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In this paper, we successfully derive the Bekenstein-Hawking entropy for Schwarzschild black holes in
various dimensions by using a nontrivial phase space. It is appealing to notice that the thermodynamics of a
Schwarzschild black hole actually behaves like that of a 1-dimensional quantum mechanical system. Our
result suggests that black hole should be viewed as a system with the equation of state P ¼ ρ, and it also
suggests that a holographic stage should exist in the early universe.
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I. INTRODUCTION

Though black holes are originated from classical sol-
utions to the Einstein field equation, it is well established
that they have thermodynamical behaviors such as tem-
perature and entropy. The famous Bekenstein-Hawking
entropy takes the form

SBH ¼ kB
A
4l2p

; ð1Þ

where lp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏG=c3

p
is the Planck length. This form of

entropy is often called holographic entropy, for that it is
proportional to the boundary area of the system. The
microscopic origin of the holographic entropy has always
been a question to be answered. The presence of KB, ℏ, c,
and G in Eq. (1) implies that its explanation should involve
statistical mechanics, quantum mechanics, special relativ-
ity, and gravitational physics.
It has been known that conventional quantum field

theory (QFT) cannot provide enough degrees of freedom
to account for the holographic entropy. The entropy bound
for conventional QFT under gravitational constraint is
kBðAl2pÞ

3
4 [1–7]. Obviously there is a huge entropy gap

between the maximum entropy of conventional QFT and
the holographic entropy of black holes. An immediate
question is that what kind of microscopic theory can
account for the holographic entropy? And in what aspects
should the theory be distinct from the conventional QFT?
Note that what we have stressed is that black hole

physics cannot be described by a conventional bulk QFT, it
does not conflict with the idea of AdS=CFT which is a
correspondence between theories in different space-time

dimensions. Though AdS=CFT has gained many achieve-
ments by attaching the properties of certain black holes
with CFTs in lower dimensions, it is still worthy to gain
more understandings about the bulk theory itself and to
explain the microscopic structure of black hole directly. In
addition, there are surely many problems to be solved
which cannot fit into the framework of AdS=CFT easily,
such as the entropy of the Schwarzschild black hole [8],
which is far from being extremal and lives in an asymptotic
flat space-time, and the cosmological entropy bounds [7,9].
Our work may provide some new insights into these
problems.
The paper is organized as follows. We first review the

derivation of the maximum entropy of conventional QFTas
a preparation. Then we manage to derive the area-scaling
entropy for quantum gravitational systems by simple
dimensional analysis and gain insights about of the micro-
scopic physical laws behind it. Based on a nontrivial phase
space structure, we derive the exact Bekenstein-Hawking
entropy for Schwarzschild black holes in various dimen-
sions and discuss the corresponding microscopic pictures.
Finally, we make a discussion about the implication of our
result to black hole physics and cosmology.

II. THE MAXIMUM ENTROPY OF
CONVENTIONAL QUANTUM FIELD THEORY

The entropy bound kBðAl2pÞ
3
4 for conventional QFT under

gravitational constraint was first derived by ’t Hooft in [1],
and has been verify by various approaches [2–7]. We
review the derivations to the entropy bound and show that
dimensional analysis is enough to get the correct scaling
behavior of the entropy bound, while concrete microscopic
physics can provide exact coefficients to the relevant
formulas.*yx234@sussex.ac.uk
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Consider a typical QFT system of size L, and take the
average energy of each particle inside the system to be kBT.
Then, by simple dimensional analysis, the energy and
entropy of the system can only take the form

E ∼ L3T4; S ∼ L3T3: ð2Þ
We did not introduce the mass parameter m into the
expressions, because a system consisting of massless
particles always has more entropy than their massive
partners with the same relativistic energy.
Imposing the gravitational constraint that the energy of

the system does not exceed the energy of a black hole of the
same size, E ∼ L3T4 ≤ EBH ∼ L, one easily gets the
maximum realizable temperature Tmax ∼ L−1=2. Substi-
tuting it into the entropy formula, the maximum entropy is

Smax ∼ L
3
2 ∼ A

3
4; ð3Þ

where A is the boundary area of the system.
Actually, due to our knowledge of conventional QFT, it

is easy to provide a microscopic derivation of this entropy
bound (3). When bosonic quantum fields are confined
inside a box, the basic modes of the system can be listed as
p⃗i ¼ 2πℏ

L ðmx;my;mzÞ, where mx, my, mz are quantum
numbers labeling the mode. Acting the corresponding
creator operators a†pi on the vacuum state j0i, the quantum
states of the system can be listed as

jψ si ¼ � � � ða†piÞni � � � ða†p2
Þn2ða†p1

Þn1 j0i: ð4Þ
In a field-theoretical language, ni particle are excited on the
ith mode, and different sets of the occupation number fnig
corresponds to different microscopic states of the system.
Assume the gravitational constraint

Ejψ si ¼
X
i

niεi ≤ Ebh; ð5Þ

where εi ¼ cpi ¼ 2πℏc
L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

x þm2
y þm2

z

q
is the energy

attached to each mode. Then the total number of the
quantum states satisfying this limitation (5) can be counted
and proven to be W ∼ eðA=l2pÞ3=4 [5]. The direct counting
method has the advantage that independent quantum states
are listed clearly and it corresponds to the microcanonical
ensemble method in statistical mechanics.
In most cases, canonical ensemble method is more

convenient by boiling the question down to the calculation
of partition function. Taking photon gas system for exam-
ple, the logarithm of the partition function is given by [10]

lnΞ ¼ −
X
i

lnð1 − e−βεiÞ

¼ 2V
ð2πℏÞ3

Z
lnð1 − e−βcpÞd3p⃗ ¼ π2

45c3ℏ3

V
β3

; ð6Þ

where β ¼ 1=kBT and the summation over independent
modes is evaluated by the volume of phase space Vd3p⃗
divided by ð2πℏÞ3. It follows the energy and entropy of the
system as

E ¼ −
∂
∂β lnΞ ¼ π2k4B

15c3ℏ3
VT4; ð7Þ

S ¼ kBðlnΞþ βEÞ ¼ 4π2k4B
45c3ℏ3

VT3; ð8Þ

along with the equation of state P ¼ 1
3
ρ. Comparing them

to Eq. (2) derived from dimensional analysis, the micro-
scopic physics of photons only determines the exact
coefficients. Imposing E ≤ Ebh, the exact entropy bound
for photon gas can be readily obtained. One can also refer
to [11,12] for a detailed analysis of the self-gravitating
photon system and the corresponding behavior E ∼ L, T ∼
L−1=2 and S ∼ A3=4. It is conceivable that, when gravity is
extremely strong and takes over the system, the basic
relations (2) must be greatly modified. Then we say the
conventional QFT is no longer applicable and a new type of
theory is needed.

III. AREA-SCALING ENTROPY BY
DIMENSIONAL ANALYSIS

Black hole thermodynamics is expected to be explained
by a microscopic quantum gravitational theory. But at
present we do not know enough about the fundamental
principles of such a theory. Fortunately, as have been
noticed, simple dimensional analysis is rather useful in
determining the scaling behaviors of the thermodynamical
quantities and reveals some information of the microscopic
physics.
Since the gravitational Hamiltonian derived from

Einstein-Hilbert action is proportional to 1=G and the
volume integral, it is natural to conjecture the energy
and entropy of a quantum gravitational system as

E ∼
1

G
VT2; S ∼

1

G
VT; ð9Þ

where V and T are respectively the volume and temperature
of the system. Moreover, in the spirit of dimensional
analysis, we do not need to worry about the effect of
might-be highly curved space-time, unless the space-time is
so curved to produce a new characteristic length scale. Now
requiring the energy to be Ebh ∼ L, it follows immediately
T ∼ L−1 and S ∼ A. So it is easy to derive the scaling
behaviors of black hole thermodynamics.
Assume the system consists of some microscopic par-

ticles, which may be gravitons or some unknown particles
but would not be photons again. We want to know whether
the formulae (9) from dimensional analysis could reveal
some microscopic physical principles to us. Go back to the
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conventional QFT case to get some inspirations. Obviously,
in the formula (6), the speed of light c plays the role of
attaching energy and momentum of the photons, that is,
ε ¼ cp. And the Planck constant ℏ comes from the
quantum uncertainty principle △qi△pi ≥ ℏ

2
which is the

basis of using Vdp3

ð2πℏÞ3 to count the independent quantized

modes. Now turn to analyze the quantum gravitational case.
The complete form of the entropy in Eq. (9) can be
suggestively written as

S ∼
c2

Gℏ2
VT ∼

1

ℏc
LsT; ð10Þ

with Ls ≡ V
l2p
. Compare Eq. (10) with S ∼ 1

ℏ3c3 VT
3 of the

conventional QFT case carefully. It appears to us that we
were studying a 1-dimensional quantum system other than
a 3-dimensional quantum system in some sense. Concretely
speaking, we can still use c to attach energy and momen-
tum. But, in order to mathematically derive the correct form
of Eq. (10), we must use Lsdp

2πℏ to count the number of
quantized modes in the quantum gravitational case, other

than Vd3p⃗
ð2πℏÞ3 in the conventional quantum QFT case.

The nontrivial quantum phase space structure surely
implies a drastic modification of quantum uncertainty
relation and the basic quantum commutation relation.
But we temporarily concentrate on our statistical derivation
of holographic entropy and go back to this issue later on.

IV. A MICROSCOPIC DERIVATION TO THE
BEKENSTEIN-HAWKING ENTROPY

Based on our analysis above, we make the following
assumption of the microscopic particles inside a quantum
gravitational system. First, the particles are massless and
bosonic. Second, they obey the energy-momentum relation
ε ¼ cp with p ¼ jp⃗j. Third, the number of independent

quantized modes should be evaluated by g Lsdp
2πℏ ¼ g c3Vdp

2πGℏ2,

other than the conventional Vd3p⃗
ð2πℏÞ3. Here a dimensionless

coefficient g is introduced to include other possible degrees
of freedom such as polarization.
We model the Schwarzschild black hole of radius R in

3þ 1 dimensions as a system consisting of these particles.
All those calculations for photon system can be parallel
translated to the new system, except for the nontrivial
quantum phase space. Though the scaling behaviors of the
thermodynamical quantities have been reserved in advance,
it is hard to believe one can get the exact Bekenstein-
Hawking entropy from such a simple setting before doing
calculation.
Now the logarithm of the partition function is

lnΞ ¼ −
gc3V
πGℏ2

Z
∞

0

ln ð1 − e−βcpÞdp ¼ gπc2

6Gℏ2

V
β
; ð11Þ

where V ¼ 4πR3

3
[13]. Then we get the expressions for the

energy and entropy as

E ¼ −
∂
∂β lnΞ ¼ gπk2Bc

2

6Gℏ2
VT2; ð12Þ

S ¼ kBðlnΞþ βEÞ ¼ gπk2Bc
2

3Gℏ2
VT: ð13Þ

The pressure of the system can be calculated as

P ¼ kBT
∂ lnΞ
∂V ¼ gπk2Bc

2

6Gℏ2
T2: ð14Þ

Comparing with ρ ¼ E=V, we find the equation of state of
the system as

P ¼ ρ: ð15Þ

The Komar mass as the gravitational source corresponds to
ðρþ 3PÞV, so we get

M ¼ 4E ¼ 2gπk2Bc
2

3Gℏ2
VT2: ð16Þ

Taking M to be the energy of the black hole M ¼ c4
2GR and

choosing g ¼ 9 in Eq. (16), we deduce the exact Hawing
temperature T ¼ ℏc

4πkB
1
R [14]. Substituting this into Eq. (13),

we finally get the exact Bekentstein–Hawking entropy

S ¼ kB
A
4l2p

; ð17Þ

which surely has a statistical interpretation. Note that
another reason of usingM other than E is that dEþ PdV ¼
TdS can be written as dM ¼ TdS in order to fit with the
thermodynamics of the Schwarzschild black hole [15].
In fact, by comparing Eqs. (13) and (16), we can go

straightly to observe the relation

TS ¼ 1

2
M; ð18Þ

which is exactly the same as the Smarr formula for 3þ 1

dimensional Schwarzschild black hole. Reading M ¼ c4
2GR

and T ¼ ℏc
4πkB

1
R directly from the Schwarzschild metric and

substituting them into Eq. (18), the exact Bekentstein–
Hawking entropy follows as

S ¼ M
2T

¼ kB
πR2

l2p
¼ kB

A
4l2p

: ð19Þ

To remove possible doubts, we further generalize the
above derivation to higher dimensional Schwarzschild
black holes. In D ¼ dþ 1 dimensional space-time, the
partition function is
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lnΞ ¼ −
gDc3VD−1

πGDℏ2

Z
∞

0

ln ð1 − e−βcpÞdp

¼ gDπc2

6GDℏ2

VD−1

β
: ð20Þ

It takes the same form as Eq. (11) with only g, G, and V
changed to their higher-dimensional counterparts gD, GD
and VD−1. Thus the same formulas are derived as

TS ¼ 2E; P ¼ ρ: ð21Þ

The gravitational source M in D-dimensional space-time
corresponds to ðρþ D−1

D−3PÞVD−1. Because of P ¼ ρ, there

is M ¼ 2ðD−2Þ
D−3 E. Comparing with Eq. (21), we get the

relation

TS ¼ D − 3

D − 2
M; ð22Þ

which is the same as the Smarr formula for Schwarzschild
black holes in general dimensions. Needless to say, sub-
stituting the mass and Hawking temperature of the black
hole into it, we get the exact Bekenstein–Hawing entropy

S ¼ kB
AD−2

4lD−2
p

; ð23Þ

which is more than could be expected. In the above
derivation, one may have noticed that the equation of state
w≡ P

ρ ¼ 1 is critical to derive the Smarr formulas. If using
other value of w, one will end up with a wrong coefficient.
Take w ¼ 1

3
in 3þ 1 dimensional space-time for example,

the best result that one can get is TS ¼ 2
3
M and S ¼ 4

3
SBH

[16]. Clearly, only the microscopic physics with w ¼ 1
leads to the exact Bekenstein–Hawking entropy.

V. MORE ON THE MICROSCOPIC PICTURE

Though we have successfully derived the Bekenstein–
Hawking entropy, we did not say too much about the
concrete microscopic picture of the system. Actually, the
concrete microscopic picture of the system strongly
depends on how to interpret the nontrivial phase space
structure. Below we shall conjecture two possible micro-
scopic pictures, which are equivalent to each other in the
sense that they lead to the same partition function.
The first picture is that the quantum gravitational

system with volume V can be viewed as a 1-dimensional
quantum mechanical system with length Ls ≡ V

l2p
, as sug-

gested from the form of Eq. (10). The length Ls is far longer
than the size of the black hole, so it would be interesting to
imagine it as a very long nonrelativistic string highly
curling and winding inside the system. The energy of
the corresponding modes is quantized as εi ¼ 2πℏc

Ls
mi, with

mi ¼ 1; 2; 3…. Then all the quantum states of the system
can be described by

jψ si ¼ � � � ða†i Þni � � � ða†2Þn2ða†1Þn1 jΩi: ð24Þ
These N ¼ n1 þ n2 þ � � � excitations on the string provide
the fundamental particles inside the quantum-gravitational
system. The partition function of the system is exactly that
given by Eq. (11). In fact some important properties of the
system can be easily observed, for example, the equation of
state of the system must be

P ¼ −
∂
∂V

�X
i

niεi

�
¼

X
i

niεi
V

¼ E
V
¼ ρ; ð25Þ

by noting that ∂εi∂V ¼ − εi
V due to ε ∼ 1=Ls ∼ 1=V.

Furthermore, the number of quantum states (24) satisfying
E ¼ P

i niεi ≤ Ebh can be easily counted out by writing it
in the form

P
i nimi ≤

EbhLs
2πℏc . In mathematics it refers to the

integer partition problem, that is, counting the number of
different ways of writing a large number as a sum of
positive integers. By using the Hardy-Ramanujan partition
formula, we get the number of permitted quantum states of

the system as W ∼ e
A
4l2p . Still, the fact w ¼ 1 is essential in

the derivation to get the exact coefficient 1
4
. It is amazing to

see that Bekenstein–Hawking entropy can be derived from
such a simple picture.
In the second picture,we try tomaintain the 3-dimensional

uncertainty relation. Now stare at the nontrivial quantum

phase space c3Vdp
Gℏ2 . Obviously, if we introduce some effective

momentum p⃗e satisfying p≡ G
c3ℏp

3
e, we will recover the

normal behavior of phase space Vp2
edpe
ℏ3 or written clearly as

d3x⃗d3p⃗e
ð2πℏÞ3 . Thus the effective momentum p⃗e has the same

quantum uncertainty relations as the normal momentum in
conventional QFT and it should be quantized as usual
p⃗e ¼ 2πℏ

L ðmx;my;mzÞ. Then the quantum states of the
system can also be listed as the form (4). The only difference
is that the modes are attached with a weird energy
ε ¼ cp ¼ G

c2ℏp
3
e. Accordingly, the logarithm of the partition

function is

lnΞ ∼ −
V

ð2πℏÞ3
Z

∞

0

ln ð1 − e−βεÞp2
edpe: ð26Þ

This is actually Eq. (11) with a change of variable. In this
picture, for a black hole with average particle energy
ε ∼ kBT ∼ ℏ=R, we should use pe other than the obscure
p to calculate the characteristic thermal wavelength λ of the
system, which gives pe ∼ l−2=3p R−1=3 and λ ∼ l2=3p R1=3. It
means each independent wave-packet inside black holes
occupies a volume λ3 ∼ l2pR. The interesting part is that, by
comparing with the equations of van der Waals fluids, the
specific volume of the “molecules” constituting charged
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AdS black boles is exactly identified as 2l2pR with R the
horizon size [18–20]. Besides, the length uncertainty of
measuring a distance L has also been identified as a similar
form δL ¼ l2=3p L1=3 based on quantum mechanical and
gravitational principles [21,22]. It is not clear whether there
are some deep connections here.

VI. CONCLUSION AND DISCUSSIONS

In this paper, we have successfully provided a micro-
scopic derivation of the Bekenstein–Hawking entropy for
Schwarzschild black holes in various dimensions, by
considering the black holes as consisting of microscopic
particles with a nontrivial phase space. It is appealing to
note that the thermodynamics of a Schwarzschild black
hole resembles that of a quantum mechanical nonrelativ-
istic string. In fact, the microscopic physical contents inside
some black holes have been conjectured and discussed
from various motivations in recent years [19,20,23–26], in
sharp contrast to a classical picture of black holes with
empty interior expect for a singularity at the centre. For
example, charged AdS black holes are suggested to be
consisted of “molecules” with attractive or repulsive
interactions [19,20]. The feature of our present work is
that the Schwarzschild black hole may be viewed as a very
long quantum mechanical string at least mathematically
and the exact Bekenstein–Hawking entropy can be derived.
The idea that black holes might be 1þ 1 dimensional in

some sense can be traced back to [27–30]. In the seminal
paper [27] Bekenstein and Mayo found that the relation
between the entropy flow rate _S and the power Pr of
radiating energy of a 3þ 1 dimensional black hole is
_S ∼

ffiffiffiffiffi
Pr

p
, the same as that of a one dimensional information

channel. Thus they judged that a black hole is effectively
1þ 1 dimensional as far as entropy flow is concerned.
Actuallywecaneasilygeneralize their derivation toD¼dþ1

dimensional black holes, where _S ∼ AD−2TD−1 ∼ 1=R and
Pr ∼ AD−2TD ∼ 1=R2. As a result there is always _S ∼

ffiffiffiffiffi
Pr

p
.

This nicely favors our work viewing black holes in general
dimensions as a 1þ 1 dimensional system.
Our work also suggests that the black hole can be viewed

as a massive object with equation of state P ¼ ρ. It would
be interesting to consider this equation of state in the study
of the phenomena of black hole coalescence and to see
whether or not it would make differences in the numerical
simulations and gravitational-wave observations. After
finishing this work, we notice that there have been a lot
of interesting researches based on the fluid with P ¼ ρ. So
we make some discussions about our work and the existing
literature below.
Interestingly, the connection between the equation of

state P ¼ ρ and the black hole entropy has been noticed
decades ago [31,32]. The authors managed to solve
the Tolman-Oppenheimer-Volkoff (TOV) equation with
P¼wρ, and the entropy was calculated as the integral of

βðρðrÞ þ PðrÞÞwhile taking β to be the inverse of Hawking
temperature. Though there must be a negative-mass singu-
larity at the center of the star after fitting with an exterior
Schwarzschild metric and the interior metric is abnormal in
some regions, they found the entropy becomes S ¼ kB A

4l2p

when taking w ¼ 1. However, the fundamental reason why
the entropy could emerge from such tedious calculations
were not clearly understood. By comparison, P ¼ ρ is a
derived result from our microscopic picture. In our opinion,
the key to understanding their success is that w ¼ 1 has
implicitly equalized their entropy S and 1

2
βM (that is, 1þ

w ¼ 1
2
ð1þ 3wÞ when w ¼ 1). If their expressions can give

the required M as the black hole, which more or less is
constrained by the boundary condition of the TOV equa-
tions, the Bekenstein–Hawking entropy follows. In addi-
tion, the presence of the negative-mass singularity in their
scenario may imply that the classical description along with
the TOV equation is not enough to deal with the relevant
physical situation. Quantum mechanics may need to be
fully considered to exclude the singularity. It is also
possible that a self-consistent description may have to
include extra dimensions or wormholes [23,33] in order to
avoid the singularity. These possibilities are worthy of
further study.
In the context of cosmology, we mainly concern about

which stage the holographic fluid with w ¼ 1 may domi-
nate in the history of the universe. First, by Friedmann
equations the evolvement of the universe declines to lower
the value of w as time increases. So it is natural to expect an
early stage of the universe with w ¼ 1 before the radiation
dominated universe with w ¼ 1

3
. Second, when tracing back

the history of the universe, we encounter from atomic
physics to nuclear physics and to grand unified physics.
Our work suggests w ¼ 1 is closely related to quantum
gravity and holographic entropy, so it provides another
independent logic to the same conclusion that a w ¼ 1
stage should exist before the conventional QFT dominated
stage of the universe. Actually, we find that the fluid with
w ¼ 1 has already been conjectured and studied in cosmol-
ogy for many years [34]. It is usually called stiff fluid in the
literature, for that it is the most incompressible fluid
permitted by relativistic causality. Such a kind of fluid
surely has a large number of possible physical origins [35–
37] different from what we have suggested. Interestingly,
there are also a series of works called “holographic
cosmology” [38,39], since after Fischler and Susskind
showed the cosmologic holographic entropy bound could
be saturated by w ¼ 1 [9]. Even a holographic eternal
inflation model has been put forward [40]. Thus, if we take
seriously about the holographic stage with w ¼ 1, the
understanding of the early universe including the picture
of the big bang and inflation might be greatly modified. We
hope the remnant indications of this holographic stage
could be detected in future cosmological experiments.
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