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The carriers in graphene tuned close to the Dirac point envisage signatures of the strongly interacting
fluid and are subject to hydrodynamic description. The important question is whether strong disorder
induces the metal-insulator transition in this two-dimensional material. The bound on the conductivity
tensor found earlier within the single current description implies that the system does not feature metal-
insulator transition. The linear spectrum of the graphene imposes the phase-space constraints and calls for
the two-current description of interacting electron and hole liquids. Based on the gauge/gravity
correspondence, using the linear response of the black brane with broken translation symmetry in
Einstein-Maxwell gravity with the auxiliary Uð1Þ-gauge field, responsible for the second current, we have
calculated the lower bound of the DC conductivity in the holographic model of graphene. The calculations
show that the bound on the conductivity depends on the coupling between both Uð1Þ fields and for a
physically justified range of parameters it departs only weakly from the value found for a model with the
single Uð1Þ field.
DOI: 10.1103/PhysRevD.101.046019

I. INTRODUCTION

Disorder and interactions inside solids are responsible
for finite values of the transport coefficients and play a very
important role in establishing their detailed behavior.
Importantly, the role of both disorder and interactions
depends on the spatial dimensionality of the condensed
matter system. Doping of the intrinsic semiconductors, being
the key ingredient of numerous electronic applications, is an
important example illustrating the role of disorder in the
weakly interacting three-dimensional materials.
It has been predicted and verified experimentally that in

three-dimensional systems both strong disorder or strong
electron-electron interactions can induce metal to insulator
transition. In the noninteracting systems this phenomenon
is called the Anderson transition [1]; while in the presence
of electron-electron interaction, the transition is known as
Mott [2] or if interactions and disorder play a significant
role, the Anderson-Hubbard one [3].
On the other hand, the two-dimensional systems are far

more complicated from the experimental [4–6] as well as
the theoretical points of view. The theoretical description
of the interacting [7] systems in question does not give
unique results. The recent application of the gauge/gravity
analogy to study the strongly interacting two-dimensional

disordered materials has revealed the absence of the
disorder driven metal-insulator transition in the system
[8]. The result is valid in the hydrodynamic limit for the
electron mean free path much smaller than the typical scale
of the spatial inhomogeneities [9].
The hydrodynamic limit of the electron flow has been

identified experimentally in very clean systems, as pre-
dicted a long time ago [10]. In fact, the signatures of the
hydrodynamic behavior have been observed over recent
years in many materials including the high mobility
(Al,Ga)As wires [11,12]. More recent measurements have
envisaged the hydrodynamic signatures in many other
materials. One should mention the shear viscosity mea-
surements in the ultracold Fermi gases [13], strongly
correlated oxides [14], and graphene [15,16]. The com-
prehensive discussion of this novel set of experiments is
given in [17].
The special interest is devoted to graphene, the

two-dimensional system that envisages a hydrodynamic
behavior of the carriers, observed in a number of recent
experiments [18–21], especially when the material is tuned
close to the particle-hole symmetry point. Because of the
strong scattering of charge carriers, nearby the charge
neutrality point, the thermoelectric power of graphene is
strongly enhanced [18] and approaches the hydrodynamic
limit. The departures from the Wiedemann-Franz ratio due
to the increase of thermal conductivity [16] have been
interpreted as the indication of hydrodynamic behavior
in the material in question. On the other hand, the
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hydrodynamic viscosity of electrons has been measured
[15] in high mobility graphene samples. The viscous effects
were observed [19] and shown to facilitate high mobility
transport at temperatures below 150 K. The recent theo-
retical and experimental studies of hydrodynamic effect in
graphene have been reviewed in [22,23].
Even though the hydrodynamic flow is expected to be

observed in a very clean system, the disorder seems to be an
important factor that sometimes even facilitates the hydro-
dynamic behavior [24]. The signatures of the Stokes
nonlinear flow with the low Reynolds number [25] have
been detected in graphene [21], as the appearance of
vortices leading to the negative resistance of the material.
At the Fermi level graphene exhibits a massless relativ-

istic spectrum with Dirac cone. As was mentioned above,
close to the charge neutrality point, it sustains a strongly
interacting material, ideal system for studies by means of
gauge/gravity duality methods. In this system, the thermo-
electric transport coefficients have been found using the
hydrodynamic approach [26–28], with a fairly good agree-
ment with the experimental data.
Recently, this attitude has been generalized to the model

with two distinct Uð1Þ-gauge currents, which is solved by
the AdS=CFT analogy [29]. The model in question allowed
the successful quantitative comparison between theory and
experimental data. The paper [29] gives a number of
arguments behind the introduction of two gauge fields
and associated currents. One reason for the appearance of
two currents in graphene is the charge imbalance between
electrons and holes in the system with linear spectrum. It has
been found that the two-current model allows for a
quantitatively correct description of the thermal conduct-
ance of graphene. The paper [30] presented the further
generalization, taking into account the possible coupling
between both currents. In Ref. [30] the transport properties
of graphene using the model in question were elaborated.
Moreover the perpendicular magnetic field to the graphene
sheet was taken into account. It was assumed that the
charges bounded with the two gauge fields are proportional
to each other with the factor g, which is responsible for the
possible imbalance of the positive and negative charges in
graphene close to the charge neutrality point. It was found
that the kinetic and transport coefficients were influenced by
α-coupling constant and factor g. The increase of α leads to
the increase of the width of normalized thermal conduc-
tivity, while in the case when g ¼ 0, the effect has been quite
the opposite (we have the decrease of the width). On the
other hand, the α-coupling constant affects the Wiedeman-
Franz ratio (WFR), changing the width and heights of the
curves. The general tendency is that the WFR diminishes
while the value of the α-coupling constant grows.
Moreover, the coupling constant in question impels the

charge dependence of the diagonal resistivity and the
WFR; i.e., the increase of α causes the decrease of both
ρxx and Wxx. The Seebeck and Nernst coefficients were

affected by magnetic field and α. The influence in question,
for large value of Sxx, changes the shape of the curve from
two minima and a maximum curve to the one with a
minimum (for B ¼ 0) and two small maxima for larger
absolute values. The Hall angle was also influenced by the
coupling constant. In the studied case the density depend-
ence of the thermoelectric coefficient αij and Seebeck
coefficient Sxx agree with experimental data.
The generalizations of these studies were given in [31],

where the holographic calculation of magnetotransport
coefficients in the 3þ 1-dimensional system with Dirac-
like spectrum was presented. The calculations envisage the
influence of g and α on the coefficients. Namely, the
magnetic field dependence on resistivity ρxx and ρxy depicts
that the bigger values of α one takes the smaller resistivity
we achieve.
In general one expects the presence of additional gauge

fields in graphene due to geometric and other reasons
[32,33]. The use of gauge/gravity duality allows for the
exact solution of the strongly coupled field theoretical
models. We use this approach to elaborate the effect of
interactions and disorder on the hydrodynamic transport of
graphene modeled by the 3þ 1-dimensional anti–de Sitter
(AdS) space time with the black brane background that
breaks translational symmetry [34,35].
The studies of electrical transport in a strongly coupled

system include the case of strange metals in two spatial
dimensions at finite temperature and charge density, holo-
graphically dual to Einstein-Maxwell theory with a poten-
tial in asymptotically four-dimensional AdS manifold. One
finds that the electrical conductivity is bounded from below
by a universal minimum conductance. The inspection of
Stokes-like equations in the spacetime in question shows
that it cannot exhibit metal-insulator transitions [8]. The
bound on the incoherent thermal conductivity obtained
by analyzing the linear perturbations of black brane with
broken translation symmetry in AdS Einstein-Maxwell
dilaton gravity was performed in [36]. It turns out that
the thermal conductivity has nonzero value (at finite
temperature), as far as the dilaton potential being bounded
from below.
In [37] the analytical lower bound on the conductivity in

holographic model AdS Einstein-Maxwell dilaton theory,
in terms of black horizon data, using the Stokes equations
on black object event horizon was provided. In the
considered model the metal-insulator transition is not
driven by disorder, but it is caused by coupling the scalar
field to the Maxwell one. Studies in the rotational and
translational symmetries breaking system reveal that the
ratio of the determinant of the electrical conductivities
along any spatial directions, to black brane area density,
having the zero charge limit in account, tends to the
universal value [38]. The conductivity bounds were also
elaborated in the case of probe brane models [39], massive
gravity [40], as well as effective holographic theories [41].
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It was shown in the two latter cases that there were no
bounds on conductivities.
In [42] the Navier-Stokes equations of the model with

two Uð1Þ-gauge fields were derived. The paper elaborates
the black brane response to the electric fields and temper-
ature gradient. The DC transport coefficients for the holo-
graphic Dirac semimetals are found. Here we analyze a
similar model with a goal to establish the bounds on the
conductivity of the Dirac fluid in graphene subject to the
influence of the α-coupling constant between the twoUð1Þ-
gauge fields. The main result is that the coupling between
the currents, in the following quantified by the parameter α,
only slightly modifies the bounds [see Eqs. (63) and (85)]
on the conductivity for α ≤ 1. Larger values of α lead to
strong decrease of the bound and finally to metal-insulator
transition at α ¼ 2, when the conductivity bound vanishes.
The organization of the paper is as follows. In Sec. II we

introduce the gravitational background and the action used
to describe two interacting currents in graphene. Section III
is devoted to the description of the perturbations of the
event horizon allowing the derivation of the appropriate
hydrodynamic description. We calculate the conductivity of
the system in the background of the uncharged black brane
in Sec. IV. In Sec. V the case of the charged background
black brane is discussed, where we also derive the lower
bounds on the conductivity. The variational approach has
been applied in Sec. VI to study the conductivity bounds. In
Sec. VII we end up with the summary and conclusions.

II. BACKGROUND HOLOGRAPHIC MODEL

In our paper we deal with the generalization of the
previously studied models [34,35], by adding two interact-
ing Uð1Þ-gauge fields. The aim is to find the influence of
them on DC thermoelectric transport coefficients and to
compare with the existing results. In our model the
gravitational action in (3þ 1) dimensions is taken in the
form

S ¼
Z ffiffiffiffiffiffi

−g
p

d4x

�
Rþ 6

L2
−
1

2
∇μϕ∇μϕ −

1

4
FμνFμν

−
1

4
BμνBμν −

α

4
FμνBμν

�
; ð1Þ

where R is the scalar curvature of the spacetime, and ϕ
stands for the scalar field, which as we see later on
contributes a viscositylike term to the hydrodynamic
equations. Fμν ¼ 2∇½μAν� are the ordinary Maxwell field
strength tensor, while the second Uð1Þ-gauge field Bμν is
given by Bμν ¼ 2∇½μBν�. α is the coupling constant between
both gauge fields. L is the radius of AdS spacetime.
The presence of an additional gauge field is motivated by

the desire of describing carrier flow in graphene, near the
particle-hole symmetry point. These two currents may
be interpreted as connected with electrons and holes.

The approach in question provides quantitatively correct
description of the thermal conductivity of graphene close to
the Dirac point [29]. Allowing for the interaction between
the two Uð1Þ-gauge currents, the coupling α provides
additional degree of freedom and inter alia affects [30]
the magnetic field dependence of the nondiagonal transport
coefficients, especially for the low values of the afore-
mentioned field. The important novel aspect of the two-
current model is the tensor structure [29,30] of the transport
coefficients with the general entries, e.g., for the conduc-
tivity σijab, where a, b refer to two fields denoted above as F
and B and i, j refer to the spatial directions [cf. Eqs. (53)
and (54)]. The identifications of the charges QF ¼ −ene
and QB ¼ þenh with electrons and holes and the total
electric current Jj ¼ JjF þ JjB as well as assuming that the
electric fields Ei

F ¼ Ei
B ¼ Ei lead to the value of the total

conductivity elements σij ¼ P
a;b σ

ij
ab. The presence of the

coupling α between the fields leads to nonzero values of
σijFB. Moreover, independently of whether the coupling
vanishes or not it is important to keep the tensor structure of
the kinetic and transport coefficients [29,30]. The analo-
gous studies of the magnetotransport coefficients of Dirac
semimetals [31] being the three-dimensional analogues of
graphene require similar treatment of the conductivity. In
both cases, in order to define the other transport coeffi-
cients, like thermoelectric tensor or Hall angle, one needs to
take the full tensorial character of the conductivity into
consideration.
In the studied action (1) we have to do with the second

gauge field coupled to the ordinary Maxwell one. The
justifications of such a kind of gravity with electromag-
netism coupled to the other gauge field follow from the top-
down perspective [43]. Namely, starting from the string/M
theory the reduction to the lower dimensional gravity is
performed. It is relevant in the holographic correspondence
attitude, because the theory in question is a fully consistent
quantum theory (string/M theory) and this fact guarantees
that any predicted phenomenon by the top-down theory
will be physical. This point has been discussed in [42].
Variation of the action S with respect to the metric, the

scalar, and gauge fields yields the following equations of
motion:

Gμν − gμν
3

L2
¼ TμνðϕÞ þ TμνðFÞ þ TμνðBÞ þ αTμνðF;BÞ;

ð2Þ

∇μFμν þ α

2
∇μBμν ¼ 0; ð3Þ

∇μBμν þ α

2
∇μFμν ¼ 0; ð4Þ

∇μ∇μϕ ¼ 0; ð5Þ
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where we have denoted by Gμν the Einstein tensor, while
the energy momentum tensors for the fields in the theory
are given by

TμνðϕÞ ¼
1

2
∇μϕ∇νϕ −

1

4
gμν∇δϕ∇δϕ; ð6Þ

TμνðFÞ ¼
1

2
FμδFν

δ −
1

8
gμνFαβFαβ; ð7Þ

TμνðBÞ ¼
1

2
BμδBν

δ −
1

8
gμνBαβBαβ; ð8Þ

TμνðF;BÞ ¼
1

2
FμδBν

δ −
1

8
gμνFαβBαβ: ð9Þ

For the gauge fields in the considered theory we assume
the following components:

Aμdxμ ¼ atdt; Bμdxμ ¼ btdt: ð10Þ

III. PERTURBATIONS OF BACKGROUND
BLACK BRANE

In the following analysis we consider the line element
provided by

ds2 ¼ −UðrÞGðr; xiÞdt2 þ
Fðr; xiÞdr2

UðrÞ þ ds2ðΣ2Þ; ð11Þ

where Σ2 stands for the two-dimensional hypersurface at
chosen radial r coordinate. The dependence of function G
and F on the xi coordinates takes care of their spatial
variations. We also take the following components of the
fields:

A ¼ atdt; B ¼ btdt: ð12Þ

As in [34], the line element at r → ∞ approaches the AdS
boundary with the following conditions:

U → r2; F → 1; G → GðxÞ; gij → r2ḡij

ð13Þ

atðr; xiÞ → μðxÞ; btðr; xiÞ → μdðxÞ;
ϕðr; xiÞ → rΔ−3ϕ̄ðxiÞ; ð14Þ

where μðxÞ and μdðxÞ are the spatially dependent chemical
potentials (at the boundary) connected with the adequate
Uð1Þ-gauge field. We also assume the periodic boundary
conditions with period Li in the ith direction fðxi þ LiÞ ¼
fðxiÞ, and if required work with quantities averaged over the
volume of periodicity E½f� ¼ 1

Lx1
Lx2

R
dx1dx2f. ϕ̄ðxiÞ above

serves as a boundary source of the field ϕðr; xiÞ and Δ is the
scaling dimension of it.

The black brane event horizon that has Σ2 topology is
situated at r ¼ 0. Having in mind the Edington-Finkelstein
ingoing coordinates, the near-horizon expansions of the
metric tensor components and fields are given by [35]

UðrÞ ¼ rð4πT þ Uð1Þrþ…Þ; ð15Þ
Gðr; xiÞ ¼ Gð0ÞðxÞ þGð1ÞðxÞrþ…; ð16Þ
Fðr; xiÞ ¼ Fð0ÞðxÞ þ Fð1ÞðxÞrþ…; ð17Þ

gij ¼ gð0Þij þ gð1Þij rþ…; ð18Þ

atðr; xiÞ ¼ rðað0Þt Gð0ÞðxÞ þ að1Þt ðxÞrþ…Þ; ð19Þ

btðr; xiÞ ¼ rðbð0Þt Gð0ÞðxÞ þ bð1Þt ðxÞrþ…Þ; ð20Þ
ϕðr; xiÞ ¼ ϕð0ÞðxÞ þ ϕð1ÞðxÞrþ…; ð21Þ

with the auxiliary condition written as Gð0ÞðxÞ ¼ Fð0ÞðxÞ.
If one implements the Uð1Þ-gauge and temperature

gradient in the black brane spacetime, at fixed r coordinate,
then the black object responds. In our considerations
we have to take into account linear perturbations described
by [35]

δðds2Þ ¼ δgαβ dxαdxβ − 2tMξadt dxa; ð22Þ

δA ¼ δaβ dxβ − t Eadxa þ t N ξb dxb; ð23Þ

δB ¼ δbβ dxβ − t Badxa þ t Nd ξb dxb; ð24Þ

as well as the perturbation of scalar field, δϕ. In what
follows we consider δgμν, δaμ, δbμ, and δϕ as functions of
ðr; xmÞ. On the other hand Ea, Ba, ξi, depend on xi
coordinates and are closed forms on Σ2. Moreover, the
regularity at the black brane event horizon implies the
following:

δgtt¼UðrÞðδgð0Þtt ðxiÞþOðrÞÞ; δgtr¼δgð0Þtr ðxiÞþOðrÞ;
ð25Þ

δgrr¼
1

UðrÞðδg
ð0Þ
rr ðxiÞþOðrÞÞ; δgij¼δgð0Þij ðxiÞþOðrÞ;

ð26Þ

δgti ¼ δgð0Þti ðxiÞ −GUξi
ln r
4πT

þOðrÞ;

δgri ¼
1

UðrÞ ðδg
ð0Þ
ri ðxiÞ þOðrÞÞ; ð27Þ

δat¼δað0Þt ðxiÞþOðrÞ; δai¼
ln r
4πT

ð−EiþNξiÞþOðrÞ;
ð28Þ
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δar ¼
1

UðrÞ ðδa
ð0Þ
r ðxiÞ þOðrÞÞ; ð29Þ

δbt¼δbð0Þt ðxiÞþOðrÞ; δbi¼
ln r
4πT

ð−BiþNdξiÞþOðrÞ;
ð30Þ

δbr ¼
1

UðrÞ ðδb
ð0Þ
r ðxiÞ þOðrÞÞ: ð31Þ

It turns out that the constraint on the leading order has to be
imposed,

δgð0Þtt þ δgð0Þrr − 2δgð0Þrt ¼ 0; δgð0Þri ¼ δgð0Þti ;

δað0Þr ¼ δað0Þt ; δbð0Þr ¼ δbð0Þt : ð32Þ

A. Equations for perturbations at the event horizon

One imposes on a subset of the linearized black brane

perturbations, i.e., δgð0Þit , δgð0Þrt , δa
ð0Þ
t , δbð0Þt , the relations as

follows [42]:

∇i∇iwþ∇iEi þ∇iðað0Þt viÞ
þ α

2
½∇m∇mwd þ∇mBm þ∇mðbð0Þt vmÞ� ¼ 0; ð33Þ

∇i∇iwd þ∇iBi þ∇iðbð0Þt viÞ
þ α

2
½∇m∇mwþ∇mEm þ∇mðað0Þt vmÞ� ¼ 0; ð34Þ

bð0Þt ½∇iwd þ Bi þ
α

2
ð∇iwþ EiÞ�

þ að0Þt ½∇iwþ Ei þ
α

2
ð∇iwd þ BiÞ�

−∇iϕ
ð0Þ∇mϕ

ð0Þvm þ 2∇m∇ðmviÞ þ 4πTξi −∇ip ¼ 0;

ð35Þ
∇ivi ¼ 0; ð36Þ

where we have denoted

w ¼ δað0Þt ; wd ¼ δbð0Þt ;

p ¼ −4πT
δgð0Þrt

Gð0Þ − δgð0Þit ∇i lnGð0Þ; vi ¼ −δgð0Þit : ð37Þ

The above equations result from the conservation of charge
and heat currents in the unperturbed system. The variables
introduced in (37) are a subset of all perturbations. They are
found to fulfil at the horizon the generalized Navier-Stokes
equations (33)–(36). As discussed earlier for the single
current model [35] the scalar field contributes the viscosity-
like term as also does the curvature of the horizon. The
latter is best visible by writing

2∇m∇ðmvjÞ ¼ ∇2vj þ Rjivi: ð38Þ

IV. CONDUCTIVITY FOR THE UNCHARGED
BLACK BRANE

In this section we consider the case without ϕ field,
responsible for dissipation. Further, for the connectedness
with [8] we define the quantities

Q ¼ að0Þt ; Qd ¼ bð0Þt ;

∇jw ¼ −∇jμ; ∇jwd ¼ −∇jμd: ð39Þ

Let us first study the conductivities for Dirac semimetals in
the uncharged black object case, i.e., Q ¼ 0, Qd ¼ 0. For
the considered situation equation (33) and (34) decoupled
to the relations

∇i

h ffiffiffiffiffiffiffi
gð0Þ

q
ðEi −∇iμÞ

i
¼ 0; ð40Þ

∇i

h ffiffiffiffiffiffiffi
gð0Þ

q
ðBi −∇iμdÞ

i
¼ 0: ð41Þ

Because of the fact that they constitute the linear equations,
we may set

μ ¼ μaEa; μd ¼ μdaBa; ð42Þ

in Eqs. (40) and (41). This substitution reveals that

∇i

h ffiffiffiffiffiffiffi
gð0Þ

q
ðδik −∇iμkÞEk

i
¼ 0; ð43Þ

∇i

h ffiffiffiffiffiffiffi
gð0Þ

q
ðδik −∇iμdkÞBk

i
¼ 0: ð44Þ

On the other hand, it follows that for some constants ψ i
k,

ðψdÞik and functions Ψi, Ψd
i, one obtains

ffiffiffiffiffiffiffi
gð0Þ

q
gijð0Þðδkj −∇jμ

kÞ ¼ ϵijðψ i
k −∇jΨkÞ; ð45Þ

ffiffiffiffiffiffiffi
gð0Þ

q
gijð0Þðδkj −∇jμ

k
dÞ ¼ ϵijððψdÞik −∇jΨk

dÞ: ð46Þ

Using the properties of the antisymmetric two-dimensional
tensor ϵij, it can be proved that the above equations are
equivalent to

−ϵamðδkm −∇mμ
kÞ ¼

ffiffiffiffiffiffiffi
gð0Þ

q
gajð0Þðψk

j −∇jΨkÞ; ð47Þ

−ϵamðδkm −∇mμ
k
dÞ ¼

ffiffiffiffiffiffiffi
gð0Þ

q
gajð0ÞððψdÞkj −∇jΨk

dÞ: ð48Þ

Taking the spatial derivatives of the relations (47) and (48),
using the uniqueness and linearity arguments, one obtains
that
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∇iΨk ¼ ψk
j∇iμ

j; ð49Þ

∇iΨk
d ¼ðψdÞkj∇iμ

j
d: ð50Þ

Combining relations (47) and (48) and (49) and (50), we
arrive at the following:
ffiffiffiffiffiffiffi
gð0Þ

q
gijð0Þðδkj −∇jμ

kÞ ¼ −ϵijðδrj −∇jμ
rÞðψ−1Þkr; ð51Þ

ffiffiffiffiffiffiffi
gð0Þ

q
gijð0Þðδkj −∇jμd

kÞ ¼ −ϵijðδrj −∇jμ
rÞðψ−1

d Þkr: ð52Þ

Multiplying Eq. (51) by Ek and relation (52) by Bk, we
arrive at the component of the gauge currents JiðFÞ, J

i
ðBÞ,

respectively. Having in mind that neglecting heat transport
the gauge currents can be written as

JiðFÞ ¼ σijFFEj þ σijFBBj; ð53Þ

JiðBÞ ¼ σijBFEj þ σijBBBj; ð54Þ

we arrive at the conclusion that the DC conductivities
constitute relations as follows:

σijFF ¼ ϵimψ j
m; σijFB ¼ α

2
ϵimψ j

m; ð55Þ

σijBB ¼ ϵimðψdÞjm; σijBF ¼ α

2
ϵimðψdÞjm: ð56Þ

With the inspection of Eqs. (45) and (46) and (51) and (52),
we draw a conclusion that their consistency is ensured if
ψa

kψk
b ¼ −δab and similarly ðψdÞakðψdÞkb ¼ −δab. On

the other hand, the relations (55) and (56) enable us to write

det σFF ¼ 1

2!
ϵabϵmkðσFFÞamðσFFÞbk ¼

1

2!
ϵabϵmkψa

mψb
k;

ð57Þ

det σBB ¼ 1

2!
ϵabϵmkðσBBÞamðσBBÞbk

¼ 1

2!
ϵabϵmkðψdÞamðψdÞbk; ð58Þ

det σFB ¼ 1

2!
ϵabϵmkðσFFÞamðσFFÞbk

¼ 1

2!

α2

4
ϵabϵmkψa

mψb
k; ð59Þ

det σBF ¼ 1

2!
ϵabϵmkðσBBÞamðσBBÞbk

¼ 1

2!

α2

4
ϵabϵmkðψdÞamðψdÞbk: ð60Þ

Having in mind the consistency condition, mentioned
above, one arrives at the following:

det σFF ¼ 1; det σBB ¼ 1; ð61Þ

which implies that

det σFB ¼ α2

4
; det σBF ¼ α2

4
: ð62Þ

Consequently, for the determinant of the conductivity in
the theory under consideration, we obtain

det σ ¼
�
1

2!

�
2

βϵbj1ϵmkϵ
dj2ϵszψ

m
bψ

k
j1ðψdÞsdðψdÞzj2

¼ β det σFF det σBB ¼ β; ð63Þ

where we set

β ¼ α̃

�
1þ α2

4

�
; ð64Þ

and α̃ ¼ 1 − α2

4
.

Let us assume that the conductivities σab, a, b ¼ F, B
do not depend on the spatial directions. Under these cir-
cumstances they can be considered as scalars. However,
the full conductivity σ of the system is the 2 × 2 matrix
with entries fσFF; σFB; σBF; σBBg and thus on the basis
of Eqs. (61) and (62) one has that det σ ¼ σFFσBB−
σFBσBF ¼ 1 − ðα=2Þ4 ¼ β. It can be seen that the consid-
ered bound is also valid for α ¼ 0, when the matrix is
diagonal, σ ¼ diagfσFF; σBBg.

V. CHARGED BLACK BRANE CASE

In order to study the charged case, let us define for the
adequate Uð1Þ-gauge field, bulk dual tensors [44]

F rj ¼ −
1

2

ϵrjabffiffiffiffiffiffi−gp Fab; Brj ¼ −
1

2

ϵrjabffiffiffiffiffiffi−gp Bab; ð65Þ

with the property ϵrtxy ¼ 1ffiffiffiffi−gp , as r → ∞. It implies that one

can find constant dual currents densities connected with
Maxwell and auxiliary gauge fields, in the boundary theory,
which imply

IiðFÞ ¼ ϵij
�
Ej þ

α

2
Bj

�
; IiðBÞ ¼ ϵij

�
Bj þ

α

2
Ej

�
: ð66Þ

The equations of motion ∂iJiðFÞ ¼ 0; ∂iJiðBÞ ¼ 0 yield

that

∂rE

�
F ir þ α

2
Bir

�
¼ 0; ð67Þ

∂rE

�
Bir þ α

2
F ir

�
¼ 0; ð68Þ
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where we have denoted the spatial average by E½M� ¼
1
L2

R
dx2M for the coordinates that satisfy the periodic

boundary conditions xi → xi þ L.
Just using the duals, at r → 0, we get

E
�
F it þ α

2
Bit

�
¼ ϵimJðFÞm; ð69Þ

E

�
Bit þ α

2
F it

�
¼ ϵimJðBÞm: ð70Þ

The spatial averaged dual electric currents connected
with Maxwell and auxiliary fields are independent of the
radius of the bulk. It means that they can be defined on the
black object event horizon

E

�
F it þ α

2
Bit

�
¼ Ej þ

α

2
Bj ¼ τjkðFÞIðFÞk; ð71Þ

E

�
Bit þ α

2
F it

�
¼ Bj þ

α

2
Ej ¼ τjkðBÞIðBÞk; ð72Þ

where τjkðFÞ and τjkðBÞ are the dual resistivity tensors bounded

with Maxwell and hidden sector gauge fields. One can
relate Ei, Bi, IiðFÞ, I

i
ðBÞ, J

k
ðFÞ, J

k
ðBÞ and obtain

JðFÞa ¼ ϵiaϵjkτ
ij
ðFÞ

�
Ek þ α

2
Bk

�
; ð73Þ

JðBÞa ¼ ϵiaϵjkτ
ij
ðBÞ

�
Bk þ α

2
Ek

�
: ð74Þ

It leads to the following relations:

σijFF ¼ ϵmiϵnjτðFÞmn ; ð75Þ

σijFB ¼ ϵmiϵnjτðFÞmn
α

2
; ð76Þ

σijBB ¼ ϵmiϵnjτðBÞmn ; ð77Þ

σijBF ¼ ϵmiϵnjτðBÞmn
α

2
: ð78Þ

Consequently, it can be found that

det σFF ¼ 1

2!
ϵmiϵnjτðFÞmn ; ð79Þ

det σFB ¼ 1

2!

α2

4
ϵmiϵnjτðFÞmn ; ð80Þ

det σBB ¼ 1

2!
ϵmiϵnjτðBÞmn ; ð81Þ

det σBF ¼ 1

2!

α2

4
ϵmiϵnjτðBÞmn : ð82Þ

As in [8] we assume that the boundary theory constitutes
the particle vortex dual, which leads to the conjecture that

det σFF ¼ 1

det τðFÞ
; det σBB ¼ 1

det τðBÞ
; ð83Þ

which in turn precedes the conditions

ðdet τðFÞÞ2 ¼ 1; ðdet τðBÞÞ2 ¼ 1: ð84Þ
By virtue of the above relations, in the charge case the
determinant of the conductivity is given by

det σ ¼
�
1

2!

�
2

β1ϵi1kϵj1lϵi2aϵj2bτ
i1j1
ðFÞ τ

kl
ðFÞτ

i2j2
ðBÞ τ

ab
ðBÞ

¼ β1 det τðFÞ det τðBÞ ¼ β1; ð85Þ
where β1 is given as follows:

β1 ¼ α̃

�
1þ α2

4

�
: ð86Þ

The bound we have obtained in the charged case is the same
as in the uncharged model found earlier. The parameter β1
is a monotonously diminishing function of the coupling α
from its canonical value 1, when α → 0 and to the value 0
for α → 2. On physical grounds one expects α ≤ 1. The
theory predicts the lowering of the bound from its value 1
towards ≈0.94 at α ¼ 1.

VI. VARIATIONAL ATTITUDE

This section is devoted to the variational techniques
implemented in order to establish the lower bounds on DC
conductivities. The bounds are achieved in an analogous
way as the upper bounds of resistance of a disordered
resistor network, based on Thomson’s principle [45,46]. It
states that if one runs a set of “trial” currents through a
resistor network, being subject to certain boundary con-
ditions, the upper bound of the inverse conductivity can be
computed by applying the variational principle to the power
dissipated by the trial currents in question. It happens that
the power dissipated by trial currents is minimal for the true
distribution of the aforementioned currents.
To proceed further, let us recall that the Stokes equation

on the black brane event horizon can be recast in the form
as derived in Ref. [42],

Z ffiffiffiffiffiffiffi
gð0Þ

q
d2x½2∇ðivjÞ∇ðivjÞ þ ð∇iwþ EiÞð∇iwþ EiÞ

þ ð∇iwd þ BiÞð∇iwd þ BiÞ
αð∇iwþ EiÞð∇iwd þ BiÞ þ vm∇mϕ

ð0Þ∇jϕ
ð0Þvj�

¼
Z

d2x½Qið0Þξi þ Jið0ÞðFÞEi þ Jið0ÞðBÞBi�; ð87Þ

with the adequate definitions of the currents, given by
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Jið0ÞðFÞ ¼ JIðFÞjH ¼
ffiffiffiffiffiffiffi
gð0Þ

q
gijð0Þ½ð∇jðδað0Þt Þ þ Ej − að0Þt δgð0Þtj Þ þ

α

2
ð∇jðδbð0Þt Þ þ Bj − bð0Þt δgð0Þtj Þ�; ð88Þ

Jið0ÞðBÞ ¼ JIðBÞjH ¼
ffiffiffiffiffiffiffi
gð0Þ

q
gijð0Þ½ð∇jðδbð0Þt Þ þ Bj − bð0Þt δgð0Þtj Þ þ

α

2
ð∇jðδað0Þt Þ þ Ej − að0Þt δgð0Þtj Þ�; ð89Þ

Qið0Þ ¼ QijH ¼ −4πT
ffiffiffiffiffiffiffi
gð0Þ

q
gijð0Þδg

ð0Þ
tj : ð90Þ

Additionally one has that the following conservation relations are fulfilled:

∇iJ
ið0Þ
ðFÞ ¼ 0; ∇iJ

ið0Þ
ðBÞ ¼ 0; ∇iQið0Þ ¼ 0: ð91Þ

Further, let us define

Jið0ÞðFÞ ¼
ffiffiffiffiffiffiffi
gð0Þ

q
J i

F; Jið0ÞðFÞ ¼
ffiffiffiffiffiffiffi
gð0Þ

q
J i

F; Qið0Þ ¼ 4πT
ffiffiffiffiffiffiffi
gð0Þ

q
vi: ð92Þ

Consequently the relation (87) may be rewritten in the form

Z
d2x½Qið0Þξi þ Jið0ÞðFÞEi þ Jið0ÞðBÞBi� ¼

Z ffiffiffiffiffiffiffi
gð0Þ

q
d2x

�
2∇ðivjÞ∇ðivjÞ þ vm∇mϕ

ð0Þ∇jϕ
ð0Þvj

þ
�
1

α̃

�
J i

F −
α

2
J i

B

�
− að0Þt vi

��
1

α̃

�
J iF −

α

2
J iB

�
− að0Þt vi

�

þ
�
1

α̃

�
J i

B −
α

2
J i

F

�
− bð0Þt vi

��
1

α̃

�
J iB −

α

2
J iF

�
− bð0Þt vi

�

þ α

�
1

α̃

�
J i

F −
α

2
J i

B

�
− að0Þt vi

��
1

α̃

�
J iB −

α

2
J iF

�
− bð0Þt vi

��
; ð93Þ

which is the subject of the following analysis.

A. Bound on conductivities

In order to establish the bounds on the conductivities in
the holographic model of graphene, we analyze the left-
hand side of Eq. (93), which includes the definition of the
dissipated power. The dissipated power is provided by the
following expression:

P ¼ JiFEi þ JiBBi þQiξi; ð94Þ

where the above quantities are normalized by averaging
them spatially over the black brane event horizon, i.e.,

JiF ¼ E½Jið0ÞðFÞ �; JiB ¼ E½Jið0ÞðBÞ �; Qi ¼ E½Qið0Þ�: ð95Þ

In what follows, we consider compact and flat spatial
dimensions of the dual theory.
Using Eq. (93) the dissipative power (94) implies

P ¼ E

�
2∇ðivjÞ∇ðivjÞ þ vm∇mϕ

ð0Þ∇jϕ
ð0Þvj þ

�
1

α̃

�
J i

F −
α

2
J i

B

�
− að0Þt vi

��
1

α̃

�
J iF −

α

2
J iB

�
− að0Þt vi

�

þ
�
1

α̃

�
J i

B −
α

2
J i

F

�
− bð0Þt vi

��
1

α̃

�
J iB −

α

2
J iF

�
− bð0Þt vi

�

þ α

�
1

α̃

�
J i

F −
α

2
J i

B

�
− að0Þt vi

��
1

α̃

�
J iB −

α

2
J iF

�
− bð0Þt vi

��
: ð96Þ

One can considerP as a functional of vi and theUð1Þ-gauge currents. It means that for an arbitrary conserved periodic set of
charge and heat currents directed along vi one has that
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J i
F ¼ J̃ i

F þ ˜̃J i
F; J i

B ¼ J̃ i
B þ ˜̃J i

B; vi ¼ ṽi þ ˜̃v i; ð97Þ

where ðṽi; J̃ i
F; J̃

i
BÞ stands for the exact solution of the underlying system of hydrodynamical equations, being subject to

the adequate boundary conditions. On the other hand, ð ˜̃v i; ˜̃J i
F;

˜̃J i
BÞ denote the deviations from the exact solution.

Expansion of P reveals that we get

P½vi;J i
F;J

i
B� ¼ P½ṽi þ ˜̃v i; J̃ i

F þ ˜̃J i
F; J̃

i
B þ ˜̃J i

B� ¼ P½ṽi; J̃ i
F; J̃

i
B� þ P½ ˜̃v i; ˜̃J i

F;
˜̃J i

B� þ 2K; ð98Þ

where the quantity 2K implies

2K¼ 2

�
1

α̃

�
J̃ i

F−
α

2
J i

B

�
−að0Þt ṽi

��
1

α̃

�
˜̃J iF−

α

2
˜̃J iB

�
−að0Þt

˜̃vi

�
þ2

�
1

α̃

�
J̃ i

B−
α

2
J i

F

�
−að0Þt ṽi

��
1

α̃

�
˜̃J iB−

α

2
˜̃J iF

�
−að0Þt

˜̃vi

�

þ
�
1

α̃

�
J̃ i

F−
α

2
J i

B

�
−að0Þt ṽi

��
1

α̃

�
˜̃J iB−

α

2
˜̃J iF

�
−að0Þt

˜̃vi

�
þ
�
1

α̃

�
J̃ i

B−
α

2
J i

F

�
−að0Þt ṽi

��
1

α̃

�
˜̃J iB−

α

2
˜̃J iF

�
−að0Þt

˜̃vi

�

þ4∇ðiṽjÞ∇ði ˜̃vjÞ þ2 ˜̃vm∇mϕ
ð0Þ∇iϕ

ð0Þṽi: ð99Þ

It can be shown using the current equations and integration by parts that K ¼ 0. Consequently, it reveals that

P½vi;J i
F;J

i
B� ≥ P½ṽi; J̃ i

F; J̃
i
B�: ð100Þ

As was explained in [8], for the charged black brane one may set vi ¼ 0, which trivially fulfils the constraints equations.
Then we arrive at

P½0;J i
F;J

i
B� ¼

Z ffiffiffiffiffiffiffi
gð0Þ

q
d2x

ϵi1aϵ
j1
b

det σ
½σBBi1j1J a

FJ
b
F þ σFFi1j1J

a
BJ

b
B − ðσFBi1j1 þ σBFi1j1ÞJ a

FJ
b
B�: ð101Þ

On the other hand, using Eq. (96), one arrives at the following:

P½0;J i
F;J

i
B� ¼

Z ffiffiffiffiffiffiffi
gð0Þ

q
d2x

�
1

α̃
ðJ i

FÞ2 þ
1

α̃
ðJ i

BÞ2 −
α

α̃
J i

FJ iB

�
: ð102Þ

Comparison of Eqs. (101) and (102) gives us the conditions
imposed on the electrical conductivities, in the general case.
To commence with, let us analyze limits of the obtained

relations. First one supposes that in the absence of the heat
current, we consider only the single current case. In this
case Bi ¼ 0, α ¼ 0 and the relations (53) and (54) reveal
that

σijBF ¼ 0; σijFB ¼ 0; σijBB ¼ 0; ð103Þ

and Ei ¼ J i
F

σFF
. Taking into account (53) and calculating the

dissipative power we get

P ¼
Z ffiffiffiffiffiffiffi

gð0Þ
q

d2x
J i

FJ iF

σFF
¼

Z ffiffiffiffiffiffiffi
gð0Þ

q
d2xJ i

FJ iF: ð104Þ

It implies that the following relation takes place:

σFF ≥ 1: ð105Þ

Consequently, for the model with only auxiliary Uð1Þ-
gauge field, one has that

Ei ¼ 0; σijFB ¼ 0; ð106Þ

and Bi ¼ J i
B

σBB
. The same reasoning as above leads to the

relation

P ¼
Z ffiffiffiffiffiffiffi

gð0Þ
q

d2x
J i

BJ iB

σBB
¼ 1

α̃

Z ffiffiffiffiffiffiffi
gð0Þ

q
d2xJ i

BJ iB; ð107Þ

and it yields that

σBB ≥ α̃: ð108Þ

In the next step, because of the complexity of the exact
relations, let us suppose the existence only of J x

F and J x
B

currents. By straightforward calculations it can be envis-
aged that P½0;J i

F;J
i
B� reduces to
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P½0;J i
F;J

i
B� ¼

Z ffiffiffiffiffiffiffi
gð0Þ

q
d2x

1

det σ
½σBByy ðJ x

FÞ2 þ σFFyy ðJ x
BÞ2

− ðσFByy þ σBFyy ÞJ x
FJ

x
B�: ð109Þ

Comparing relations (109) and (102), the estimations for
the adequate components of σijαβ tensor can be achieved,

σBByy
det σ

¼ 1

α̃
;

σFFyy
det σ

¼ 1

α̃
;

σFByy þ σBFyy
det σ

¼ α

α̃
: ð110Þ

VII. SUMMARY AND CONCLUSIONS

In our paper we have studied the lower bounds of the
electrical conductivities in the holographic model of the
strongly interacting two-dimensional graphene sheet with
disorder by means of the gauge-gravity duality. It happens
that graphene close to the particle-hole symmetry point is a
laboratory system fulfilling the strong coupling require-
ments. On the gravity side we elaborate the Einstein-
Maxwell theory supplemented by the auxiliaryUð1Þ-gauge
field. The ordinary Maxwell and the auxiliary fields
are coupled by the kinetic mixing term, with a coupling

constant α. In the studies we pay attention to the linear
response of the black brane to the electric fields of the
aforementioned gauge fields. On the field theory side, the
situation coincides with the existence of two transport
currents, which in graphene may correspond to electron and
hole currents. The mixing parameter α may be responsible
for the phase space constraints of scattering events in the
system with Dirac spectrum.
We have found the modifications of the bounds due to

the coupling between the currents. For the physically
expected values of the α-coupling constant that is smaller
than 1, the obtained bound β for the conductivity tensor σ,
det σ ¼ β is only slightly below 1.
It would be of interest to analyze the existence of the

similar bound in Dirac or Weyl semimetals, being the three-
dimensional analogues of graphene.
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