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Attempts to resolve the long-standing Fermion mass hierarchy problem in frames of the AdS=CFT
correspondence demand the knowledge of bulk fermion masses. The approach of the “old” conformal
bootstrap in the anti-de Sitter (AdS) context permitted calculating bulk masses of scalar fields, as it was
shown in three previous papers B. L. Altshuler [arXiv:1810.01105; Int. J. Mod. Phys. 2050001 (2020);
J. High Energy Phys. 01 (2020) 137]. In the present paper, this approach is extended to physically more
interesting spin-1=2 bulk fields. Calculation of spinor-scalar vertices is performed in physical AdS space,
and unexpectedly simple expressions for spinor-scalar bubbles (two-point one-loop self-energy Witten
diagrams) are obtained. The “double-trace from UV to IR flow” subtraction of UV divergences used earlier
in calculations of the UV-finite bulk tadpoles is applied to bubbles. This permitted us to write down in the
frame of the old conformal bootstrap approach the nontrivial spectral equations for the bulk fermion
masses; the SU(N) Yukawa model of spinor fields interacting with conformal invariant scalar field in case
of four boundary dimensions is considered as a specific example.
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I. INTRODUCTION

Explaining the fermion mass hierarchy (also called the
flavor hierarchy problem) remains a challenge in theoretical
physics (see, e.g., Refs. [1,2] and references therein). I
cannot help but quote the very beginning of Ref. [2]: “In a
recent interview published in CERN COURIER, Steven
Weinberg was asked what single open question he would
like to see answered in his lifetime, and Weinberg replied
that it is only the mystery of the observed pattern of quarks
and leptons masses [3]”.
In frames of the AdS=CFT approach and two-branes

Randall-Sundrum model [4] (Poincaré coordinate ϵ < z <
L where ϵ−1 ∼MPl ¼ 1019 GeV for the Planck scale and
L−1 ∼MEW ¼ 102 GeV for the electroweak scale), spectra
of physical particles (glueballs, mesons, light and heavy
fermions, etc.) are obtained as eigenvalues of equations for
bulk fields, and it is possible in principle to get the looked-
for fermion masses of intermediate scales with the choice of
dynamics in the bulk and of boundary conditions on both
branes [5–9]. It is evident that there is great arbitrariness in
this approach.

Here, I mention one of possibilities to overcome this
arbitrariness. This possibility is a rather natural “twisted”
boundary condition for spin 1=2 fields that permits to get
observable fermion masses of any scale depending only on
the bulk masses of Fermi fields in higher dimensions
[10,11]. The spectral equation in this case looks like
(see formula (29) in Ref. [11])

Jα−1ðmnϵÞ
Yα−1ðmnϵÞ

¼ JαðmnLÞ
YαðmnLÞ

; ð1Þ

where physical four-momentum p2
n ¼ −m2

n, Jα, Yα are
Bessel functions of the first and second kinds of order α ¼
m=kAdS þ 1=2 [m is bulk mass of fermion field, and kAdS is
anti-de Sitter (AdS) space curvature], values of ϵ and L are
given above. Surely, Eq. (1) has a tower of solutions
beginning from the electroweak scale L−1. But it also has a
special solution when both arguments of Bessel functions
in (1) are small:

p0 ¼
1

L

�
ϵ

L

�
α−1 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4αðα − 1Þ
p

: ð2Þ

It is seen that for 1 < α < 2, that is for

1

2
<

m
kAdS

<
3

2
; ð3Þ

p0 may have any value in the interval from the electroweak
scaleMEW to the electron neutrino (or gravitino) mass scale
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of order M2
EW=MPl. Thus, well-grounded calculations of

fermions bulk masses may open the way to the solution of
the Fermion mass hierarchy problem. This was the main
motivation of the present paper.
One of the candidates for the theory capable of fixing

masses of bulk fields may be the “old” conformal bootstrap
in the AdS=CFT context [12,13]. The old conformal
bootstrap was proposed about 50 years ago in pioneer
papers [14,15] and developed in Refs. [16–21] (see, e.g.,
Ref. [22] and references therein) as a non-Lagrangian tool
of self-consistent calculations of conformal dimensions.
In the AdS=CFT context, finding conformal dimensions

is equivalent to finding bulk masses. In Ref. [12], the values
of bulk masses of scalar fields that are the roots of
corresponding bootstrap spectral equations were found in
certain models under the oversimplifying assumption of
replacing of two “intermediate” Green’s functions in self-
energy Witten diagrams (bubbles) by their harmonic
counterparts. In Ref. [13], this assumption was abandoned,
and UV divergence of the bubble was subtracted in the
“double-trace from UV to IR flow” way used earlier in
calculations of the UV-finite tadpoles and bulk vacuum
quantum energies of scalar [23–28] and spinor [29,30] bulk
fields. The sensible, that is, obeying the unitarity bound
demand, values of conformal dimensions of scalar fields in
the OðNÞ symmetric model were obtained in Ref. [13] for
N ¼ 1…4 in the case of d ¼ 4 boundary dimensions.
To extend the approach of Ref. [13] to physically

more interesting spin-1=2 bulk fields is the goal of the
present paper.
The Dirac field of spin 1=2 was studied sufficiently well

from the AdS=CFT perspective—see earlier papers [29]
and [31–35], in which in particular spinor bulk-to-bulk and
bulk-to-boundary propagators on AdS were written down,
and recent works [36–39]. In Refs. [37,38] spinor-spinor-
scalar vertices were calculated in the formalism of embed-
ding space, and also in Ref. [38], the spectral representation
of the bulk spinor Green’s function is presented. The bulk
fermion loop of the scalar field was first calculated in
Ref. [39] also in the formalism of embedding space,
whereas the one-loop self-energy of the Fermi field on
AdS was not calculated earlier, as to my knowledge. Here,
I do not use the formalism of embedding space and perform
calculations in physical AdSdþ1.
In Sec. II, some well-known expressions are presented

and include four bulk-to-boundary propagators, the spectral
representation of Green’s function, and the split represen-
tation of the harmonic function for the spin-1=2 bulk field.
Also, Sec. II presents novel bulk and conformal integrals
necessary for the calculation of spinor-scalar vertices and
bubbles; their derivation is given in the Appendix.
In Sec. III, calculation of spinor-spinor-scalar three-point

correlators (vertices) is performed. There are two types of
such correlators: type I in which two spinor fields are of one
and the same asymptotic at the AdS horizon (symbolically,

those are correlators IR − IR − ϕ or UV − UV − ϕ, where
ϕ is a scalar field), and type II which are three-point
correlators IR − UV − ϕ or UV − IR − ϕ. The first type of
these correlators is well known and was extensively used in
calculations of spinor-scalar Witten diagrams [34–39],
whereas vertices of the second type have not been written
down so far, as to my knowledge.
In Sec. IV, the one-loop quantum contributions (bubbles)

to the two-point boundary-to-boundary conformal correla-
tors of the scalar field (the loop is formed by two spinor
bulk Green’s functions) and of the spinor field (the loop is
formed by spinor and scalar Green’s functions) are calcu-
lated. The double integral spectral representations are given
for both bubbles, repeating the approach of Ref. [40] in
which double integral spectral representations were put
down for bubbles formed by the fields of integer spin. The
numerators of integrands in these representations are
formed like ordinary bubbles but with the replacement
in their expressions of intermediate Green’s functions to
the corresponding harmonic functions (proportional to
the difference of “UV” and “IR” Green’s functions).
Calculations of harmonic bubbles formed by two spinors
and by a spinor and scalar are the main contents of Sec. IV.
The reward for these rather lengthy calculations is the
simplicity of the final formulas for both bubbles expressed
through one and the same universal function of conformal
dimensions; moreover: for an even number d of boundary
dimensions, this universal function is just a combination of
elementary functions.
In Sec. V, UV divergence of the bubbles is subtracted

with a tool used earlier in calculations of the UV-finite
Witten tadpoles [23–30]. The tool is simple, it says that,
instead of ordinary Witten diagrams, the difference of two
similar Witten diagrams built of UV and IR bulk Green’s
functions must be considered. This difference is the
deformation in amplitudes under double-trace flow from
UV to IR boundary conditions, as was first proposed in
Ref. [41] (see Ref. [42] and references therein). A general
concept is put forward for such a crucial redefinition of
quantum amplitudes: it is proposed to construct Witten
diagrams using the quantum generation functional (68),
which is the ratio of two standard functionals built with use
of UV and IR boundary conditions; most generally, this
approach is studied in Ref. [43], in which it was shown that
in “ratio functionals” functional integrals over fields’ bulk
degrees of freedom reduce, and only quantum theory of
boundary fields is taken into account. It is shown in the
paper that this procedure gives well-defined UV-finite
expressions for bubble diagrams, but whether it will work
for triangle and other Witten diagrams is an open question.
In Sec. VI, transparent formulas for two spinors and

spinor-scalar bubbles are derived in the SUðNÞ model with
Yukawa interaction of N spinor fields with the conformal
invariant scalar field, in the case of four boundary
dimensions.
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In Sec. VII, results of Sec. VI are used to write down the
old conformal bootstrap spectral equations for bulk fermion
mass m in the SUðNÞ symmetric option when masses of all
N spinors are equal. The system of N spectral equations
that will permit us to study the possibility of the sponta-
neous breakdown of SUðNÞ symmetry is also presented in
Sec. VII.
The Conclusion sums up three principle results of the

paper and outlines the possible directions of future work.

II. PRELIMINARIES

A. Scalar field on AdS

We work in Euclidean AdSdþ1 in Poincaré coordinates
Zμ ¼ fz0; z⃗g (μ ¼ 0; 1;…d), where AdS curvature kAdS is
put equal to 1,

ds2 ¼ dz20 þ dz⃗2

z20
; ð4Þ

and consider bulk scalar and spinor fields.
Bulk scalar field ϕðXÞ of massM is dual to the boundary

conformal operator OIR
Δϕ
ðx⃗Þ or to its “shadow” operator

OUV
d−Δϕ

ðx⃗Þ with scaling dimensions

ΔIR
ϕ ≡ Δϕ ¼ d

2
þ ν; ν ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

4
þM2

r
; ΔUV

ϕ ¼ d − Δϕ:

ð5Þ

We take the normalization of the scalar field’s bulk-to-
boundary propagator and of the corresponding conformal
correlator like in Ref. [40]:

KΔðZ; x⃗Þ ¼ lim
x0→0

�
GBB

Δ ðZ;XÞ
ðx0ÞΔ

�
¼ CΔ ·QΔðZ; x⃗Þ;

CΔ ¼ ΓðΔÞ
2πd=2Γð1þΔ− d

2
Þ ; QðZ; x⃗Þ ¼ z0

z20 þ ðz⃗− x⃗Þ2
ð6Þ

and

hOΔðx⃗ÞOΔðy⃗Þi ¼ lim
y0→0
x0→0

�
GBB

Δ ðX; YÞ
ðx0y0ÞΔ

�
¼ CΔ

PΔ
xy
; Pxy ¼ jx⃗ − y⃗j2:

ð7Þ

The bulk-to-bulk IR [Δ ¼ ΔIR > d=2, see Eq. (5)] scalar
field Green’s function GIR

Δ ðX; YÞ possesses the Kallen-
Lehmann–type spectral representation in which the numer-
ator of the integrand (harmonic function) admits split
representation [40,44–47]:

GIR
Δ ðX; YÞ ¼

Z þ∞

−∞

Ωc;0ðX; YÞdc
½c2 þ ðΔ − d

2
Þ2� ;

Ωc;0ðX; YÞ ¼
c2

π

Z
Kd

2
þicðX; x⃗aÞKd

2
−icðY; x⃗aÞddx⃗a; ð8Þ

where

Ωc;0ðX; YÞ ¼
ic
2π

G̃d
2
þic ð9Þ

is a scalar field harmonic function which is proportional to
the difference (marked here with a tilde) of IR and UV bulk
Green’s functions:

G̃ΔðX; YÞ ¼ GIR
Δ −GUV

d−Δ

¼ ðd − 2ΔÞ
Z

KΔðX; x⃗aÞKd−ΔðY; x⃗aÞddx⃗a:

ð10Þ

B. Spinor field on AdS

Bulk spinor field ψðXÞ of mass m on AdSdþ1 obeys the
Dirac equation [31–39]

ðγμDμ −mÞψðXÞ ¼
�
z0γ0

∂
∂z0 þ z0γ⃗

∂
∂z⃗ −

d
2
γ0 −m

�
ψðXÞ

¼ 0; ð11Þ

where γμ ¼ fγ0; γ⃗g are standard anticommuting gamma
matrices in (dþ 1)-dimensional Euclidean space: γμγν þ
γνγμ ¼ 2δμν. The bulk spinor field of mass m is dual to
boundary conformal operator OIR

Δψ
ðx⃗Þ or to its “shadow”

operator OUV
d−Δψ

ðx⃗Þ with scaling dimensions

ΔIR
ψ ¼ d

2
þmþ 1

2
≡ Δψ þ 1

2
;

ΔUV
ψ ¼ d

2
−mþ 1

2
¼ d − Δψ þ 1

2
: ð12Þ

Corresponding conformal correlators are

hŌIR
Δψ
ðx⃗ÞOIR

Δψ
ðy⃗Þi ¼ ĈΔψ

γ⃗ðx⃗ − y⃗ÞΠ−

P
Δψþ1

2
xy

;

ĈΔψ
¼ ΓðΔψ þ 1

2
Þ

πd=2ΓðΔψ þ 1
2
− d

2
Þ ;

hŌUV
d−Δψ

ðx⃗ÞOUV
d−Δψ

ðy⃗Þi ¼ Ĉd−Δψ

γ⃗ðx⃗ − y⃗ÞΠþ

P
d−Δψþ1

2
xy

; ð13Þ

where Π� are projective operators:

SPINOR VERTICES AND BUBBLES IN THE OLD CONFORMAL … PHYS. REV. D 101, 046021 (2020)

046021-3



Π� ¼ 1

2
ð1� γ0Þ; Π2þ ¼ Πþ; Π2

− ¼ Π−;

ΠþΠ− ¼ 0; Πþγ⃗ ¼ γ⃗Π−: ð14Þ

Bulk spinor Green’s functions SIR;UVðX; YÞ that possess
IR or UVasymptotic at the horizon, x0, y0 → 0, and that are
zero at the AdS infinity, x0; y0 → ∞, are well known; see,
e.g., in Refs. [29,34,35]. Their properly normalized limits
at the horizon give four spinor bulk-to-boundary propa-
gators ΣIRðUVÞ and Σ̄IRðUVÞ, which permit expressing bulk
solutions of Dirac equation (11) ψðZÞ, ψ̄ðZÞ through the
boundary fields [31–35]. Those bulk-to-boundary propa-
gators are the main tool in calculations of this paper,

ΣIR
Δψ
ðZ; y⃗Þ ¼ lim

y0→0

�SIRΔψ
ðZ; YÞ

y
Δψþ1

2

0

�

¼ ĈΔψ
QΔψþ1

2ðZ; y⃗Þ ½z0 − γ⃗ðz⃗ − y⃗Þ�ffiffiffi
z

p
0

Π−; ð15Þ

Σ̄IR
Δψ
ðZ; x⃗Þ ¼ lim

x0→0

�SIRΔψ
ðX; ZÞ

x
Δψþ1

2

0

�

¼ ĈΔψ
QΔψþ1

2ðZ; x⃗ÞΠþ
½z0 þ γ⃗ðz⃗ − x⃗Þ�ffiffiffi

z
p

0

: ð16Þ

and in a similar way for ΣUV and Σ̄UV,

ΣUV
d−Δψ

ðZ; y⃗Þ ¼ Ĉd−Δψ
Qd−Δψþ1

2ðZ; y⃗Þ ½z0 þ γ⃗ðz⃗ − y⃗Þ�ffiffiffi
z

p
0

Πþ;

ð17Þ

Σ̄UV
d−Δψ

ðZ; x⃗Þ ¼ Ĉd−Δψ
Qd−Δψþ1

2ðZ; x⃗ÞΠ−
½z0 − γ⃗ðz⃗ − x⃗Þ�ffiffiffi

z
p

0

;

ð18Þ

where ĈΔψ
andQðZ; x⃗Þ are defined correspondingly in (13)

and (6).
Conformal spinor correlators (13) are obtained from

(15)–(18) when the bulk coordinate is sent to horizon in
these expressions.
Analogous to the scalar case (8), the spectral represen-

tation for SIRΔψ
ðX; YÞ [Δψ ¼ d=2þm > d=2; see Eq. (12)]

was given in Ref. [38],

SIRΔψ
ðX; YÞ ¼

Z þ∞

−∞

Ωc;1=2ðX; YÞdc
½cþ iðΔψ − d

2
Þ� ;

Ωc;1=2ðX; YÞ ¼
i
2π

S̃Δc
ðX; YÞ; Δc ¼

d
2
þ ic; ð19Þ

where spinor harmonic function Ωc;1=2ðX; YÞ is propor-
tional to the difference (again marked by a tilde) of IR
and UV Green’s functions, that possesses nice split

representations through bulk-to-boundary propagators
(15)–(18) integrated over common boundary point [38]
[cf. (9) and (10) for the scalar field case]:

S̃Δψ
ðX; YÞ ¼ SIRΔψ

ðX; YÞ − SUVd−Δψ
ðX; YÞ

¼
Z

ΣIR
Δψ
ðX; x⃗aÞΣ̄UV

d−Δψ
ðY; x⃗aÞdx⃗a

¼
Z

ΣUV
d−Δψ

ðX; x⃗aÞΣ̄IR
Δψ
ðY; x⃗aÞdx⃗a: ð20Þ

C. Some integrals

We shall need two following bulk integrals for two
values of parameter (α∶0 and α∶1):

DðαÞ
γ1;γ2;γ3ðx⃗1; x⃗2; x⃗3Þ

¼
Z

Qγ1ðZ; x⃗1ÞQγ2ðZ; x⃗2ÞQγ3ðZ; x⃗3Þ
dZ
zα0

; ð21Þ

QðZ; x⃗Þ see in (6). Dð0Þ is well known; it gives the three-
point scalar fields vertex [44,48,49],

Dð0Þ
γ1;γ2;γ3ðx⃗1; x⃗2; x⃗3Þ ¼

dð0Þðγ1; γ2; γ3Þ
Pδ12
12 P

δ13
13 P

δ23
23

;

dð0Þðγ1; γ2; γ3Þ ¼
πd=2

2

ΓðΣγi−d
2

ÞΓðδ12ÞΓðδ13ÞΓðδ23Þ
Γðγ1ÞΓðγ2ÞΓðγ3Þ

;

ð22Þ

where

δ12 ¼
γ1 þ γ2 − γ3

2
; δ13 ¼

γ1 þ γ3 − γ2
2

;

δ23 ¼
γ2 þ γ3 − γ1

2
: ð23Þ

Whereas Dð1Þ is derived in Appendix, it will be used in
the calculation of the spinor-spinor-scalar vertex of type II
in Sec. III. B:

Dð1Þ
γ1;γ2;γ3ðx⃗1; x⃗2; x⃗3Þ ¼

dð1Þðγ1; γ2; γ3Þ
Pδ̂12
12 P

δ̂13
13 P

δ̂23
23

×

�
δ̂12δ̂13
P12P13

þ δ̂12δ̂23
P12P23

þ δ̂13δ̂23
P13P23

�

dð1Þðγ1; γ2; γ3Þ ¼
πd=2

2

ΓðΣγi−d−1
2

ÞΓðδ̂12ÞΓðδ̂13ÞΓðδ̂23Þ
Γðγ1ÞΓðγ2ÞΓðγ3Þ

δ̂ij ¼ δij −
1

2
: ð24Þ

There are relations between coefficients dð0Þ and dð1Þ that
permit significantly simplifying the calculations,
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dð0Þðγ1 − 1; γ2; γ3Þ ¼ dð1Þðγ1; γ2; γ3Þðγ1 − 1Þδ̂23; ð25Þ

and the same for two other arguments.
Along with the well-known conformal integrals

[16,17,50],

Rð0Þ
β1β2β3

ðx⃗1; x⃗2; x⃗3Þ ¼
Z

ddy⃗

Pβ1
1yP

β2
2yP

β3
3y

¼Σβi¼d Aðβ1; β2; β3Þ
P

d
2
−β3
12 P

d
2
−β2
13 P

d
2
−β1
23

;

ð26Þ

and

Z
ddy⃗

Pβ1
1yP

β2
2y

¼ Aðβ1; β2; d − β1 − β2Þ
P
β1þβ2−d

2

12

; ð27Þ

where

Aðβ1; β2; β3Þ ¼
πd=2Γðd

2
− β1ÞΓðd2 − β2ÞΓðd2 − β3Þ
Γðβ1ÞΓðβ2ÞΓðβ3Þ

; ð28Þ

the knowledge of two following integrals is necessary for
calculation of spinor one-loop self-energy in Sec. IV. B:

Rð1Þ
β1β2β3

ðx⃗1; x⃗2; x⃗3Þ ¼
Z

ddy⃗

Pβ1
1yP

β2
2yP

β3
3y

¼Σβi¼dþ1 Aðβ1; β2; β3Þ
P

d
2
−β3
12 P

d
2
−β2
13 P

d
2
−β1
23

·

�ðd
2
− β2Þðd2 − β3Þ
P12P13

þ ðd
2
− β1Þðd2 − β2Þ
P13P23

þ ðd
2
− β1Þðd2 − β3Þ
P12P23

�
; ð29Þ

and

Z
dx⃗a

γ⃗ðx⃗2 − x⃗aÞ
Pβ1
1aP

β2
2a

¼ γ⃗ðx⃗1 − x⃗2Þ
P
β1þβ2−d

2

12

·
1

2
½Aðβ1 − 1; β2; d − β1 − β2 þ 1Þ

− Aðβ1; β2 − 1; d − β1 − β2 þ 1Þ
− Aðβ1; β2; d − β1 − β2Þ�: ð30Þ

The derivation of (29) is given in the Appendix, whereas
expression (30) is easy to prove by multiplying it by γ⃗ðx⃗1 −
x⃗2Þ with account of (27) and the identity

γ⃗ðx⃗1 − x⃗2Þ · γ⃗ðx⃗2 − x⃗aÞ ¼
1

2
½P1a − P2a − P12�

þ ðx⃗1 − x⃗2Þαðx⃗2 − x⃗aÞβSαβ;

Sαβ ¼ γαγβ − γβγα

2
: ð31Þ

Because of the α ↔ β asymmetry of the Sαβ term in (31), its
contribution to the rhs of (30) is zero.

III. SPINOR-SPINOR-SCALAR VERTICES

A. Spinor-spinor-scalar vertex: Type I

Three-point correlators of scalar field ϕ of conformal
dimensionΔϕ and of two spinor fields ψ1 and ψ2, generally

speaking of different conformal dimensions ΔIRðUVÞ
ψ1

and

ΔIRðUVÞ
ψ2

[see (12)] are generated by the bulk Yukawa
interaction Lint ¼ g · ψ̄1ðZÞψ2ðZÞϕðZÞ.
These three-point correlators are of two essentially

different types, with regard to spinor fields: (I) of coincid-
ing, IR − IR or UV − UV, and (II) of the opposite, IR −
UV or UV − IR, asymptotics of spinor tails.
Vertex IR − IR of the first type

M3pt ðIÞIR−IR
Δψ1

;Δψ2
;Δϕ

ðx⃗1; x⃗2; x⃗3Þ ¼ hŌIR
Δψ1

ðx⃗1ÞOIR
Δψ2

ðx⃗2ÞOΔϕ
ðx⃗3Þi

¼
Z
AdS

dZΣ̄IR
Δψ1

ðZ; x⃗1Þ

× ΣIR
Δψ2

ðZ; x⃗2ÞKΔϕ
ðZ; x⃗3Þ ð32Þ

is quite simple because its dependence on the bulk
coordinates ðz0; z⃗Þ drops out from the spinor numerator
in (32). Really, according to (15) and (16),

Σ̄IR
Δψ1

ðZ; x⃗1ÞΣIR
Δψ2

ðZ; x⃗2Þ

∼
Πþ½z0 þ γ⃗ðz⃗ − x⃗1Þ�ffiffiffi

z
p

0

·
½z0 − γ⃗ðz⃗ − x⃗2Þ�Π−ffiffiffi

z
p

0

¼ γ⃗ðx⃗2 − x⃗1ÞΠ−

ð33Þ

(I remind the reader that ΠþΠ− ¼ 0 and Πþγ⃗Π− ¼ γ⃗Π−).
In the same way in the UV − UV case,

Σ̄UV
d−Δψ1

ðZ; x⃗1ÞΣUV
d−Δψ2

ðZ; x⃗2Þ ∼ γ⃗ðx⃗1 − x⃗2ÞΠþ: ð34Þ

After substitution in (32) of three bulk-to-boundary
propagators from (15), (16), and (6) with account of
(33), we obtain

M3pt ðIÞIR−IR
Δψ1

;Δψ2
;Δϕ

ðx⃗1; x⃗2; x⃗3Þ

¼
�Y2

i¼1

ĈΔψi

�
CΔϕ

Dð0Þ
Δψ1

þ1
2
;Δψ2

þ1
2
;Δϕ

ðx⃗1; x⃗2; x⃗3Þγ⃗ðx⃗2 − x⃗1ÞΠ−

¼ BðIÞðΔψ1
;Δψ2

;Δϕ; 1=2Þ ·
γ⃗ðx⃗2 − x⃗1ÞΠ−

P
δðIÞ
12

12 P
δðIÞ
13

13 P
δðIÞ
23

23

; ð35Þ

where [see (22) for Dð0Þ]

SPINOR VERTICES AND BUBBLES IN THE OLD CONFORMAL … PHYS. REV. D 101, 046021 (2020)

046021-5



BðIÞðΔψ1
;Δψ2

;Δϕ; 1=2Þ ¼
ĈΔψ1

ΓðΔψ1
þ 1

2
Þ

ĈΔψ2

ΓðΔψ2
þ 1

2
Þ

CΔϕ

ΓðΔϕÞ

·
πd=2

2
Γ
�
Δψ1

þ Δψ2
þ Δϕ þ 1 − d

2

�
ΓðδðIÞ12ÞΓðδðIÞ13ÞΓðδðIÞ23Þ;

δðIÞ12 ¼ Δψ1
þ Δψ2

þ 1 − Δϕ

2
; δðIÞ13 ¼ Δψ1

− Δψ2
þ Δϕ

2
; δðIÞ23 ¼ Δψ2

− Δψ1
þ Δϕ

2
: ð36Þ

Formula similar to (36) is obtained for M3pt ðIÞUV−UV
d−Δψ1

;d−Δψ2
;Δϕ

ðx⃗1; x⃗2; x⃗3Þ with account of (34) and with replacements Δψ1;2
→

d − Δψ1;2
in (35), (36), and γ⃗ðx⃗2 − x⃗1ÞΠ− → γ⃗ðx⃗1 − x⃗2ÞΠþ in the spinor numerator in the rhs of (35).

The simple result (35) for the IR − IR spinor-spinor-scalar vertex (of type I) was obtained in Ref. [34] in physical AdSdþ1

space and in Refs. [36–38] in the formalism of embedding space.

B. Spinor-spinor-scalar vertex: Type II

Let us consider the IR − UV vertex

M3pt ðIIÞIR−UV
Δψ1

;d−Δψ2
;Δϕ

ðx⃗1; x⃗2; x⃗3Þ ¼ hŌIR
Δψ1

ðx⃗1ÞOUV
d−Δψ2

ðx⃗2ÞOΔϕ
ðx⃗3Þi

¼
Z
AdS

dZΣ̄IR
Δψ1

ðZ; x⃗1ÞΣUV
d−Δψ2

ðZ; x⃗2ÞKΔϕ
ðZ; x⃗3Þ: ð37Þ

In this case, the spinor numerator in (37) differs from the one in (33) and essentially depends on z0; z⃗:

Σ̄IR
Δψ1

ðZ; x⃗1ÞΣUV
d−Δψ2

ðZ; x⃗2Þ ∼
Πþ½z0 þ γ⃗ðz⃗ − x⃗1Þ�ffiffiffi

z
p

0

·
½z0 þ γ⃗ðz⃗ − x⃗2Þ�Πþffiffiffi

z
p

0

¼
�
1

2

�
−
P12

z0
þQ−1ðZ; x⃗1Þ þQ−1ðZ; x⃗2Þ

�
þ ðz⃗ − x⃗1Þαðz⃗ − x⃗2ÞβSαβ

z0

�
Πþ ð38Þ

where P12 ≡ Px1x2 , QðZ; x⃗Þ see in (6) and Sαβ in (31).
The same expression, with the only change of Πþ → Π− in the rhs of (38), is valid for the spinor numerator

of Σ̄UV
d−Δψ1

ðZ; x⃗1ÞΣIR
Δψ2

ðZ; x⃗2Þ.
Substitution in (37) of the bulk-to-boundary propagators from (16), (17), and (6) with account of (38) gives for the spinor-

spinor-scalar vertex of type II

M3pt ðIIÞIR−UV
Δψ1

;d−Δψ2
;Δϕ

ðx⃗1; x⃗2; x⃗3Þ ¼
1

2
ĈΔψ1

Ĉd−Δψ2
CΔϕ

"
−P12D

ð1Þ
Δψ1

þ1
2
;d−Δψ2

þ1
2
;Δϕ

ðx⃗1; x⃗2; x⃗3Þ

þ Dð0Þ
Δψ1

−1
2
;d−Δψ2

þ1
2
;Δϕ

ðx⃗1; x⃗2; x⃗3Þ þ Dð0Þ
Δψ1

þ1
2
;d−Δψ2

−1
2
;Δϕ

ðx⃗1; x⃗2; x⃗3Þ

þ πd=2

2

ΓðΔψ1
−Δψ2

þΔϕ

2
ÞΓðδðIIÞ12 ÞΓðδðIIÞ13 ÞΓðδðIIÞ23 Þ

ΓðΔψ1
þ 1

2
ÞΓðd − Δψ2

þ 1
2
ÞΓðΔϕÞ

· x⃗α13x⃗
β
23S

αβ

#
Πþ; ð39Þ

x⃗α13 ¼ ðx⃗1 − x⃗3Þα, x⃗β23 ¼ ðx⃗2 − x⃗3Þβ; δðIIÞij are defined in (42) below; derivation of the Sαβ term in the last line of (39) is similar
to derivation of (24) and (29).
Then, with account of expressions (22) and (24) for Dð0Þ and Dð1Þ and their relations (25), a final rather simple formula for

M3pt ðIIÞIR−UV is obtained,

M3pt ðIIÞIR−UV
Δψ1

;d−Δψ2
;Δϕ

ðx⃗1; x⃗2; x⃗3Þ ¼ BðIIÞðΔψ1
; d − Δψ2

;Δϕ; 1=2Þ

·
−P12 þ P13 þ P23 þ ðx⃗1 − x⃗3Þαðx⃗2 − x⃗3ÞβSαβ

P
δðIIÞ
12

12 P
δðIIÞ
13

13 P
δðIIÞ
23

23

Πþ; ð40Þ
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where

BðIIÞðΔψ1
; d − Δψ2

;Δϕ; 1=2Þ ¼
ĈΔψ1

ΓðΔψ1
þ 1

2
Þ

Ĉd−Δψ2

Γðd − Δψ2
þ 1

2
Þ

CΔϕ

ΓðΔϕÞ

·
πd=2

4
Γ
�
Δψ1

− Δψ2
þ Δϕ

2

�
ΓðδðIIÞ12 ÞΓðδðIIÞ13 ÞΓðδðIIÞ23 Þ; ð41Þ

and

δðIIÞ12 ¼ Δψ1
þ d − Δψ2

− Δϕ

2
; δðIIÞ13 ¼ Δψ1

þ Δϕ − ðd − Δψ2
Þ þ 1

2
; δðIIÞ23 ¼ ðd − Δψ2

Þ þ Δϕ − Δψ1
þ 1

2
: ð42Þ

Expression for M3pt ðIIÞUV−IR
d−Δψ1

;Δψ2
;Δϕ

ðx⃗1; x⃗2; x⃗3Þ is obtained from (40)–(42) with the simple replacements Δψ1
→ d − Δψ1

and

d − Δψ2
→ Δψ2

together with Πþ → Π− in the rhs of (40).

IV. SPINOR HARMONIC BUBBLES

A. Scalar bubble formed by two spinors

The Fermionic bubble diagram of the scalar field on AdS was first calculated in Ref. [39] in the formalism of embedding
space. This one-loop contribution to the two-point correlator of scalar field ϕðZÞ is generated by its bulk coupling
gϕðZÞψ̄ðZÞχðZÞ with two spinor fields; it is formed by the bulk-to-boundary propagators of scalar field Kϕ (6) and bulk
Green’s functions of spinor fields Sψ , Sχ (19):

M
2ptð0j1

2
1
2
Þ

ΔϕjΔψΔχ
ðx⃗1; x⃗2Þ ¼ g2

ZZ
KΔϕ

ðX; x⃗1ÞTr½SΔψ
ðX; YÞSΔχ

ðY; XÞ�KΔϕ
ðY; x⃗2Þ ð43Þ

(trace Tr is over spinor indices, and bulk integrals over X, Y are supposed).
Following the approach of Ref. [40] in which double integral spectral representations of bubbles of fields of any integer

spin were considered and referring to the spectral representation (19) of the spinor Green’s function, the double integral
spectral representation of bubble (43) may be put down,

M
2ptð0j1

2
1
2
Þ

ΔϕjΔψΔχ
ðx⃗1; x⃗2Þ ¼ −

1

4π2

ZZ dcdc̄H
2ptð0j1

2
1
2
Þ

Δϕjd2þic;d
2
þic̄

ðx⃗1; x⃗2Þ
½cþ iðΔψ − d

2
Þ�½c̄þ iðΔχ − d

2
Þ� ; ð44Þ

where, taking into account the proportionality of spinor harmonic function Ωc;1
2
entering spectral representation (19) to the

difference of Green’s functions S̃ (20), we introduced in the numerator of the integrand in (44) the “harmonic bubble”H that
is built by the replacement in (43) of two bulk spinor Green’s functions with the corresponding differences S̃ (20):

H
2ptð0j1

2
1
2
Þ

ΔϕjΔψΔχ
ðx⃗1; x⃗2Þ ¼ g2

ZZ
KΔϕ

ðX; x⃗1ÞTr½S̃Δψ
ðX; YÞS̃Δχ

ðY; XÞ�KΔϕ
ðY; x⃗2Þ: ð45Þ

Surely, to use this expression in spectral representation (44), the replacements Δψ → d=2þ ic, Δχ → d=2þ ic̄ must be
performed in it.
Substitution in (45) of split representations (20) of S̃Δψ

and S̃Δχ
gives two spinor-spinor-scalar vertices of type I (35) with

their convolution over two boundary points x⃗a and x⃗b. Thus, the rhs of (45) takes the form

g2Tr
ZZ

dx⃗adx⃗b

�Z
KΔϕ

ðX; x⃗1ÞΣ̄IR
Δχ
ðX; x⃗bÞΣIR

Δψ
ðX; x⃗aÞdX

�
·

�Z
Σ̄UV
d−Δψ

ðY; x⃗aÞΣUV
d−Δχ

ðY; x⃗bÞKΔϕ
ðY; x⃗2ÞdY

�

¼ g2Tr
ZZ

dx⃗adx⃗bM
3pt ðIÞIR−IR
Δχ ;Δψ ;Δϕ

ðx⃗b; x⃗a; x⃗1ÞM3pt ðIÞUV−UV
d−Δψ ;d−Δχ ;Δϕ

ðx⃗a; x⃗b; x⃗2Þ: ð46Þ

Using (35) for M3pt ðIÞIR−IR and a similar expression for M3pt ðIÞUV−UV with evident changes of arguments, taking
into account
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Tr½γ⃗ðx⃗a − x⃗bÞΠ−γ⃗ðx⃗a − x⃗bÞΠþ� ¼ PabTrΠþ ¼ Pab

2
· dim γ

[dim γ ¼ Tr½1̂� is equal to d for d even and equal to (d − 1)
for d odd], and performing standard conformal integral (26)
over x⃗b the following expression for vertex (45) is obtained:

H
2ptð0j1

2
1
2
Þ

ΔϕjΔψΔχ
ðx⃗1; x⃗2Þ

¼ g2 dim γ

2

1

P
Δϕ−d

2

12

Z
dx⃗a

P
d
2

1aP
d
2

2a

· BðIÞðΔψ ;Δχ ;Δϕ; 1=2ÞBðIÞðd − Δψ ; d − Δχ ;Δϕ; 1=2Þ

· A

�
Δψ − Δχ þ Δϕ

2
;
Δχ − Δψ þ Δϕ

2
; d − Δϕ

�
; ð47Þ

A, BðIÞ see in (28), (36).
Typical for conformal theories, the divergent integral in

(47) was analyzed in Ref. [40]; here, the dimensional
regularization is chosen when in general formulas (27) and
(28) one takes

d → d� ¼ dþ ϵ; β1 ¼ β2 ¼
d
2
:

We leave in integral (47) only most divergent term ∼ϵ−1
and absorb it in the “bare” coupling constant g, defining in
this way the renormalized coupling as:

g2R ¼ g2P
d
2

12

Z
dx⃗a

P
d
2

1aP
d
2

2a

¼ g2
4π

d
2

Γðd
2
Þ
1

ϵ
: ð48Þ

Thus, using (48) and deciphering A (28), BðIÞ (36), and
ĈΔψ ;χ

(13) that enter the expression for BðIÞ, we finally get

H
2ptð0j1

2
1
2
Þ

ΔϕjΔψΔχ
ðx⃗1; x⃗2Þ ¼

CΔϕ

P
Δϕ

12

g2R
dim γ

16πd
RðΔψ ;Δχ ;ΔϕÞ

Fð0ÞðΔϕÞ
; ð49Þ

where

Fð0ÞðΔϕÞ ¼
ΓðΔϕÞΓðd − ΔϕÞ

ΓðΔϕ − d
2
ÞΓðd

2
− ΔϕÞ

; ð50Þ

and

RðΔψ ;Δχ ;ΔϕÞ

¼ ΓðΔψþΔχþΔϕ−dþ1

2
ÞΓð2d−Δψ−Δχ−Δϕþ1

2
Þ

Γð1
2
þ Δψ − d

2
ÞΓð1

2
þ d

2
− ΔψÞ

·
ΓðΔψ−ΔχþΔϕ

2
ÞΓðΔχ−ΔψþΔϕ

2
ÞΓðΔψþΔχ−Δϕþ1

2
Þ

Γð1
2
þ Δχ − d

2
ÞΓð1

2
þ d

2
− ΔχÞ

·
ΓðdþΔψ−Δχ−Δϕ

2
ÞΓðdþΔχ−Δψ−Δϕ

2
ÞΓðd−Δψ−ΔχþΔϕþ1

2
Þ

Γðd
2
− ΔϕÞΓð1þ Δϕ − d

2
Þ ; ð51Þ

or expressing R through bulk masses of spinors mψ ¼
Δψ − d=2 and mχ ¼ Δχ − d=2 [see (12)] and Bessel
functions’ order ν ¼ Δϕ − d=2 [see (5)] for scalar field:

RðΔψ ;Δχ ;ΔϕÞ

¼ Γðd
4
þ αÞΓðd

4
− αÞΓðd

4
þ βÞΓðd

4
− βÞ

Γð1
2
þmψ ÞΓð12 −mψÞ

·
Γð1

2
þ d

4
þ γÞΓð1

2
þ d

4
− γÞΓð1

2
þ d

4
þ δÞΓð1

2
þ d

4
− δÞ

Γð1
2
þmχÞΓð12 −mχÞΓð−νÞΓð1þ νÞ ;

α ¼ mψ −mχ þ ν

2
; β ¼ mχ −mψ þ ν

2
;

γ ¼ mψ þmχ þ ν

2
; δ ¼ mψ þmχ − ν

2
: ð52Þ

R is the main function in our analysis. It can be seen that
for even d it is expressed in terms of elementary trigono-
metric or hyperbolic [for imaginary arguments, like in
spectral representations (8), (19)] functions. For example,
for d ¼ 2,

RðΔψ ;Δχ ;ΔϕÞ ¼ −
πγδ cos πmψ cos πmχ sin πν

cos πα cos πβ sin πγ sin πδ
; ð52aÞ

and for d ¼ 4,

RðΔψ ;Δχ ;ΔϕÞ

¼ −
παβð1

4
− γ2Þð1

4
− δ2Þ cos πmψ cos πmχ sin πν

sin πα sin πβ cos πγ cos πδ
: ð52bÞ

As could be expected, dependence on coordinates of the
harmonic bubble (49), and hence of the full bubble (44), is
the same as that of the elementary scalar conformal
correlator (7); it is singled out in front of the rhs of (49).

B. Spinor bubble formed by spinor and scalar

Generated by the same bulk Yukawa coupling like in the
previous subsection, the one-loop two-point contribution to
the conformal correlator of spinor field ψðZÞ when the loop
is formed by spinor field χðZÞ and scalar field ϕðZÞ has the
form

M
2pt ð1

2
j1
2
0Þ

Δψ jΔχ ;Δϕ
ðx⃗1; x⃗2Þ ¼ g2

ZZ
Σ̄IR
Δψ
ðX; x⃗1ÞSΔχ

ðX; YÞGΔϕ
ðX; YÞ

× ΣIR
Δψ
ðY; x⃗2Þ; ð53Þ

where spinor bulk-to-boundary propagators ΣIR
Δψ

and Σ̄IR
Δψ

are given in (15) and (16) and Green’s functions GΔϕ
and

SΔχ
are given in (8) and (19) (the IR option is meant, that is,

Δϕ > d=2 and Δχ > d=2; see (5) and (12)].
Following the logic of the previous section, with account

of spectral representations of scalar (8) and spinor (19)
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Green’s functions and the proportionality of corresponding harmonic functions to differences G̃ (10) and S̃ (20) of IR and
UV scalar and spinor Green’s functions, the double-integral spectral representation of the one-loop spinor correlator (53) is
obtained,

M
2ptð1

2
j1
2
0Þ

Δψ jΔχΔϕ
ðx⃗1; x⃗2Þ ¼ −

1

4π2

ZZ dcc̄dc̄H
2ptð1

2
j1
2
0Þ

Δψ jd2þic;d
2
þic̄

ðx⃗1; x⃗2Þ
½cþ iðΔχ − d

2
Þ�½c̄2 þ ðΔϕ − d

2
Þ2� ; ð54Þ

where harmonic bubbleH2ptð1
2
j1
2
0Þ in the numerator is again built by the replacement in (53) of two bulk Green’s functions G

and S with corresponding differences G̃ (10) and S̃ (20):

H
2ptð1

2
j1
2
0Þ

Δψ jΔχΔϕ
ðx⃗1; x⃗2Þ ¼ g2

ZZ
Σ̄IR
Δψ
ðX; x⃗1ÞS̃Δχ

ðX; YÞG̃Δϕ
ðX; YÞΣIR

Δψ
ðY; x⃗2Þ: ð55Þ

To use it in spectral representation (54), the replacements Δχ → d=2þ ic and Δϕ → d=2þ ic̄ must be performed in (55).
Substitution here of split representations of G̃ (10) and S̃ (20) gives for the rhs of (55)

g2ðd − 2ΔϕÞ
ZZ

dx⃗adx⃗b

�Z
Σ̄IR
Δψ
ðX; x⃗1ÞΣUV

d−Δχ
ðX; x⃗aÞKΔϕ

ðX; x⃗bÞdX
�

·

�Z
Σ̄IR
Δχ
ðY; x⃗aÞΣIR

Δψ
ðY; x⃗2ÞKd−Δϕ

ðY; x⃗bÞdY
�
¼ g2ðd − 2ΔϕÞ

·
Z

dx⃗a

Z
dx⃗bM

3pt ðIIÞIR−UV
Δψ ;d−Δχ ;Δϕ

ðx⃗1; x⃗a; x⃗bÞM3pt ðIÞIR−IR
Δχ ;Δψ ;d−Δϕ

ðx⃗a; x⃗2; x⃗bÞ; ð56Þ

here, the last equality follows from expressions (32) and (37) for M3pt ðIÞ and M3pt ðIIÞ. After the evident changes of
variables and arguments in final formulas (35)–(36) and (40)–(42) for these vertices, Eq. (56) comes to

H
2ptð1

2
j1
2
0Þ

Δψ jΔχΔϕ
ðx⃗1; x⃗2Þ ¼ BðIIÞðΔψ ; d − Δχ ;Δϕ; 1=2ÞBðIÞðΔχ ;Δψ ; d − Δϕ; 1=2Þ

· g2ðd − 2ΔϕÞ
Z

dx⃗aIbðx⃗1; x⃗2; x⃗aÞ
Πþγ⃗ðx⃗2 − x⃗aÞΠ−

P
δðIIÞ
1a
1a P

δðIÞ
2a
2a

; ð57Þ

where BðIÞ and BðIIÞ (see (36) and (41)] and Ibðx⃗1; x⃗2; x⃗aÞ is an integral over x⃗b,

Ibðx⃗1; x⃗2; x⃗aÞ ¼
Z

dx⃗b
½−P1a þ P1b þ Pab þ ðx⃗1 − x⃗bÞαðx⃗a − x⃗bÞβSαβ�

P
δðIIÞ
1b
1b P

δðIÞ
2b
2b P

ðδðIIÞab þδðIÞabÞ
ab

¼ AðδðIIÞ1b ; δ
ðIÞ
2b; ðδðIIÞab þ δðIÞabÞÞðd2 − δðIIÞ1b Þðd2 − ðδðIIÞab þ δðIÞabÞÞ

P
Δψþ1

2
−d
2

12 P
ΔϕþΔχ−Δψ

2

1a P
2d−Δϕ−Δψ−Δχþ1

2

2a

· ½−P1a þ P12 þ P2a − ðx⃗1 − x⃗aÞαðx⃗2 − x⃗aÞβSαβ�; ð58Þ

where A and Sαβ are given in (28) and (31). The values of six exponents δij in (57)–(58) corresponding to exponents in (36)
for the vertex of type I and to exponents in (42) for the vertex of type II are as follows:

δðIÞ2a ¼ Δψ þ Δχ þ Δϕ þ 1 − d

2
; δðIÞ2b ¼ Δψ − Δχ − Δϕ þ d

2
; δðIÞab ¼

Δχ − Δψ þ d − Δϕ

2
; ð59Þ

and

δðIIÞ1a ¼ Δψ þ d − Δχ − Δϕ

2
; δðIIÞ1b ¼ Δψ þ Δϕ − ðd − ΔχÞ þ 1

2
; δðIIÞab ¼ ðd − ΔχÞ þ Δϕ − Δψ þ 1

2
: ð60Þ

SPINOR VERTICES AND BUBBLES IN THE OLD CONFORMAL … PHYS. REV. D 101, 046021 (2020)

046021-9



It is seen from (59) and (60) that

δðIIÞ1b þ δðIÞ2b þ δðIIÞab þ δðIÞab ¼ dþ 1: ð61Þ

In the calculation of Ib (58), it was taken into account
that conformal integrals over x⃗b corresponding to the
second ðP1bÞ and the third ðPabÞ terms in the integrand

of (58) are the ordinary ones of type (26), whereas the sum
of exponents of P in the first ðP1aÞ term in the integrand in
(58) is, according to (61), equal to (dþ 1); this integral is
less trivial [see (29)]. The integral over x⃗b of the last term
on the rhs of (58) also comes to the standard conformal
integral (26) with account of the asymmetry of Sαβ and
elementary identity

ðx⃗1 − x⃗bÞαðx⃗a − x⃗bÞβSαβ

P
ðδðIIÞab þδðIÞabÞ
ab

¼ −
ðx⃗1 − x⃗aÞαSαβ

2ðδðIIÞab þ δðIÞab − 1Þ
∂
∂xβa

�
1

P
δðIIÞab þδðIÞab−1
ab

�
:

Substitution of Ib (58) in (57) with account of (59)–(61) and (28) gives

H
2ptð1

2
j1
2
0Þ

Δψ jΔχΔϕ
ðx⃗1; x⃗2Þ ¼ g2ðd − 2ΔϕÞBðIÞðΔψ ;Δχ ; d − ΔϕÞBðIIÞðΔψ ; d − Δχ ;ΔϕÞ

ÃðΔψ ;Δχ ;ΔϕÞ
P
Δψþ1

2
−d
2

12

·
Z

dx⃗a
½P2a þ P12 − P1a − ðx⃗1 − x⃗aÞαðx⃗2 − x⃗aÞβSαβ�γ⃗ðx⃗2 − x⃗aÞΠ−

P
d
2

1aP
d
2
þ1

2a

; ð62Þ

where

ÃðΔψ ;Δχ ;ΔϕÞ ¼
π

d
2Γð2d−Δψ−Δχ−Δϕþ1

2
ÞΓðΔχ−ΔψþΔϕ

2
ÞΓðΔψ þ 1

2
− d

2
Þ

ΓðΔψþΔχþΔϕ−dþ1

2
ÞΓðΔψ−Δχþd−Δϕ

2
ÞΓðd − Δψ þ 1

2
Þ
: ð63Þ

To take divergent conformal integrals over x⃗a in (62), the
general formula (30) is applied, where according to dimen-
sional regularization we change on the rhs d → d� ¼ dþ ϵ
and put β1 and β2 equal to corresponding values in every
integral in (62) (cf. in Ref. [40]). This gives for the last line
in (62)Z

dx⃗af…g ¼ γ⃗ðx⃗1 − x⃗2ÞΠ−

P
d
2

12

2πd=2

Γðd
2
Þ
1

ϵ

�
1þ 3

d

�
: ð64Þ

The final expression for the spinor one-loop harmonic
bubble (55) is obtained from (62)–(64) and expressions (36)
and (41) for coefficients BðIÞ and BðIIÞ with the introduction
of the renormalized coupling constant (47) and with account
that in general formulas (36) and (41) for coefficients BðIÞ

and BðIIÞ the corresponding replacements of δij must be

performed. Namely, δðIÞ12 ; δ
ðIÞ
13 ; δ

ðIÞ
23 [in (36)] must be changed

to δðIÞ2a , δ
ðIÞ
ab, and δ

ðIÞ
2b given in (59), and in the same way, δðIIÞ12 ,

δðIIÞ13 , and δðIIÞ23 (42) must be changed to δðIIÞ1a , δ
ðIIÞ
1b , and δðIIÞab

(60). The result proves to be quite simple,

H
2ptð1

2
j1
2
0Þ

Δψ jΔχΔϕ
ðx⃗1; x⃗2Þ ¼ ĈΔψ

γ⃗ðx⃗1 − x⃗2ÞΠ−

P
Δψþ1

2

12

× g2R
ð1þ 3

dÞ
32πd

RðΔψ ;Δχ ;ΔϕÞ
Fð1

2
ÞðΔψÞ

; ð65Þ

where

Fð1
2
ÞðΔψÞ ¼

ΓðΔψ þ 1
2
ÞΓðd − Δψ þ 1

2
Þ

ΓðΔψ þ 1
2
− d

2
ÞΓðd

2
− Δψ þ 1

2
Þ ð66Þ

and coefficient RðΔψ ;Δχ ;ΔϕÞ given in (51) or (52) is
common for both harmonic bubbles H (49), (65) calculated
in Secs. IV. A and IV. B. Space-time and spinor dependence
in front of the rhs of (65) [and hence of the full bubble (54)]
copies the same of the primary correlator (13).
As it was noted above, harmonic bubbles (49) and (65)

may be used as numerators of the integrands in spectral
representations (44) and (54) after the corresponding
replacements in the universal functionR (51) of conformal
dimensions of intermediate fields by the integration vari-
ables d=2þ ic, d=2þ ic̄. It is seen from the expression for
R (51)–(52) that double-integrals (44), (54) are divergent in
directions cþ c̄ ¼ const and c − c̄ ¼ const [40].
In the next section, the natural subtraction of the

divergences of bubbles (43), (53) will be performed.

V. DOUBLE-TRACE ELIMINATION
OF UV INFINITIES

The UV divergence of the self-energy diagrams reflected
in particular in infinity of spectral integrals (44), (54) is a
conventional difficulty in quantum field theory. Here, to
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overcome this difficulty, I propose applying to the bubble
diagrams the double-trace from the UV to IR flow approach
used in Refs. [23–30] for the unambiguous UV-finite
calculations of tadpoles and quantum vacuum energies
of scalar and spinor bulk fields in spaces of arbitrary
dimensions. For example, in AdS5 (d ¼ 4), expressions for
tadpoles defined in this way are as follows [differences G̃
and S̃ of IR and UV Green’s functions are given in (10) and
(20), and we restore here the value kAdS of the curvature of
AdS space]: for the scalar tadpole [23–28],

G̃ðd¼4Þ
Δ ðZ; ZÞ ¼ k3AdS

12π2
ðΔ − 1ÞðΔ − 2ÞðΔ − 3Þ;

and for the spinor tadpole [29,30],

S̃ðd¼4Þ
Δψ¼2þmðZ; ZÞ ¼

k4AdS
3π2

�
m2 −

1

4

��
9

4
−m2

�
:

Thus, the difference of two similar Witten diagrams built
of the UV or IR bulk Green’s functions proves to be finite
and well defined for tadpoles, and I shall show that it is also
finite and well defined for the bubbles.
Most generally, this modification of quantum diagrams

means that, instead of the standard quantum generation
functional, symbolically,

Z½j;G� ¼ ðDetGÞ−1=2eLintð δδjÞeð12jGjÞ ð67Þ

[here, G, Lint, and j are the free field Green’s function,
the interaction Lagrangian, and the field’s source, respec-
tively; in frames of the AdS=CFT correspondence in the
generation functional of the n-point boundary conformal
correlators, jðx⃗Þ is equipped with the corresponding bulk-
to-boundary propagator], the ratio

Z̃½j;GUV; GIR� ¼ Z½j;GUV�
Z½j;GIR�

¼ ðDetGUVÞ−1=2eLintði δδjÞeð12jGUVjÞ

ðDetGIRÞ−1=2eLintði δδjÞeð12jGIRjÞ ð68Þ

of two quantum functionals determined by Green’s functions
(GUV and GIR) possessing two different asymptotics at the
horizon must be considered as a quantum generation func-
tional for Witten diagrams. General analysis of the ratios of
quantum functionals of one and the same bulk dynamics and
different boundary conditions is presented in Ref. [43].
This approach means in particular that self-energy

correlators (43) and (53) are redefined as a difference
M̃ (also marked with a tilde) of conventional bubble
diagrams built of the products of two UV and two IR
Green’s functions correspondingly,

M̃
2ptð0j1

2
1
2
Þ

ΔϕjΔψΔχ
ðx⃗1; x⃗2Þ ¼ M

2ptð0j1
2
1
2
ÞUV

ΔϕjΔψΔχ
ðx⃗1; x⃗2Þ −M

2ptð0j1
2
1
2
ÞIR

ΔϕjΔψΔχ
ðx⃗1; x⃗2Þ

¼ g2
ZZ

KΔϕ
ðX; x⃗1ÞΠ̃2ptð0j1

2
1
2
Þ

Δψ ;Δχ
ðX; YÞKΔϕ

ðY; x⃗2ÞdXdY; ð69Þ

M̃
2pt ð1

2
j1
2
0Þ

Δψ jΔχ ;Δϕ
ðx⃗1; x⃗2Þ ¼ M

2pt ð1
2
j1
2
0ÞUV

Δψ jΔχ ;Δϕ
ðx⃗1; x⃗2Þ −M

2pt ð1
2
j1
2
0ÞIR

Δψ jΔχ ;Δϕ
ðx⃗1; x⃗2Þ

¼ g2
ZZ

Σ̄IR
Δψ
ðX; x⃗1ÞΠ̃2ptð1

2
j1
2
0Þ

Δχ ;Δϕ
ðX; YÞΣIR

Δψ
ðY; x⃗2ÞdXdY; ð70Þ

where

Π̃2ptð0j1
2
1
2
Þ

Δψ ;Δχ
ðX; YÞ ¼ fTr½SUVΔψ

SUVΔχ
� − Tr½SIRΔψ

SIRΔχ
�gðX; YÞ

¼ fTr½S̃Δψ
S̃Δχ

� − Tr½SIRΔψ
S̃Δχ

� − Tr½S̃Δψ
SIRΔχ

�gðX; YÞ; ð71Þ

Π̃2ptð1
2
j1
2
0Þ

Δχ ;Δϕ
ðX; YÞ ¼ fSUVΔχ

GUV
Δϕ

− SIRΔχ
GIR

Δϕ
gðX; YÞ

¼ fS̃Δχ
G̃Δϕ

− SIRΔχ
G̃Δϕ

− S̃Δχ
GIR

Δϕ
gðX; YÞ: ð72Þ

In the derivation of (71) and (72), identitiesGUV ¼ GIR − G̃
and SUV ¼ SIR − S̃were used, where G̃ and S̃ are defined in
(10) and (20).
Then, the divergent double-integrals (44), (54) are can-

celed in (69) and (70), and the remaining terms are UV finite.
With account of spectral and split representations ofGIR and

G̃ [Eqs. (8)–(10)] and of SIR and S̃ [(19) and (20)], it is seen
that the contribution of every of three terms of both Π̃ (71),
(72) to the expressions of the one-loop self-energy correla-
tors (69), (70) includes corresponding harmonic bubbles (49)
and (65). Thus, finally, for UV-finite bubbles (69), (70)
defined according to prescription (68), we obtain
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M̃
2ptð0j1

2
1
2
Þ

ΔϕjΔψΔχ
ðx⃗1; x⃗2Þ ¼

CΔϕ

P
Δϕ

12

g2R dim γ

16πdFð0ÞðΔϕÞ

�
RðΔψ ;Δχ ;ΔϕÞ

−
Z þ∞

−∞

idc
2π

Rðd
2
þ ic;Δχ ;ΔϕÞ

½cþ iðΔψ − d
2
Þ� −

Z þ∞

−∞

idc
2π

RðΔψ ;
d
2
þ ic;ΔϕÞ

½cþ iðΔχ − d
2
Þ�

�
ð73Þ

and

M̃
2pt ð1

2
j1
2
0Þ

Δψ jΔχ ;Δϕ
ðx⃗1; x⃗2Þ ¼

ĈΔψ
γ⃗ðx⃗1 − x⃗2ÞΠ−

P
Δψþ1

2

12

g2Rð1þ 3
dÞ

32πdFð1
2
ÞðΔψÞ

�
RðΔψ ;Δχ ;ΔϕÞ

−
Z þ∞

−∞

idc
2π

RðΔψ ;
d
2
þ ic;ΔϕÞ

½cþ iðΔχ − d
2
Þ� −

Z þ∞

−∞

icdc
2π

RðΔψ ;Δχ ;
d
2
þ icÞ

½c2 þ ðΔϕ − d
2
Þ2�

�
; ð74Þ

where R, Fð0Þ, and Fð1
2
Þ are given in (51)-(52), (50), and (66) correspondingly.

As noted above, function R for even d may be expressed in terms of elementary functions. In the next section, bubbles
(73), (74) will be written explicitly in the d ¼ 4 Yukawa model.

VI. UV-FINITE BUBBLES IN SUðNÞ YUKAWA MODEL
WITH CONFORMAL SCALAR FIELD IN d = 4

Consider bulk Yukawa interaction ofN copies of spin-1=2 fields ψðZÞ of massmwith the conformal invariant scalar field
ϕðZÞ on AdS5:

Lint ¼ gϕðZÞΣkψ̄kðZÞψkðZÞ: ð75Þ

Conformal invariance of ϕðZÞ on AdSdþ1 means that the equation for the scalar field includes curvature term ξcϕ
2Rdþ1

with the coefficient ξc ¼ ðd − 1Þ=4d and that in this case order parameter ν ¼ Δϕ − d=2 ¼ 1=2 in any dimension. Thus, in
this model, mψ ¼ mχ ¼ m, ν ¼ 1=2, and it follows for the universal function R (52) in case d ¼ 4 that

R

�
2þm; 2þm; 2þ 1

2

�
¼ π

4

cos2πm
cos 2πm

�
m2 −

1

16

��
m2 −

9

16

�
≡ R̃ðmÞ: ð76Þ

Correspondingly, forR that enter the spectral integrals in the final expressions for bubbles (73), (74), we obtain from (52)

Rðd¼4Þ

�
2þ ic; 2þm; 2þ 1

2

�
¼ Rðd¼4Þ

�
2þm; 2þ ic; 2þ 1

2

�

¼ −
π

8

cos πm cosh πc
cosh 2πcþ cos 2πm

��
m −

1

2

�
2

þ c2
���

mþ 1

2

�
2

þ c2
�

·

�
9

4
−m2 þ c2 − 2imc

�
; ð77Þ

Rðd¼4Þð2þm; 2þm; 2þ icÞ ¼ −
iπc2 sinh πccos2πm

ðcosh πc − 1Þðcosh πcþ cos 2πmÞ ·
��

m −
1

2

�
2

þ c2

4

���
mþ 1

2

�
2

þ c2

4

�
: ð78Þ

Despite the complex nature of (77) and (78) and of the integrands in spectral integrals in (73) and (74), replacing
their integration over c from −∞ to þ∞ with integration from 0 to þ∞ will obviously give the real rhs of (73)
and (74).
Having in mind that in the Yukawa model under consideration (d ¼ 4, Δψ ¼ Δχ ¼ 2þm, Δϕ ¼ 2þ 1=2) we have

dim γ ¼ 4 and [see (50) and (66)]

Fð0ÞðΔϕ ¼ 5=2Þ ¼ −
3

16
; Fð1

2
ÞðΔψ ¼ mþ 2Þ ¼

�
m2 −

1

4

��
m2 −

9

4

�
;
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substitution of (76)–(78) in (73) and (74) gives final expressions for these one-loop conformal correlators (two spinors and
spinor-scalar bubbles),

M̃
2ptð0j1

2
1
2
Þðd¼4Þ

Δϕ¼5=2j2þm;2þmðx⃗1; x⃗2Þ ¼
C5=2

P5=2
12

g2RNΦðϕÞðmÞ;

ΦðϕÞðmÞ ¼ 4

3π4

�
−R̃ðmÞ − 1

4
m cos πmIð1ÞðmÞ

�
ð79Þ

[there is the multiplier N on the rhs because in (75) scalar field ϕðZÞ interacts with every spinor field ψkðZÞ], and

M̃
2ptð1

2
j1
2
0Þðd¼4Þ

2þmj2þm;5=2ðx⃗1; x⃗2Þ ¼
Ĉ2þmγ⃗ðx⃗1 − x⃗2ÞΠ−

P
2þmþ1

2

12

g2RΦðψÞðmÞ;

ΦðψÞðmÞ ¼ ð1þ 3
4
Þ

32π4
½R̃ðmÞ þ 1

8
m cos πmIð1ÞðmÞ − cos2πmIð2ÞðmÞ�

ðm2 − 1
4
Þðm2 − 9

4
Þ ; ð80Þ

where R̃ðmÞ [see (76)], and

Ið1ÞðmÞ ¼
Z þ∞

0

dc cosh πcð9
4
−m2 þ 3c2Þ½ðm − 1

2
Þ2 þ c2�½ðmþ 1

2
Þ2 þ c2�

ðc2 þm2Þðcosh 2πcþ cos 2πmÞ ; ð81Þ

Ið2ÞðmÞ ¼
Z þ∞

0

dcc3 sinh πc½ðm − 1
2
Þ2 þ c2

4
�½ðmþ 1

2
Þ2 þ c2

4
�

ðc2 þ 1
4
Þðcosh πc − 1Þðcosh πcþ cos 2πmÞ ð82Þ

are well-defined convergent definite integrals.
Surely transparent expressions similar to (76)–(82),

although somewhat more lengthy, may be put down for
the model (75) in case d ¼ 4 when the conformal dimen-
sion of scalar field Δϕ ¼ 2þ ν is arbitrary.

VII. OLD CONFORMAL BOOTSTRAP IN THE
AdS=CFT CONTEXT: SPECTRAL EQUATION

FOR BULK SPINOR MASS IN YUKAWA
MODEL OF SEC. VI

Expressions for UV-finite quantum one-loop spinor-
scalar contributions (bubbles) to scalar (73) [or (79) in
the Yukawa model (75)] and spinor (74) [Eq. (80) in the
model in (75)] boundary-boundary conformal correlators
may be used in different ways:

(i) for the calculation of anomalous dimensions gen-
erated by the scalar-spinor bulk loops like was done
in Ref. [40] for bubbles built of the fields of integer
spin with the use of logarithmic terms in the
dimensional regularization of conformal divergent
integrals like (48) or (64).

(ii) for presenting decomposition of the bubbles built of
two spinors or of a spinor and scalar in an infinite
series of residues in poles of integrands in spectral
integrals in (73) and (74); the locations and residues
of these poles are evident from expressions (51) and
(52) [or (77) and (78) in the model in (75)] for
coefficient R determining harmonic bubbles (49),

(65); detailed analysis of poles of harmonic bubbles
formed by the fields of integer spin was presented in
Ref. [40], etc.

Here, we pay attention that expressions obtained above
permit formulating spectral equations for the bulk masses
of spinors in frames of the old conformal bootstrap in the
AdS=CFT context [12,13]. The simplest old conformal
bootstrap equation for the Green’s function GðX; YÞ tradi-
tionally written in planar approximation looks like [14–22]

GðX1; X2Þ ¼ g2
ZZ

GðX1; XÞGðX; YÞGðX; YÞ

× GðY; X2ÞdXdY ð83Þ
(triple interaction is supposed, and g is the coupling
constant). Equating of the exact Green’s functions to the
one-loop quantum contribution built of the same exact
Green’s functions is the main postulate of the old conformal
bootstrap. This type of bootstrap equation was also
used recently for the calculation of spectra of conformal
dimensions in one-dimensional Sachdev-Ye-Kitaev and in
d-dimensional field theory models [51].
Equation (83) is just a conventional Schwinger-Dyson

equation in which terms associated with bare Lagrangian
are omitted. This may be called the zero-Lagrangian
approach applied by Sakharov in his quantum-induced
theory of gravity [52] (the attempt to follow this method
in the AdS context was made in [27,28], in which UV finite
induced gravitational and gauge coupling constants were
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calculated). The similar “bootstrap” equations with zero
“bare mass” terms are widely used in different approaches
to dynamical symmetry breaking and mass generation
pioneered in Refs. [53,54], etc.
In the AdS=CFT context, it is assumed in Refs. [12,13]

that X1;2, X, and Y in (83) are the bulk coordinates in
AdSdþ1 and X1;2 are sent to the horizon. This procedure1

transforms the lhs of (83) into a conformal correlator of the
boundary conformal theory [Eq. (7) for the scalar and (13)
for the spinor], whereas GðX1; XÞ and GðY; X2Þ on the rhs
become the corresponding bulk-to-boundary propagators.
Thus, the rhs of (83) becomes the quantum one-loop
correlator (bubble). In this way, different bootstrap equa-
tions may be obtained depending on the choice of boundary
conditions for GðX1; XÞ and GðY; X2Þ in (83); in what
follows, I use “both IR” boundary conditions for these
Green’s functions (the “both UV” option will give the same
spectral equations, as was shown in Ref. [13], in which the
model of interacting scalar fields was considered).
Applying old bootstrap equation (83) (where X1;2 are

sent to the horizon) to scalar and spinor fields and defining
the UV-finite bubble on the rhs of (83) according to the
“double-trace subtraction” postulate of Sec. V, we obtain
from (83) with account of (7) and (13) for the lhs and (73)
and (74) for the rhs

CΔϕ

P
Δϕ

12

¼ M̃
2ptð0j1

2
1
2
Þ

ΔϕjΔψΔχ
ðx⃗1; x⃗2Þ;

ĈΔψ
γ⃗ðx⃗1 − x⃗2ÞΠ−

P
Δψþ1

2

12

¼ M̃
2pt ð1

2
j1
2
0Þ

Δψ jΔχ ;Δϕ
ðx⃗1; x⃗2Þ: ð84Þ

Reducing the similar space-time and spinor dependence
of the lhs and rhs of Eqs. (84), the following old bootstrap
equations are obtained from (84) for the particular case of
the model in (75) when bubbles are given by (79) and (80):

1 ¼ g2RNΦðϕÞðmÞ; ð85Þ

1 ¼ g2RΦðψÞðmÞ: ð86Þ

After elimination here of g2R, the interesting spectral
equation for spinor bulk mass m is obtained:

NΦðϕÞðmÞ ¼ ΦðψÞðmÞ: ð87Þ

In Ref. [13], a similar spectral equation for conformal
dimensions in the OðNÞ symmetric model of N scalar
fields interacting with the conformal invariant Hubbard-
Stratonovich field is derived, and its roots obeying the
unitarity bound demand are found: three roots for every
N ¼ 1, 2, 3, 4.

The spectral equation (87) for every N possesses positive
and negative roots; however, only one of them belongs to
the physically interesting interval (3), and its value m ≅
0.87 weakly depends on N. According to (2), this value of
bulk fermion mass gives the mass of physical fermion
excitation p0 ≅ 0.05 MeV.
The interesting task would be to consider the sponta-

neous breakdown of SUðNÞ symmetry in the model in (75).
This means that every spinor field ψkðZÞ is supposed to
have its own bulk mass mk and in expression (79) for the
2-spinor bubble of scalar field ϕðZÞ the multiplication
by N should be replaced by the sum over k, NΦðϕÞðmÞ →
ΣkΦðϕÞðmkÞ, whereas expression (80) should be valid for
every mk. Then, spectral equation (87) takes a form of
system of N equations (k ¼ 1; 2…N) for N unknowns mk

[Φðϕ;ψÞðmÞ; see (79) and (80)]:

ΣiΦðϕÞðmiÞ ¼ ΦðψÞðmkÞ: ð88Þ
The physically intriguing goal is the search for roots

m1…mN of system (88) that belong to interval (3) with the
hope to get, from Eq. (2), for example, the observed masses
of spin-1=2 flavors.
Surely the assumption of conformal invariance of the

scalar field in the Yukawa model (75) is just a demonstra-
tive one. It is not difficult to put down the system of spectral
equations similar to (88) for arbitrary conformal dimension
of scalar field Δϕ and to get the dependence of roots mk on
Δϕ, with the hope that for some Δϕ and N the physically
interesting combinations of N roots m1…mN will be
obtained.

VIII. CONCLUSION

The results of this paper are threefold; in every direction,
there is possible further development.
First, the transparent expressions are obtained in physical

AdSdþ1 space for spinor-scalar vertices and for two-point
one-loop quantum conformal correlators (bubbles) formed
with participation of spin-1=2 bulk fields. If the scalar field
bubble formed with two spinors was calculated earlier in
the formalism of embedding space [39], the result for the
loop formed by a spinor and a scalar has not been met in the
literature, as to my knowledge. The fantastic simplicity of
this result obtained through lengthy calculations gives rise
to the hunch that perhaps there is a simpler way to achieve
it. The option of Yukawa bulk interaction ϕðZÞψ̄ðZÞψðZÞ
was considered above, and immediate generalization of the
approach of the paper may be the calculation of vertices and
bubbles in the cases of pseudoscalar πðZÞψ̄ðZÞγ5ψðZÞ or
vector VμðZÞψ̄ðZÞγμψðZÞ interactions, the bulk QED as a
special option.
Second, the novel tool of the elimination of the UV

divergence of bubble Witten diagrams is proposed and
actually repeats the approach used earlier in [23–30] in
calculations of Witten tadpoles. It would be interesting to1I am grateful to Ruslan Metsaev for this observation.
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check if the difference of the UVand IRWitten triangle and
other diagrams proves to be UV finite as happened in
Sec. V for bubble diagrams.
Third, the expressions for UV-finite spinor-scalar bub-

bles received in the paper permit applying them in the old
conformal bootstrap equations aimed at the calculation of
spectra of bulk spinor masses. The task for the future may
be the calculation of roots of spectral equation (87) or of
system of Eqs. (88) and of similar equations received in
models with pseudoscalar or vector interactions of spin-1=2
fields. As was outlined in the Introduction, the knowledge
of bulk spinor masses may be a way to the solution of the
longstanding fermion mass hierarchy, or flavors mass
hierarchy, problem.
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APPENDIX: DERIVATION OF
FORMULAS (24) AND (29)

1. Derivation of Dð1Þ (24)

Calculation of bulk integral DðαÞ
γ1γ2γ3ðx⃗1; x⃗2; x⃗3Þ (21) is

performed in an ordinary way with the introduction of
Schwinger parameters—see, for example, Sec. 3. 1 and
Appendix A in Ref. [49]. The representation of DðαÞ as
integral over Schwinger parameters differs from the well-
known one for Dð0Þ only in the argument of the first
Gamma function and in the additional factor ðΣitiÞα in the
integrand (i ¼ 1; 2; 3),

DðαÞ
γ1γ2γ3ðx⃗1; x⃗2; x⃗3Þ ¼ π

d
2

ΓðΣiγi−d−α−1
2

Þ
Γðγ1ÞΓðγ2ÞΓðγ3Þ

Z
Πi

�
dti
ti

tγii

�

× ðΣitiÞαe−Q2

; ðA1Þ

where

Q2 ¼ t1t2P12 þ t1t3P13 þ t2t3P23

for Pij, see (6).
Thus, in case α ¼ 1, the standard change in (A1) of the

integration variables

t1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
m2m3

m1

r
t2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
m1m3

m2

r
t3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
m1m2

m3

r

and simple algebra immediately give for Dð1Þ
expression (24).

2. Derivation of Rð1Þ (29)

Derivation of Rð1Þ
β1β2β3

ðx⃗1; x⃗2; x⃗3Þ is again performed in an
ordinary way with the introduction of Schwinger param-
eters, that gives

Rð1Þ
β1β2β3

ðx⃗1; x⃗2; x⃗3Þ ¼ 2π
d
2

Z
Πi

�
dti
ti

tβii
ΓðβiÞ

�
ðΣitiÞΣiβi−de−Q

2

;

ðA2Þ

for Q2, see above in Appendix A 1. For Σiβi ¼ dþ 1, the
integral in (A2) coincides with the integral in (A1) at α ¼ 1,
and (29) follows from (A2) in the same way in which (24)
was obtained from (A1).
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