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We analyze the mixing between Σ0 and Λ0 based on the baryon masses. We distinguish the contributions
from QCD and QED in the baryon mass splittings. We find that the mixing angle between Σ0 and Λ0 is
ð2.07� 0.03Þ × 10−2, which leads to the decay branching fraction and up-down asymmetry of Λþ

c →
Σ0eþνe to be BðΛþ

c → Σ0eþνeÞ ¼ ð1.5� 0.2Þ × 10−5 and αðΛþ
c → Σ0eþνeÞ ¼ −0.86� 0.04, respec-

tively. Moreover, we obtain that ΔB≡ BðΛþ
c → Σ0πþÞ − BðΛþ

c → Σþπ0Þ ¼ ð3.8� 0.5Þ × 10−4 and
Δα≡ αðΛþ

c → Σ0πþÞ − αðΛþ
c → Σþπ0Þ ¼ ð−1.6� 0.7Þ × 10−2, which should vanish without the mixing.

DOI: 10.1103/PhysRevD.101.054005

I. INTRODUCTION

The flavor content is one of the cornerstones in particle
physics. The hadrons are often categorized and named in
terms of their flavor states. For instance, the hadrons in the
isospin group, such as pions, share the same name. Since
the QCD energy scale is much larger than the mass
difference of the hadrons with the same isospin, it is
believed that the hadrons also have similar wave functions.
The isospin group can be extended to SUð3Þ by including
the strange quark, which is the so-called SUð3ÞF flavor
symmetry and has been widely used in particle physics.
Based on the SUð3ÞF symmetry, the precision for the

Gell-Mann-Okubo (GMO) mass formula is around one
percent, indicating that the baryons indeed share the similar
wave functions. Another well-known mass formula based
on SUð3ÞF for the octet baryons is the Coleman-Glashow
(CG) one [1]. Note that the masses of the octet baryons
have been intensively studied in the calculations of the
lattice QCD (LQCD) [2–6] as well as the theoretical models
with the baryon wave functions [7–13].
The octet baryon states of Σ0 andΛ0 have the same quark

components of uds. Originally, they are categorized by the
isospin property with Σ0 and Λ0 being the triplet and singlet
states under the SUð2ÞI isospin symmetry, respectively.
This categorization is based on that the isospin symmetry is
much better than SUð3ÞF. However, both SUð2ÞI and

SUð3ÞF are not exact, resulting in a possible mixing
between Σ0 and Λ0. The physical baryons are made of
the mixing of isospin triplet and singlet states. In general,
the mixing angle is estimated to be the ratio of the
SUð2ÞI and SUð3ÞF breaking energy scales. Note that
the calculation in the LQCD gives the mixing angle θ ¼
0.006� 0.003 [14].
Recently, the BESIII Collaboration has announced the

up-down asymmetries for Λþ
c → Σπ, given by [15]

αðΛþ
c → Σþπ0Þ ¼ −0.73� 0.18;

αðΛþ
c → Σ0πþÞ ¼ −0.57� 0.12: ð1Þ

Note that the corresponding branching ratios have been
measured to be [16]

BðΛþ
c → Σþπ0Þ ¼ ð1.24� 0.10Þ%;

BðΛþ
c → Σ0πþÞ ¼ ð1.29� 0.07Þ%: ð2Þ

However, in the limit of the isospin symmetry, both
asymmetries in Eq. (1) and branching ratios in Eq. (2)
should be equal. On the other hand, the semileptonic decay
of Λþ

c → Σ0lþνl is forbidden since Λþ
c and Σ0 belong to

different isospin representations. In this study, we explore
the isospin breaking effect in the Σ0 − Λ0 mixing and
discuss the effects in Λþ

c decays.
Our paper is organized as follows. In Sec. II, we

introduce the hadron representations under the SUð3ÞF
flavor group. The mixing effects in Λþ

c decays are studied
in Sec. III. We present our conclusions in Sec. IV.
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II. HADRON REPRESENTATIONS IN SUð3ÞF
In terms of SUð3ÞF, the matrix representations of the

octet baryons can be written as [17]

ðBnÞij ¼

0
BBB@

1ffiffi
6

p Λ00 þ 1ffiffi
2

p Σ00 Σþ p

Σ− 1ffiffi
6

p Λ00 − 1ffiffi
2

p Σ00 n

Ξ− Ξ0 −
ffiffi
2
3

q
Λ00

1
CCCA

ij

;

ð3Þ

where the prime 0 denotes the unmixed state. For instance,
the proton’s matrix representation and state correspond to
ðpÞij ¼ δi1δj3 and ðpÞijjjii ¼ j31i, respectively.
In the standard model, the SUð3ÞF symmetry is broken

by the quark masses as well as the electromagnetic
interaction. The matrix representations of the light quark
masses and electric charges of the quark flavors are given as

M ¼

0
B@

mu 0 0

0 md 0

0 0 ms

1
CA −

1

3
ðmu þmd þmsÞ

and Q ¼ 1

3

0
B@

2 0 0

0 −1 0

0 0 −1

1
CA; ð4Þ

respectively. Note that bothM and Q belong to 8 under the
SUð3ÞF group. Consequently, the baryon mass must be the
function of M and Q, given by

MB ¼ hBjHðM;QÞjBi; ð5Þ

whereH and jBi are the mass operator and state of the octet
baryon, respectively.
Naively, one may write down the baryon mass operator

as

HðM;QÞ ¼ H0 þH1
mðMÞ þH1

qðQÞ þOðH2Þ; ð6Þ

where the superscripts of n ¼ 0, 1, 2 stand for the n-order
approximations and the subscripts of m and q imply the
breaking sources of the SUð3ÞF symmetry. However, the
second-order correction from the strange quark mass can be
the same size as the first-order one from the up and down
quark masses, e.g., ðms=μHÞ2 ∼mq=μH, where μH is the
typical hadronic scale.
A better way to do the approximation is to categorize the

breaking effects according to their symmetry properties
instead of the sources. We rewrite Eq. (4) as

M ¼ ms̄T8 þmq̄T3 and Q ¼ 1

6
T8 þ

1

2
T3; ð7Þ

with

T8 ¼

0
B@

1 0 0

0 1 0

0 0 −2

1
CA; T3 ¼

0
B@

1 0 0

0 −1 0

0 0 0

1
CA; ð8Þ

where ms̄ ¼ −ð2ms −mu −mdÞ=6 and mq̄ ¼ ðmu−
mdÞ=2. Here, we have decomposed the matrix representa-
tion into two different parts. Note that T8 is invariant under
the isospin transformation, whereas T3 is not. Accordingly,
the baryon mass operator in Eq. (6) is given by

HðM;QÞ ¼ H0 þH1
mðms̄T8 þmq̄T3Þ

þH1
q

�
1

6
T8 þ

1

2
T3

�
þOðH2Þ

¼ H0 þ
�
H1

mðms̄T8Þ þH1
q

�
1

6
T8

��

þ
�
H1

mðmq̄T3Þ þH1
q

�
1

2
T3

��
þOðH2Þ

¼ H0 þH1
SðT8Þ þH1

I ðT3Þ þOðH2Þ; ð9Þ

where we have used that the matrix representation is linear
and the operators in the parentheses have the same
representation, respectively. Since H1

S contains the correc-
tion from ms, it is much larger than H1

I . On the other hand,
the second-order correction in OðH2Þ caused by ms can be
the same order as H1

I . Explicitly, we have the hierarchy,
given by

H0 ≫ H1
S ≫ H1

I ∼OðH2Þ: ð10Þ

Note that the correction from ms is invariant under
the isospin transformation. If OðH2Þ is neglected in the
calculation of H1

I , it is only reasonable to deal with
the physical quantities, which are not affected by the
correction from ms.
Notice that the baryon wave functions in Eq. (3) are

chosen as the eigenvectors of H0 þH1
S. Explicitly, they

have the following properties:

hB0jH0 þH1
SjBi ¼ hB0jBi ¼ 0 if B0 ≠ B: ð11Þ

However, the physical baryon states are the eigenvectors of
the full baryon mass operator instead. In general, the
isospin breaking term H1

I has a nonzero matrix element
between Σ00 and Λ00, i.e., hΣ00jH1

I jΛ00i ≠ 0, while the
correction due to ms has no contribution to this matrix
element due to the isospin symmetry. The physical baryon
condition is given by

hB0
PjHjBPi ¼ 0 if B0

P ≠ BP; ð12Þ
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with [18,19]

jΛ0i ¼ cos θjΛ00i − sin θjΣ00i
and jΣ0i ¼ cos θjΣ00i þ sin θjΛ00i; ð13Þ

where P denotes the physical baryon and θ is the mixing
angle to be determined through the octet baryon masses.
The baryon masses are evaluated from Eqs. (5) and (9).

With the SUð3ÞF symmetry described in the beginning of
the previous section, we can apply the Wigner-Eckart
theorem. Consequently, the matrix element in Eq. (5) is
parametrized as

hB0jH0 þH1
SjBi

¼ M0 þ S1TrðB0
nT8BnÞ þ S2TrðB0

nBnT8Þ; ð14Þ

hB0jH1
I þOðH2ÞjBi

¼ I1TrðB0
nT3BnÞ þ I2TrðB0

nBnT3Þ þOðH2Þ; ð15Þ

where M0, Si, and Ii are the SUð3ÞF parameters to be
extracted through the experiments, OðH2Þ is the higher
order correction, and B̄n ≡B†

n. In fact, Eq. (14) corre-
sponds to the GMO mass formula, while Eq. (15) can give
us the CG one. To get a consistent result, the parameters of
I1 and I2 are determined with the mass differences between
the isospin related baryons, while M0, S1, and S2 are fixed
with the average baryon masses within the same isospin
subgroup.
There is one triplet (Σ), two doublets (Ξ and N), and one

singlet (Λ00) under SUð2ÞI in the octet baryons. Their
experimental mass differences and SUð3ÞF parametriza-
tions are summarized in Table I, where the results from
QCD and QED are given at the end of this section. We have
rounded the experimental data to the second decimal place
due to that the SUð3ÞF symmetry is only an approximation.
The higher precision is not expected.
From Table I, one can easily obtain the CG mass

formula, given by

ðMΣ− −MΣþÞ − ðMn −MpÞ ¼ MΞ− −MΞ0 ; ð16Þ

along with an additional one, given by

1

2
ðMΣ− −MΣþÞ ¼ MΣ− −MΣ00 : ð17Þ

If one assumes that the baryon mass operator is invariant
under SUð2ÞI, the CG mass formula is trivial since the
baryons within the same isospin subgroup should have the
same mass. Consequently, the CG mass formula is often
interpreted as the equation between the isospin mass
differences. In addition, it can be related to the correction
in the U-spin symmetry of the down and strange quarks as
well as due to the rearrangement of

ðMΣ− −MΞ−Þ þ ðMp −MΣþÞ þ ðMΞ0 −MnÞ ¼ 0; ð18Þ

where ðΣ−;Ξ−Þ, ðp;ΣþÞ, and ðΞ0; nÞ belong to the same
U-spin subgroup. In fact, Eq. (18) is trivial in the original
derivation in Ref. [1] based on the mass operator being only
a function of Q, which is invariant under the U-spin
transformation, e.g.,MΣ−¼MΞ− ,Mp¼MΣþ andMΞ0¼Mn.
Moreover, the CG mass formula can also be related to the
correction under the V-spin symmetry of the up and strange
quarks with the rearrangement of

ðMΣ− −MnÞ þ ðMp −MΞ−Þ þ ðMΞ0 −MΣþÞ ¼ 0; ð19Þ

where ðΣ−; nÞ, ðp;Ξ−Þ, and ðΞ0;ΣþÞ have the same V-spin
representations. Likewise, Eq. (19) is trivial if the V-spin
symmetry is exact in the baryon mass operator. To sum up,
the CG mass formula is automatically satisfied if one of the
SUð2Þ subgroups in SUð3ÞF is preserved.
From the experimental data of MΣ− −MΣþ and

Mn −Mp, the parameters I1 and I2 in Eq. (15) can be
found to be

I1 ¼ ð3.40� 0.04Þ MeV and

I2 ¼ ð−0.65� 0.00Þ MeV: ð20Þ

Let us focus on H1
S. To get consistent results cooperated

with H1
I , we use the average masses in the isospin

subgroups, defined as MΣ¼ðMΣþþMΣ−Þ=2, MN¼ðMpþ
MnÞ=2, and MΞ ¼ ðMΞ− þMΞ0Þ=2. The famous GMO
mass formula can be obtained through Eq. (14), read as

TABLE I. Mass differences (MeV) in the octet baryons and SUð3ÞF parametrizations with the experimental data and our results from
QCD and QED.

Mass differences SUð3ÞF parameters Data [16] QCD QED

MΣ− −MΣþ 2I1 − 2I2 8.08� 0.08 8.59� 0.01 −0.51� 0.08
MΣ− −MΣ0 I1 − I2 4.81� 0.04a 4.30� 0.00 −0.26� 0.04
Mn −Mp −2I2 1.29� 0.00 2.84� 0.00 −1.54� 0.00
MΞ− −MΞ0 2I1 6.85� 0.21 5.76� 0.00 1.04� 0.08

aWe have used the approximation of MΣ0 ¼ MΣ00 .
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MΛ0 ≈MΛ00 ¼ 1

3
½2ðMΞ þMNÞ −MΣ�: ð21Þ

Experimentally, the left- and right-hand sides of Eq. (21)
are given by 1115.68� 0.01 and 1107.00� 0.07 MeV,
respectively. In addition, we get

M0 ¼ ð1150.21� 0.04Þ MeV;

S1 ¼ ð84.83� 0.01Þ MeV;

S2 ¼ ð−41.63� 0.04Þ Mev ð22Þ

in Eq. (14), where the experimental data of MΣ, MN , and
MΞ have been used.
If the QED effect is ignored, the baryon mass depends on

the quark mass matrix only, resulting in that

MQCD ¼M0þM1TrðB̄0
nMBnÞþM2TrðB̄0

nBnMÞþOðH2Þ;
ð23Þ

where M1 and M2 are the unknown parameters. By using
Eqs. (7), (14), and (15), we obtain that

�
I1
I2

�

QCD
¼

�
S1
S2

�

QCD
; ð24Þ

where the subscript of QCD indicates that the QED
effect is ignored. Since S1 and S2 are dominated by the
strange quark mass correction, we can safely approximate
Eq. (24) as

�
MΞ− −MΞ0

Mn −Mp

�

QCD

¼ −
�
I1
I2

�

QCD
¼ −

�
S1
S2

�

QCD

≈ −
S1
S2

¼ 2.038� 0.002: ð25Þ

The calculation in the LQCD is indeed consistent with
Eq. (25), where the ratio is around 1.6 ∼ 2.2 [2–6].
In reality, I1=I2 has the value of −5.25� 0.06, which
clearly indicates that I1=I2 ≠ ðI1=I2ÞQCD. Moreover, from
Eq. (23), we have

�
I1
S1

�

QCD
¼

�
I2
S2

�

QCD
¼ mq̄

ms̄
¼ 0.034; ð26Þ

where the mass ratios among the light quarks in Ref. [20]
have been used. With Eqs. (20), (22), and (26) along with
Ii ¼ ðIiÞQCD þ ðIiÞQED, we can separate the contributions
to the mass differences of the isospin breakings in QCD and
QED as listed in Table I. The results are fairly close to those
in the literature based on LQCD and QED [4–6].

III. Λ+
c DEACYS WITH Σ0 −Λ0 MIXING

The mixing angle is determined by [18]

tan θ ¼ hΣ00jH1
I jΛ00i=ðMΣ0 −MΛ0Þ; ð27Þ

where the matrix element is given as

hΣ00jH1
I jΛ00i ¼ 1ffiffiffi

3
p ðI1 þ I2Þ ¼ 1.59� 0.02 MeV: ð28Þ

By using I1 þ I2 ¼ ðMΣ0 −MΣþÞ − ðMn −MpÞ, our for-
mula is the same as the one in Ref. [19], in which only the
mixing through the electromagnetic interaction is consid-
ered. Consequently, we obtain the mixing angle

θ ¼ ð2.07� 0.03Þ × 10−2: ð29Þ

Although the mixing has little effect on the baryon
masses, it plays a significant role in the decays associated
with the isospin symmetry. We now study the mixing
effects in the semileptonic and nonleptonic charmed baryon
decays. In general, the states of Λþ

c and Σþ
c , corresponding

to I ¼ 0 and I ¼ 1, are also mixed. However, the mixing is
suppressed by the charmed quark mass [21]. As a result, it
is ignored in this work.
Since Λþ

c (Σ00) is antisymmetric (symmetric) in up and
down quarks, the decay channel of Λþ

c → Σ0eþνe without
the mixing is forbidden. The ratio between the decay rates
of Λþ

c → Λ0eþνe and Λþ
c → Σ0eþνe is given by

ΓðΛþ
c → Σ0eþνeÞ

ΓðΛþ
c → Λ0eþνeÞ

¼ tan2θ ¼ ð4.3� 0.1Þ × 10−4; ð30Þ

where we have approximated that MΣ0 ≈MΛ0 in the
kinematic phase space. In addition, the angular distribu-
tions of the Σ0 and Λ0 modes should be the same. With the
experimental data for Λþ

c → Λ0eþνe [16] and the mixing
angle in Eq. (29), the branching ratio and up-down
asymmetry of Λþ

c → Σ0eþνe are given by

BðΛþ
c → Σ0eþνeÞ ¼ ð1.5� 0.2Þ × 10−5

and αðΛþ
c → Σ0eþνeÞ ¼ −0.86� 0.04; ð31Þ

respectively.
We explore the nonleptonic charmed baryon decays of

Λþ
c → Σþπ0 and Λþ

c → Σ0πþ. If there is no mixing
between Λ0 and Σ0, two decays should have the same
decay width and up-down asymmetry parameter, given
by [22]
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Γ¼pΣ

8π

�ðmΛþ
c
þmΣÞ2−m2

π

m2
Λþ
c

jAj2þðmΛþ
c
−mΣÞ2−m2

π

m2
Λþ
c

jBj2
�
;

α¼ 2κReðA�BÞ
jAj2þκ2jBj2 ; κ¼ pΣ

EΣþmΣ
; ð32Þ

respectively, where A and B are associated with the P and S
wave amplitudes, and mi, pi, and Ei are the mass,
momentum, and energy for the ith hadron in the center
mass frame, respectively. On the other hand, the P wave
amplitude for Λþ

c → Σ0πþ can be written as

AðΛþ
c → Σ0πþÞ ¼ cos θAðΛþ

c → Σ00πþÞ
þ sin θAðΛþ

c → Λ00πþÞ
¼ − cos θAðΛþ

c → Σþπ0Þ
þ sin θAðΛþ

c → Λ00πþÞ; ð33Þ

where the second equation is given by the isospin sym-
metry [22]. The S wave amplitude can be given by
replacing A with B in Eq. (33). From the experimental
values of BðΛþ

c → Σþπ0Þ ¼ ð1.24� 0.10Þ% and αðΛþ
c →

Σþπ0Þ ¼ −0.73� 0.18 [15,16], we obtain that1

AðΛþ
c → Σþπ0Þ ¼ ð5.7� 0.4Þ10−2GF GeV2;

BðΛþ
c → Σþπ0Þ ¼ ð−7.9� 2.4Þ10−2GF GeV2; ð34Þ

with the correlation of R ¼ 0.73. Similarly, with the data of
BðΛþ

c → Λ0πþÞ ¼ ð1.30� 0.07Þ% and αðΛþ
c → Λ0πþÞ ¼

−0.80� 0.11, we find that1

AðΛþ
c → Λ00πþÞ ¼ ð−2.9� 0.5Þ10−2GF GeV2;

BðΛþ
c → Λ00πþÞ ¼ ð16.7� 0.9Þ10−2GF GeV2; ð35Þ

with the correlation of R ¼ 0.78.
According to Eqs. (33)–(35), the isospin breaking effects

caused by the mixing are given by

ΔBðΛþ
c → ΣπÞ≡ BðΛþ

c → Σ0πþÞ − BðΛþ
c → Σþπ0Þ

¼ ð3.8� 0.5Þ × 10−4;

ΔαðΛþ
c → ΣπÞ≡ αðΛþ

c → Σ0πþÞ − αðΛþ
c → Σþπ0Þ

¼ ð−1.6� 0.7Þ × 10−2; ð36Þ
which are consistent with the current experimental data,
given by ð5� 12Þ × 10−4 and ð16� 22Þ × 10−2 [16],
respectively. Since the data are also consistent with 0, it
is clear that future experiments with higher accuracy are
needed.
The mixing effects in Λþ

c → Σπ are in the first order of θ,
while those in Λþ

c → Σ0eþνe and Λ0
b → Σ0J=ψ [23] are in

the second one. Clearly, the experiments in Λþ
c → Σπ are

more promising for searching the Σ0 − Λ0 mixing.

IV. CONCLUSIONS

We have analyzed the mass differences of the octet
baryons. We have identified the contribution from QED in
the baryon mass splittings. From the baryon masses we
have found that the mixing angle between Σ0 and Λ0 is
θ ¼ ð2.07� 0.03Þ × 10−2. The possibility of observing
such a mixing in the Λþ

c decays has been discussed. In
particular, we note that the decay channel of Λþ

c → Σ0eþνe
is forbidden if θ ¼ 0. With the mixing, the decay branching
ratio and up-down asymmetry in Λþ

c → Σ0eþνe are given
by ð1.5� 0.2Þ × 10−5 and −0.86� 0.04, respectively. In
the nonleptonic decays, we have demonstrated that the
mixing causes slight differences for the physical observ-
ables between Λþ

c → Σ0πþ and Λþ
c → Σþπ0. Explicitly,

we have shown that ΔBðΛþ
c → ΣπÞ ¼ ð3.8� 0.5Þ × 10−4

and ΔαðΛþ
c → ΣπÞ ¼ ð−1.6� 0.7Þ × 10−2, respectively.

Future experimental searches for BðΛþ
c → Σ0eþνeÞ,

ΔBðΛþ
c → ΣπÞ, and ΔαðΛþ

c → ΣπÞ are recommended.
Nonvanishing values of these observables can be the
evidences of the Σ0 − Λ0 mixing.
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