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Attempts to resolve the long-standing Fermion mass hierarchy problem in frames of the AdS/CFT
correspondence demand the knowledge of bulk fermion masses. The approach of the “old” conformal
bootstrap in the anti-de Sitter (AdS) context permitted calculating bulk masses of scalar fields, as it was
shown in three previous papers B. L. Altshuler [arXiv:1810.01105; Int. J. Mod. Phys. 2050001 (2020);
J. High Energy Phys. 01 (2020) 137]. In the present paper, this approach is extended to physically more
interesting spin-1/2 bulk fields. Calculation of spinor-scalar vertices is performed in physical AdS space,
and unexpectedly simple expressions for spinor-scalar bubbles (two-point one-loop self-energy Witten
diagrams) are obtained. The “double-trace from UV to IR flow” subtraction of UV divergences used earlier
in calculations of the UV-finite bulk tadpoles is applied to bubbles. This permitted us to write down in the
frame of the old conformal bootstrap approach the nontrivial spectral equations for the bulk fermion
masses; the SU(N) Yukawa model of spinor fields interacting with conformal invariant scalar field in case
of four boundary dimensions is considered as a specific example.
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I. INTRODUCTION

Explaining the fermion mass hierarchy (also called the
flavor hierarchy problem) remains a challenge in theoretical
physics (see, e.g., Refs. [1,2] and references therein). I
cannot help but quote the very beginning of Ref. [2]: “In a
recent interview published in CERN COURIER, Steven
Weinberg was asked what single open question he would
like to see answered in his lifetime, and Weinberg replied
that it is only the mystery of the observed pattern of quarks
and leptons masses [3]”.

In frames of the AdS/CFT approach and two-branes
Randall-Sundrum model [4] (Poincaré coordinate € < z <
L where ™! ~ Mp, = 10" GeV for the Planck scale and
L' ~ Mgy = 10% GeV for the electroweak scale), spectra
of physical particles (glueballs, mesons, light and heavy
fermions, etc.) are obtained as eigenvalues of equations for
bulk fields, and it is possible in principle to get the looked-
for fermion masses of intermediate scales with the choice of
dynamics in the bulk and of boundary conditions on both
branes [5-9]. It is evident that there is great arbitrariness in
this approach.
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Here, I mention one of possibilities to overcome this
arbitrariness. This possibility is a rather natural “twisted”
boundary condition for spin 1/2 fields that permits to get
observable fermion masses of any scale depending only on
the bulk masses of Fermi fields in higher dimensions
[10,11]. The spectral equation in this case looks like
(see formula (29) in Ref. [11])

Ja—l (mne) _ Ja(an) (1)
Ya—l (mne) Ya(an) ’
where physical four-momentum p2 = —m2, J,, Y, are

Bessel functions of the first and second kinds of order o =
m/kags + 1/2 [m is bulk mass of fermion field, and kqg 18
anti-de Sitter (AdS) space curvature], values of € and L are
given above. Surely, Eq. (1) has a tower of solutions
beginning from the electroweak scale L~!. But it also has a
special solution when both arguments of Bessel functions
in (1) are small:

p=1(3) Va@-n. @

It is seen that for 1 < a < 2, that is for
1 3
2 kpags 2

Po may have any value in the interval from the electroweak
scale Mgy to the electron neutrino (or gravitino) mass scale
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of order M%y,/Mp,. Thus, well-grounded calculations of
fermions bulk masses may open the way to the solution of
the Fermion mass hierarchy problem. This was the main
motivation of the present paper.

One of the candidates for the theory capable of fixing
masses of bulk fields may be the “old” conformal bootstrap
in the AdS/CFT context [12,13]. The old conformal
bootstrap was proposed about 50 years ago in pioneer
papers [14,15] and developed in Refs. [16-21] (see, e.g.,
Ref. [22] and references therein) as a non-Lagrangian tool
of self-consistent calculations of conformal dimensions.

In the AdS/CFT context, finding conformal dimensions
is equivalent to finding bulk masses. In Ref. [12], the values
of bulk masses of scalar fields that are the roots of
corresponding bootstrap spectral equations were found in
certain models under the oversimplifying assumption of
replacing of two “intermediate” Green’s functions in self-
energy Witten diagrams (bubbles) by their harmonic
counterparts. In Ref. [13], this assumption was abandoned,
and UV divergence of the bubble was subtracted in the
“double-trace from UV to IR flow” way used earlier in
calculations of the UV-finite tadpoles and bulk vacuum
quantum energies of scalar [23-28] and spinor [29,30] bulk
fields. The sensible, that is, obeying the unitarity bound
demand, values of conformal dimensions of scalar fields in
the O(N) symmetric model were obtained in Ref. [13] for
N = 1...4 in the case of d = 4 boundary dimensions.

To extend the approach of Ref. [13] to physically
more interesting spin-1/2 bulk fields is the goal of the
present paper.

The Dirac field of spin 1/2 was studied sufficiently well
from the AdS/CFT perspective—see earlier papers [29]
and [31-35], in which in particular spinor bulk-to-bulk and
bulk-to-boundary propagators on AdS were written down,
and recent works [36-39]. In Refs. [37,38] spinor-spinor-
scalar vertices were calculated in the formalism of embed-
ding space, and also in Ref. [38], the spectral representation
of the bulk spinor Green’s function is presented. The bulk
fermion loop of the scalar field was first calculated in
Ref. [39] also in the formalism of embedding space,
whereas the one-loop self-energy of the Fermi field on
AdS was not calculated earlier, as to my knowledge. Here,
I do not use the formalism of embedding space and perform
calculations in physical AdS,, ;.

In Sec. II, some well-known expressions are presented
and include four bulk-to-boundary propagators, the spectral
representation of Green’s function, and the split represen-
tation of the harmonic function for the spin-1/2 bulk field.
Also, Sec. II presents novel bulk and conformal integrals
necessary for the calculation of spinor-scalar vertices and
bubbles; their derivation is given in the Appendix.

In Sec. 111, calculation of spinor-spinor-scalar three-point
correlators (vertices) is performed. There are two types of
such correlators: type I in which two spinor fields are of one
and the same asymptotic at the AdS horizon (symbolically,

those are correlators IR — IR — ¢ or UV — UV — ¢, where
¢ is a scalar field), and type II which are three-point
correlators IR — UV — ¢ or UV — IR — ¢. The first type of
these correlators is well known and was extensively used in
calculations of spinor-scalar Witten diagrams [34-39],
whereas vertices of the second type have not been written
down so far, as to my knowledge.

In Sec. IV, the one-loop quantum contributions (bubbles)
to the two-point boundary-to-boundary conformal correla-
tors of the scalar field (the loop is formed by two spinor
bulk Green’s functions) and of the spinor field (the loop is
formed by spinor and scalar Green’s functions) are calcu-
lated. The double integral spectral representations are given
for both bubbles, repeating the approach of Ref. [40] in
which double integral spectral representations were put
down for bubbles formed by the fields of integer spin. The
numerators of integrands in these representations are
formed like ordinary bubbles but with the replacement
in their expressions of intermediate Green’s functions to
the corresponding harmonic functions (proportional to
the difference of “UV” and “IR” Green’s functions).
Calculations of harmonic bubbles formed by two spinors
and by a spinor and scalar are the main contents of Sec. I'V.
The reward for these rather lengthy calculations is the
simplicity of the final formulas for both bubbles expressed
through one and the same universal function of conformal
dimensions; moreover: for an even number d of boundary
dimensions, this universal function is just a combination of
elementary functions.

In Sec. V, UV divergence of the bubbles is subtracted
with a tool used earlier in calculations of the UV-finite
Witten tadpoles [23-30]. The tool is simple, it says that,
instead of ordinary Witten diagrams, the difference of two
similar Witten diagrams built of UV and IR bulk Green’s
functions must be considered. This difference is the
deformation in amplitudes under double-trace flow from
UV to IR boundary conditions, as was first proposed in
Ref. [41] (see Ref. [42] and references therein). A general
concept is put forward for such a crucial redefinition of
quantum amplitudes: it is proposed to construct Witten
diagrams using the quantum generation functional (68),
which is the ratio of two standard functionals built with use
of UV and IR boundary conditions; most generally, this
approach is studied in Ref. [43], in which it was shown that
in “ratio functionals” functional integrals over fields’ bulk
degrees of freedom reduce, and only quantum theory of
boundary fields is taken into account. It is shown in the
paper that this procedure gives well-defined UV-finite
expressions for bubble diagrams, but whether it will work
for triangle and other Witten diagrams is an open question.

In Sec. VI, transparent formulas for two spinors and
spinor-scalar bubbles are derived in the SU(N) model with
Yukawa interaction of N spinor fields with the conformal
invariant scalar field, in the case of four boundary
dimensions.
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In Sec. VII, results of Sec. VI are used to write down the
old conformal bootstrap spectral equations for bulk fermion
mass m in the SU(N) symmetric option when masses of all
N spinors are equal. The system of N spectral equations
that will permit us to study the possibility of the sponta-
neous breakdown of SU(N) symmetry is also presented in
Sec. VIL

The Conclusion sums up three principle results of the
paper and outlines the possible directions of future work.

II. PRELIMINARIES
A. Scalar field on AdS

We work in Euclidean AdS,,; in Poincaré coordinates
ZF ={z0,2} (u=0,1,...d), where AdS curvature kyqg is
put equal to 1,

_ dzy+dZ?

ds? 5
<

: (4)

and consider bulk scalar and spinor fields.
Bulk scalar field ¢(X) of mass M is dual to the boundary
conformal operator OIAR¢ (X) or to its “shadow” operator

03}’% (X) with scaling dimensions

IR — d . d2 2. uv
A(/) :A¢:§+I/, UV = Z—'—M, A¢ :d—A¢

(5)

We take the normalization of the scalar field’s bulk-to-
boundary propagator and of the corresponding conformal
correlator like in Ref. [40]:

BB 7. X
KA(Z,)_C') = lim [L’A)] = CA . QA<Z,)_C>)7
x0—0 (xo)
F(A) - 20
= ) Z,X)=——5——=5
A zn_d/zr(l A _%1) 0(z,%) Z(Z) T+ (Z-%)?
(6)
and
- - GBB(X, Y) CA - -
(03057 = tim D] G p —jr-s5p.
. . S (x0y0)* Py
Yo—>
(7)

The bulk-to-bulk IR [A = AR > d/2, see Eq. (5)] scalar
field Green’s function GIR(X,Y) possesses the Kallen-
Lehmann-type spectral representation in which the numer-
ator of the integrand (harmonic function) admits split
representation [40,44-47]:

+oo Q. o(X,Y)dc
GIR(X, Y) :/ c,0 P ,
: = [P (A =97
C2 N - -
QuolX) =% [ Kee(KZ)Ke (Y T, (8)

where
ic ~
QL‘,()(X’ Y) = ZG%“’iC (9)

is a scalar field harmonic function which is proportional to
the difference (marked here with a tilde) of IR and UV bulk
Green’s functions:

Ga(X.Y) =GR -G,
— (@-22) [ Ka(XZ)Kus(Y.5)d%,
(10)

B. Spinor field on AdS

Bulk spinor field y/(X) of mass m on AdS,,; obeys the
Dirac equation [31-39]

B B)
“D, — X) = 0 7 | a7 2,0 X
(7D, — m)y(X) (zm/ 8Z0+zm/ 523! m)w( )

where y* = {y°,7} are standard anticommuting gamma
matrices in (d + 1)-dimensional Euclidean space: y*y* +
y'y* = 26". The bulk spinor field of mass m is dual to
boundary conformal operator OIARW (X) or to its “shadow”

operator O}Y, (¥) with scaling dimensions
Y

d 1 1
d 1 1
Corresponding conformal correlators are
R . . 7(X =YL
(OF (7)0% (7)) = &, LD
Py’
Xy
&y = — Ty +3)
v 1_dy’
2P0(A, +3-9)
e . FE-PO
<0[deAW (X)OgYA,,, () = Ci-a, PdTW%JF’ (13)
xy

where I1, are projective operators:
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M. =0, II,7=7IL. (14)

Bulk spinor Green’s functions S™UV (X, Y) that possess
IR or UV asymptotic at the horizon, x,, vy — 0, and that are
zero at the AdS infinity, x,, yo — oo, are well known; see,
e.g., in Refs. [29,34,35]. Their properly normalized limits
at the horizon give four spinor bulk-to-boundary propa-
gators ZR(UV) and ZR(UY) | which permit expressing bulk
solutions of Dirac equation (11) w(Z), w(Z) through the
boundary fields [31-35]. Those bulk-to-boundary propa-
gators are the main tool in calculations of this paper,

SR (Z.5) = lim
v yo—0

R

A,+}
Yo

20 —7(Z )]

V2o

= Cy, 0% "2(Z, ) ., (15)

=3

_IR - _ .
ZA'// (Z,X) = lim A
X0

xo—0

> I +7(Z-%)]
_ ¢y on iz, L TEZIL g
AV/Q ( ) + \/zo ( )
and in a similar way for VY and £V,
UV > - den 1o = 120 +7(E =)
Zg2a,(Z.5) = Caoa Q2. 5) —F—— 11,
V2o
(17)
SV (7.3 = &, oMbz o Lo mTEZD]
d-a,(Z.X) -, 9 (Z,%) N
(18)

where (A?AW and Q(Z, X) are defined correspondingly in (13)
and (6).

Conformal spinor correlators (13) are obtained from
(15)—(18) when the bulk coordinate is sent to horizon in
these expressions.

Analogous to the scalar case (8), the spectral represen-
tation for SIARW(X, Y) [A, =d/2+m > d/2; see Eq. (12)]
was given in Ref. [38],

SR (X,Y) = /*"" Q. 1p(X,Y)dc
nal —o ct+i(A, - %)] ’

d
A, =>+ic, (19)

i -~
QCJ/Z(X’ Y) :ZSA(T(X7 Y)9 2

where spinor harmonic function Q. ;/,,(X,Y) is propor-
tional to the difference (again marked by a tilde) of IR
and UV Green’s functions, that possesses nice split

representations through bulk-to-boundary propagators
(15)—(18) integrated over common boundary point [38]
[cf. (9) and (10) for the scalar field case]:

Sa,(X.Y) = SR (X.Y) = S3Y, (X.Y)
_ / SR (X550, (V.%,)d%,

_ / S0, (X.E)ER (V.E)dE,.  (20)

C. Some integrals

We shall need two following bulk integrals for two
values of parameter (¢:0 and a:1):

(a) 5> > -
DJ’[J’ZJ/} (xl » X2, .X3>

3} } 4z
:/QVI(Z,xl)QVZ(Z,xz)Q73(Z,x3)Z—a, 1)

0

Q(Z.%) see in (6). D) is well known; it gives the three-
point scalar fields vertex [44,48,49],

(0)
0 = o= = dYr72.73)
D}(’1?72~73 (xlvx27x3) =

PSPSPS
d(o)(y Y2.73) = /2 F(W)F(élz)rwls)r(éw)
15/2:73) — — A~ ,
2 C(y)T(y2)0(r3)
(22)
where
Y1 T72—73 Yi+73—72
12 > 5 5
oy =2 o

Whereas D(!) is derived in Appendix, it will be used in
the calculation of the spinor-spinor-scalar vertex of type II
in Sec. III. B:

1 d(1>(}’1,}’27}’3)

(1) > o sy
D71~,}’2-73 (x17x27x3) -

Pis PSPy
812613 S12by3  S136m
PPz PPy P3Py
40 2P TESENT(8,,)0(6,5)T(53)
(r1:72,73) = ——
2 C(y)C(r2)0(13)
“ 1

There are relations between coefficients d© and d(!) that
permit significantly simplifying the calculations,
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d(0>(71 - 1,72,73) = d(l)(h,h,?s)(}’l - 1)323, (25)

and the same for two other arguments.

Along with the well-known conformal integrals
[16,17,50],
d—?
P d’y  sp=a_A(P1.P2.53)
R (X1, %, %3) = / = ,
Br1Bofpz \ 10720 A3 3 g d_p
w P{};Pgipgi' P zlzﬂ’ P i3ﬂ'P §3ﬂ1
(26)
and
d’y A1, fa.d =P = o)
B ph P . (27)
Py Py P/12 o
where
7PT(§ = PTG = )U(§ = Bs)
A(ﬂ1,ﬁ2aﬂ3) = 2 2 2 - (28)

L(B)L(52)T(B3) ’

the knowledge of two following integrals is necessary for
calculation of spinor one-loop self-energy in Sec. IV. B:

d—>
) e - o dy  sp=ar1 A(P1,fa, B3)
R;I},zﬂz(xl,xz,xﬁ:/ =

"B By fs d_p d_pg  d_
AR e
(== E=pd=r
P,Py3 P3Py
PPa3

and

[ 1B 1%
“ 1 pP o 1+pr—4
PLPy P
1
'E[A(ﬂl - Lpd=p—p+1)

AP Pr=1.d= =P+ 1)
—A(p1.fad = By = o). (30)
The derivation of (29) is given in the Appendix, whereas

expression (30) is easy to prove by multiplying it by 7(X; —
X,) with account of (27) and the identity

o L 1
Y(X) = X) - 7(X, — X,) :E[Pla — Py, — Pyp)
+ (X = X)%(X, — X,)P 5,
a B . f,a
Saﬂz%‘ (31)

Because of the a <> 8 asymmetry of the % term in (31), its
contribution to the rhs of (30) is zero.

III. SPINOR-SPINOR-SCALAR VERTICES

A. Spinor-spinor-scalar vertex: Type I

Three-point correlators of scalar field ¢ of conformal
dimension A and of two spinor fields y/; and y,, generally

speaking of different conformal dimensions A},E(UV) and

A%UV) [see (12)] are generated by the bulk Yukawa
interaction L;y, = g- W (Z)y(Z2)p(Z).

These three-point correlators are of two essentially
different types, with regard to spinor fields: (I) of coincid-
ing, IR — IR or UV — UV, and (II) of the opposite, IR —
UV or UV — IR, asymptotics of spinor tails.

Vertex IR — IR of the first type

3pt(DNIR-IR /» - - _ R . .
MAP/I(.ZWZ’A‘/’ (X],Xz, X3) = <OIA[T//| (xl)OlARWZ (x2)0A¢(x3>>
AdS Vi
X EIARWZ (Z’EZ)KA¢(Z’£3) (32)
is quite simple because its dependence on the bulk

coordinates (zg,Zz) drops out from the spinor numerator
in (32). Really, according to (15) and (16),

iIARWI (Z’ )_C)l )ZIARWZ (Z? )_52)

- o3 —7E-%)
ko +7E-T)] o —FE-TIL _ S0 o on

Vo Vo
(33)

(I remind the reader that IT, T1_ = 0 and IT yTI_ = yTIL).
In the same way in the UV — UV case,

0, (ZX)IPY, (2.5) ~7(E - B, (34)

After substitution in (32) of three bulk-to-boundary
propagators from (15), (16), and (6) with account of
(33), we obtain

3pt(DIR-IR /> =

Ay Ay, Ay (xl X2, )_67’)

2

_ ~ ) e e L

= (T1€x, )€l s s, (BT 50RO
i=

) ¥(X —X)I
Vlz’Al/” 1/2)- S0 s S0
P53 P3Py

=BU(A,,.A (35)

where [see (22) for D]
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C C c
B(I)(AV/l 5 AWZ’ A¢, 1/2) = A"/] ; Avlz 1 A,/,
T(A, +HT(A, +HT(A,)
d/2 A A A 1—d
%r( v T Ay, 7; o T )F(éﬁg)r(ﬁgg)r@g)’
I . 1

Formula similar to (36) is obtained for M?iptA UZ f v A, (X1, X5, X3) with account of (34) and with replacements A, , —

d—-A4,,, in (35), (36), and 7(X, — XTI - y(xl - xz)l'Lr in the spinor numerator in the rhs of (35).

The simple result (35) for the IR — IR spinor-spinor-scalar vertex (of type I) was obtained in Ref. [34] in physical AdS,. |
space and in Refs. [36-38] in the formalism of embedding space.

B. Spinor-spinor-scalar vertex: Type II
Let us consider the IR — UV vertex

3pt (INR-UV
M

A, d—A,yz A,/,(xl’x2ax3) <OIARWI(fl)OgYAv,z(fz)O%(%»

— [ 4z ZRT, (25K, (25) (37)
AdS 2
In this case, the spinor numerator in (37) differs from the one in (33) and essentially depends on z, Z:

I (20 +7(Z—%)] [z0 +7(Z—%)]TL,

SR (2.3, (2.5,) ~

Ve Vo
(5[ @ oy | HEERIEERS
20 20

where Pj =P, ., O(Z.X) see in (6) and S* in (31).
The same expression, with the only change of Il — II_ in the rhs of (38), is valid for the spinor numerator
of ig_VAv (Z,%)Z} (Z.%,).
"1 2

Substitution in (37) of the bulk-to-boundary propagators from (16), (17), and (6) with account of (38) gives for the spinor-
spinor-scalar vertex of type II

3pt(HIR-UV = - = ~ ~ (1) - o
X1, X2, X3) ==Cp Cy_pn Cp |—P;,D X1, X2, X
MAW] ,d—sz Ay ( 154742 3) D) AV’] d AV’Z Ay 12 AV’l +2 d— sz +2 A4,( 1542 3)
+DY | JELET) DY L (F )
wl 2 jd— sz +2 ‘/’] Jr2 d— sz E*A</I

i~y +A{ (1) 1l il
22T () ) rey)r(sdy

2 (A, +O0(d-A,, +Hr(a,)

)z « 70,5 |1, (39)

X0 = (%) = %)% Xy = (B, — X3 551 are defined in (42) below; derivation of the S* term in the last line of (39) is similar
to derivation of (24) and (29).

Then, with account of expressions (22) and (24) for D(© and DOV and their relations (25), a final rather simple formula for

MBPHINR=UY j¢ obtained,

3pt(IHIR-UV ;= = =
Apt(,d)—A A¢(x1’x2’x3): (Il)(Awnd_AWz’Aqi?l/z)

V1 V2’

—Py + P34 Poy + (X — X3)%(X, — X3)/ S 4
’ S SIS + (40)
P P3Py
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where
Ca Cia Ca
BW(A, . d=A, Ay1/2) = a v 2
v L(A,, +)T(d-A,, +HT(A,)
(A, —A, +A 1l I I
(B S e el rel), (1)
and

s _ By td—Ay, - Ay oy Ay A - (AL (d-Ay,) + A Ay, ]
12 2 ’ 13 — D) B 3 — 2 .

(42)
Expression for MZ‘fAE]U\;Z IARd’ (X1, X5, X3) is obtained from (40)—(42) with the simple replacements A, —d-A, and
d—A, — A, together with [T, — TI_ in the rhs of (40).

IV. SPINOR HARMONIC BUBBLES
A. Scalar bubble formed by two spinors

The Fermionic bubble diagram of the scalar field on AdS was first calculated in Ref. [39] in the formalism of embedding
space. This one-loop contribution to the two-point correlator of scalar field ¢(Z) is generated by its bulk coupling
9p(Z)y(Z)y(Z) with two spinor fields; it is formed by the bulk-to-boundary propagators of scalar field K, (6) and bulk
Green’s functions of spinor fields S,,, S, (19):

pt(0hy o o - -
MR (%) = @[] Ko (GR)THISs, (. )85, (V. XK, (V352) (43)

(trace Tr is over spinor indices, and bulk integrals over X, Y are supposed).

Following the approach of Ref. [40] in which double integral spectral representations of bubbles of fields of any integer
spin were considered and referring to the spectral representation (19) of the spinor Green’s function, the double integral
spectral representation of bubble (43) may be put down,

2pt(0}33) >
PO G5 // dedcM |d+wdﬂ(x1,x2) "
i, (122 == | e A, — e + 18, ~ 9

where, taking into account the proportionality of spinor harmonic function €2, ; entering spectral representation (19) to the
difference of Green’s functions S (20), we introduced in the numerator of the integrand in (44) the “harmonic bubble” 7 that
is built by the replacement in (43) of two bulk spinor Green’s functions with the corresponding differences S (20):

pt(0)Y) - = - & & -
H&%mmbfﬂmMMWMMﬂ%WWmﬂm) (45)

Surely, to use this expression in spectral representation (44), the replacements A,, — d/2 + ic, A, — d/2 + i¢ must be
performed in it.

Substitution in (45) of split representations (20) of § Sa, and S A, gives two spinor-spinor-scalar vertices of type I (35) with
their convolution over two boundary points X, and X,. Thus, the ths of (45) takes the form

PTr // 05, d, [ / Ko, (X, 7)) S (X.5,) 28 (X, )'c’a)dX} - [ / SO, (V.75 (V.5,)Ks, (V. )Y
3 )IR-IR - 3 JUV=-UV /=
= T [ s M R FOMEPT (T ) (46)

Using (35) for M3PWR-IR ang 4 similar expression for M3PMUV-UV with evident changes of arguments, taking
into account
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L P,
Tr[y(xa - xb)H—Y(xa - xh)HJr} = PabTrl—Lr = 2b

[dimy = Tr[1] is equal to d for d even and equal to (d — 1)
for d odd], and performing standard conformal integral (26)
over X, the following expression for vertex (45) is obtained:

pt(0)) - o
HP(|22)( lvx2)

AylA,A,
_ gdimy 1 / dx,
n 2 PAtf? 2 Pz Pz
BU(A,. A, Ay 1/2)BU(d— A, d— A, Ay 1/2)
A,—A +A, A, —A,+A
A 4 X ¢ X 4 ¢ d— A 47
< 2 ) 2 ) b | ( )

A, BY see in (28), (36).

Typical for conformal theories, the divergent integral in
(47) was analyzed in Ref. [40]; here, the dimensional
regularization is chosen when in general formulas (27) and
(28) one takes

d

d_)d*:d+€, ﬁlzﬂzzi

We leave in integral (47) only most divergent term ~¢~!
and absorb it in the “bare” coupling constant g, defining in
this way the renormalized coupling as:

d dx 472 1
PlaPZa 2

Thus using (48) and deciphering A (28), BW (36), and
A, (13) that enter the expression for B, we finally get

Ca, ,dimyR(A,. A, A))

HY s (1. 5) = 3 g (49)
A</"AWA)( 1,42 P1A24) R 1677,'d F<0)(A¢) ’
where
I'A,)I'(d— A
FO(A,) = ( ¢)d( . o) (50)
Ay =9I (E—4y)
and
R(AV/’ A)(, A¢)
Ay+A,+Ay—d+ 1\ 2d—A,—A,—Ay+1
_F(WJFI‘;d) Jr)I“( ll/2/{ 4+)
rd+a, -9rd+4-4,)
A, —A,+A A=A, +Dy\ Ay +A,~Ay+]
. F( 4 2)( ¢)1"( 4 2!/ ﬁ)r‘( 12 ¢ )
F(% T4, - %)F(% + % - A)()
d+A,—A,~A d+A,~A,—A d—A,—A,+Au+1
e L e s L1 e s SRS

FE-A)r(1+4,-9

or expressing R through bulk masses of spinors m, =
A,—d/2 and m, =A,—d/2 [see (12)] and Bessel

¥
functions’” order v = A, — d/2 [see (5)] for scalar field:

R(A A'A¢)
T+ @ -ar@+prE-p)
LG+ m,)C(G—m,)
TGH{HIIGHE-ITG+HE+HOTG+E-9)
r( + m, )T — m,)T'(=v)I(1 + v) ’
_my,—mx+1/ _my, = m,, +v
a_f’ ﬁ_ 2 )
my, +m, +v _my, +m, —v
N (52)

R is the main function in our analysis. It can be seen that
for even d it is expressed in terms of elementary trigono-
metric or hyperbolic [for imaginary arguments, like in
spectral representations (8), (19)] functions. For example,
for d = 2,

7y oS wm,, COS mm,, Sin v

R(A,,A;A,) =— - - , (52
(B B3 By) cos za cos zf3 sin zry sin 7 (522)
and for d = 4,
R(AV/’ A A¢)
_ maf(;— r*) (5 — 6%) cos wm,, cos wm,, sin v  (52m)

sin za sin zf} cos my cos o

As could be expected, dependence on coordinates of the
harmonic bubble (49), and hence of the full bubble (44), is
the same as that of the elementary scalar conformal
correlator (7); it is singled out in front of the rhs of (49).

B. Spinor bubble formed by spinor and scalar

Generated by the same bulk Yukawa coupling like in the
previous subsection, the one-loop two-point contribution to
the conformal correlator of spinor field y(Z) when the loop
is formed by spinor field y(Z) and scalar field ¢(Z) has the
form

2pt (3130) _>
MAP;/M A(p 1,)C2 =g //le

x XIR (¥.3,), (53)

71)Sa, (X, Y)G, (X.Y)

where spinor bulk-to-boundary propagators ZIARW and iIARW
are given in (15) and (16) and Green’s functions G, and
S A, are given in (8) and (19) (the IR option is meant, that is,
Ay >d/2 and A, > d/2; see (5) and (12)].

Following the logic of the previous section, with account
of spectral representations of scalar (8) and spinor (19)
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Green’s functions and the proportionality of corresponding harmonic functions to differences G (10) and S (20) of IR and
UV scalar and spinor Green’s functions, the double-integral spectral representation of the one-loop spinor correlator (53) is
obtained,

2pt(3120) > -
Mth( 30) ( 3 deede HA |d+zc d+ ( *r x2) (54)
A,lAA, X1 2 475 H (A¢_%)2]’

where harmonic bubble 22 in the numerator is again built by the replacement in (53) of two bulk Green’s functions G
and S with corresponding differences G (10) and § (20):

HIA ER) = ¢ [ S GRS, (061G, (X DR (V). (55)

To use it in spectral representation (54), the replacements A, — d/2 + ic and A, — d/2 + i¢ must be performed in (55).
Substitution here of split representations of G (10) and S (20) gives for the rhs of (55)

gz(d—2A¢)//d)?ad)?b U iIARW( ENAN (X, %,)Ky, (X.X,)dX
- [ / EIARX(Y,Ea)ZIARW(Y,EQ)Kd_%(Y,EEb)dY} = P(d-25,)
[ o [ M G R R MY (R T ) (56)

here, the last equality follows from expressions (32) and (37) for M3 (1) and M3t After the evident changes of
variables and arguments in final formulas (35)—(36) and (40)—(42) for these vertices, Eq. (56) comes to

2pt(3130) = B ) ) A
PO (3 %) = BU(A,.d— A, Ay 1/2)BO(A, A, .d— Ay 1/2)

A1AA,
SN | 7 C2 ) |
g (d - 2A¢)/dxalb(x1,x2,xa)%, (57)
P la P 2a
la * 2a
where B! and B (see (36) and (41)] and I,(X,,X,,X,) is an integral over Xy,
. - [=Pia+ Pip + Pap + (31 = %) (X0 — X))/ S
1p(%), %, X,) = /dxb s s (s
Py Py Py’
m (1) 1 it I
A 8. (8 + 8 (& = 81,) (4 = (55 +501))
— A+l d Ay A=Ay 2d-Ay=A,—A, 1
P12W : 2Pla ’ P2a ’
[=Pia+ Py 4 Py — (X1 = X)*(%; = X,)P S, (58)

where A and S% are given in (28) and (31). The values of six exponents §; ;10 (57)~(58) corresponding to exponents in (36)
for the vertex of type I and to exponents in (42) for the vertex of type II are as follows:

s _ By FA A+ 1-d S0 _ By =8 -4y +d s _A A Hd-A (59)
ha = 3 B gb B ’ ab 2 ’
and
5(11)_A1//+d_A)(_A¢ 5(11)_AW+A¢_(d_A){)+1’ 5((112):(d—A){)+A¢—AW+1 (60)

la — 2 ’ 1b — 2 2
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It is seen from (59) and (60) that
S 6 4+ 6 50 — g4 1. (61)

In the calculation of I, (58), it was taken into account
that conformal integrals over X, corresponding to the
second (Py;,) and the third (P,;,) terms in the integrand
|

(X1 = %,)*(X, — %)’ 7

of (58) are the ordinary ones of type (26), whereas the sum
of exponents of P in the first (P,,) term in the integrand in
(58) is, according to (61), equal to (d + 1); this integral is
less trivial [see (29)]. The integral over X, of the last term
on the rhs of (58) also comes to the standard conformal
integral (26) with account of the asymmetry of S% and
elementary identity

(-;él _ .;5 )aS(I/i o

P o) 2(5
a

<ab) + 5ab

1) 0 Lahl ]

Substitution of 7, (58) in (57) with account of (59)—(61) and (28) gives

2pt(30) - -
HE WA, (B ) = ¢2(d—28,)BV(A,, A

where

A(A, A, Ay) =

To take divergent conformal integrals over X, in (62), the
general formula (30) is applied, where according to dimen-
sional regularization we change on thethsd - d* =d + ¢

A(A,. A, Ay
o = 8p) B (8 d = By ) == T
Py
p P — P, — _Z\a(z _ =2 /3(1[)’""__'1_[
-/d)? [Paa + Pia = P — (%) ﬁ)d(flz Xa)P ST (% — X4) -, (62)
PhuPh,
4 2d=A, =D, =Dyt 1\ A=A, +A
20 ( (404, +5-9) (63)
AR A B A (g - A, +)
|
where
LA, +9rd-A, +1)
F 2 ( 1//) 2 4 2 (66)

and put f; and S, equal to corresponding values in every
integral in (62) (cf. in Ref. [40]). This gives for the last line
in (62)

F(E, — )T 27/2
/dza{...}_” IP%, 2)H—2F(4) é(w%). (64)

12 2

The final expression for the spinor one-loop harmonic
bubble (55) is obtained from (62)—(64) and expressions (36)
and (41) for coefficients B and B™ with the introduction
of the renormalized coupling constant (47) and with account
that in general formulas (36) and (41) for coefficients BM
and B the corresponding replacements of §;; must be

(D

performed. Namely, 6,5, 6 1%’ 3 [in (36)] must be changed

to 85, 8, and 6)) given in (59), and in the same way, &\3,

8. and 6% (42) must be changed to 5\, &%, and 5"V
(60). The result proves to be quite simple,
o) - A 7(X =X)L
P (3, ) = &, TETL
plovta
12
, (1+2)R(A,.A,:A))
“ IR g0 - (69
()

ra, +§——) 4-a,+1
and coefficient R(A,,A,;A,) given in (51) or (52) is
common for both harmonic bubbles H (49), (65) calculated
in Secs. IV. A and IV. B. Space-time and spinor dependence
in front of the rhs of (65) [and hence of the full bubble (54)]
copies the same of the primary correlator (13).

As it was noted above, harmonic bubbles (49) and (65)
may be used as numerators of the integrands in spectral
representations (44) and (54) after the corresponding
replacements in the universal function R (51) of conformal
dimensions of intermediate fields by the integration vari-
ables d/2 + ic, d/2 + ic. It is seen from the expression for
R (51)-(52) that double-integrals (44), (54) are divergent in
directions ¢ + ¢ = const and ¢ — ¢ = const [40].

In the next section, the natural subtraction of the
divergences of bubbles (43), (53) will be performed.

V. DOUBLE-TRACE ELIMINATION
OF UV INFINITIES

The UV divergence of the self-energy diagrams reflected
in particular in infinity of spectral integrals (44), (54) is a
conventional difficulty in quantum field theory. Here, to
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overcome this difficulty, I propose applying to the bubble
diagrams the double-trace from the UV to IR flow approach
used in Refs. [23-30] for the unambiguous UV-finite
calculations of tadpoles and quantum vacuum energies
of scalar and spinor bulk fields in spaces of arbitrary
dimensions. For example, in AdSs (d = 4), expressions for
tadpoles defined in this way are as follows [differences G
and S of IR and UV Green’s functions are given in (10) and
(20), and we restore here the value k,4g of the curvature of
AdS space]: for the scalar tadpole [23-28],

3

k
_ AdS2 (A

~(d=4)
G Z,7Z
z (2.2)=1

-1)(A-2)(A-3),

and for the spinor tadpole [29,30],

e k4 1\ /9
d=4
S<A,,,:2)+m (Z Z) ‘:;18 <m — Z) (Z - m2> .

Thus, the difference of two similar Witten diagrams built
of the UV or IR bulk Green’s functions proves to be finite
and well defined for tadpoles, and I shall show that it is also
finite and well defined for the bubbles.

Most generally, this modification of quantum diagrams
means that, instead of the standard quantum generation
functional, symbolically,

~2pt(0[}) (#).5%,) = MZpt(O\zz)UV< L5 - M2pt(0\zz)IR

Ayla, A, XX AylA, A,

~2pt(320) o o\ 2pt(dioyuv
MA 8,4, (XI,XZ) _MA JIALA,

where

~ 11
A (0, v) = {Te[sYSYY] -

= {Tr[SAWSAX]

~ 11
L o) = (sgvesy

= {SAIGA

Z[ ~; G] _ (DetG)—l/ZeLim(%)e(%jcj) (67)
[here, G, L;,, and j are the free field Green’s function,
the interaction Lagrangian, and the field’s source, respec-
tively; in frames of the AdS/CFT correspondence in the
generation functional of the n-point boundary conformal
correlators, j(X) is equipped with the corresponding bulk-

to-boundary propagator], the ratio
Z[j; GW]
Z[j: G

(DetGUV) -1/2 eLim(i()‘-—;) e(%jGUVj)
- (DetGlR)_l/zeL‘im(’%)e(%jGIRj)

Z[], GUV, GIR] —

(68)

of two quantum functionals determined by Green’s functions
(GYY and G™) possessing two different asymptotics at the
horizon must be considered as a quantum generation func-
tional for Witten diagrams. General analysis of the ratios of
quantum functionals of one and the same bulk dynamics and
different boundary conditions is presented in Ref. [43].

This approach means in particular that self-energy
correlators (43) and (53) are redefined as a difference
M (also marked with a tilde) of conventional bubble
diagrams built of the products of two UV and two IR
Green’s functions correspondingly,

Agla,A, ( 17x2>
—g // Ky, (X:%)) 2"“0'2”()( Y)Ky,(Y:%,)dXdY. (69)
s o 2pt (JPO)IR o
(%1,52) = MY A (31, %)
=g // SR (X I (X, v)ZR (v.5,)dX Y. (70)
Tr[SR SRIHX.Y)
— Tr[SK Sa ] = Te[Sa, SKI}(X. Y), (71)
- Sy G HX.Y)
— SR Gy, - 55 GR}(X. 7). (72)

GR -G
S were used, where G and S are defined in

In the derivation of (71) and (72), identities GVY =
and SYV = SR —
(10) and (20).
Then, the divergent double-integrals (44), (54) are can-
celed in (69) and (70), and the remaining terms are UV finite.
With account of spectral and split representations of G'® and

|
G [Egs. (8)~(10)] and of S™ and S [(19) and (20)], it is seen
that the contribution of every of three terms of both IT (71),
(72) to the expressions of the one-loop self-energy correla-
tors (69), (70) includes corresponding harmonic bubbles (49)
and (65). Thus, finally, for UV-finite bubbles (69), (70)
defined according to prescription (68), we obtain
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- o) = =~ Ca,  grpdimy

ayla,a, (1 %2) = P 1679F 0 () {R@‘”’ A )

/+oo ideR(§+ic, A, Ap) /+oo ideR(A,. 4+ ic;A¢)] 73)
o 27 [c+i(A, -9  Jw 27 [c+i(A, -9
and

C (X =% 2 3

St () o o Ca 7 =X)L gr(143) ‘
Ax//‘Al’Af/) (xl’X2> - PAI//+% 327TdF(%>(AV ) R(AW’ A){’ A¢)
12 y
~ /m idcR(A,.§+iciAy) /+oo icdeR(A, A4+ ic)} 4
o 27 [c+i(A,—9)] o 21 [P+ (A =D

where R, F(©, and F® are given in (51)-(52), (50), and (66) correspondingly.
As noted above, function R for even d may be expressed in terms of elementary functions. In the next section, bubbles
(73), (74) will be written explicitly in the d = 4 Yukawa model.

VL. UV-FINITE BUBBLES IN SU(N) YUKAWA MODEL
WITH CONFORMAL SCALAR FIELD IN d =4

Consider bulk Yukawa interaction of N copies of spin-1/2 fields w(Z) of mass m with the conformal invariant scalar field
¢(Z) on AdSs:

Lin = 90(2) 25 (Z)wi(Z). (75)

Conformal invariance of ¢(Z) on AdS,, means that the equation for the scalar field includes curvature term &.¢*R . |
with the coefficient £, = (d — 1)/4d and that in this case order parameter v = Ay — d/2 = 1/2 in any dimension. Thus, in
this model, m,, = m, = m, v = 1/2, and it follows for the universal function R (52) in case d = 4 that

1 7 cos’mm 1 9 -
R(2+m2+m2+-)=" 2\ (m2=2) =R(m).
( s +2> 4 cos 2zm <m 16) (’" 16> (m) (76)

Correspondingly, for R that enter the spectral integrals in the final expressions for bubbles (73), (74), we obtain from (52)

1 1
R(d:4) <2 +ic,2 +m;2 +> = R(d:4) <2 +m,2 +ic;2 +2)

2
7z cosmmcoshmc 1 2+ ) +1 2+ )
=—= m—— c m -+~ c
8 cosh 2zc + cos2zm 2 2

: <i —m? 4 c? - 2imc>, (77)

inc? sinh wecos®m 12 ¢? 1N\?2 ¢
Ri—y(2 ,2 ;2+ic) =— . - = — = —. 78
(a=)(2 - m. 2+ m; 2 + ic) (coshze — 1)(cosh e + cos 2zm) Km 2) * 4} {<m+2) * 4] (78)

Despite the complex nature of (77) and (78) and of the integrands in spectral integrals in (73) and (74), replacing
their integration over ¢ from —oco to +oco with integration from 0 to 4oco will obviously give the real rhs of (73)
and (74).

Having in mind that in the Yukawa model under consideration (d = 4, Aw = Ax =2+ m, A(/, =2+ 1/2) we have
dimy = 4 and [see (50) and (66)]

3

F(0>(A(/, =5/2) = _R; F(%)(Aw =m+2)= (mz __) <m2 __>7
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substitution of (76)—(78) in (73) and (74) gives final expressions for these one-loop conformal correlators (two spinors and

spinor-scalar bubbles),

~ 2pt(0[}) (d=4) - -
MA¢:5/2\2+m,2+m ('xl ’ Xz)

4
T

—575 GeNO (m),

—R(m)—imcosnml )(m) (79)

[there is the multiplier N on the rhs because in (75) scalar field ¢(Z) interacts with every spinor field y(Z)], and

- ) d=4) = = CopnP (X = BT
Mzirrzl\22+m,5/2<x1’x2) =—* 2im+1 gr@Y)(m),
Py
3[R 1 ) — cos2 2
OW) (1) — (1 +f) [R(m) + gmcos 72nnll (n12) 9cos aml'® (m)] 7 (80)
32z (m* =) (m* =3)
where R (m) [see (76)], and
9_ 2 2 N2, 2 N2, 2
10)(m) = /+oo dc coshze(g —2m —i—23c )(m —=3)* + c*][(m +3)* + ¢?] ’ (81)
0 (¢* + m*)(cosh2zc + cos 2am)
. C2 CZ
1) () = /+oo dec® sinhze[(m —3)? + 5][(m + 1)* + 4] (2)
0

(¢? + 1) (cosh e — 1) (cosh zc + cos 2zm)

are well-defined convergent definite integrals.

Surely transparent expressions similar to (76)—(82),
although somewhat more lengthy, may be put down for
the model (75) in case d = 4 when the conformal dimen-
sion of scalar field Ay = 2 + v is arbitrary.

VII. OLD CONFORMAL BOOTSTRAP IN THE
AdS/CFT CONTEXT: SPECTRAL EQUATION
FOR BULK SPINOR MASS IN YUKAWA
MODEL OF SEC. VI

Expressions for UV-finite quantum one-loop spinor-
scalar contributions (bubbles) to scalar (73) [or (79) in
the Yukawa model (75)] and spinor (74) [Eq. (80) in the
model in (75)] boundary-boundary conformal correlators
may be used in different ways:

(i) for the calculation of anomalous dimensions gen-
erated by the scalar-spinor bulk loops like was done
in Ref. [40] for bubbles built of the fields of integer
spin with the use of logarithmic terms in the
dimensional regularization of conformal divergent
integrals like (48) or (64).

(i1) for presenting decomposition of the bubbles built of
two spinors or of a spinor and scalar in an infinite
series of residues in poles of integrands in spectral
integrals in (73) and (74); the locations and residues
of these poles are evident from expressions (51) and
(52) [or (77) and (78) in the model in (75)] for
coefficient R determining harmonic bubbles (49),

(65); detailed analysis of poles of harmonic bubbles
formed by the fields of integer spin was presented in
Ref. [40], etc.

Here, we pay attention that expressions obtained above
permit formulating spectral equations for the bulk masses
of spinors in frames of the old conformal bootstrap in the
AdS/CFT context [12,13]. The simplest old conformal
bootstrap equation for the Green’s function G(X,Y) tradi-
tionally written in planar approximation looks like [14-22]

G(X,.X,) —g// (X,. X

x G(Y,X,)dXdY (83)

G(X.Y)G(X.Y)

(triple interaction is supposed, and g is the coupling
constant). Equating of the exact Green’s functions to the
one-loop quantum contribution built of the same exact
Green'’s functions is the main postulate of the old conformal
bootstrap. This type of bootstrap equation was also
used recently for the calculation of spectra of conformal
dimensions in one-dimensional Sachdev-Ye-Kitaev and in
d-dimensional field theory models [51].

Equation (83) is just a conventional Schwinger-Dyson
equation in which terms associated with bare Lagrangian
are omitted. This may be called the zero-Lagrangian
approach applied by Sakharov in his quantum-induced
theory of gravity [52] (the attempt to follow this method
in the AdS context was made in [27,28], in which UV finite
induced gravitational and gauge coupling constants were
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calculated). The similar “bootstrap” equations with zero
“bare mass” terms are widely used in different approaches
to dynamical symmetry breaking and mass generation
pioneered in Refs. [53,54], etc.

In the AdS/CFT context, it is assumed in Refs. [12,13]
that X;,, X, and Y in (83) are the bulk coordinates in
AdS,,; and X, , are sent to the horizon. This procedure’
transforms the lhs of (83) into a conformal correlator of the
boundary conformal theory [Eq. (7) for the scalar and (13)
for the spinor], whereas G(X;, X) and G(Y, X,) on the rhs
become the corresponding bulk-to-boundary propagators.
Thus, the rhs of (83) becomes the quantum one-loop
correlator (bubble). In this way, different bootstrap equa-
tions may be obtained depending on the choice of boundary
conditions for G(X;,X) and G(Y,X,) in (83); in what
follows, I use “both IR” boundary conditions for these
Green'’s functions (the “both UV” option will give the same
spectral equations, as was shown in Ref. [13], in which the
model of interacting scalar fields was considered).

Applying old bootstrap equation (83) (where X, are
sent to the horizon) to scalar and spinor fields and defining
the UV-finite bubble on the rhs of (83) according to the
“double-trace subtraction” postulate of Sec. V, we obtain
from (83) with account of (7) and (13) for the lhs and (73)
and (74) for the rhs

CA¢ Y 2pt(0[33) ()_C' 3 )
PA¢ Ad)‘AWAz 1.2/
12
Ca 7(3) = X)IT n
- ~2pt(330) > o
v 212
= X1, X5). 84
Au/"‘% MAW|A1,A¢( 1s 2) ( )

P12

Reducing the similar space-time and spinor dependence
of the lhs and rhs of Egs. (84), the following old bootstrap
equations are obtained from (84) for the particular case of
the model in (75) when bubbles are given by (79) and (80):

1 = gaNOW) (m), (85)
L= gg®¥(m). (86)

After elimination here of g%, the interesting spectral
equation for spinor bulk mass m is obtained:

NOW) (m) = dW) (m). (87)

In Ref. [13], a similar spectral equation for conformal
dimensions in the O(N) symmetric model of N scalar
fields interacting with the conformal invariant Hubbard-
Stratonovich field is derived, and its roots obeying the
unitarity bound demand are found: three roots for every
N=1,23,4

'T am grateful to Ruslan Metsaev for this observation.

The spectral equation (87) for every N possesses positive
and negative roots; however, only one of them belongs to
the physically interesting interval (3), and its value m =
0.87 weakly depends on N. According to (2), this value of
bulk fermion mass gives the mass of physical fermion
excitation py = 0.05 MeV.

The interesting task would be to consider the sponta-
neous breakdown of SU(N) symmetry in the model in (75).
This means that every spinor field y;(Z) is supposed to
have its own bulk mass m; and in expression (79) for the
2-spinor bubble of scalar field ¢(Z) the multiplication
by N should be replaced by the sum over k, N®) (m) —
2, ®?) (my), whereas expression (80) should be valid for
every my. Then, spectral equation (87) takes a form of
system of N equations (k = 1,2...N) for N unknowns m;,
[®@¥) (m); see (79) and (80)]:

=00 (m;) = O (m,). (88)

The physically intriguing goal is the search for roots
m;...my of system (88) that belong to interval (3) with the
hope to get, from Eq. (2), for example, the observed masses
of spin-1/2 flavors.

Surely the assumption of conformal invariance of the
scalar field in the Yukawa model (75) is just a demonstra-
tive one. It is not difficult to put down the system of spectral
equations similar to (88) for arbitrary conformal dimension
of scalar field A, and to get the dependence of roots m; on
Ay, with the hope that for some A, and N the physically
interesting combinations of N roots m;...my will be
obtained.

VIII. CONCLUSION

The results of this paper are threefold; in every direction,
there is possible further development.

First, the transparent expressions are obtained in physical
AdS,,; space for spinor-scalar vertices and for two-point
one-loop quantum conformal correlators (bubbles) formed
with participation of spin-1/2 bulk fields. If the scalar field
bubble formed with two spinors was calculated earlier in
the formalism of embedding space [39], the result for the
loop formed by a spinor and a scalar has not been met in the
literature, as to my knowledge. The fantastic simplicity of
this result obtained through lengthy calculations gives rise
to the hunch that perhaps there is a simpler way to achieve
it. The option of Yukawa bulk interaction ¢(Z)w(Z)w(Z)
was considered above, and immediate generalization of the
approach of the paper may be the calculation of vertices and
bubbles in the cases of pseudoscalar z(Z)w(Z)y y(Z) or
vector V,(Z)y(Z)y*w(Z) interactions, the bulk QED as a
special option.

Second, the novel tool of the elimination of the UV
divergence of bubble Witten diagrams is proposed and
actually repeats the approach used earlier in [23-30] in
calculations of Witten tadpoles. It would be interesting to
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check if the difference of the UV and IR Witten triangle and
other diagrams proves to be UV finite as happened in
Sec. V for bubble diagrams.

Third, the expressions for UV-finite spinor-scalar bub-
bles received in the paper permit applying them in the old
conformal bootstrap equations aimed at the calculation of
spectra of bulk spinor masses. The task for the future may
be the calculation of roots of spectral equation (87) or of
system of Eqgs. (88) and of similar equations received in
models with pseudoscalar or vector interactions of spin-1,/2
fields. As was outlined in the Introduction, the knowledge
of bulk spinor masses may be a way to the solution of the
longstanding fermion mass hierarchy, or flavors mass
hierarchy, problem.
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APPENDIX: DERIVATION OF
FORMULAS (24) AND (29)

1. Derivation of DV (24)

Calculation of bulk integral D%m (X1, %, X3) (21) is
performed in an ordinary way with the introduction of
Schwinger parameters—see, for example, Sec. 3.1 and
Appendix A in Ref. [49]. The representation of D@ as
integral over Schwinger parameters differs from the well-
known one for D only in the argument of the first
Gamma function and in the additional factor (X;7;)* in the
integrand (i = 1,2, 3),

—1
D o o g D(EL=d= di. .
D}(’(I})/Zy3(-x1,X2,_X3) :”2—2/Hl _ltlyl

C(y1)T(r2)0(r3) t;
< (517" (A1)
where
0 = 111,P1p + 1113P 13 + 113P3
for P;;, see (6).

Thus, in case @ = 1, the standard change in (A1) of the
integration variables

myoms nmymy,

- minis B
b= ,|—= t;=
my my ms

algebra

[1:

and simple immediately give for D

expression (24).

2. Derivation of RV (29)

Derivation of RELO s, (X1, X5, X3) is again performed in an
ordinary way with the introduction of Schwinger param-
eters, that gives

! 2 Y. X d dtl fl-ﬁi e
R;1}52/33(x1’x2’x3) :271'2[/1_[[- (t_lr(ﬂl> (Ziti)zlﬂ’ de Qz;
(A2)

for Q?, see above in Appendix A 1. For X,8; = d + 1, the
integral in (A2) coincides with the integral in (Al) ata = 1,
and (29) follows from (A2) in the same way in which (24)
was obtained from (Al).
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