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A key ingredient in the evaluation of hadronic light-by-light (HLBL) scattering in the anomalous
magnetic moment of the muon ðg − 2Þμ concerns short-distance constraints that follow from QCD by
means of the operator product expansion. Here we concentrate on the most important such constraint, in the
longitudinal amplitudes, and show that it can be implemented efficiently in terms of a Regge sum over
excited-pseudoscalar states, constrained by phenomenological input on masses, two-photon couplings, as
well as short-distance constraints on HLBL scattering and the pseudoscalar transition form factors. Our
estimate of the effect of the longitudinal short-distance constraints on the HLBL contribution is
ΔaLSDCμ ¼ 13ð6Þ × 10−11. This is significantly smaller than previous estimates, which mostly relied on
an ad-hoc modification of the pseudoscalar poles and led to up to a 40% increase with respect to the
nominal pseudoscalar-pole contributions, when evaluated with modern input for the relevant transition
form factors. We also comment on the status of the transversal short-distance constraints and, by matching
to perturbative QCD, argue that the corresponding correction will be significantly smaller than its
longitudinal counterpart.
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I. INTRODUCTION

The precision of the Standard-Model (SM) prediction
for the anomalous magnetic moment of the muon, aμ ¼
ðg − 2Þμ=2, is limited by hadronic contributions. Already at
the level of the current experiment [1]

aexpμ ¼ 116 592 089ð63Þ × 10−11; ð1Þ

estimates of the hadronic effects are crucial in evaluating
the significance of the tension with the SM value, at the
level of 3.5σ. With the forthcoming Fermilab E989 experi-
ment [2], promising an improvement by a factor of 4, as
well as the E34 experiment at J-PARC [3], the SM model
evaluation needs to follow suit.

To this end, the relevant matrix elements need to be
calculated either directly from QCD or be constrained by
experimental data. The latter approach has traditionally
been followed for hadronic vacuum polarization (HVP),
which requires the two-point function of two electromag-
netic currents and can be reconstructed from the cross
section of eþe− → hadrons [4–8]. More recently, evalua-
tions in lattice QCD have made significant progress [9–15],
but are not yet at the level of the data-driven, dispersive
approach.
Next to HVP, the second-largest contribution to the

uncertainty arises from hadronic light-by-light (HLBL)
scattering. While also in this case progress in lattice
QCD is promising [16–18], another key development
in recent years concerns the phenomenological evalu-
ation, i.e., the use of dispersion relations to remove the
reliance on hadronic models, either directly for the
required four-point function that defines the HLBL
tensor [19–24], the Pauli form factor [25], or in terms
of sum rules [26–30]. In particular, organizing the cal-
culation in terms of dispersion relations for the HLBL
tensor has led to a solid understanding of the contri-
butions related to the lowest-lying singularities—
the single-particle poles from P ¼ π0, η, η0 and cuts
from two-pion intermediate states—largely because the
hadronic quantities determining the strength of these
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singularities, the P → γ�γ� transition form factors
[31–36] and the helicity amplitudes for γ�γ� → ππ
[37–42], respectively, can be provided as external input
quantities, in a similar spirit as the eþe− → hadrons
cross section for HVP. Higher-order iterations of HVP
[4,43,44] and HLBL [45] are already sufficiently under
control.
For both HVP and HLBL, data-driven evaluations of the

hadronic corrections to ðg − 2Þμ are fundamentally limited
by the fact that experimental input is only available in a
given energy range, so that the tails of the dispersion
integrals have to be estimated by other means, most
notably short-distance constraints as derived from pertur-
bative QCD (pQCD). In addition, even for HVP, short-
distance constraints have been used for energies as low as
2 GeV as a supplement to (and check of) experiment, with
good agreement found between the pQCD prediction and
data in between resonances [4,8]. For HLBL scattering
such constraints become even more important given the
limited information on the HLBL tensor for intermediate
and high energies.
Two kinematic configurations are relevant for the

HLBL contribution, one in which all photon virtualities
Q2

i are large, and a second in which one of the non-
vanishing virtualities remains small compared to the others
Q2

3 ≪ Q2
1 ∼Q2

2. Recently, it was shown that the former
situation can be addressed in a systematic operator product
expansion (OPE), in which the pQCD quark loop emerges
as the first term in the expansion [46]. The second
configuration is related to so-called mixed regions in
the g − 2 integral, i.e., integration regions in which
asymptotic arguments only apply to a subset of the
kinematic variables, while hadronic physics may still be
relevant for others. A key insight derived in [47] was
that such effects can also be constrained with an OPE,
by reducing the HLBL tensor to a vector–vector–axial-
vector (VVA) three-point function and using known
results for the corresponding anomaly and its (non-)
renormalization [48–53]. The explicit implementation
suggested in [47] relied on the observation that both
the OPE constraint and the normalization are satisfied if
the momentum dependence of the singly virtual form
factor describing the pseudoscalar-pole contribution is
neglected. However, such a modification is not compatible
with a description based on dispersion relations for the
HLBL tensor.
Here, we suggest to implement the corresponding

longitudinal short-distance constraints in terms of
excited-pseudoscalar states. As we will show, not only
can the asymptotic limits be implemented in a fairly
economical manner, but the critical mixed regions can be
constrained by phenomenological input for the masses
and two-photon couplings of the lowest pseudoscalar
excitations. The model dependence can be further
reduced by matching to the pQCD quark loop, which,

in addition, allows one to gain some insights into the
scale where hadronic and pQCD-based descriptions
should meet.

II. OPE CONSTRAINTS ON
HLBL SCATTERING

The HLBL tensor is defined as the four-point
function

Πμνλσðq1; q2; q3Þ ¼ −i
Z

d4xd4yd4ze−iðq1·xþq2·yþq3·zÞ

× h0jTfjμemðxÞjνemðyÞjλemðzÞjσemð0Þgj0i
ð2Þ

of four electromagnetic currents

jμem ¼ q̄Qγμq; Q ¼ diag

�
2

3
;−

1

3
;−

1

3

�
; ð3Þ

where qi denote the photon virtualities, q4 ¼ q1 þ q2 þ q3,
and q ¼ ðu; d; sÞT the quark fields. We work with the
decomposition into scalar functions Πi,

Πμνλσ ¼
X54
i¼1

Tμνλσ
i Πi; ð4Þ

derived in [22,24] following the general principle estab-
lished by Bardeen, Tung [54], and Tarrach [55] (BTT). The
contribution to ðg − 2Þμ then follows via

aHLBLμ ¼ 2α3

3π2

Z
∞

0

dQ1

Z
∞

0

dQ2

Z
1

−1
dτ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − τ2

p
Q3

1Q
3
2

×
X12
i¼1

TiðQ1; Q2; τÞΠ̄iðQ1; Q2; Q3Þ; ð5Þ

where Q2
i ¼ −q2i are the Wick-rotated virtualities,

Q2
3 ¼ Q2

1 þQ2
2 þ 2Q1Q2τ, the Π̄i refer to certain linear

combinations of Πi, and the Ti are known kernel func-
tions [22,24].
In the limit where all Q2

i are large, the calculation from
[46] proves the earlier statement of [47] that the pQCD
quark loop arises as the first term in a systematic OPE. In
particular, this implies the constraint

lim
Q→∞

Q4Π̄1ðQ;Q;QÞ ¼ −
4

9π2
: ð6Þ

The second kinematic configuration [47], Q2 ≡Q2
1 ∼

Q2
2 ≫ Q2

3, when expressed in BTT basis, leads to the
constraint

lim
Q3→∞

lim
Q→∞

Q2Q2
3Π̄1ðQ;Q;Q3Þ ¼ −

2

3π2
: ð7Þ
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The latter result can be derived by considering the VVA
triangle anomaly and its nonrenormalization theorems
[48–53]. Its constraint on Π̄1 (and, by crossing symmetry,
Π̄2) corresponds to the longitudinal amplitudes in the
VVA matrix element and we will therefore refer to Π̄1;2

as the longitudinal amplitudes and, accordingly, their
constraints as longitudinal short-distance constraints.
Further, the limit (7) is intimately related to the pseu-
doscalar poles

Π̄P-pole
1 ¼ FPγ�γ� ðq21; q22ÞFPγγ� ðq23Þ

q23 −M2
P

; ð8Þ

where P ¼ π0, η, η0, and the doubly virtual FPγ�γ� ðq21; q22Þ
and singly virtual FPγγ� ðq23Þ transition form factors
determine the residue of the poles. They are subject to
short-distance constraints themselves, for the pion we
have the asymptotic constraint [56]

lim
Q2→∞

Q2Fπ0γ�γ� ð−Q2;−Q2Þ ¼ 2Fπ

3
; ð9Þ

as well as the Brodsky-Lepage limit [57–59]

lim
Q2→∞

Q2Fπ0γγ� ð−Q2Þ ¼ 2Fπ: ð10Þ

Together with the normalization

Fπ0γγ ¼
1

4π2Fπ
; ð11Þ

the former shows that if Fπ0γγ�ðq23Þ → Fπ0γγ in (8), the
pion decay constant Fπ would drop out and the pion
would account for −1=ð6π2Þ in (7). Similarly, η and η0

would provide the remaining −1=ð2π2Þ. This is the
essence of the model suggested in [47,60].
However, a constant singly virtual transition form

factor cannot be justified within a dispersive approach
for general HLBL scattering. Instead, one would need to
consider dispersion relations in the photon virtualities q2i
already in reduced g − 2 kinematics, and even then the
residue would involve Fπ0γγ� ðM2

PÞ, not the normalization
itself. Further, when writing dispersion relations in the q2i
for g − 2 kinematics, there is no clear separation between
the singularities of the HLBL amplitude and those
generated by hadronic intermediate states directly cou-
pling to individual electromagnetic currents, such as 2π
states. In the dispersive approach for general HLBL
scattering the latter appear only in the transition form
factors, which factor out and can be treated as external
input quantities. In this sense, neglecting the momentum
dependence of the singly virtual transition form factor

without at the same time accounting for the additional
cuts, leads to a distortion of the low-energy properties of
the HLBL tensor.
Instead, we propose here a solution based on a remark

already made in [47]: while a finite number of pseudo-
scalar poles, due to (11), cannot fulfill the OPE constraint
(7), an infinite series potentially can. The basic idea can
be illustrated for large-Nc Regge models of the transition
form factor itself [61,62], which assume a radial Regge
trajectory to describe the masses of excited vector
mesons,

M2
VðnÞ ¼ M2

V þ nσ2V; ð12Þ

and rely on the ansatz:

FPγ�γ� ð−Q2;−Q2Þ ∝
X∞
n¼0

1

½Q2 þM2
VðnÞ�2

¼ 1

σ4V
ψ ð1Þ

�
M2

V þQ2

σ2V

�
∼

1

Q2
; ð13Þ

with ψ ð1Þ the trigamma function and the Regge slope σV .
In this way, the infinite sum produces the correct
asymptotic behavior (10), even though none of the
individual terms do.
One may wonder about the fate of the infinite sum

over excited-pseudoscalar states in the chiral limit, given
that their decay constants are expected to vanish with the
quark masses. We show below how the matching to
pQCD removes the model dependence regarding which
states are used to satisfy the short-distance constraints, so
that the implementation in terms of pseudoscalar exci-
tations mainly adds an estimate for the mixed-region
contribution, driven by the phenomenology of the lowest
excitations as well as the respective short-distance
constraints.

III. LARGE-Nc REGGE MODEL

In the following, we present a large-Nc-inspired Regge
model in the pseudoscalar and vector-meson sectors of
QCD that allows us to satisfy the short-distance con-
straints via an infinite sum of pseudoscalar-pole diagrams
(see, e.g., [63–65] for the use of large-Nc arguments to
simultaneously fulfill low- and high-energy constraints).
For brevity, we focus our description on the pion,
referring for a complete and more detailed account to
[66]. We start from a standard large-Nc ansatz for the
pion transition form factors as in (13), but differentiate
between ρ and ω trajectories, which are assumed to
enter with diagonal couplings due to the wave function
overlap [61,62]. In a first step, we seek an extension of
this model that satisfies the constraints (9)–(11) for the
transition form factor as well as (6) and (7) for the HLBL
tensor
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FπðnÞγ�γ�ð−Q2
1;−Q2

2Þ

¼ 1

8π2Fπ

��
M2

ρM2
ω

D1
ρðnÞD

2
ωðnÞ

þ M2
ρM2

ω

D2
ρðnÞD

1
ωðnÞ

��
canom

þ 1

Λ2
ðcAM2þ;n þ cBM2

−;nÞ þ cdiag
Q2

1Q
2
2

Λ2ðQ2þ þM2
diagÞ

�

þ Q2
−

Q2þ

�
cBL þ

1

Λ2
ðcAM2

−;n þ cBM2þ;nÞ
�

×

�
M2

ρM2
ω

D1
ρðnÞD

2
ωðnÞ

−
M2

ρM2
ω

D2
ρðnÞD

1
ωðnÞ

��
; ð14Þ

where Q2
� ¼ Q2

1 �Q2
2, M2

�;n ¼ 1
2
½M2

ωðnÞ �M2
ρðnÞ�, Di

X ¼
Q2

i þM2
X, and Λ ¼ Oð1 GeVÞ a typical QCD scale. The

five dimensionless parameters canom, cA, cB, cdiag, cBL are
used to fulfill all the constraints, while the remaining
parameter Mdiag is adjusted to reproduce the ground-state
π0 transition form factor [33,34]. In the minimal model
(14), we only allow πðnÞ to couple to ρðnÞ and ωðnÞ, i.e.,
the couplings are fully diagonal in the excitation num-
bers, while the effect of the eliminated vector-meson
excitations is subsumed into a Q2

i dependence of the
numerator multiplying the resonance propagators. In
addition, we also considered an untruncated large-Nc
model, in which both the Regge summation in the
transition form factor itself (13) and the HLBL tensor
are retained, to assess the systematics in the large-Nc
ansatz [66]. Using the Regge slopes from [67] and the
other input parameters from [68], we find that we can
indeed reproduce well the π0 transition form factor,
which also ensures that effective-field-theory constraints
on the pion-pole contribution to ðg − 2Þμ [69,70] are ful-
filled [34]. Finally, the model predicts a two-photon coup-
ling of the first excited pion, πð1300Þ, in line with its
phenomenological bound Fπð1300Þγγ < 0.0544ð71Þ GeV−1

[71,72].
Constructing a large-Nc Regge model for ηð0Þ proceeds

along the same lines, but involves several complications.
First, the ρ and ω trajectories do not suffice to incorporate
all constraints since due to the I ¼ 0 nature of ηð0Þ only
equal-mass combinations of vector mesons (2ρ, 2ω, 2ϕ)
contribute to (14), so that only three model parameters
survive. To provide sufficient freedom in satisfying all
constraints the consideration of ω–ϕ mixing cannot be
avoided. In addition, η–η0 mixing needs to be taken into
account, both for the flavor decomposition of the short-
distance constraints as well as the relative weights of the
vector-meson combinations in the transition form factors.
The former is directly constrained by data on the transition
form factors [32,73], but for the calculation of the weights,
which we extract from effective pseudoscalar-vector-vector
and photon-vector Lagrangians [74,75], it is more conven-
ient to work with the phenomenological two-angle mixing

scheme from [76,77]. We therefore use the latter every-
where. All variants are covered by the error analysis.
The resulting η and η0 transition form factors are in good

agreement with experimental data in the singly virtual
[78–81] and doubly virtual regions [82], as well as the fit
results using Canterbury approximants [32]. Furthermore,
there are some phenomenological constraints on the two-
photon couplings for ηð1295Þ [83,84], ηð1405Þ [83–85],
ηð1475Þ [85,86], ηð1760Þ [87], and Xð1835Þ [85,87], where
ηð1475Þ and ηð1760Þ are actually seen in γγ collisions,
while for the others only limits are available. The detailed
comparison depends on the assignment of these states into
η and η0 trajectories, but the predictions of our model are
compatible with either the assignment from [67,68] (our
main choice) or the one from [88], see [66].
By construction, the ground-state pseudoscalar-

pole contributions to ðg − 2Þμ reproduce literature values
[32–34,89] within errors, while the sum over excited-
pseudoscalar poles leads to the increase:

Δaπ-polesμ ¼ 2.7ð0.4ÞModelð1.2Þsyst × 10−11;

Δaη-polesμ ¼ 3.4þ0.9
−0.7 jModelð0.9Þsyst × 10−11;

Δaη
0-poles
μ ¼ 6.5ð1.1ÞModelð1.7Þsyst × 10−11; ð15Þ

where the first error refers to the uncertainties propagated
from the input parameters and the systematic error is
estimated by comparison to an alternative untruncated
large-Nc Regge model [66]. Combining all pseudoscalars,
we find

ΔaPS-polesμ ¼ Δaπ-polesμ þ Δaη-polesμ þ Δaη
0-poles
μ

¼ 12.6þ1.6
−1.5 jModelð3.8Þsyst × 10−11

¼ 12.6ð4.1Þ × 10−11: ð16Þ
This result should be contrasted with the one suggested
in [47] to satisfy the mixed-region short-distance con-
straint (using transition form factor models from [90]):
ΔaPS-polesμ jMV ¼ 23.5 × 10−11, which would become 38 ×
10−11 once updated with modern input for the transition
form factors, and thus suggest an increase nearly 3 times as
large as (16) or almost 40% of the nominal pseudoscalar-
pole contribution. Given that arguments following [47]
have been included in previous compilations of HLBL [91],
a central result of this work is that such a large increase
does not occur if the short-distance constraints are imple-
mented without compromising the low-energy properties of
HLBL scattering.

IV. MATCHING TO PERTURBATIVE QCD

Since, by construction, the sum over the pseudoscalar
excitations fulfills the short-distance constraints, it has to
match onto the pQCD quark loop for sufficiently large
momentum transfers. In the upper plot of Fig. 1, the
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contribution to ðg − 2Þμ from the massless pQCD quark
loop (black) and the pseudoscalar-pole contributions (sum
of ground-state and excited states in orange) are compared
after imposing a cutoff Qmin ≤ Qi in the integration: the
matching occurs somewhere around 1.5–2 GeV. The lower
plot, where the opposite cutoff Qmax ≥ Qi is imposed,
shows that the contribution of the excited pseudoscalars
(blue) to the low-energy region is very small and entirely
saturated by the first few excitations (blue dot-dashed).
These observations suggest to evaluate the asymptotic part
of the integral Qi ≥ Qmin with pQCD, to make explicit that
this part of the result does not depend on the nature of
hadronic states used in the implementation. Defining an
optimal matching scale would require information on the
uncertainty of the pQCD result. Here, we simply use a
rough 20% estimate, which is the size of pQCD corrections
for inclusive τ decays, a process that has a similar energy
scale and has been studied in detail [92–97].
Together with the uncertainties from the Regge model,

these considerations lead to a scale Qmatch ¼ 1.7 GeV.
Varying this scale within �0.5 GeV and adding the

systematic uncertainty from the comparison to the untrun-
cated Regge model, we obtain as our final result:

ΔaLSDCμ ¼ ½8.7ð5.5ÞPS-poles þ 4.6ð9ÞpQCD� × 10−11

¼ 13ð6Þ × 10−11 ð17Þ

for the increase of ðg − 2Þμ due to longitudinal short-
distance constraints. In particular, the lowest three pseu-
doscalar excitations, whose contribution is at least partly
constrained by phenomenological input on masses and
two-photon couplings, give 7.8 × 10−11. Given that the
most uncertain contribution, from n > 3, thus amounts to
only 10% of the total, the uncertainty estimate in (17)
should be conservative enough to cover the remaining
model dependence. In particular, the error in (17) includes
an inflation of the Regge slope uncertainties by a factor
three, to allow for systematic effects that might occur if
other hadronic states were used to implement the short-
distance constraints. More recently, this expectation has
been confirmed by models in holographic QCD based on a
summation of an infinite tower of axial-vector resonances
instead [98,99], which despite very different assumptions
and systematics yield results remarkably close to (17).
With the impact of the longitudinal short-distance con-

straints estimated as in (17), it is natural to inquire about the
role of the transversal short-distance constraints. A first
estimate could again be obtained by matching to pQCD.
Figure 2 extends the integration region beyond Qi ≥ Qmin
into the mixed region, but suppressing this additional
contribution by a factor Q2

3=ðQ2
3 þ Λ2Þ, because otherwise

part of the ground-state pseudoscalar contribution would be
double counted. The longitudinal result is reproduced for
scales around Λ ∼Qmin ∼ 1.4 GeV, for which one would
read off ΔaTSDCμ ∼ 4 × 10−11. Accordingly, we would
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FIG. 1. The longitudinal part of the massless pQCD quark loop
(black), the ground-state pseudoscalars (red), the sum of all
excitations from the large-Nc Regge model (blue), the first three
excitations (blue dot-dashed), the sum of ground and excited
states (orange), and the increase found in the Melnikov-Vain-
shtein model (green dashed). The upper plot shows the contri-
bution to aμ for Qi ≥ Qmin, the lower for Qi ≤ Qmax.

1 1.5 2 2.5 3
0
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FIG. 2. Contribution of the massless pQCD quark loop to aμ
from the region Q1;2 ≥ Qmin, with the contribution from Q3

below Qmin damped by Q2
3=ðQ2

3 þ Λ2Þ (plus crossed). The total
contribution (black) is split into longitudinal (red) and transversal
(blue) components. The limit Qi ≥ Qmin for all Qi is reproduced
for Λ → ∞.
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expect the impact of the transversal short-distance
constraints to be significantly less than that of the longi-
tudinal ones.
We stress that the calculation presented here is com-

plementary to higher-order calculations in pQCD and/or
the OPE [46], which would allow one to improve the
matching between hadronic implementations and a pertur-
bative description. Similarly, more experimental guidance
on the two-photon couplings of hadronic states in the
1–2 GeV region would be beneficial for the phenomeno-
logical analysis, not only for the excited pseudoscalars, but
for axial-vector resonances as well, which outlines avenues
for future work. We conclude that with the present analysis
the biggest systematic uncertainty due to short-distance
constraints has been reduced significantly, with the result
that the asymptotic part of the HLBL tensor is under

sufficient control for the first release from the Fermilab
experiment.
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