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We calculate the Sivers asymmetry in the photoproduction of almost back-to-back J=ψ -jet pair in the
process ep↑ → J=ψ þ jetþ X, which will be possible at the future planned Electron-Ion Collider (EIC).
We use the framework of a generalized parton model and nonrelativistic QCD for calculating the J=ψ
production rate. We include contributions from both color singlet and color octet states in the asymmetry.
We obtain sizable Sivers asymmetry that can be promising to determine the gluon Sivers function. We also
investigate the effect of transverse momentum dependent evolution on the asymmetry.
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I. INTRODUCTION

Single spin asymmetries and transverse momentum
dependent parton distributions (TMD PDFs) are objects
of a lot of interest in recent days in hadron physics. Among
the TMD PDFs, the Sivers function [1] is of particular
interest. This gives the distribution of unpolarized quarks/
gluons in a transversely polarized nucleon, which is not
left-right symmetric with respect to the plane formed by the
transverse momentum and spin of the nucleon. In some
model calculations the Sivers function is shown to be
related to the quark orbital angular momentum through the
GPD Eq [2]. The Sivers function introduces an asymmetry,
for example, in the azimuthal angle of the observed final
state hadron in semi-inclusive deep inelastic scattering
(SIDIS) and in the azimuthal angle correlations of the
lepton pair in Drell-Yan process or back-to-back jets in pp
collision, called the Sivers asymmetry. The first transverse
moment of the Sivers function is related to the twist-three
Qiu-Sterman function [3]. First experimental information
on a nonzero Sivers function for quarks was obtained
from HERMES [4] and COMPASS [5] results. Since then,
quite a lot of advances have been made, both in theory
and experiment. Parametrization of a quark Sivers function
has been obtained in [6] and for gluons in [7,8] by fitting
data from RHIC within the Dokshitzer-Gribov-Lipatov-
Altarelli-Parisi (DGLAP) evolution approach. TMDs

evolvewith scale in a different way compared to the collinear
PDFs. Much progress has been made in the past few years to
understand the TMD evolution [9–11], and unpolarized
distributions and fragmentation function have been calcu-
lated at next-to-next-to-leading order [12]. A parametrization
of the Sivers function incorporating the TMD evolution
has been obtained in [13]; however, gluon Sivers function
(GSF) is not yet known. Therefore, compared to the quark
TMDs, gluon TMDs are much less known, and these will
also be investigated at the future Electron-Ion Collider (EIC)
[14] and the future fixed target plans at the LHC [15–17].
Gluon TMDs satisfy the positivity bounds first derived in
[18]. A phenomenological bound on GSF was obtained [19],
commonly known as Burkardt sum rule, from the require-
ment that the net transverse momentum of all partons (quarks
and gluons) in a transversely polarized nucleon should
vanish. In [20], a fit to the data from SIDIS at low scale
indicates that this sum rule is almost saturated by contribu-
tion from u and d quarks; however, there may still be about
30% contribution from GSF.
The Sivers function is a T-odd object and initial and final

state interactions play an important role in Sivers asym-
metry [21]. They are resummed into the gauge link or
Wilson line in the operator definition of the Sivers function
that is needed for color gauge invariance [22]. Gluon TMDs
have two gauge links, in contrast to quark TMDs, that
have only one. This introduces process dependence in
them. The Sivers function in SIDIS is expected to be equal
in magnitude but opposite in sign compared to the Sivers
function appearing in the Drell-Yan process [21]. Recent
data from RHIC [23] as well as COMPASS [24] seem to
favor the sign change; however, more data are needed [6].
The GSF for any process, in general, can be written in terms
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of two independent functions; one of them has an operator
structure that is C-even, and the other, C-odd. In the
literature, the former is called an f-type Sivers function
and the latter, d-type [25,26]. In fact, one of these two
(d-type) is not constrained by the Burkardt sum rule. More
experimental data are needed to precisely determine the
GSF. As is well known, J=ψ production in ep and pp
collision is an effective method to probe the gluon TMDs
including the GSF [27–33], as a contribution to the Sivers
asymmetry comes already at leading order (LO) through
the virtual photon-gluon or gluon-gluon fusion processes,
respectively. Data on Sivers asymmetry in J=ψ production
are available from the COMPASS Collaboration [34];
although with large error bars, it can be qualitatively
explained by a LO calculation in nonrelativistic QCD
(NRQCD) based color octet model [30]. In a recent
work [35], maximal values of the azimuthal asymmetries
in back-to-back electroproduction of a J=ψ and a jet is
estimated within the TMD factorization framework by
neglecting the intrinsic transverse momentum of the initial
parton in the hard part. Another interesting process to probe
the GSF is quasireal photoproduction of a hadron [36] or
J=ψ [29,37,38]. Contribution to the single spin asymmetry
(SSA) comes from a J=ψ observed in the forward region,
that is when the transverse momentum (pT) of J=ψ is small.
In this work, we investigate the possibility to probe the

GSF in quasireal photoproduction of back-to-back J=ψ and
a jet by employing the generalized parton model (GPM)
wherein the intrinsic transverse momentum of the initial
parton is considered in the hard part, which will be possible
in the future EIC. This will be sensitive to the GSF in a
different kinematical region, and the J=ψ observed need
not be in the forward region.
As mentioned above, initial and final state interactions

play a very important role in the SSAs. TMD factorization
has been proven only for certain processes. The current
status of the TMD factorization for heavy quarkonium
production in pp collisions can be found in [39]. The most
widely used approach to calculate amplitudes for J=ψ
production is based on nonrelativistic QCD. In this
approach, the amplitude is factorized into a soft non-
perturbative part and a hard part [40–46]. The heavy quark
pair is produced in color singlet (CS) or color octet (CO)
states in hard interaction. This is calculated in the pertur-
bation theory. Then this heavy quark pair hadronizes to a
quarkonium by emitting soft gluons. The hadronization
process is described in terms of long distance matrix
elements (LDMEs), that are obtained by fitting experimen-
tal data. The LDMEs have definite scaling properties with
respect to the velocity parameter v, which is assumed to be
small v ≪ 1 [47]. The theoretical estimates are arranged in
a double expansion in powers of v and the strong coupling,
αs. NRQCD has been successful in explaining hadropro-
duction data from TEVATRON [48,49] and also J=ψ
photoproduction data from HERA [50–53]. Both CS and

CO contributions are needed to explain the HERA data
[29]. In this work we calculate the weighted Sivers

asymmetry, A
sinðϕqÞ
N , in photoproduction of back-to-back

J=ψ and a jet at EIC in NRQCD by incorporating both CS
and CO states. The plan of the paper is as follows. In Sec. II
we give the analytic expressions of the asymmetry. In
Sec. III we present the TMD evolution framework.
Numerical results and conclusion are given in Secs. IV
and V, respectively.

II. SIVERS ASYMMETRY

We consider the photoproduction process

eðlÞ þ p↑ðPÞ → J=ψðPψ Þ þ jetðPjÞ þ X; ð1Þ

where the arrow in the superscript indicates the polarization
of the proton. The letters in the round brackets represent the
four momentum of the corresponding particles. We con-
sider the proton-electron center-of-mass frame wherein the
proton and electron move along the þz and −z direction.
The transverse plane, defined in Fig. 1, is orthogonal to the
momentum of proton direction. The initial scattering
electron radiates the virtual photon that will interact with
the proton. The four momentum square of the virtual
photon is q2 ≈ −2EeE0

eð1 − cos θÞ, and Ee and E0
e are

energies of the initial and final scattered electron, respec-
tively. In the forward scattering limit, photoproduction, the
four momentum of the virtual photon q2 ¼ −Q2 → 0 as a
result the virtual photon becomes the real photon. The
dominant subprocess for J=ψ production is the γðqÞ þ
gðpÞ → J=ψðPψÞ þ gðPjÞ at next-to-leading order (NLO)
in αs. The quark (antiquark) initiated subprocess can also
contribute γ þ qðq̄Þ → J=ψ þ qðq̄Þ. The unpolarized dif-
ferential cross section for the ep → J=ψ þ jetþ X process
can be written as follows:

FIG. 1. Illustration of azimuthal angles in the ep↑ → J=ψ þ jet
process. The transverse momenta PΨ⊥ and Pj⊥ of a J=ψ and a jet,
respectively, are in the plane orthogonal to the momentum of the
proton P.
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EΨEj
dσ

d3PΨd3Pj
¼ dσ

d2PΨ⊥dzd2Pj⊥dz1

¼ 1

4ð2πÞ2
1

zz1

X
a

Z
dxγdxad2pa⊥fγ=eðxγÞ

× fa=pðxa; pa⊥Þ

× δ4ðqþ p− PΨ − PjÞ
1

2ŝ
jMγa→J=ψaj2;

ð2Þ

where a ¼ g, u, d, s, ū, d̄, s̄. The xγ and xa are the light-
cone momentum fractions of photon and partons, respec-
tively, and pa⊥ is the transverse momentum of the initial
parton. We have assumed TMD factorization in the GPM
model with the inclusion of intrinsic transverse momentum
of the initial parton in the hard part. When the exchanged
photon is quasireal, the inreaction takes place through the
Weizsäker-Williams distribution function of the electron,
fγ=eðxγÞ; this describes the density of photons inside the
electron and is given by [54]

fγ=eðxγÞ ¼
α

2π

�
2m2

exγ

�
1

Q2
min

−
1

Q2
max

�

þ 1þ ð1 − xγÞ2
xγ

ln
Q2

max

Q2
min

�
; ð3Þ

where α is the electromagnetic coupling andQ2
min¼m2

e
x2γ

1−xγ
,

me being the electron mass. We have considered Q2
max ¼

1 GeV2 for estimating the Sivers asymmetry. The unpo-
larized TMD, fa=p, represents the density of unpolarized
partons inside an unpolarized proton with momentum
fraction xa and transverse momentum pa⊥. The ŝ, t̂, and
û are the Mandelstam variables at partonic level and their

definitions are given in Appendix A. Mγa→J=ψa is the
amplitude of gluon and quark (antiquark) initiated sub-
processes. The square of the amplitude is calculated using
the NRQCD model; for more details Ref. [29] is referred
for gluon channel, and the quark (antiquark) channel matrix
elements are given in Appendix B. The CS and CO states

i.e., 3Sð1;8Þ1 , 1Sð8Þ0 and 3Pð8Þ
J , are considered for J=ψ pro-

duction. The center-of-mass energy of the proton-electron
system is s ¼ ðPþ lÞ2. In Eq. (2), the inelastic variables

z ¼ P·Ph
P·q and z1 ¼ P·Pj

P·q are the energy fractions transferred
from photon to J=ψ and jet, respectively, in the proton rest
frame. In photoproduction, the inelastic variables z and z1
can be measured in experiments using the Jacquet-Blondel
method [50,51,53]. By using the definitions of four
momenta as given in Appendix A, the momentum con-
servation delta function can be decomposed as

δ4ðqþ p − PΨ − PjÞ

¼ 2

xγs
δð1 − z − z1Þδ

�
xa −

M2 þ P2
Ψ⊥

zxγs
−

P2
j⊥

z1xγs

�

× δ2ðpa⊥ − PΨ⊥ − Pj⊥Þ; ð4Þ

where PΨ⊥ and Pj⊥ are the transverse momentum of the
J=ψ and jet, respectively, and their azimuthal angles are
represented with ϕ1 and ϕ2 such that δϕ ¼ ϕ2 − ϕ1 − π as
shown in Fig. 1.
Now, we define the sum and difference of transverse

momenta of the J=ψ and jet as q⊥ ¼ PΨ⊥ þ Pj⊥ and
K⊥ ¼ ðPΨ⊥ − Pj⊥Þ=2. We are interested in the case where
jq⊥j ≪ jK⊥j i.e., the J=ψ and jet are almost back to back in
the transverse plane as shown in Fig. 1. The azimuthal
angle of q⊥ is denoted with ϕq. After integrating over z1,
xa, and pa⊥, one obtains the following expression:

dσ
d2q⊥dzd2K⊥

¼ 1

2ð2πÞ2
1

zð1 − zÞs
X
a

Z
dxγ
xγ

fγ=eðxγÞfa=pðxa; q⊥Þ
1

2ŝ
jMγa→J=ψaj2: ð5Þ

For a tranversly polarized proton, the differential cross section is given by

dσ↑ð↓Þ

d2q⊥dzd2K⊥
¼ 1

2ð2πÞ2
1

zð1 − zÞs
X
a

Z
dxγ
xγ

fγ=eðxγÞfa=p↑ð↓Þ ðxa; q⊥Þ
1

2ŝ
jMγa→J=ψaj2: ð6Þ

The weighted Sivers asymmetry is defined as [55]

A
WðϕqÞ
N ≡

R
dϕqWðϕqÞðdσ↑−dσ↓ÞR

dϕqðdσ↑þdσ↓Þ ≡
R
dϕqWðϕqÞdΔσðϕqÞR

dϕq2dσ
;

ð7Þ

where dσ↑ð↓Þ indicates the polarized cross section in the
process where one of the initial particles is transversely

polarized with respect to its momentum direction. The
azimuthal weight factor WðϕqÞ ¼ − sinðϕqÞ is given by
[56,57]

− sinðϕqÞ ¼
ðS × P̂Þ · q⊥

jS × P̂jjP̂ × q⊥j
: ð8Þ

It has been advertised that the J=ψ production probes the
gluon TMDs and the quark contribution can be safely
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neglected in the kinematical region considered because of
the insignificant contribution of quarks with respect to the
gluon, which will be discussed in the results section. Hence
the dominant contribution to the Sivers asymmetry comes
from the gluon channel. The numerator of the asymmetry is
sensitive to the Sivers function in J=ψ production

dΔσ ≡ dσ↑

d2q⊥dzd2K⊥
−

dσ↓

d2q⊥dzd2K⊥

¼ 1

2ð2πÞ2
1

zð1 − zÞs
X
a

Z
dxγ
xγ

fγ=eðxγÞΔf̂a=pðxa; q⊥Þ

×
1

2ŝ
jMγa→J=ψaj2; ð9Þ

with Δf̂a=p↑ðxa; q⊥Þ being the Sivers function, and
describes the number density of unpolarized partons in a
transversely polarized proton with mass Mp. The analytic
expressions for contributions from different states can be
found in [29]. As only a J=ψ was observed there, we had
integrated over the phase space of the final gluon a ¼ g,
whereas here, the final parton is producing the observed jet.
The Sivers function in Trento convention [56] is given by

Δf̂a=p↑ðxa; q⊥Þ≡ f̂a=p↑ðxa; q⊥Þ − f̂a=p↓ðxa; q⊥Þ
¼ ΔNfa=p↑ðxa; q⊥ÞŜ · ðP̂ × q̂⊥Þ
¼ −ΔNfa=p↑ðxa; q⊥Þ sinðϕqÞ

¼ −
2

Mp
f⊥1Tðxa; q⊥ÞŜ · ðP̂ × q⊥Þ: ð10Þ

The Sivers function fulfills the following positivity bound:

jΔNfa=p↑ðxa; q⊥Þj ≤ 2fa=pðxa; q⊥Þ; or
q⊥
Mp

jf⊥1Tðxa; q⊥Þj ≤ fa=pðxa; q⊥Þ: ð11Þ

Following Refs. [7,8], we adopt the Gaussian parametriza-
tion for the Sivers function within the DGLAP evolution
approach as

ΔNfa=p↑ðxa;q⊥Þ¼
�
−2

q⊥
Mp

�
f⊥1Tðxa;q⊥Þ

¼2N aðxaÞfa=pðxaÞhðq⊥Þ
e−q

2⊥=hq2⊥i

πhq2⊥i
; ð12Þ

where fa=pðxaÞ is the usual collinear parton distribution
function which follows the DGLAP evolution equation and

N aðxaÞ ¼ Naxαað1 − xaÞβ
ðαþ βÞðαþβÞ

ααββ
; ð13Þ

with jNaj ≤ 1 and

hðq⊥Þ ¼
ffiffiffiffiffi
2e

p q⊥
M0 e

−q2⊥=M02
; ð14Þ

as a result the Sivers function satisfies the positivity bound
for all values of xa and q⊥. If we define the parameter

ρ ¼ M02

hq2⊥i þM02 ; ð15Þ

such that 0 < ρ < 1, then Eq. (12) becomes

ΔNfa=p↑ðxa; q⊥Þ

¼ 2

ffiffiffiffiffi
2e

p

π
N aðxaÞfa=pðxaÞ

ffiffiffiffiffiffiffiffiffiffiffi
1 − ρ

ρ

s
q⊥

e−q
2⊥=ρhq2⊥i

hq2⊥i3=2
: ð16Þ

The unpolarized gluon TMD sitting in the denominator of
the asymmetry is parametrized as Gaussian distribution

fa=pðxa; q⊥Þ ¼
1

πhq2⊥i
fðxaÞe−q2⊥=hq2⊥i: ð17Þ

The best fit parameters of the Sivers function have been
extracted for quarks [6] and gluons [7,8] from SIDIS and
RHIC data, respectively. In Ref. [8], a new set of best fit
parameters of GSF are extracted for hq2⊥i ¼ 1 GeV2 and
are tabulated in Table I.

III. TMD EVOLUTION

In DGLAP evolution, collinear PDFs evolve with only
the probing scale (μ). However, in the TMD evolution
approach, TMDs evolve with both the intrinsic transverse
momentum (pa⊥) of the parton and the probing scale. The
TMD evolution framework is derived in the impact
parameter space (b⊥) [10]

fðxa; b⊥; μÞ ¼
Z

d2pa⊥e−ib⊥·pa⊥fðxa; pa⊥; μÞ; ð18Þ

and in the momentum space is given by

TABLE I. Best fit parameters of Sivers function.

Best fit parameters

Evolution a Na α β ρ
hq2⊥i
GeV2 Notation

DGLAP g [7] 0.65 2.8 2.8 0.687 0.25 SIDIS1
g [7] 0.05 0.8 1.4 0.576 0.25 SIDIS2
g [8] 0.25 0.6 0.6 0.1 1.0 SIDIS3

TMD u [13] 0.106 1.051 4.857 0.38 TMD-a
d [13] −0.163 1.552 4.857 0.38 TMD-b
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fðxa; pa⊥; μÞ ¼
1

ð2πÞ2
Z

d2b⊥eib⊥·pa⊥fðxa; b⊥; μÞ: ð19Þ

Usually, TMDs depend on two scales that are renorm-
alization scale (μ) and auxiliary scale (ζ) [58,59]. In order
to cure the light-cone (rapidity) divergences in TMD
factorization, the scale ζ has been introduced. One can
obtain the renormalization group and Collins-Soper equa-
tions by taking scale evolution with respect to μ and ζ,
respectively. The unpolarized TMD expression at a given
final scale Qf ¼ ffiffiffi

ζ
p ¼ M is obtained by solving RG and

CS equations [13,58,59] and is given as

fðxa;b⊥;Qf;ζÞ¼fðxa;b⊥;QiÞRpertðQf;Qi;b�ÞRNPðQf;b⊥Þ;
ð20Þ

where Qi ¼ c=b�ðb⊥Þ is the initial scale of the TMD with
c ¼ 2e−γϵ and γϵ ≈ 0.577. In line with Ref. [13], we adopt
the b� prescription to avoid hitting the Landau pole by
freezing the scale b⊥. Here, b�ðb⊥Þ ¼ b⊥ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þð b⊥
bmax

Þ2
p ≈ bmax

when b⊥ → ∞ and b�ðb⊥Þ ≈ b⊥ when b⊥ → 0. The Rpert

and RNP are the perturbative and the nonperturbative parts
of the TMD, respectively, which are given as

RpertðQf;b�Þ¼exp

�
−
Z

Qf

c=b�

dμ
μ

�
Alog

�
Q2

f

μ2

�
þB

��
; ð21Þ

and

RNPðQf; b⊥Þ ¼ exp

�
−
�
gTMD
1 þ g2

2
log

Qf

Q0

�
b2⊥

�
; ð22Þ

where the anomalous dimensions are A ¼ P∞
n¼1 ðαsðμÞπ ÞnAn

and B ¼ P∞
n¼1 ðαsðμÞπ ÞnBn, and the coefficients for the gluon

case are A1 ¼ CA, A2 ¼ 1
2
CFðCAð6718 − π2

6
Þ − 5

9
CANfÞ and

B1 ¼ − 1
2
ð11
3
CA − 2

3
NfÞ, and for the quark case are

A1 ¼ CF, A2¼ 1
2
CFðCAð6718− π2

6
Þ− 5

9
NfÞ and B1 ¼ − 3

2
CF

[13]. The unpolarized TMD at the initial scale can be
written as

fðxa;b⊥;QiÞ¼
X
i¼g;q

Z
1

x

dx̂
x̂
Ci=aðxa=x̂;b⊥;αs;QiÞfi=pðx̂;c=b�Þ

þOðb⊥ΛQCDÞ; ð23Þ

where Ci=a is the perturbatively calculated process inde-
pendent coefficient function, and is different for each type
of TMD. The derivative of the Sivers function follows the
same evolution equation as given in Eq. (20) but the gTMD

1

changes to gSivers1 in the RNP factor. The Sivers function
f⊥1Tðxa; pa⊥; QfÞ and its derivative are related by Fourier
transformation as [59]

f⊥1Tðxa;pa⊥;QfÞ

¼−
1

2πpa⊥

Z
∞

0

db⊥b⊥J1ðpa⊥b⊥Þf0⊥1Tðxa;b⊥;QfÞ; ð24Þ

and the unpolarized TMD is given by

fa=pðxa; pa⊥; QfÞ

¼ 1

2π

Z
∞

0

db⊥b⊥J0ðpa⊥b⊥Þfa=pðxa; b⊥; QfÞ: ð25Þ

The derivative of the Sivers function at the initial scale Qi
can be written in terms of a Qiu-Sterman function as
[22,60]

f0⊥1Tðxa; b⊥; QiÞ ≃
Mpb⊥

2
Ta;Fðxa; xa; QiÞ; ð26Þ

where Ta;Fðxa; xa; QiÞ is the Qiu-Sterman function, which
is usually assumed to be proportional to collinear PDF
[13,61]

Ta;Fðxa; xa; QiÞ ¼ N aðxaÞfa=pðxa;QiÞ: ð27Þ

The definition of N aðxaÞ is given in Eq. (13). Note that
here we have used the fact that the Sivers function in a
Drell-Yan process has opposite sign compared to the Sivers
function in semi-inclusive DIS. So far the best fit param-
eters of GSF have not been extracted in the TMD evolution
approach. However only the u and d quark Sivers function
are known which were extracted in [13] from SIDIS data
within the TMD evolution scheme, which are tabulated in
Table I. So far a fit for the gluon Sivers function is not
available in the TMD evolution approach. In order to show
the effect of this evolution on the asymmetry, we use an
exploratory approach; namely, following Ref. [62], we
define the following two sets of parametrizations for
GSF by using the known u and d quark Sivers function
parameters

ðaÞ N gðxgÞ ¼ ðN uðxgÞ þN dðxgÞÞ=2;
ðbÞ N gðxgÞ ¼ N dðxgÞ: ð28Þ

We denote the first parametrization as TMD-a and second
one as TMD-b. As the sign of Nu and Nd are opposite,
TMD-a gives a small GSF and TMD-b gives a large GSF.
As mentioned in the Introduction, Burkardt sum rule [19]
gives a constraint on the GSF. However, in order to
implement the constraint from the Burkardt sum rule
contribution, all quark favors need to be included, and
the sea quark Sivers function is still not well constrained.
Assuming contributions only from u and d quarks and
gluons, we have checked that TMD-a parametrization
satisfies the Burkardt sum rule, and violation is about
1%; whereas the TMD-b parametrization violates the sum
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rule by about 19%. The numerical values of best fit
parameters are estimated [13] at Q0¼

ffiffiffiffiffiffiffi
2.4

p
GeV, bmax ¼

1.5 GeV−1, g2 ¼ 0.16 GeV2, and hp2
s⊥i ¼ 0.282 GeV2

with gPDF1 ¼hp2
a⊥i=4¼hq2⊥i=4 and gSivers1 ¼ hp2

s⊥i=4. The
numerator and denominator parts of Eq. (7) in TMD
evolution approach can be written as

dΔσ ¼ −
1

πMp

1

2ð2πÞ2
1

zð1 − zÞs
X
a

Z
dxγ
xγ

db⊥b⊥J1ðq⊥b⊥Þf0⊥1Tðxa; b⊥; QfÞfγ=eðxγÞ
1

2ŝ
jMγa→J=ψaj2 sinðϕqÞ; ð29Þ

2dσ ¼ 1

2ð2πÞ2π
1

zð1 − zÞs
X
a

Z
dxγ
xγ

db⊥b⊥J0ðq⊥b⊥Þfa=pðxa; b⊥; QfÞfγ=eðxγÞ
1

2ŝ
jMγa→J=ψaj2: ð30Þ

IV. NUMERICAL RESULTS

In this section, we discuss the numerical results of Sivers
asymmetry in an ep↑ → J=ψ þ jetþ X photoproduction
process, where the proton is transversely polarized. We
consider the situation jq⊥j ≪ jK⊥j i.e., the produced pair of
a J=ψ and a jet are almost back to back in the transverse
plane as shown in Fig. 1. This configuration is feasible in
the future proposed Electron-Ion Collider with center-of-
mass energy from 20 to 150 GeV. The NLO photon-gluon
fusion and quark (antiquark) initiated subprocesses, γg →
J=ψg and γqðor q̄Þ → J=ψqðor q̄Þ, are considered. The
NRQCD model is employed for J=ψ production, and the
CS and CO states are considered for both numerator and
denominator parts of Eq. (7). If we do not detect the jet in
the final state then the CS state does not contribute to the
asymmetry, because the initial and final state interactions
between the final state parton and remnant of the proton get
canceled with each other as discussed in [63]. The values of
long distance matrix elements are taken from Ref. [64].
There are different sets of LDMEs in the literature and the
asymmetry is found to be independent of the choice of
LDME set.
There are two types of J=ψ photoproduction that are

resolved and direct photon contributions. The resolved
photoproduction, where the photon splits into partons
which subsequently interact with the partons of proton,
contributes to J=ψ production in the low z region (z < 0.3).
While in the direct photoproduction, the photon directly
interacts electromagnetically with the partons from the
proton. For direct inelastic J=ψ photoproduction one has to
consider 0.3 < z < 0.9 as discussed in Ref. [29]. The
fragmentation of a gluon and a heavy quark can also
contribute to J=ψ production at high transverse momentum
of the J=ψ [65]. The feed-down contribution from an
excited state ψð2SÞ and the decay of χc states contribution
to J=ψ are 15% [52] and 1% [66,67], respectively, but are
not considered in this work. The final state parton becomes
soft at z → 1 which leads to infrared singularity. Therefore,
to calculate the asymmetry for direct inelastic J=ψ photo-
production we consider z ¼ 0.3. The mass of J=ψ is taken

to be M ¼ 3.1 GeV. The cteq6l1 PDF sets are used for
collinear PDFs [68].
The Sivers asymmetry is calculated at EIC for

ffiffiffi
s

p ¼ 45
and 100 GeV within the DGLAP and TMD evolution
approaches. In the DGLAP evolution approach, the GSF
has been extracted in [7] from pion data at the RHIC for
fixed Gaussian width hq2⊥i ¼ 0.25 GeV2. Recently refitted,
the RHIC data with a new set of GSF parameters for
hq2⊥i ¼ 1 GeV2 [8]. However, GSF has not been extracted
yet in the TMD evolution approach. The u and d quark
Sivers functions are extracted in Ref. [13] using the TMD
evolution approach. For numerical estimation of Sivers
asymmetry, the u and d quark Sivers function best fit
parameters are used for GSF as defined in Eq. (28) within
the TMD evolution approach. The best fit parameters of
GSF and the quark Sivers function are tabulated in Table I.
The convention of figures is as follows. The obtained
Sivers asymmetry in the DGLAP approach is represented
with SIDIS1, SIDIS2, and SIDIS3. TMD-a and TMD-b
represent the Sivers asymmetry in the TMD evolution
approach.
In Figs. 2–4, the asymmetry in the DGLAP and TMD

evolution approaches as a function of q⊥ is shown at
ffiffiffi
s

p ¼
45 and 100 GeV for K⊥ ¼ 3 GeV, respectively, at z ¼ 0.3.
The asymmetry is shown in the range 0 ≤ q⊥ ≤ 1 GeV
which is considered to satisfy the condition jq⊥j ≪ jK⊥j.
The value ofK⊥ ¼ 3 GeV is chosen of the order of the J=ψ
mass. For higher values of K⊥ and z the gluon channel
contribution is suppressed because the momentum fraction
of the parton, xa, depends quadratically on K⊥ which can
be seen from Eq. (4).
The maximized Sivers asymmetry, AMax

N , at
ffiffiffi
s

p ¼
45 GeV is shown in Fig. 2. Here, we saturated the
Sivers function bound by adopting N a ¼ 1 and ρ ¼ 2=3
[8] in the parametrization of the Sivers function which is
given in Eq. (12). In the left panel of Fig. 2, the gluon and
quark (antiquark) channels contribution to AMax

N is shown,
and the quark (antiquark) channel contribution is insig-
nificant compared to the gluon channel. On this basis we
can say that the pair of J=ψ þ jet photoproduction process
is an effective channel that probes the poorly known GSF in
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FIG. 3. The weighted Sivers asymmetry in the eþp↑→J=ψþjetþX process as a function of q⊥ at EIC (a)
ffiffiffi
s

p ¼45GeV and (b)
ffiffiffi
s

p ¼
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the kinematical region considered here. We have neglected
the quark channel contribution to the numerator part of the
asymmetry in Figs. 3 and 4. In the right panel of Fig. 2, the
individual CS and CO states contribution to AMax

N is shown.

The 3Sð1Þ1 and 1Sð8Þ0 states contribute largely to AMax
N which is

independent of
ffiffiffi
s

p
.

In the left panel of Fig. 3, the weighted Sivers asym-
metry, A

sinðϕqÞ
N , is estimated to be about 3%, 1%, and 6%,

respectively, for the SIDIS1, SIDIS2, and SIDIS3 sets of

GSF parameters at
ffiffiffi
s

p ¼ 45 GeV. The A
sinðϕqÞ
N is reduced

about 2% for
ffiffiffi
s

p ¼ 100 GeV as shown in the right panel of
Fig. 3. In Fig. 4, negative Sivers asymmetry is shown in the
TMD evolution approach. The sign of the Sivers asym-
metry depends on the relative magnitude of Nu and Nd and
these have opposite sign which can be observed in Table I.
For the TMD-b parameter set, the N g is assumed to be
proportional to N d of the d quark; see Eq. (28). The value
of Nd is negative which leads to negative asymmetry. The
average of u and d quarks xa-dependent factor, N a, is
defined for a gluon as given in Eq. (28) for the TMD-a
parameter set. The magnitude of N d is comparable but
slightly dominant compared to N u that leads to negative
and small asymmetry for the TMD-a parameter set. In

Fig. 4, A
sinðϕqÞ
N is the estimated maximum of 8% and 4% atffiffiffi

s
p ¼ 45 and 100 GeV for the TMD-b parameter set.

V. CONCLUSION

In this work, we gave an estimate of the Sivers
asymmetry in almost back-to-back J=ψ and jet photo-
production at the future EIC. We assumed TMD factori-
zation for this process and used a generalized parton model,
incorporating the intrinsic transverse momenta. The qua-
sireal photoproduction takes place through the Weizsäker-
Williams photon distribution of the electron. We used
NRQCD to calculate the J=ψ production and incorporated
both CS and CO contributions to the asymmetry. A major

contribution comes from 3Sð1Þ1 and 1Sð8Þ0 states. We have also
shown the effect of the TMD evolution on the asymmetry.
In fact the Sivers asymmetry is positive without incorpo-
rating the TMD evolution, whereas it becomes negative
when evolution is incorporated. We have obtained sizable
Sivers asymmetry where the main contribution comes from
the gluon Sivers function and the quark contribution is
small. Therefore, back-to-back production of a J=ψ and a
jet at the future EIC is a promising tool to access the gluon
Sivers function.
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APPENDIX A: KINEMATICS

We consider the frame in which the proton and electron
are moving along +z and −z axes, respectively, and their
four momenta are given by

P ¼
ffiffiffi
s

p
2

ð1; 0; 0; 1Þ; l ¼
ffiffiffi
s

p
2

ð1; 0; 0;−1Þ: ðA1Þ

The center-of-mass energy of the electron-proton system is
s ¼ ðPþ lÞ2. The above four momenta in a light-cone
coordinate system can be written as

Pμ ¼
ffiffiffi
s
2

r
nμþ; lμ ¼

ffiffiffi
s
2

r
nμ−; ðA2Þ

where nþ and n− are two lightlike vectors with nþ · n− ¼ 1

and n2þ ¼ n2− ¼ 0,

nμþ ¼ ð1; 0; 0Þ; nμ− ¼ ð0; 1; 0Þ: ðA3Þ

We assume that the quasireal photon is collinear to the
electron. The quasireal photon and parton four momenta
are given by

qμ ¼ xγ

ffiffiffi
s
2

r
nμ−; ðA4Þ

p¼ p2⊥a

2xa
ffiffi
s
2

p nμ−þxa

ffiffiffi
s
2

r
nμþþpμ⊥a≈xa

ffiffiffi
s
2

r
nμþþpμ⊥a; ðA5Þ

where xγ ¼ q−

l− and xa ¼ pþ
Pþ are the light-cone momentum

fractions. The four momentum of the J=ψ and final parton
are given by

Pμ
Ψ ¼ zxγ

ffiffiffi
s
2

r
nμ− þM2 þ P2

Ψ⊥
2zxγ

ffiffi
s
2

p nμþ þ Pμ
Ψ⊥; ðA6Þ

Pμ
j ¼ z1xγ

ffiffiffi
s
2

r
nμ− þ P2

j⊥
2z1xγ

ffiffi
s
2

p nμþ þ Pμ
j⊥: ðA7Þ

The inelastic variables are defined as z ¼ P·PΨ
P·q ¼ P−

Ψ
q− and

z1 ¼ P·Pj

P·q ¼ P−
j

q− . By using the above relations, we can write
down the expressions of Mandelstam variables as

ŝ ¼ ðqþ pÞ2 ¼ 2k · q ¼ sxaxγ; ðA8Þ

t̂ ¼ ðq − PjÞ2 ¼ −2q · Pj ¼ −
P2
j⊥
z1

; ðA9Þ
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û ¼ ðq − PΨÞ2 ¼ M2 − 2q · PΨ

¼ M2 −
M2 þ P2

Ψ⊥
z

: ðA10Þ

Here M is the mass of J=ψ .

APPENDIX B: MATRIX ELEMENTS FOR
γ + qðq̄Þ → J=ψ + qðq̄Þ SUBPROCESSES

In this section the matrix elements for the γ þ qðq̄Þ →
J=ψ þ qðq̄Þ channel are presented:

jMð3Sð1Þ1 Þj2 ¼ 0; ðB1Þ

jMð3Sð8Þ1 Þj2 ¼ −2ð4πÞ3e2cα2sα
9M3ŝ t̂

h0jOJ=ψ
8 ð3S1Þj0i½ŝ2 þ t̂2 þ 2ûM2�; ðB2Þ

jMð1Sð8Þ0 Þj2 ¼ −4ð4πÞ3e2cα2sα
3M

h0jOJ=ψ
8 ð1S0Þj0i

ŝ2 þ t̂2

ûðŝþ t̂Þ2 ; ðB3Þ

jMð3Pð8Þ
0 Þj2 ¼ −16ð4πÞ3e2cα2sα

9M3
h0jOJ=ψ

8 ð3P0Þj0i
ðŝ2 þ t̂2Þðû − 3M2Þ2

ûðŝþ t̂Þ4 ; ðB4Þ

jMð3Pð8Þ
1 Þj2 ¼ −32ð4πÞ3e2cα2sα

9M3
h0jOJ=ψ

8 ð3P1Þj0i
ðŝ2 þ t̂2Þûþ 4M2ŝt̂

ðŝþ t̂Þ4 ; ðB5Þ

jMð3Pð8Þ
2 Þj2¼ 32ð4πÞ3e2cα2sα

45M3ûðŝþ t̂Þ4 h0jO
J=ψ
8 ð3P2Þj0i½−û2ð7ŝ2þ12ŝ t̂þ7t̂2Þ−12ûðŝ2þ ŝ t̂þt̂2Þðŝþ t̂Þ−6ðŝ2þ t̂2Þðŝþ t̂Þ2�: ðB6Þ

The matrix elements for the γg → J=ψ þ g channel are given in our previous paper [29].
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