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This paper presents the first calculations of the parity-violating polarization asymmetry and forward-
backward asymmetry of the eþe− → μþμ−ðγÞ process at a center-of-mass energy of 10.579 GeV with up to
one-loop electroweak radiative corrections. The calculations are relevant for future precision electroweak
measurements at the Belle II experiment, which is now collecting data at the SuperKEKB eþe− collider
with a center-of-mass energy at the mass of the ϒð4SÞ resonance. In this paper we take under full control
the bremsstrahlung process at the conditions of Belle II/SuperKEKB, and the possibilities for a soft photon
approach are discussed. The scale of the obtained relative corrections to the parity-violating and forward-
backward asymmetries is significant and the scattering angle dependencies of the asymmetries is nontrivial.
As an additional validation cross-check using an independent formulation, the calculated asymmetries are
compared to results from the KK Monte Carlo generator.
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I. INTRODUCTION

Electroweak measurements can be made at a high lumi-
nosity electron-positron collider B-factory, such as Belle II/
SuperKEKB [1] operating at a center-of-mass (CM) energy
of Ecm ¼ ffiffiffi

s
p ¼ 10.579 GeV (the mass of the ϒð4SÞ

meson), via γ − Z interference in the process eþe− → ff̄.
In the Standard Model this interference term is parametrized
in terms of the axial vector coupling of the fermionf, equal to
its third component of weak isospin, gaðfÞ ¼ I3ðfÞ, and its
vector coupling, gvðfÞ ¼ I3f − 2Qf sin2 θW (I3e;μ;τ ¼ −1=2;
I3ν ¼ þ1=2, and cos θW ¼ mW=mZ), whereQf is its electric
charge and θW is theweakmixing angle. The precision on the

measurement of the effective weak mixing angle, and hence
the effective vector couplings of the neutral current, would be
comparable to those measured on the Z0 pole at LEP and
SLC, but at a much lower energy, if the electron beam of the
B-factory has at least a 70% spin polarization [2,3] in a left-
right asymmetry measurement. Currently, SuperKEKB does
not have a polarized beam and the work presented here is a
necessary component of the physics justification for install-
ing polarization in that machine in a potential upgrade.
Without polarized beam, Belle II/SuperKEKB could still
measure the forward-backward asymmetry but with a sig-
nificantly lower precision on sin2 θeffW , as shown in this paper.
A forward-backward asymmetry measurement would, how-
ever, still provide a useful measurement of the axial vector
coupling constant for the final-state fermion, f.
With a polarized beam, the vector current couplings to

electrons, muons, taus, s-quarks, c-quarks, and b-quarks
can be measured and would enable a precision comparison
with the Standard Model predictions of their running from
10.579 GeV to the Z-pole. Deviations of the running would
signal the presence of new physics. On the other hand,
assuming the running holds, these measurements can be
used to significantly reduce the uncertainties on the Z-pole
values of the couplings. The electroweak fits that now
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include the measured Higgs boson parameters [4] show
reasonable internal consistency, but there is a 2.5σ
deviation associated with the determination of the Zbb̄
couplings and sin2 θeffW from the forward-backward asym-
metries for b-quarks at LEP. The tension is even greater,
3.2σ, between this bb̄ determination of sin2 θeffW and
that from SLD, which provides the single most precise
determination of sin2 θeffW using a left-right asym-
metry measurement. Therefore, it would be interesting to
have additional precision measurements of the Zbb̄ vertex.
Because SuperKEKB produces B mesons just above
threshold it would have a unique ability to measure the
neutral current vector coupling of b-quarks in a manner that
is free from fragmentation uncertainties [2,3] and would
provide a significant decrease in its uncertainty compared
to the value measured at LEP, where the dominant
systematic error came from fragmentation uncertainties.
In order to extract reliable information from the

experimental data, it is necessary to take into account
higher order effects of electroweak theory, i.e., electro-
weak radiative corrections (EWC). The procedure for
the inclusion of EWC is an indispensable part of any
modern experiment, but will be of paramount importance
for precision electroweak measurements of Belle II/
SuperKEKB. Consequently, theoretical predictions for
the observables must include not only full treatment of
one-loop radiative corrections (NLO) but also leading two-
loop corrections (NNLO).
Significant theoretical effort already has been dedicated

to NLO EWC to electron-positron annihilation starting
with [5], where EWC for this process with arbitrary
polarization are calculated for center-of-mass (CM) ener-
gies between 40 and 140 GeV. For the LEP and SLC
colliders the process eþe− → ff̄ demanded consideration
of the EWC at Z-boson pole with new precision. The
following collaborations have performed this task: BHM
and WOH [6,7], LEPTOP [8], TOPAZ0 [9], and ZFITTER
[10,11]. More recent results for EWC in “after LEP/SLC”
era are provided by KK [12] and SANC [13] codes.
The main goal of this work is to calculate the full set of

one-loop (NLO) EWC with the highest precision possible.
In order to avoid technical errors and to provide a validation
cross-check, we do the same calculations in two indepen-
dent and different ways and compare the results first, with a
semiautomatic approach (computer algebra) employing
FeynArts [14], FormCalc [15], LoopTools [15], and FORM [16],
with no simplifications, and then analytically (by hand), in
a compact asymptotic form. Section II details the calculated
differential cross sections up to one-loop. The bremsstrah-
lung process at the lower energies of Belle II/SuperKEKB
is fully accounted for in Sec. III, with both a soft photon
approximation (SPA) and a more exact hard photon
approach (HPA). The analysis of the results obtained
through the semi-automatic and asymptotic methods is
given in Sec. IV, as well as the comparison of the

soft-photon and hard-photon approaches. In addition, a
comparison is made with results from the KKMonte Carlo
generator. The sensitivity studies of left-right polarization
and forward-backward asymmetries are described in
Sec. V. Our conclusions and future plans are discussed
in Sec. VI.

II. NLO ELECTROWEAK CORRECTIONS
AT SIMPLEST CASE: GENERAL NOTATIONS

AND MATRIX ELEMENTS

In our calculations we will start with the simplest case of
eþe− → fþf−ðγÞ scattering, where f ¼ μ. First we will
disregard the electron mass m and final-state fermion mass
mf (valid for f ¼ μ) wherever possible, and second we
treat energy in the CM system of eþe− as a small
parameter, in comparison to the masses of W=Z bosons:

m;mf ≪ E ≪ mW;Z: ð1Þ

For this case we can obtain the total NLO EWC in a
compact and relatively simple form, free from unphysical
parameters and suitable for an analysis of the kinematic
behavior for a given reaction.
Let us start by writing the cross section for the scattering

of polarized electrons on unpolarized positrons,

eþðp1Þ þ e−ðp2Þ → fþðp3Þ þ f−ðp4Þ; ð2Þ

using the Born approximation shown in Fig. 1, we find:

σ ≈
π3

2s
jM0j2: ð3Þ

Here σ is a short notation for the differential cross section

σ ≡ dσ=dðcos θÞ;

θ is the scattering angle of the detected muon with
4-momentum p3 in the CM system of the initial electron
and positron. The 4-momenta of initial (p1 and p2) and
final (p3 and p4) fermions generate a standard set of
Mandelstam variables:

FIG. 1. Feynman diagram describing the process eþðp1Þ þ
e−ðp2Þ → fþðp3Þ þ f−ðp4Þ in the s-channel at tree level.
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s¼ðp1þp2Þ2; t¼ðp1−p3Þ2; u¼ðp1−p4Þ2: ð4Þ

Defining M0 as the Born [OðαÞ] amplitude (matrix
element), we describe the structure of M0:

M0 ¼
X
j¼γ;Z

Mj; Mj ¼ i
α

π
IjμDjJμ;j; ð5Þ

where the electron and muon currents are

Ijμ ¼ ūð−p1Þγμðvje − ajeγ5Þuðp2Þ;
Jjμ ¼ ūðp4Þγμðvjf − ajfγ5Þuð−p3Þ ð6Þ

and Dj is represented by:

Dj ¼ 1

s −m2
j þ imjΓj

ðj ¼ γ; ZÞ; ð7Þ

which depends on the Z-boson mass (mZ) and width (ΓZ),
or on the photon mass mγ ≡ λ. The photon mass is set to
zero everywhere with the exception of specially indicated
cases where it is taken to be an infinitesimal parameter that
regularizes the infrared divergence (IRD).
The squared amplitudeM0 forms the Born cross section:

σ0 ¼ π3

2s
jM0j2 ¼

πα2

s

X
i;k¼γ;Z

DiDk�μikik; ð8Þ

where

μikjl ¼ Tþλ
ikjl
þ − T−λ

ikjl
− ; T� ¼ t2 � u2; ð9Þ

and

λikjlþ ¼ λik1 λ
jl
fV; λikjl− ¼ λik2 λ

jl
fA;

λik1 ¼ λikeV − pBλ
ik
eA; λik2 ¼ λikeA − pBλ

ik
eV; ð10Þ

with pB representing the degree of electron polarization.
The λ-type functions have the following structures (here
g ¼ e, f):

λijgV ¼ vigv
j
g þ aiga

j
g; λijgA ¼ viga

j
g þ aigv

j
g; ð11Þ

where the vector and axial coupling constants are

vγg¼−Qg; aγg¼0;

vZg ¼ðI3g−2Qgs2WÞ=ð2sWcWÞ; aZg ¼ I3g=ð2sWcWÞ; ð12Þ

Qg is the electric charge of particle g in units of the proton’s
charge. Let us recall that I3g ¼ −1=2; I3ν ¼ þ1=2 etc., and
sWðcWÞ is the sine (cosine) of the Weinberg mixing angle
expressed in terms of the Z- and W-boson masses accord-
ing to the on-shell definition in the Standard Model:

cW ¼ mW=mZ; sW ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − c2W

q
: ð13Þ

At the next-to-leading-order (NLO), we can introduce
the NLO differential cross section [Oðα3Þ] via an interfer-
ence term given by the second term of the following
expansion:

σ ¼ π3

2s
jM0 þM1j2 ≈

π3

2s
ðM0M

†
0 þ 2ℜ½M1M

†
0�Þ: ð14Þ

Here, the one-loop amplitude M1 has structure of the
sum of boson self-energy (BSE), vertex (Ver) and box
diagrams (see Fig. 2):

M1 ¼ MBSE þMVer þMBox: ð15Þ

We use the on-shell renormalization scheme from [17,18],
so there are no contributions from the electron self-
energies. The infrared-finite BSE term can easily be
expressed as:

MBSE ¼ i
α

π

X
i;j¼γ;Z

IiμD
ij
S J

μ;j; ð16Þ

with

Dij
S ¼ −DiΣ̂ij

T ðsÞDj; ð17Þ

where Σ̂ij
T ðsÞ is the transverse part of the renormalized

photon, Z-boson and γZ self-energies. The longitudinal
parts of the boson self-energy make contributions that are
proportional to m2=r (r ¼ s, t, u); therefore they are very
small and are not considered here.
For the Belle II experiment, the CM energy of the

electron and positron is
ffiffiffi
s

p ¼ 10.579 GeV. Specifically for
the Hollik renormalization conditions [6], we have the
following numerical results for the truncated and renor-
malized self energies (Σ̂ij

T ):

FIG. 2. One-loop diagrams: the circles represent the contributions of self-energies and vertex functions. Unsigned curly lines represent
photon or Z-boson.
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ℜ½Σ̂γγ
T ðsÞ�Dγs ¼ −0.0361; ℑ½Σ̂γγ

T ðsÞ�Dγs ¼ 0.0159;

ℜ½Σ̂γZ
T ðsÞ�Dγs ¼ −0.0301; ℑ½Σ̂γZ

T ðsÞ�Dγs ¼ −0.0056;

ℜ½Σ̂ZZ
T ðsÞ�DZs ¼ −0.0317; ℑ½Σ̂ZZ

T ðsÞ�DZs ¼ −0.0003:

In order to derive the vertex amplitude (2nd and 3rd
diagrams in Fig. 2), we use the form factors notation in
the manner similar to the work of [17]. Here, we will
replace the coupling constants vjg; a

j
g with the form factors

vγðZÞg → v
FγðZÞ
g , aγðZÞg → a

FγðZÞ
g , where for the photon

v
Fγ
g ¼ α

4π

�
Λγ
1 þ ððvZg Þ2 þ ðaZg Þ2ÞΛZ

2 þ 3

4s2W
ΛW
3

�
; ð18Þ

a
Fγ
g ¼ α

4π

�
2vZg aZgΛZ

2 þ 3

4s2W
ΛW
3

�
; ð19Þ

and for Z-boson

vFZ
g ¼ α

4π

�
vZgΛ

γ
1 þ vZg ððvZg Þ2 þ 3ðaZg Þ2ÞΛZ

2

þ 1

8s3WcW
ΛW
2 −

3cW
4s3W

ΛW
3

�
; ð20Þ

aFZ
g ¼ α

4π

�
aZgΛ

γ
1 þ aZg ð3ðvZg Þ2 þ ðaZg Þ2ÞΛZ

2

þ 1

8s3WcW
ΛW
2 −

3cW
4s3W

ΛW
3

�
: ð21Þ

The function Λγ
1 corresponds to the contribution of triangle

diagrams with the photon in the loop, Λ2 corresponds to the
triangle diagrams with the massive boson—Z orW, and Λ3

corresponds to the triangle diagrams with 3-boson
vertices—WWγ or WWZ. These complex functions have
been studied in detail and presented, e.g., in [6]. Hence,

MVer ¼ i
α

π

X
j¼γ;Z

ðIFj
μ DjsJμ;j þ IjμDjsJμ;FjÞ: ð22Þ

The infrared singularity is regularized by giving the photon
a small mass λ and in the vertex amplitude can be extracted
in the form:

Mλ
Ver ¼ −

α

π

�
ln

s
mmf

− 1

�
ln

s
λ2

M0: ð23Þ

The remaining (infrared-finite) part of the vertex amplitude
has a simple form convenient for further analysis:

Mf
Ver ¼ MVer −Mλ

Ver ¼ MVerðλ2 → sÞ: ð24Þ
The box amplitude can be presented as a sum of all two-

boson exchange contributions:

MBox ¼ Mγγ þMγZ þMZZ þMWW: ð25Þ

We need to account for both direct and crossed γγ, γZ, and
ZZ-boxes:

Mij ¼ MD
ij þMC

ij ði; j ¼ γ; ZÞ; ð26Þ

but, obviously, for WW-boxes we only need the direct
expression. The infrared parts of the γγ- and γZ-boxes are
similarly given by

Mλ
γγðγZÞ ¼

α

2π
ln
u
t
ln
tu
λ4

M0: ð27Þ

The finite part of the γγ-box can be found in [19]. Using
asymptotic methods, we can significantly simplify the box
amplitudes containing at least one heavy boson (see, e.g.,
[20], where simplifications were done on the cross section
level). Finally, we provide the expressions for MD;C

ii in the
low energy approximation:

MD
ii ¼ −i

�
α

π

�
2 1

16m2
i
ūð−p1ÞγμγαγνðvBe − aBe γ5Þuðp2Þ

· ūðp4ÞγνγαγμðvBf − aBf γ5Þuð−p3Þ; ð28Þ

MC
ii ¼ i

�
α

π

�
2 1

16m2
i
ūð−p1ÞγμγαγνðvBe − aBe γ5Þuðp2Þ

· ūðp4ÞγμγαγνðvBf − aBf γ5Þuð−p3Þ; ð29Þ
with the coupling-constants combinations for ZZ- and
WW-boxes (B ¼ ZZ;WW)

vZZ ¼ ðvZg Þ2 þ ðaZg Þ2; aZZ ¼ 2vZg aZg ;

vWW ¼ aWW ¼ 1=ð4s2WÞ: ð30Þ

Now we are ready to present the one-loop amplitude as
the sum of IR-divergent (index λ) and IR-finite (index f)
parts: M1 ¼ Mλ

1 þMf
1 , where

Mλ
1 ¼

α

2π
Γλ
1M0; Γλ

1 ¼ 4B ln
λffiffiffi
s

p ; ð31Þ

and the value B can be presented in the form

B ¼ ln
st

mmfu
− 1: ð32Þ

Using (31), it is straightforward to write the expression for
the NLO cross section:

σV1 ¼ π3

s
ℜ½M1M

†
0� ¼ σλ1 þ σf1 ; ð33Þ

where IR-divergent and regularized NLO cross section is
given by

σλ1 ¼
α

π
Γλ
1σ

0: ð34Þ
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The IR-finite part can be represented using the notation of
the relative correction (Γf

1)

σf1 ¼ α

π
Γf
1σ

0 ¼ σBSE þ σfVer þ σfBox; ð35Þ

where at one-loop level the cross sections are written as
follows:

σBSE ¼ 2πα2

s
ℜ

X
i;j;k¼γ;Z

Dij
S D

k�μikjk; ð36Þ

σfVer ¼
2πα2

s
ℜ

X
i;k¼γ;Z

DiDk�½μFikik þ μikFik�; ð37Þ

σfBox ¼
π3

s
ℜðMf

γγ þMf
γZ þMZZ þMWWÞM†

0: ð38Þ

In (37), the IR-finite part of vertex form factors was used
according (24).

III. BREMSSTRAHLUNG: CANCELLATION OF
INFRARED DIVERGENCE

The bremsstrahlung diagrams are illustrated in Fig. 3,
where the first two diagrams correspond to initial state

radiation (ISR), whereas the last two correspond to final
state radiation (FSR).
We express the full differential cross section for the

process

eþðp1Þ þ e−ðp2Þ → fþðp3Þ þ f−ðp4Þ þ γðpÞ; ð39Þ

as

dσR ¼ α3

π2s

X
jRj2dΓ3; ð40Þ

where phase space is defined as

dΓ3 ¼ Γðp1 þ p2 − p3 − p4 − pÞ d
3p3

2p30

d3p4

2p40

d3p
2p0

ð41Þ

and

X
jRj2 ¼

X
i;j¼γ;Z

ðQ2
eR

ij
e þQeQfR

ij
i þQ2

fR
ij
f Þ; ð42Þ

where the three terms in the sum are the ISR, interference
and FSR parts, respectively.
The ISR part can be written as

Rij
e ¼ −ΠiΠj�Tr

��
γμ

−2pρ
2 þ p̂γρ

z1
þ 2pρ

1 − γρp̂
v1

γμ
�
1

2
ðλij1 − λij2 γ5Þp̂2

×

�
−2pρ

2 þ γρp̂
z1

γν þ γν
2pρ

1 − p̂γρ

v1

�
1

2
p̂1

�
Tr½γμðλijfV − λijfAγ5Þp̂3γνp̂4�: ð43Þ

The FSR part can be found by substitution Rij
f ¼ Rij

e ðΠj → Dj; p1;2 ↔ −p4;3; λ1;2 ↔ λfV;fAÞ, and for the interference term
we have

Rij
i ¼ −ΠiDj�Tr

��
γμ

−2pρ
2 þ p̂γρ

z1
þ 2pρ

1 − γρp̂
v1

γμ
�
1

2
ðλij1 − λij2 γ5Þp̂2γν

1

2
p̂1

�

× Tr½γμðλijfV − λijfAγ5Þp̂3

�
−2pρ

3 − γρp̂
v

γν þ γν
2pρ

4 þ p̂γρ

z

�
p̂4

�

−DiΠj�Tr
�
γμ

1

2
ðλij1 − λij2 γ5Þp̂2

�
−2pρ

2 þ p̂γρ

z1
γν þ γν

2pρ
1 − γρp̂
v1

�
1

2
p̂1

�

× Tr

��
γμ

−2pρ
3 − γρp̂
v

þ 2pρ
4 þ p̂γρ

z
γμ
�
ðλijfV − λijfAγ5Þp̂3γνp̂4

�
: ð44Þ

For the radiative case, the truncated propagator has the following form

FIG. 3. Diagrams with photon emission.
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Πj ¼ 1

s − z − v −m2
j þ imjΓj

ðj ¼ γ; ZÞ: ð45Þ

In the last three equations we have used four radiative
invariants (they tend to zero at p → 0):

z1¼2p1p; v1¼2p2p; z¼2p3p; v¼2p4p; ð46Þ

together with three invariants s, t, u, and taking into
account the momentum conservation, we can write the
following identities

z − z1 ¼ v1 − v; sþ tþ u ¼ vþ 2m2 þ 2m2
f: ð47Þ

Here we have five (4þ 3 − 2 ¼ 5) independent variables in
the description of bremsstrahlung process. Phase space of
the emitted photon dΓ3 can be expressed in the basis of
these invariants

dΓ3 ¼
π

16s
dtdvdzdv1ffiffiffiffiffiffiffiffi

−Γ4

p ; ð48Þ

and −Γ4 is a usual Gram determinant.
Next we divide the bremsstrahlung cross section into soft

and hard parts using a separator ω. The soft part σγðωÞ is
integrated under the condition that the photon energy (all
energies are in the CM system of eþe−) is less than ω. The
hard part of bremsstrahlung cross section σγðω;ΩÞ corre-
sponds to the photon energy greater than ω and less thanΩ.
To evaluate the cross section induced by the emission of a
single soft photon, we follow the methods of Berends et al.
[21] (see also [22,23]). To obtain the result, we must
calculate the 3-dimensional integral over the phase space of
the emitted real soft photon:

Lðλ;ωÞ ¼ −
1

4π

Z
p0<ω

d3p
p0

TαðpÞTαðpÞ ¼ −Γλ
1 þ R1; ð49Þ

where

TαðpÞ ¼ pα
1

p1p
−

pα
2

p2p
þ pα

3

p3p
−

pα
4

p2p
; ð50Þ

and

R1 ¼ −4B ln
ffiffiffi
s

p
2ω

−
�
ln
m2

s
þ 1

2
ln2

m2

s
þ π2

3

�

−
�
ln
m2

f

s
þ 1

2
ln2

m2
f

s
þ π2

3

�
þ 2Li2

−t
u
− 2Li2

−u
t
:

ð51Þ
As a result the soft cross section can be factorized in terms
of the Born cross section in this soft-photon bremsstrahlung
approximation:

σγðωÞ ¼ α

π
½−Γλ

1 þ R1�σ0: ð52Þ

In the rest of the article we will refer to it as the soft photon
approximation (SPA). The contribution due to soft photons
is evaluated in with our semiautomatic approach, with no
further simplifications.
The hard photon approach (HPA) fully accounts for the

photon in the final state, where the HPA emission cross
section is calculated with a Monte Carlo integration
technique using the VEGAS routine [24] in the region
ω ≤ p0 ≤ Ω. The hard photon bremsstrahlung cross section
can be expressed as

σγðω;ΩÞ ¼ α3

8πs

Z
ω≤p0≤Ω

dvdzdv1ffiffiffiffiffiffiffiffi
−Γ4

p s − v
s

X
jRj2θð−Γ4Þ:

ð53Þ
Here we have used the ultrarelativistic form of the Jacobian
ðs − vÞ=s, which originates in the transition from radiative t
invariant

t ¼ 1

2

�
2m2 þ 2m2

f − sþ v

þ cos θ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 4m2

s

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs − vÞ2 − 4m2

fs
q �

ð54Þ

to the cosine of the scattering angle: cos θ. The integral in
(53) can be evaluated first analytically over the variables v1
and z (explicit details are given in [25]), and then
numerically.
Putting it all together at one-loop, we get:

σ1 ¼ σV1 þ σγðωÞ þ σγðω;ΩÞ: ð55Þ
Obviously σ1 does not depend on either λ or ω. The
independence on the mass of the photon can be justified by
direct analytical cancellations of λ, and as a result we get

σλ1 þ σγðωÞ ¼ α

π
R1σ

0: ð56Þ

Independence from ω is obvious by definition. But since
the hard photon bremsstrahlung integration was performed
numerically, we verify that and observe ω independence
with a relative numerical uncertainty not exceeding the
order of 10−4.

IV. NUMERICAL RESULTS

Electroweak input parameters of the on-shell renormal-
ization scheme (mW , mZ, and α) are naturally defined as
measurable quantities with fixed values at all orders of

perturbation theory. As a result, the s2W ¼ 1 − m2
W

m2
Z
definition

of the weak mixing angle is also fixed at all orders of
perturbation theory. Frommuon decay one can establish the
relationship between the most precisely measured quantity,
the Fermi constant Gμ ¼ 1.1663787ð6Þ × 10−5 GeV−2,
and the mW . This can be achieved by comparing muon
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lifetimes calculated in Fermi four-fermion interaction
theory and the Standard Model calculations at one-loop
level. This gives the following relationship:

m2
W ¼ παffiffiffi

2
p

Gμs2Wð1 − ΔrÞ : ð57Þ

Here Δr is a radiative correction which is calculated in the
on-shell renormalization scheme [26] and has the following
structure:

Δr ¼ ℜΣ̂WWð0Þ
m2

W
þ α

4πs2W

�
6þ 7 − 4s2W

2s2W
ln c2W

�

þ c2W
m2

Zs
2
W
ℜ

�
Σ̂2
γZðm2

ZÞ
m2

Z þ Σ̂γγðm2
ZÞ

�
: ð58Þ

Here, Σ̂V1V2
is defined as a truncated and renormalized self-

energy graph for V1 → V2 mixing.
The formulas (57) and (58) gives the effective mW value

of 80.4628 GeV, which we use in our calculations. For the
numerical calculations we have used α ¼ 1=137.035999,
mZ ¼ 91.1876 GeV, and mH ¼ 125 GeV as input param-
eters according to [27]. The electron, muon, and τ-lepton
masses are taken as me ¼ 0.510998910 MeV, mμ ¼
0.105658367 GeV, mτ ¼ 1.77684 GeV and the quark
masses for loop contributions as mu ¼ 0.06983 GeV,
mc ¼ 1.2 GeV, mt ¼ 174 GeV, md ¼ 0.06984 GeV,
ms ¼ 0.15 GeV, and mb ¼ 4.6 GeV. The light quark
masses provide a shift in the fine structure constant due

to hadronic vacuum polarization Δαð5Þhadðm2
ZÞ ¼ 0.02757

[28], where

Δαð5ÞhadðsÞ ¼
α

3π

X
q¼u;d;s;c;b

Q2
q

�
ln

s
m2

q
−
5

3

�
: ð59Þ

Here, we choose to use the light quark masses as param-
eters regulated by the hadronic vacuum polarization.
Let us introduce superscript C which corresponds to the

specific type of contribution to a cross section or asym-
metry. C can be 0 (Born contribution), 1 (one-loop EWC
contribution), or 0þ 1 (both these types): C ¼ f0; 1;
0þ 1g. The relative correction to the unpolarized differ-
ential cross section (denoted by subscript 00) is

δ00 ¼
σ1L þ σ1R
σ0L þ σ0R

¼ σ100
σ000

; ð60Þ

where the subscripts L and R on the cross sections
correspond to the degree of polarization for electron
pB ¼ −1 and pB ¼ þ1, respectively. The relative correc-
tion to the unpolarized total cross section is

δT ¼ Σ1
F þ Σ1

B

Σ0
F þ Σ0

B
¼ Σ1

T

Σ0
T
; ð61Þ

where forward and backward cross sections are defined as

ΣC
F ¼

Z
cosa

0

σC00 · dðcosθÞ; ΣC
B ¼

Z
0

− cosa
σC00 · dðcosθÞ:

The relative correction to integrated cross section is

δΣ ¼ Σ1
L þ Σ1

R

Σ0
L þ Σ0

R
; ð62Þ

where the left and right integrated cross sections are given
by

ΣC
L ¼

Z
cosa

cos b
σCL · dðcos θÞ; ΣC

R ¼
Z

cos a

cos b
σCR · dðcos θÞ;

and the integration is over the cosine of the polar angle of
the outgoing negative fermion.
The parity-violating (left-right) asymmetry is defined in

a traditional way

AC
LR ¼ σCL − σCR

σCL þ σCR
; ð63Þ

which at the Born level has the following structure

A0
LR ¼ −

s
4m2

W

ðy − 1Þ2
2ðy − 1Þyþ 1

1 − 4s2W
s2W

¼ −
2s
m2

Z

�
aevμ þ aμve

ð1 − 2yÞ
2ðy − 1Þyþ 1

�
; ð64Þ

with y ¼ −t=s. The left-right integrated asymmetry is
constructed from integrated cross sections

AC
LRΣ ¼ ΣC

L − ΣC
R

ΣC
L þ ΣC

R
: ð65Þ

Born results for the integrated asymmetry can be written in
the following form

A0
LRΣ ¼ −

s
8m2

W

1 − 4s2W
s2W

2 cos a cos bþ 6ðcos aþ cos bÞ þ cos 2aþ cos 2bþ 8

2 cos a cos bþ cos 2aþ cos 2bþ 8

¼ −
2s
m2

Z

�
aevμ þ aμve

6ðcos aþ cos bÞ
2 cos a cos bþ cos 2aþ cos 2bþ 8

�
: ð66Þ
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In the case, when we consider full acceptance (a ¼ 0°
and b ¼ 180°), expressions for the integrated asymmetry
simplify considerably:

A0
LRΣj180°0° ¼ −

s
8m2

W

1 − 4s2W
s2W

¼ −
2s
m2

Z
aevμ

¼ −
ffiffiffi
2

p
Gμs

πα
s2Wc

2
Waevμ ¼ −

1ffiffiffi
2

p Gμs

πα
gaðeÞgvðμÞ:

ð67Þ

The choice of the polarization asymmetry (or integrated
asymmetry) as one of the observables is driven by its high
sensitivity to Weinberg mixing angle. In the case that the
physics beyond the Standard Model has a parity violating
contributor (as for a Z0 boson), it would be best to use AC

LR
and AC

LRΣ in the study of the properties of new physics
particles. By analogy, the forward-backward asymmetry is
defined as

AC
FB ¼ ΣC

F − ΣC
B

ΣC
F þ ΣC

B
; ð68Þ

At the Born level A0
FB is found to be

A0
FB ¼ aeaμ

6s cos a
3þ cos2 a

×
sð1þ 2vevμÞ −m2

Z

ðs −m2
ZÞ2 þ 2svevμðs −m2

ZÞ þ s2ðvevμ þ aeaμÞ
;

ð69Þ

here, and in the above formulas, fvf; afg≡ fvZf ; aZfg.
Since A0

FB is directly proportional to the product aeaμ, it
is a very useful observable if we would like to search for the
candidates beyond the SM, with an axial part of the
coupling only.
Finally, we would like to define the NLO absolute

corrections to the Born asymmetries:

ΔLR ¼ A0þ1
LR − A0

LR; ΔFB ¼ A0þ1
FB − A0

FB;

ΔLRΣ ¼ A0þ1
LRΣ − A0

LRΣ: ð70Þ

In our analysis we start with a comparison between the
asymptotic and full semiautomatic calculations. The results
for the relative correction δ00 using the SPA approach can

be found in Table I for different μ− scattering angles in the
CM of the eþe− system. Table I shows the asymptotic
and full semiautomatic results, respectively. For the cut
on the maximum energy of emitted soft photon, we take
γ1 ¼ ω=

ffiffiffi
s

p
. Here we used γ1 ¼ 0.05; this corresponds to

the maximum photon energy 0.05 ·
ffiffiffi
s

p ¼ 0.52885 ðGeVÞ
for Belle II conditions. We also found very good agreement
between the two approaches for any reasonable choice
of γ1.
Various numerical results for asymmetries and radiative

corrections are presented on Figs. 4–10. Here, for the cut on
energy of the emitted hard photon, in the center-of-mass
system of eþ and e−, we used Ω ¼ 2.0 GeV.
As we can see on Fig. 4, the correction to the unpolarized

cross section related to the forward/backward kinematics is
not negligible. The correction in the region 50° ≤ θ ≤ 130°
is linearly decreasing with its central value at ∼5.0%. It is
important to note that our comparison between asymptotic
and full semi-automatic results (see Table I) has used only
the soft-photon contribution to the unpolarized cross-
section and that obviously disagrees with the values of
the correction on Fig. 4 (left plot), where the hard photon
bremsstrahlung contribution was also included. For the L-R
polarization asymmetry on Fig. 5, we observe a standard
dependence of the asymmetry on scattering angle. Here, as
expected, the asymmetry reaches its maximum value at
forward angles, which is explained by the short range
interaction regime, where the parity violating Z-boson
exchange dominates the contribution to the numerator of
the asymmetry term. At backward angles we observe that
the asymmetry is trending towards a zero value due to the
large range interaction regime, where short range Z-boson
exchange has a negligible contribution, and hence the entire
L-R asymmetry goes to zero.
The total cross section and NLO correction, as a function

of detector acceptance, are shown on Fig. 6. The correction
to the total cross section reaches the value of ∼46.8%, for
full geometrical acceptance, and is relatively constant.
The integrated L-R asymmetry A0þ1

LRΣ and its NLO
correction ΔLRΣ are shown on Fig. 7. The maximum value
of A0þ1

LRΣ (for a ¼ 10° and b ¼ 170°) is approximately equal
to the average value of differential L-R asymmetry, which
also corresponds to A0þ1

LR at θ ¼ 90°. Results for the
calculated A0þ1

FB asymmetry are shown in Fig. 8.
Figs. 8–10 are dedicated to the sensitivity study of

calculated observables to the cuts on the energy of emitted

TABLE I. SPA relative corrections to unpolarized differential cross sections, δ00, at the Belle II/SuperKEKB CM energy for the
eþe− → μþμ−ðγÞ process at γ1 ¼ 0.05 comparing asymptotic (2nd row) and semiautomatic (3rd row) calculations at different μ− polar
angles, θ, in the eþe− CM system.

θ° 10 30 50 70 90 110 130 150 170

Asymptotic approximation 0.0180 −0.0456 −0.0738 −0.0935 −0.1099 −0.1264 −0.1460 −0.1743 −0.2378
Semiautomatic approach 0.0179 −0.0455 −0.0738 −0.0934 −0.1099 −0.1263 −0.1459 −0.1742 −0.2372
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soft photons. In these plots we show dependencies of the
observables on the photon’s energy cutΩ, where the dashed
line was obtained using the soft-photon approach only, and
the solid line corresponds to the calculation with hard-
photon emission.
As it can be seen, for the asymmetries, either A0þ1

LR , A0þ1
FB

or A0þ1
LRΣ, the two approaches start to deviate significantly at

Ω ≈ 0.5 GeV. This justifies the importance of inclusion of
hard-photon emission calculations when it is required to
provide analysis for observables such as asymmetries.
However, for the various cross sections such as dσ0þ1,
Σ0þ1
T or Σ0þ1

00 the discrepancy between two approaches start

to become visible only at Ω ≈ 4.5 GeV, which is rather
close to the maximum energy of emitted photons,
Ω ¼ 5.2885 GeV. Since the calculations in the soft-photon
approach are considerably simpler, we can rely on SPA
when dealing with cross section calculations.

A. Comparisons with KK Monte Carlo

The KK [12] Monte Carlo code is used by a number of
particle physics experiments, including BABAR, Belle, and
Belle II, to simulate eþe− → μþμ−ðnγÞ and eþe− →
τþτ−ðnγÞ events. In KK, photon emission effects from
the initial beams as well as outgoing fermions are

FIG. 4. Left: unpolarized NLO corrected (0þ 1), Born (0), and their difference (1) differential cross sections vs scattering angle θ.
Right: the relative NLO correction to unpolarized Born cross section vs θ. Calculations are done at an Ω cut of 2 GeV. The points are the
results obtained from running the KKMonte Carlo generator as described in the text, where the error bars represent the statistical errors
from the number of Monte Carlo events generated.

FIG. 5. Left: the polarization Born asymmetry (0) and asymmetry taking into account the NLO EWC (0þ 1) vs scattering angle
cos θ, KK Monte Carlo points are integrated in cos θ bins 0.125 in width. Right: the absolute NLO correction to polarization
Born asymmetry vs cos θ. Calculations are done at an Ω cut of 2 GeV. The points are the results obtained from running the KK
Monte Carlo generator as described in the text, where the error bars represent the statistical errors from the number of Monte Carlo
events generated.
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calculated up to second order, including interference
effects, using coherent exclusive exponentiation (CEEX)
[29] and electroweak corrections using the DIZET
library, which is based on the on-shell renormalization
scheme [30]. The calculations of this work are compared
to those provided by KK version 4.19, which uses DIZET
version 6.05. In order to carry out these comparisons
the particle masses used in KK were changed to match
those in Sec. IV and the Weinberg mixing angle, which is
also an input to KK, was set to the value corresponding to
the on-shell value of sin2 θW ¼ 0.221392, as described
by (13).

Two billion eþe− → μþμ− events were generated with
KK for both a left-handed polarized e− beam and a right-
handed polarized e− beam. Each simulated event was
required to produce both muons within an angular accep-
tance of a ¼ 10° and b ¼ 170°. From the simulated
events comparisons were made with each observable in
Figs. 4–10. For Figs. 4 and 5 theKK results were binned in
cos θ with bins 0.125 in width. The mean of each bin was
used to determine the cos θ value of the points. In both of
these figures the KK results are in agreement with our
calculations. In order to obtain the differential cross section
in KK we calculate the integrated cross section in the bin

FIG. 6. Left: unpolarized NLO corrected (0þ 1), Born (0), and their difference (1) total cross sections vs angle a. Right: the relative
NLO correction to unpolarized total Born cross section vs a. Calculations are done at an Ω cut of 2 GeV. The points are the results
obtained from running the KK Monte Carlo generator as described in the text, where the error bars represent the statistical errors from
the number of Monte Carlo events generated.

FIG. 7. Left: the left-right integrated Born asymmetry (0) and asymmetry taking into account the NLO EWC (0þ 1) vs angle b at
a ¼ 10°. Right: the absolute NLO correction to left-right integrated Born asymmetry vs b at a ¼ 10°. Calculations are done at an Ω cut
of 2 GeV. The points are the results obtained from running the KK Monte Carlo generator as described in the text, where the error bars
represent the statistical errors from the number of Monte Carlo events generated.
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and then normalize it by the width of the bin. In Figs. 6 and
7 the KK events are binned by angular acceptance. Note
that as one end of the bin is fixed and the other moved to
various angular cuts, some KK events populate multiple
bins and therefore the points are not statistically indepen-
dent. Using KK the forward-backward asymmetry was
determined with two separate methods. The first method
counts the events that fall in an angular acceptance between
�a and 90° with a 2 GeV Ω cut, shown in Fig. 8 (left). The
second method counts events as a function of the Ω cut in
an angular acceptance of a ¼ 30° and 90°, as seen in Fig. 8

(right). The forward-backward asymmetry seen in Fig. 8
shows an offset of a few percent between our calculations
and the KK results. This is most likely a result of AFB
receiving a substantial contribution from the IR-finite part
of the photon bremsstrahlung terms (see Fig. 15, left plot).
In our case we consider only one-photon emission in initial
and final states, while KK accounts for higher photon
multiplicity when the bremsstrahlung contribution to AFB is
calculated.
In Fig. 8 we switch from angular acceptances to cuts on

the energy of the emitted photon. As multiple photons are

FIG. 8. Left: the forward-backward Born asymmetry (0) and asymmetry taking into account the NLO EWC (0þ 1) vs angle a at anΩ
cut of 2 GeV. Right: Calculations in two approaches: SPA (dashed line) and HPA (solid line), the NLO corrected forward-backward
asymmetry at a ¼ 30°. The points are the results obtained from running the KK Monte Carlo generator as described in the text, where
the error bars represent the statistical errors from the number of Monte Carlo events generated.

FIG. 9. Calculations in two approaches: SPA (dashed line) and HPA (solid line). Left: The NLO corrected unpolarized differential
cross section at a ¼ 30° vs Ω. Right: the NLO corrected unpolarized integrated cross section at a ¼ 10°, b ¼ 170° vs Ω. The points are
the results obtained from running the KK Monte Carlo generator as described in the text, where the error bars represent the statistical
errors from the number of Monte Carlo events generated.
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produced in KK, not just a single photon, we define Ω as

ΩKK ¼
ffiffi
s

p
2
ð1 − s0

sÞ, where s is the square of the center-of-
mass energy and s0 is the square of the invariant mass of the
muon pair. In Figs. 9 and 10 the KK events are binned
according to the Ω cut value of the event. As some events
populate multiple bins as the Ω cut value is varied, this
again leads to statistical correlations between bins on these
plots. The level of agreement between the KK cross
sections and the NLO corrected (0þ 1) cross sections
can be seen in Fig. 9. Figure 10 compares the KK results
with our calculations of ALR as a function of the Ω cut. In
order to compare our calculations of ALR at θ ¼ 90° as a
function of the Ω cut to those of KK [Fig. 10 (left)], the
acceptance for charged muons generated by KK is set to
70° < θ < 110°, a region over which the ALR dependence
on cos θ is linear to a good approximation (see Fig. 5).
Note that, again, the point-to-point correlations are large.
From Fig. 10 (right), it is evident that in the region
1 GeV < Ω < 3 GeV the KK results integrated over
10° < θ < 170° are in good agreement with the HPA
calculation, within the KK statistical uncertainties. This
statistical uncertainty arises from the finite number of
events generated byKK for each of the two e− polarization
states. Accounting for the numbers of KK events from
each sample that survive the acceptance and Ω require-
ments, the absolute KK statistical uncertainty on ALR

is �1.9 × 10−5.
It is evident that at low values of Ω there is significant

disagreement between KK and the SPA and HPA
treatments. This is a result of the fact that KK addresses
infrared divergences via exponentiation whereas in
the SPA and HPA treatments, the infrared divergences
persist.

V. SENSITIVITY STUDY

We next study the sensitivities of the observables A0þ1
LRΣ

(65) and A0þ1
FB (68) to the effective weak mixing angle

ðs̄2W ≡ sin2 θeffW Þ and vector part of the Z-boson to fermion
coupling (vZeff ¼ I3 − 2Qgs̄2W).
In order to represent the eþe− → μþμ− matrix element

with the simple effective Born-like amplitude, we can use
leading order low energy one-loop oblique corrections to
the Born matrix element. Overall we can write for the QED
and electroweak parts [26]:

Mγ ¼
αðsÞQeQμ

s
ðv̄eγνueÞðūμγνvμÞ;

MZ ¼ Gμffiffiffi
2

p κ
m2

Z

s −m2
Z þ i s

mZ
ΓZ

ðv̄eγν½I3e − 2s̄2WðsÞQe

− I3eγ5�ueÞðūμγν½I3μ − 2s̄2WðsÞQμ − I3μγ5�vμÞ: ð71Þ

Here αðsÞ represents the running value of fine structure
constant, defined as

αðsÞ ¼ α

1þℜ½Σ̂γγðsÞ�=s
;

and s̄2WðsÞ defines the effective running Weinberg mixing
angle through the following expression

FIG. 10. Calculations in two approaches: SPA (dashed line) and HPA (solid line). Left: the NLO corrected polarization asymmetry at
θ ¼ 90°,KKMonte Carlo integrated between 70° and 110°. Right: the NLO corrected integrated asymmetry from a ¼ 10° to b ¼ 170°.
The points are the results obtained from running the KK Monte Carlo generator as described in the text, where the error bars represent
the statistical errors from the number of Monte Carlo events generated.

TABLE II. Results of s̄2W in on-shell and MS renormalization
schemes.

s ðGeV2Þ s̄2W;on−shell s̄2
W;MS

, PDG(2016)

0 0.23821 0.23857
m2

Z 0.23124 0.23129
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s̄2WðsÞ ¼ s2W − sWcW
ℜ½Σ̂γZðsÞ�

sþℜ½Σ̂γγðsÞ�
: ð72Þ

Parameter κ, is defined based on relationship to expression
(58) in the following way:

κ ¼ 1 − Δr
1þℜ½ ∂∂s Σ̂ZZðsÞ�

: ð73Þ

The effective mixing angle is frequently used as one of the
primary parameters in precision electroweak physics and
here we study the dependencies of A0þ1

LRΣ and A
0þ1
FB on s̄2W . To

start with, we show on Table II, s̄2WðsÞ computed in
different renormalization schemes at zero and Z-pole
kinematics. Our calculated on-shell values of s̄2WðsÞ com-
pare favorably with those calculated in the MS scheme, as
reported in the PDG MS.
For the kinematics relevant to the Belle II experiment,ffiffiffi
s

p ¼ 10.579 GeV, the on-shell effective value of s̄2WðsÞ is
equal to 0.23413. In order to study the sensitivity of the
polarization asymmetry to the variation of s̄2WðsÞ, we can
simply vary the value of mW , then calculating s̄2WðsÞ and
asymmetries, we construct parametric dependencies of the
asymmetry on s̄2WðsÞ or vZeff. It is important to note that in
the analysis of the sensitivity of the asymmetries we took
the cut on the bremsstrahlung photons at 2.0 GeV.
In order to evaluate the experimental asymmetry uncer-

tainties that feed into the sensitivities, we make the
following reasonable assumptions regarding pertinent
experimental parameters that potentially can be achieved

at Belle II/SuperKEKB if there is an upgrade that intro-
duces polarization:

(i) the electron beam polarization is pB ¼ 0.7000�
0.0035, the positron beam is unpolarized.

(ii) pB can measured with 0.5% precision, and this
dominates the systematic error on ALR.

(iii) AFB can be measured with an absolute systematic
uncertainty of 0.005.

(iv) Belle II collects 20 ab−1 of data with the electron
beam polarization and selects eþe− → μþμ−ðγÞ
events with 50% efficiency.

(v) The average
ffiffiffi
s

p
, which has a root-mean-square

(RMS) spread of 5 MeV [1], is known to
�1.2 MeV of the peak of the ϒð4SÞ resonance.1

With such parameters we can expect an absolute stat-
istical uncertainty on both AFB and ALR of 9.4 × 10−6.
This gives a total uncertainty on ALRΣ (with b ¼ 170°)
of �0.0000094ðstatÞ � 0.0000030ðsystÞ ¼ �0.0000097
ðtotalÞ. The error is dominated by the statistical uncertainty
and gives a relative uncertainty on ALRΣ of 1.6%. The total
uncertainty on AFB (with a ¼ 10°; b ¼ 170°) is �0.0050
(total). In this case, the uncertainty is completely dominated

FIG. 11. Dependence of the integrated left-right asymmetry on the effective Weinberg mixing angle (left) at
ffiffiffi
s

p ¼ 10.579 GeV and
vector part of the electroweak coupling (right). Horizontal bands show the central value of A0þ1

LRΣ ¼ −0.00063597 determined with the
cut on soft-photons at 2.0 GeV. The width of the band corresponds to the �0.0000097 uncertainty on the central value of A0þ1

LRΣ.

1SuperKEKB operations, following past practice of previous
generation eþe− B-factories, will ensure that

ffiffiffi
s

p
is at the peak of

the ϒð4SÞ by scanning the energy of one of the beams in a
manner that maximizes the rate of eþe− → hadrons throughout of
data-taking runs. As the RMS spread in

ffiffiffi
s

p
is significantly

smaller than the ϒð4SÞ width (20.5� 2.5 MeV), the average
value of

ffiffiffi
s

p
will be known to �1.2 MeV, the experimental

precision on the ϒð4SÞ mass [27].
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by the systematic uncertainty and gives a relative error on
AFB of 9.4%.
The reason for this difference in relative uncertainties is

that the systematic error on ALR scales as the relative error
because pB is a multiplicative correction needed for the
measurement and has no other large systematic error since
essentially all other detector systematic errors cancel. On
the other hand, for AFB the dominant systematic errors arise
in the detector and do not fully cancel: it is necessary to
measure the angles and forward and backward acceptances,
the boost to transform into the CM frame, and understand
any charge asymmetries in the detector. As these are
systematic uncertainties in the detector asymmetries, they
are absolute uncertainties on AFB.
Figure 11 shows a linear dependence of A0þ1

LRΣ on
s̄2Wðs ¼ 10.5792 GeV2Þ. That is evident from the fact that
the polarization asymmetry is proportional to the interfer-
ence term: 2ℜ½MγM�

Z�, which is linearly proportional to
s̄2WðsÞ. As it can be seen from Fig. 11, the absolute
uncertainty for A0þ1

LRΣ equal to �0.000097, translates into
an uncertainty of 0.21% on s̄2WðsÞ at s ¼ 10.5792 GeV2.
In general the on-shell extraction of s̄2WðsÞ from an

experimental polarization asymmetry could be done by
determining the effective mW from the measured A0þ1

LRΣ,
and then determine s̄2WðsÞ for that specific effective mW
from Eq. (72).
It is known that in the timelike region, the value of s̄2WðsÞ

changes rapidly near resonances. Although we have not
included the effect of hadronic resonances in our treatment,

we can estimate the impact of such an effect on the
precision of an asymmetry measurement made at the peak
of the ϒð4SÞ resonance using Fig. 1 of reference [31].
From that figure, sin2 θW changes by approximately 0.003
over the 20.5 MeV full width of the ϒð4SÞ resonance

FIG. 12. Forward-backward asymmetry for the a ¼ 10° and b ¼ 170° as a function of s̄2WðsÞ. Horizontal band shows the central value
of A0þ1

FB ¼ 0.01283 determined with the cut on hard-photons at 2.0 GeV. Width of the band corresponds to the 1% uncertainty on the
central value of A0þ1

FB .

FIG. 13. Born [first term in Eq. (75)] and fully corrected A0þ1
FB .

Born is represented by solid line, and corrected A0þ1
FB is shown by

dashed line.

ALEKSANDRS ALEKSEJEVS et al. PHYS. REV. D 101, 053003 (2020)

053003-14



and therefore there is a sensitivity of Δsin2θW=Δ
ffiffi
s

p ¼
0.00015=MeV in the region of the peak of the ϒð4SÞ
resonance. As

ffiffiffi
s

p
is known to �1.2 MeV, in the inter-

pretation of the integrated ALR measurement in terms of
s̄2WðsÞ, this translates into an uncertainty on s̄2WðsÞ of
approximately 0.00018, or 0.08%, which contributes a
small additional uncertainty: adding this in quadrature with
the 0.21% coming from the other uncertainties yields a
total uncertainty on s̄2WðsÞ of 0.22%. We note that this

uncertainty will be common to measurements from each
fermion species and therefore will cancel in evaluations of
fermion universality of the weak mixing angle performed
with ALRΣ at Belle II.
In a similar fashion we can study the sensitivity of the

forward-backward asymmetry to the variations of s̄2WðsÞ.
Figure 12 shows the similar dependence of A0þ1

FB on s̄2WðsÞ,
but with a substantially smaller slope when compared to
Fig. 11. Although the numerical value of A0þ1

FB is much

FIG. 14. Various contributions to AFB. On all graphs, solid green line corresponds to Born contribution (in numerator of AFB), dashed
yellow line is fully corrected asymmetry and dot-dashed blue shows various NLO parts of AFB.
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larger than A0þ1
LRΣ, it’s sensitivity to s̄

2
WðsÞ is rather low. This

translates to an uncertainty of 19.8% on s̄2WðsÞ, if we
consider �0.00050 uncertainty in A0þ1

FB .
Clearly A0þ1

FB contains substantial contributions, which
are not sensitive to parity-violating physics. At this point
we would like to determine the most dominant contribu-
tions to A0þ1

FB and their nature. We will start with the basic
definition of various QED and Weak contributions in the
forward-backward asymmetry:

A0þ1
FB ¼ Σ0þ1

F − Σ0þ1
B

Σ0þ1
F þ Σ0þ1

B

¼ Γ0þ1
FB

Σ0þ1
T

ð74Þ

The denominator of (74), is defined as a total integrated
unpolarized cross section including one-loop corrections.We
will keep this part of A0þ1

FB unmodified. This way contribu-
tions to the asymmetry are additive. As for the numerator of
A0þ1
FB , it will bedivided intoBorn, various infrared finiteNLO,

and soft-bremsstrahlung contributions. More specifically:

Γ0þ1
FB ¼Γ0

FBþΓγ−SEðγÞ
FB þΓγ−TRðγÞ

FB þΓγ−BBðγÞ
FB þΓγ−SEðZÞ

FB

þΓγ−TRðZÞ
FB þΓγ−BBðZÞ

FB þΓZ−SEðγÞ
FB þΓZ−TRðγÞ

FB

þΓZ−BBðγÞ
FB þΓZ−SEðZÞ

FB þΓZ−TRðZÞ
FB þΓZ−BBðZÞ

FB þΓsoft
FB

ð75Þ

Here, Γ0
FB is the forward-backward Born contribution to the

numerator of A0þ1
FB , and Γγ−SEðγÞ

FB (for example) and

corresponds to the interference term between Born QED
and γ − γ self-energies (SE). Furthermore TR and BB stand
for triangle and box type graphs, respectively.
Our starting point is to show Born and fully corrected

forward-backward asymmetries. We do this for both
renormalization conditions, based on [6] and [18].
Results on Fig. 13 are represented by the infrared finite
parts of virtual and soft-bremsstrahlung corrections only.
That would also be true for all partial NLO contributions
appearing in (75). We have observed practically zero con-

tributions coming from Γγ−SEðγÞ
FB ;Γγ−TRðγÞ

FB ;Γγ−SEðZÞ
FB ;Γγ−BBðZÞ

FB ;

ΓZ−SEðγÞ
FB ;ΓZ−SEðZÞ

FB ;ΓZ−TRðZÞ
FB ;ΓZ−BBðγÞ

FB , and ΓZ−BBðZÞ
FB terms in

(75). This implies that contributions coming from all types
of self-energies and electroweak (γ − Z, Z − Z, and
W −W) boxes are negligible, and can be disregarded.
It is important to note that generally electroweak self-
energies or vertex correction graphs are not gauge invariant
and hence their independent contributions have no physical
meaning. However, for the forward-backward asymmetry
this can be bypassed, since gauge dependent contributions
largely cancel out even for separate parts, such as self-
energies or vertex correction graphs. We have verified this
by comparing self-energies (or triangles) contributions in
the different renormalization conditions (Denner and
Hollik) and found that the results are identical. At this
point we only show contributions which are substantial and
can not be avoided in the calculations of A0þ1

FB .
As we can see from Fig. 14 (two top graphs), we have

identical (symmetrical) contributions from interference

FIG. 15. IR finite soft-photon bremsstrahlung (left plot) and total correction (right plot) to the numerator of the asymmetry. Solid green
line corresponds to Born contribution (in numerator of AFB), dashed yellow line is fully corrected asymmetry and dot-dashed blue shows
various NLO parts of AFB.
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terms, such as: 2ℜ½Mγ
0M

EW−TR
one−loop� and ℜ½MZ

0M
γ−TR
one−loop�. The

biggest contribution comes from the interference term
between γ-Born and γγ-box (see Fig. 14, second row, left).
Overall, all one-loop contributions are systematically addi-
tive and the result is shown on Fig. 14, second row, right
graph. Since it is clear now that the addition of one-loop
contributions (blue, dot-dashed curve) and Born (green,
solid curve) term would not reproduce the full result for
A0þ1
FB , we turn our attention to IR finite terms of soft-photon

bremsstrahlung.
It is clearly visible on Fig. 15 (left) that the bremsstrahlung

contribution largely cancels out one-loop results
and produce the correction, shown on Fig. 15 (right and
blue dot-dashed curve). The addition of the one-loop
correction (Fig. 15, left and blue dot-dashed curve) and
Born result (solid green curve on the same plot) produce the
final result for A0þ1

FB (dashed yellow curve). One of the
possible explanations for such a large cancellation could be
found in the fact that both of the IR finite parts of virtual one-
loop correction and soft-photon bremsstrahlung contain
collinear divergent terms, which cancel out in the final result.
Overall we conclude that A0þ1

LRΣ is the observable most
sensitive to the effective electroweak parameters. As such,
in order to search for physics beyond the Standard Model at
the precision frontier of neutral-current measurements, it is
crucial to have polarized electron beams in Belle II/
SuperKEKB in order to measure A0þ1

LRΣ.

VI. CONCLUSION

In this paper we compare the results for the full set of
one-loop EWC to parity violating polarization and forward-
backward asymmetries at the Belle II/SuperKEKB CM
energy obtained by different methods. The soft photon
approximation using an exact semi-automatic approach is
validated by an asymptotic approach with simplifications
giving a compact form. We take under full control the
bremsstrahlung process and compare results for the soft
and hard photon calculations. We also evaluate the sensi-
tivity to the variation of s̄2W for both polarization and

forward-backward asymmetries. We find that the highest
sensitivity is achieved for the measurements using ALRΣ
with a polarized electron beam. In addition, we have
analyzed various NLO contributions to the IR finite part
of A0þ1

FB . As a result, we found that the large contribution
arising from interference terms between fγ; Zg-Born,
fγ − γg-box, and fγ; Zg-triangle graphs are compensated
by the IR finite part of the soft-photon bremsstrahlung
contribution and that self-energies, although important for
the overall cross sections, cancel out for the forward-
backward asymmetry and therefore have an overall negli-
gible contribution to that asymmetry. A comparison is also
made with the KK Monte Carlo generator for the ALR and
AFB asymmetries. Where infrared divergencies are small,
our current calculations are in good agreement with those
of the KK Monte Carlo.
We plan to broaden these studies to include left-right

asymmetries in eþe− collisions for Bhabha scattering and
for massive final-state fermions (tau leptons, charm and
bottom quarks), where the negligible-mass assumption is
not valid. In order to further reduce the theoretical uncer-
tainties, our next step is to include the two-loop EWC in the
on-shell renormalization scheme, and compare these to the
calculation in the MS scheme. Nonetheless, the results of
this paper demonstrate that the Standard Model predictions
for ALR at 10.579 GeV, and consequently the weak mixing
angle at that energy, are already under excellent theoretical
control and provide encouragement to upgrade SuperKEKB
with a polarized e− beam in order to provide a new tool in the
search for physics beyond the Standard Model.
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