSB) (see, e.g., Ref. [3]). It has also been known that the
DSEs of QCD provide a natural approach to investigate the
DCSB and the chiral symmetry restoration in vacuum (see,
e.g., Refs. [32-35]), in hot medium (see, e.g., Refs. [3641]),
and in cold dense matter (see, e.g., Refs. [42-47]), as well as
the properties of hadrons (see, e.g., Refs. [48-54]).

Inspired by the above-mentioned successes of the DSE
approach, we restudy the pion-nucleon sigma term in the
DSE approach with both the widely used rainbow approxi-
mation and the Ball-Chiu vertex [55,56] for the effective
quark-gluon vertex, and two different infrared-dominant
models for the effective interaction.

The paper is organized as follows. In Sec. II the truncation
scheme of the DSE for the quark propagator in vacuum and
at finite chemical potential is given. In Sec. III we briefly
describe the method for evaluating the pion-nucleon sigma
term o,y via the DCSB in medium (more explicitly, the
chiral condensate in medium). Then, the numerical results
are given in Sec. I'V. Finally, we summarize our work and
conclude with a brief remark in Sec. V.

II. DYSON-SCHWINGER EQUATION FOR THE
QUARK PROPAGATOR

Our calculation is based on the quark propagator at
finite chemical potential S(p;u), which satisfies the
Dyson-Schwinger equation
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where p = (p, ps +ipn), k = p —q, D,;(k;p) is the full
gluon propagator, I'%(q,p;pu) is the dressed quark-
gluon vertex, Z; is the renormalization constant for the
quark-gluon vertex, and Z, is the quark wave-function
normalization constant. The general structure of the quark
propagator at finite chemical potential can be written as

S (psp) = i7 - PA(P?. pas i) + ivaPaC (B, paipt)
+ B(P*. pai ). (3)

where A(p?, ps;u) and B(p?, paip), C(p?, pas ) are scalar
functions of p? and p,, while in vacuum A(p?, py;u=0) =

C(;S’Q,p4;,u:0) :AO(PZ), B(ﬁz»m;ﬂ) = Bo(Pz)’ and
S (p) = iy - pA(p*) + B(p?). (4)

We solve Eq. (2) with models of the gluon propagator
and the quark-gluon vertex, which describe meson proper-
ties in vacuum well in the symmetry-preserving Dyson-
Schwinger equation and Bethe-Salpeter equation (BSE)
schemes (see, e.g., Refs. [57-60]). In vacuum, they are
usually taken as

a

217D, (K)T5(a. p) = GR)DY (0 To(p.4). (5)

where DY, (k) = k%[ép,, —%] is the Landau-gauge free
gauge-boson propagator, G(k?) is a model effective inter-
action, and I',(g, p) is the effective quark-gluon vertex.
Since the chemical potential only appears explicitly in the
DSE of the quark propagator, its effects on the gluon
propagator and quark-gluon vertex are indirect. We expect
these effects at lower order, except in the Ball-Chiu (BC)
vertex ansitz [55,56], where we introduce the quark-gluon
vertex modification via the nonperturbative Ward-
Takahashi identity. The extended form of the BC vertex
at finite chemical potential was given in Ref. [43],

iTEC(q, psu) = iZ4(q. ps )7 + iZc(q, pip)ys
PN L.
+(G+p), [Eyl (G + p)Aalq. P;ﬂ)}
i

+ @+ ) |57 @+ P)Aclq. pin)

+ @+ P),An(g. pin)|. (6)

where yll = (6 va), y-=v—yIl, F=A, B, C, and

(I R
Zr(q. piu) = 5 [F(G qas 1) + F(P?, pas )],

F(G*. qq:p) — F(P?, pas p)
Ap(q, piu) = - .

As a comparison, we also investigate the rainbow (RB)
approximation for the vertex:

TRB(q, psp) = 71, (7)

For the model effective interaction we employ two
infrared-dominant models, denoted as the “GS” and “QC”
models, which only express the long-range behavior of the
renormalization-group-improved Maris-Tanday model [61]
and the Qin-Chang (QC) model [62,63]. Though the ultra-
violet parts of the models ensure the correct perturbative
behavior, they are not essential in describing nonperturba-
tive physics, e.g., the spectrum of light mesons [52,62].
Herein we neglect them since our work is based on the
competition between the chiral condensate and quark
number density in the infrared region [44]. The two models
are expressed as

477.'2 2/ .92
gGS(kZ) — FDkze—k Jw , (8)
STE -k /w?

Equations (8) and (9) deliver an ultraviolet-finite model gap
equation. Hence, the regularization mass scale can be
removed to infinity and the renormalization constants can
be set to 1. For the corresponding ansitz at finite chemical
potential, we follow that in Ref. [43], neglecting the
dependence of the effective interaction G and the gluon
propagator on the chemical potential at low densities.

There are only two main parameters in our model: D and
. We choose the set of values that can fit meson properties
in vacuum well [57] or fit the chiral condensate and pion
decay constant f, in vacuum approximately. We use the
approximate formula for calculating f, which is accurate to
within 5% in the chiral limit with the rainbow approxima-
tion [64,65].

Fi= [ 5 NesB()Plo(s)} = 20(s)s0(s)s = 2s0(s)y o)y
—s0(s)so(s)e+s(a(s)s)?
—s*(a(s)ya(s)y = (a(s)y))], (10)

with the primes denoting differentiation with respect to
s = p?, and

A(p?)
p*A(p?) + B(p?)

, (11)

oy =
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B(p?)
p*A(p?*) + B(p*)

(12)

Og =

III. THE PION-NUCLEON SIGMA TERM

It has been known that the pion-nucleon sigma term can

be determined by the chiral susceptibility ‘Z}%N and the
q

current-quark mass in the form of Eq. (1). However,
it is very complicated to calculate the nucleon mass My,
which depends on the four-dimensional Poincaré-invariant
Faddeev equations in the DSE approach of QCD, and
the results are still too robust enough to get the dependence
of nucleon mass on the current-quark mass [19,26].
Meanwhile, it is oversimplified to regard the nucleon as
three noninteracting constituent quarks [25,66]. Therefore,
we do not perform the calculation from Eq. (1) directly.
It has been well known that, in the QCD Hamiltonian

I:IQCD, the mass term H . is

H,. = /d3x(mu17tu + mydd + - - s (13)

where u and d denote up and down quarks with current-
quark masses m,, and m,, respectively, and - - - denotes the
contributions from heavier quarks. It is useful to reorganize

the up- and down-quark contributions to ., in order to
isolate the isospin-breaking effects. Defining gg = %(ﬁu +
dd) and m, = % (m, + m,), Eq. (13) can be rewritten as

N 1 _
Ao = / x2m qq+ 5 = m,)u=3d) +--].(14)

Making use of the Hellmann-Feynman theorem, one
obtains (see, for example, Ref. [67])

- dﬁmass
2mq<q’|/d3x6161|‘1’> = m"<lP|d—mq

%)
—— Ey, (15)

where |¥) represents a normalized eigenvector of the QCD
Hamiltonian and Ey stands for the energy of the state |¥).

Considering the case in which |¥) is the state of hadron
matter at rest with baryon number density np, and also the
case of the vacuum state, one has

2m, (@4}, ~ @abe] = my e (16)

where € is the energy density of the baryon matter and can
be written as

€ = Myng + Je, (17)

where de denotes the contributions from the kinetic energy
of baryons and baryon-baryon interactions. d¢ is of high
order in density and is empirically small at low densities:
the binding energy per nucleon at the nuclear matter
saturation density is only 16 MeV. Therefore, neglecting
oe and implementing Eq. (16), one obtains

2m, (@4}, ~ @a)a] = m, S

np = O;NNp. (18)
q

Replacing the baryon number density np with the quark
number density n, = 3np, we obtain the linear dependence
of the variation of the chiral condensate on the quark
number density,

(19)

where k is the slope which can be obtained from the linear
fitting of the relation in Eq. (19). Conversely, we can
evaluate the pion-nucleon sigma term as

(99), — (q9)o '

- (20)

Oy = 6myk = 6m,

For the light u and d quarks, we can take advantage of the
Gell-Mann—Oakes—Renner relation [68], which is accurate
within 5% [69]:

myfz = —2m,(qq)p, (21)

where m, = 138 MeV and f, = 93 MeV have been well
established in experiments, and (gg)) is the chiral con-
densate in the chiral limit (represented by the superscript 0)
in vacuum. We can then obtain

m2 2

with which the pion-nucleon sigma term o,y can be
evaluated from the chiral condensate in vacuum and that
in medium.

The quark number density n, can be calculated from the
quark propagator at finite chemical potential, S(p; u), with
the definition

ng = NcNfZZTr[_y4S(p;:u)]' (23)
For light quarks, we can further approximate the chiral
condensate in Eq. (19) with that in the chiral limit, which
can be well defined from the quark propagator in the chiral

limit

—(39)) = N.Z,Z,,Tr[S°(p; )], (24)
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TABLE I. Parameters and some characteristic numerical results (dimensional quantities are in units of MeV). DES1, DSE2, DSE3,
and DSE4 are in the chiral limit m, = 0, while DSES investigates the chiral condensate beyond the chiral limit; see the text for details.
DSE Vertex Interaction 1) D ) (1) /3 m, k Sy O
DSEI RB GS 500 1.00 252 5.2 1.95 0.03 61
DSE2 RB QC 678 1.10 253 5.2 2.04 0.03 63
DSE3 BC GS 500 0.50 258 4.7 222 0.01 63
DSE4 BC QC 678 0.55 256 4.7 2.21 0.01 62
DSES5S RB GS 500 1.00 - 5.2 1.94 0.05 61

where Tr represents the trace in color and Dirac space and
integration in momentum space, and Z, and Z,, are
renormalization constants for the quark wave function
and quark mass, respectively.

To be more accurate in the cases of physical u, d, and
even s quarks, one can take a current-quark mass that better
fits the meson properties obtained from the BSE. However,
Eq. (24) is divergent in the case of a finite current-quark
mass. Although different subtraction points have been
introduced to give finite values, it is still an open question
to define the chiral condensate from the quark propagator
with a finite quark mass; see, for example, Refs. [70,71].
Fortunately, we only need the variation of the chiral
condensate in medium, which is independent of a fixed
subtraction point. Therefore, we also investigate the varia-
tion of the chiral condensate in medium with a finite
current-quark mass, defined as

Agg)n" = (aq)n" —(@q)o"

=Z,Z,Tr[S(p;u) — S(p;u = 0)].  (25)
where the quark propagator is calculated with a finite

current-quark mass m,.

IV. NUMERICAL CALCULATIONS AND RESULTS

To carry out the numerical calculations, we need the
parameters D and w in the effective interaction. Usually the
parameters are determined by fitting meson properties with
the BSE approach. The parameters and some characteristic
results at u = O are listed in Table I. DSEI1 represents the
results with the rainbow approximation and the GS model.
DSE2 represents the results with the rainbow approxima-
tion and the QC model. DSE3 represents the results with
the BC vertex and the GS model. DSE4 represents the
results with the BC vertex and the QC model. DSE5
represents the results with the rainbow approximation and
the GS model, but the variation of the chiral condensate in
medium is calculated with Eq. (25) beyond the chiral limit.

The parameters of DSE1 and DSE3 are taken from
Ref. [57]. The parameters of DSE2 are obtained by fitting
the pion decay constant f, = 93 MeV with Eq. (10) and
the chiral condensate in vacuum —(ggq),. The parameter d
of DSEA4 is obtained by fitting the chiral condensate —(gq),,

with the same w as in DSE2. In DSES, we take the same
parameters as in DSEI.

With the above-determined parameters and the ansitz
described in the last section, we solve the Dyson-
Schwinger equation of the quark propagator and calculate
the chemical potential dependence of the chiral condensate
and the quark number density. The obtained results in the
chiral limit are illustrated in Fig. 1.

Figure 1 shows that when the quark chemical potential
u < My, where M is the first constituent-mass-like pole of
the quark propagator, the chiral condensate keeps the same
value as that in vacuum (i.e., at ¢ = 0) and the quark number
density remains zero, i.e., the system remains the same as that
in the vacuum and no matter emerges [43]. When 4 > M|,
the quark number density becomes nonzero and simulta-
neously the chiral condensate decreases gradually. This
indicates that dynamical chiral symmetry is partially restored
in the medium at low density [44,72]. With the above results,
we get the variation of the chiral condensate A{(gq), in the
medium with respect to the quark number density 7, of the
system. The obtained result is displayed in Fig. 2.

Although the chemical potential dependence of the quark
number density and chiral condensate is model dependent

1.0 }-—— — - - ——— -
Y ™~V
0.8 ——DSE1N
--- DSE1C
--«- DSE2N
00 ~-~-~DSE2C
---~-- DSE3N
04 ---«-- DSE3C
> DSE4C
--~- DSE4N
0.2 .
N/ Iy
'0.25 0.30 0.35 0.40 0.45 0.50 0.55
1 (GeV)
FIG. 1. Quark chemical potential dependence of the quark

number density (DSEIN, DSE2N, DSE3N, DSE4N) (scaled with
the saturation density ny = 3np ;~3 x0.16 fm= ~0.0038 GeV?)
and chiral condensate (DSE1C, DSE2C, DSE3C, DSE4C)
(scaled with the values in vacuum).
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FIG. 2. Variation of the chiral condensate in medium with respect to the quark number density.

and looks complicated, Fig. 2 exhibits a linear relation [in
Eq. (19)] between the variation of the chiral condensate and
the baryon number density. We linearly fit the dependence
of the variation of the chiral condensate (y) on the quark
number density (x) as

y = kx, (26)

with
k — Z:":l(xi -X)(yi =)
R

where y = n~! ", y; is the sample average of the y;, and
likewise for Xx. The standard error S; is given as

(27)

?:1@1‘ —)’i)2
(n=2) >0 (x; = 3)2’

where J; = kx;. The fitted values of the slope and
corresponding values of the sigma term are listed in

Table 1. Remarkably, the slopes and the corresponding
results for o,y quantitatively depend very weakly on the
choice of the ansétz for the quark-gluon vertex and effective
interaction.
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line fit of DSE5

0.0010

0.0008 -

0.0006 |-

0.0004
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0.0002 -

1
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1 1 1
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3
ng [GeV~]

1
0.0002

FIG. 3. Variation of the chair chiral condensate with respect to the
quark number density, with the model DSES beyond chiral limit.
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FIG. 4. Comparison of our result for the pion-nucleon sigma
term o,y with those in the literature, from z-N scattering data
(black) [10-12], chiral perturbation theory (red) [15-17], lattice
QCD (magenta) [20-22,24], various other models (blue)
[28,29,31], and the DSE (green) approach [26].

In DSE5 we investigate the effect of a finite current-
quark mass with Eq. (25), and one can find from Fig. 3 and
Table I that the results for k and the sigma term are not
sensitive to such a change. Therefore, we can be quite
confident of the chiral limit approximation (22) for the
pion-nucleon sigma term and the validation of Eq. (25) in
the case of a finite current-quark mass.

With the above results, we estimate that the pion-nucleon
sigma term o,y is about 6k ~ 12 times the current-quark
mass m,,. This leads to a larger value of 6,y than the result
given in Ref. [25], which estimated that ¢,y in the chiral
limit in the vacuum is 9/2 times m,. Finally, we obtain the
pion-nucleon sigma term o,y = 62(1) MeV, where the
(1) represents the systematic error due to our different
ansitz for the quark-gluon vertex and gluon propagator.
Comparing our results with recent experimental data and
theoretical results in Fig. 4, one can note that our present

result is remarkably consistent with the recent experimental
results.

V. SUMMARY AND REMARK

In summary, using the Dyson-Schwinger equation
approach of QCD, we calculated the chiral condensate in
strong-interaction matter at low density, and then evaluated
the pion-nucleon sigma term o,y via the Hellmann-
Feynman theorem. In this work, we adopted various
ansitz for the gluon propagator and quark-gluon vertex,
and found that our evaluated value for the pion nucleon
sigma term depends on the model very weakly. We obtained
the result 6,y = 62(1) MeV in the Dyson-Schwinger equa-
tion approach of QCD. Our results are rather consistent with
the relatively large value given in recent experimental
analyses.

In solving the Dyson-Schwinger equation of the quark
propagator, we adopted models of the effective interaction
(gluon propagator) that are independent of the quark
chemical potential. However, the gluon propagator should
depend on the quark chemical potential via the quark-loop
diagram in its vacuum polarization. It is reasonable to expect
this to be a lower-order effect on the pion-nucleon sigma
term. However, the situation may be different when calcu-
lating the sigma term for the strange quark o, which is
important for dark matter searches [7]. Since the strange
quark chemical potential is zero at low baryon number
densities, such an effect is the leading-order effect for the
variation of the strange chiral condensate. It is then necessary
to consider this effect when calculating o,. We could inve-
stigate it to calculate o, and further improve our results for
o,n- On the other hand, the more sophisticated quark-gluon
vertex has also been established (e.g., Refs. [50,73,74]).
Calculating o,y and o, with such a quark-gluon vertex is
also interesting, and related work is in progress.
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