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We study M-theory compactification on T7=Z3
2 in the presence of a seven-flux, metric fluxes, and

KK monopoles. The effective four-dimensional supergravity has seven chiral multiplets whose
couplings are specified by the G2-structure of the internal manifold. We supplement the corresponding
superpotential by a KKLT type nonperturbative exponential contribution for all, or for some of the
seven moduli, and find a discrete set of supersymmetric Minkowski minima. We also study type IIA
and type IIB string theory compactified on T 6=Z2

2. In type IIA, we use a six-flux, geometric fluxes, and
nonperturbative exponents. In type IIB theory, we use F and H fluxes, and nongeometric Q and P
fluxes, corresponding to consistently gauged supergravity with certain embedding tensor components,
without nonperturbative exponents. Also in these situations, we produce discrete Minkowski minima.
Finally, to construct dS vacua starting from these Minkowski progenitors, we follow the procedure of
mass production of dS vacua.

DOI: 10.1103/PhysRevD.101.046018

I. INTRODUCTION

In [1,2], we introduced a method to construct de Sitter
minima, starting from Minkowski minima in type IIA and
type IIB string theory. Here, we apply this method in the
context of M-theory and string theory. All of our models
here have seven complex scalars, which are coordinates of

the coset space ½SLð2;RÞSOð2Þ �7.
We begin with moduli stabilization in M-theory on a

seven-manifold with G2-structure, namely, the twisted
seven-torus. The starting point is the compact manifold
with Z2 × Z2 × Z2 ⊂ G2 holonomy that is obtained as the
toroidal orbifold of the form X7 ¼ T7=Z2 × Z2 × Z2 [3–6].
We make the quotient nonsingular by a choice of a
free orbifold action.1 The Betti numbers of X7 are
ðb0; b1; b2; b3Þ ¼ ð1; 0; 0; 7Þ. This theory is identified with
the maximal rank reduction on the seven-torus and leads
directly to 4d N ¼ 1 supergravity with seven moduli.

Then the twisting is introduced and can be interpreted as a
Scherk–Schwarz reduction on the original torus. To derive
the twisted seven-torus model from M-theory, it was
proposed in [3] how to generalize the action of 11d
supergravity to its “democratic form”, namely, a pseudoac-
tion where the potentials and the dual curvatures appear at
the same time. In 10d, this type of supergravity pseudoac-
tion was proposed in [7]. The pseudoaction allows one to
identify the superpotentials in 4d supergravity, originating
from M-theory on twisted seven-tori. Following [3,5],
below we discuss such superpotentials and use them to
construct dS minima with all moduli stabilized. Another
derivation of an effective 4d supergravity theory could also
be done using the duality-symmetric 11d supergravity
action coupled to M-branes [8].
M-theory on a generalized twisted seven-torus was

proposed and studied in [5,9], following the corresponding
beyond twisted tori constructions in 10d, given in [10]. In
particular, the idea in [10] was to introduce Kaluza-Klein
monopoles KK5 and KKO5-planes, which allow one to
consistently relax some restrictions, known as tadpole
conditions. Then, in [5,9], an analogous construction
was introduced and studied in M-theory. A “beyond twisted
tori” construction was presented by allowing the presence
of KK6 monopoles and KKO6-planes.
The purpose of this article is to use M-theory on the

generalized twisted seven-torus to identify some relatively
simple discrete supersymmetric Minkowski vacua in which
all of the 14 real scalars are stabilized. In turn, these vacua
can be used to stabilize all of the 14 moduli in dS minima,
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following the mechanism of mass production of dS vacua
[1,2]. This mechanism is applicable to any M-theory/string
theory motivated superpotential satisfying certain condi-
tions. However, all examples given in [1,2] were based
on the KL-type racetrack superpotentials containing at least
two nonperturbative exponential terms for each of the
moduli [11].
In this paper we will show that, by taking into account

polynomial flux terms in superpotentials originating from
M-theory/string theory, one can achieve dS vacuum stabi-
lization in models with a single exponent for each field.
Alternatively, by including additional flux contributions,
we can stabilize dS vacua in models where only some of the
moduli have exponential terms in the superpotentials. Some
of these M-theory models have also an interpretation as
type IIA models compactified on T6=Z2

2 with fluxes.
Finally, we will present a particular class of models in

type IIB string theory, describing the seven moduli com-
pactified on T 6=Z2

2 with fluxes. The origin of one of the
nongeometric fluxes in this model is subtle: it was con-
jectured in [12] to be present, based on the S-duality of the
theory, once the geometric flux is introduced. We show that
in this model one can construct stable dS vacua without
using any nonperturbative exponential contribution in the
superpotential.

II. GENERALIZED TWISTED SEVEN-TORUS

Following the discussion in [3,5], where the seven-
moduli model was derived from M-theory, we take the
Kähler potential for the seven chiral superfields Φi to be2

K ¼ −
X7
i¼1

log ð−iðΦi − Φ̄iÞÞ: ð1Þ

The superpotential derived in [3,5] has the generic form
Wpert ¼ g7 þGiΦi þ 1

2
MijΦiΦj. In the present work, we

will use this superpotential, with two additional modifica-
tions. First, we set Gi ¼ 0, in order to have only constant
and quadratic terms in the moduli. Second, we add to this
superpotential a KKLT-type nonperturbative exponential
term. Therefore, the resulting W is

W ¼ g7 þ
1

2
MijΦiΦj þ

X7
i¼1

AieiaiΦ
i
: ð2Þ

Here, g7 is a seven-flux contribution, whereas terms
quadratic in the moduli originate from geometric fluxes.3

Here, all parameters in W are real. The matrix Mij is
symmetric and all of its diagonal elements vanish.
Therefore, it has 21 parameters. One could generalize
this setting and use racetrack superpotentials, following
[1,2]. In that case, dS vacuum stabilization is possible even
in the absence of the term g7 þ 1

2
MijΦiΦj. The goal of this

paper is to explore alternative possibilities, using no more
than a single nonperturbative exponential term for each of
the moduli.
The nonperturbative exponential terms might arise

from wrapped M2-branes. It was shown in [15] that in
M-theory compactified on manifolds of G2 holonomy,
membranes wrapped on 3-cycles induce nonzero correc-
tions to the superpotential. In the T 7=Z3

2 model there are
seven 3-cycles. Therefore, one expects exponents in W for
each of the seven moduli, where ImΦi are the volumes of
these seven 3-cycles.
To find supersymmetric Minkowski vacua, one has to

solve the equations ∂iW ¼ 0 and W ¼ 0. The first of these
equations gives

−iaiAieiaiΦi ¼ MijΦj; ð3Þ

which can be solved for the coefficients Ai of the non-
perturbative terms, resulting in

Ai ¼ ia−1i e−iaiΦiMijΦj: ð4Þ

We split Φi ¼ θi þ iϕi and note that the solution is con-
sistent at θi ¼ 0. Then, we substitute the parameters Ai

evaluated at the extremum, ϕi ¼ ϕi
0, θ

i ¼ θi0 ¼ 0, back into
the superpotential. After that, we subtract from the expres-
sion ofW the constant term thus obtained. This allows us to
fix the parameter g7 and to satisfy also the equation W ¼ 0.
This solves the problem of finding a supersymmetric
Minkowski vacuum in the seven-moduli Φi model.
Therefore, given a free choice of parameters, following

this path one can obtain a supersymmetric Minkowski state.
We will often find that the number of free parameters is
much greater than the number of equations, which may
allow us to omit some of the terms in the superpotential
and still obtain a supersymmetric Minkowski vacuum.
However, if we want to implement the procedure proposed
in [1] for producing dS minima, we have to require
additionally that the potential does not have flat directions,

2In [13], the seven moduli model was derived from 11d
supergravity compactified on S7. It has the same Kähler potential
as in (1); however, the superpotential is different, defined by the
regular embedding of ½SUð1; 1Þ�7 into E7ð7Þ and underlying
octonian structure. The anti–de Sitter (AdS) critical points in
these models were derived using Machine Learning software.
We are grateful to N. Bobev, T. Fischbacher, and K. Pilch for
attracting our attention to these constructions.

3The seven-moduli case in [2] is now equivalent to M-theory
on a seven-torus T 7=Z3

2, in the presence of a seven-flux. The
terms quadratic in moduli, coming from twisting of the seven-
torus in M-theory (or, from geometric fluxes in IIA), were not
used in [2], but KL-type double exponents were added to a seven-
flux instead. D6/O6 and anti-D6 are a reduction fromM-theory to
string theory of KK6(KKO6). The relation between D6 and KK
monopoles in 11d is known as oxidation; see [14].
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or, equivalently, that it has a positive definite mass matrix in
the vacuum, corresponding to its second derivatives. The
mass matrix in a supersymmetric Minkowski vacuum is

VMink
i|̄ ¼ mikgkk̄mk̄ |̄ ¼ eKWikgkk̄W̄k̄ |̄: ð5Þ

Therefore, in the seven-moduli model we are considering,
flat directions are given by the zero modes of

Wij ¼ ∂i∂jW ¼ Mij − δijAia2i e
iaiΦi ; ð6Þ

evaluated in the vacuum. Notice that, if we have exponents
in all directions, as in (2), the matrix Wij is a generic
symmetric matrix, including nonvanishing diagonal terms.
Since gi|̄ is positive definite, one or more zero modes are in
fact present in the mass matrix when detWij ¼ 0. However,
as we will show in several examples, this is actually a quite
restrictive condition, which does not hold in generic
models, unless peculiar cancellations occur. Therefore, in
general one expects that

detWij ≠ 0; ð7Þ

and no flat directions are present in the mass matrix.
In our previous papers [1,2], where only constant terms

in W were present, a KL-type double exponent was
necessary for each direction in the moduli space in order
to obtain stable solutions. All such models do not have flat
directions, by construction. Meanwhile in the new set of
models discussed in this paper one may encounter flat
directions, but one can eliminate them by adding fluxes. In
each of the models to be studied in this paper we found that
the flat directions are absent in Minkowski vacua for a
broad range of parameters, i.e., no fine tuning is necessary.
Furthermore, by adding more flux contributions, one can

eliminate some of the single exponents, and by adding extra
contributions from S-dual fluxes, as in (15), one can
eliminate all of the exponents, still without flat directions.
This is one of the central, most unexpected results of
this paper.
In the presentation of our examples, we split the seven-

moduli in a type IIA language, as

Φi ¼ fS; TI; UJg; I; J ¼ 1; 2; 3: ð8Þ

For convenience, we keep the same notation also for
type IIB examples in Sec. V. Following also [5], the 21
nonvanishing terms contained in Mij, in the case of
effective supergravities coming from twisted reductions
of M-theory on a X7 ¼ T7=Z3

2 orbifold with fluxes, can be
represented as:

1

2
MijΦiΦj ¼ SbKUK þ UICIJTJ þ aI

U1U2U3

UI

þ cI
T1T2T3

TI
þ SdKTK: ð9Þ

The 21 entries of Mij are now given in terms of the
parameters aI, bK , cI , dK , and CIJ. However, for our
purpose of finding discrete supersymmetric Minkowski
vacua, it is sufficient to use only some of these terms.

A. Model 1, with S, T, and U exponents

In this first class of models, we engage only 12 terms in
Mij and keep one exponent for each of the seven directions.
The resulting superpotential is then

W1 ¼ g7 þ bKSUK þ CIJUITJ þ ASeiaSS þ
X
I

ATI
eiaTI TI

þ
X
I

AUI
eiaUI

UI : ð10Þ

In the vacuum, we have a total of 19 free parameters: 7 ai,
3 bI and 9 parameters CIJ. Instead of fixing all of them and
looking for the minimum of the potential, one can use
8 equations ∂iW ¼ 0 and W ¼ 0 to find 8 parameters g7
and Ai such that these equations are satisfied at a chosen
point Φi in moduli space, which therefore describes a
supersymmetric Minkowski vacuum. This still leaves
plenty of free parameters to control the values of masses
of all moduli in the vacuum and to ensure that there are no
flat directions. As we will show in numerical examples,
many options are available, even if one does not engage
some of the exponents. We show one explicit example
with unconstrained parameters, and another one where the
tadpole conditions are satisfied without sources.

B. Model 2, without S exponent

A second class of models we consider is a subclass of the
previous one, in which we set AS ¼ aS ¼ 0 from the very
beginning. In other words, we again use the 12 terms from
theMij matrix and add the exponents in all of the directions
but S. The superpotential in this case takes the form:

W2 ¼ g7 þ bKSUK þ CIJUITJ

þ
X
I

ATI
eiaTI TI þ

X
I

AUI
eiaUI

UI : ð11Þ

Solving W ¼ 0 and ∂iW ¼ 0, in order to find a super-
symmetric Minkowski solution, will now fix the parameters
g7, ATI

, AUI
, together with one of the parameters among bK

or CIJ, in (11). As it turns out, this does not prohibit a
solution. Indeed, explicit examples of this class of models
are possible. We present one such solution in Sec. IV.
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C. Model 3, without U exponents

In the third class of models, we consider 15 terms from
the matrix Mij and add the exponents only in four
directions, namely S and TI. In particular, it turns out that
we do not need to add exponents in the UK directions. This
is interesting, since in [2,16] such terms were employed in
order to facilitate stable dS vacua in type IIA supergravity
constructions, in which the only perturbative term inW was
a constant flux. Here we find that, by including in W
geometric fluxes polynomial in the moduli and looking
first for a supersymmetric Minkowski minimum, some of
the nonperturbative exponential terms are not required.
Therefore, we consider the superpotential

W3 ¼ g7 þ aI
U1U2U3

UI
þ bKSUK þ CIJUITJ

þ ASeiaSS þ ATI
eiaTI TI ; ð12Þ

which has 24 parameters. Again, we have to solve the
equations ∂iW ¼ 0 andW ¼ 0, which will fix 8 parameters
in W. We are then free to choose the remaining parameters
in order to obtain appropriate masses in Minkowski. We
present an explicit numerical example of this class of
models in Sec. IV.

D. Model 4, without T and U exponents

In this fourth class of models, we engage 18 terms from
the matrixMij and add the exponential contribution only in
one direction, namely S. In particular, in this case we find
that there is no need to add exponents in the TI and UK
directions. Therefore, the superpotential is

W4 ¼ g7 þ aI
U1U2U3

UI
þ bKSUK þ CIJUITJ

þ cI
T1T2T3

TI
þ ASeiaSS; ð13Þ

which has 21 parameters. We solve the 8 equations
∂iW ¼ 0 and W ¼ 0 once more and fix the remaining
free parameters to produce Minkowski vacua without flat
directions. We show a numerical realisation of this model
in Sec. IV.

III. GENERALIZED TWISTED SIX-TORUS

Following [5,9,10], in type IIA string theory compacti-
fied on T6

Z2×Z2
one finds that only 15 terms are available,

out of the total 21 terms present in M-theory and given
in (9). In particular, the last two terms in (9), namely
cI T1T2T3

TI
þ SdKTK, with 6 parameters, cI and dK , are absent

in standard type IIA orientifold constructions. Furthermore,
the six-flux f6 in type IIA replaces the seven-flux g7 of the
M-theory models. In the notation of [9], with a ¼ 1, 2, 3
and m ¼ 4, 5, 6, the 3 terms aI U1U2U3

UI
correspond to

two-fluxes Fam. The 3 terms of the form bISUI correspond
to nongeometric fluxes, with bI defined by ωmn

c. Finally,
the 9 terms of the form CIJUITJ correspond to non-
geometric fluxes, where CIJ is defined by ωbp

m, ωbc
a.

Thus, our Models 1, 2, 3 are also models in type IIA.
Instead, our M-theory Model 4 is not related to standard
type IIA orientifold constructions, due to the presence of
the term cI T1T2T3

TI
.

The tadpole conditions require spacetime filling sources,
such as O6 planes, D6 branes, and KK monopoles, as
explained in detail in [9,10]. In these cases, the combina-
tions of fluxes

P
I a

IbI and
P

J a
JCJI (see Table 2 in [9])

do not have to vanish, but can be canceled by specific
O6/D6 sources. Similarly, the expressions bICIJ þ bJCII

and CIJCJK þ CIKCJJ do not need to be set to zero, but can
be canceled by contributions from (KK5/KKO5) and from
(KK5/KKO5)’, respectively, where these sources are
wrapped on specific internal cycles.
In Models 3 and 4, we need to consider all of these

conditions, while in Models 1 and 2 the first two are
satisfied automatically, since aI ¼ 0. The fact that the
tadpole conditions can be satisfied in the presence of
sources means, as it was already suggested in [9,10], that
there is no need to enforce the Jacobi constraints on flux
parameters, which would be required in the absence of
sources. Our examples will include one case where the
tadpole identities are satisfied even without sources, as well
as more general cases with sources and relaxed Jacobi
constraints.

IV. M-THEORY EXAMPLES

In this section, we investigate the models described
above, in the context of an effective 4dN ¼ 1 supergravity
description and present numerical examples. The Kähler
potential, in our conventions, takes the form (1) and the
complete superpotential is given in Eq. (2) and Eq. (9).
After solving for the supersymmetric Minkowski vacuum
and choosing the free parameters such that there are no
flat directions, we follow the mass production mechanism
[1,2] in order to find a dS solution. We refrain from giving
the details of this construction here and choose to present
only the independent set of parameters and masses in
Minkowski as well as in dS.
One important comment concerns the uplifting pro-

cedure, which is well understood in both type IIB as well
as type IIA string theory. It is based on pseudocalibrated
Dp-branes [17] and results in an equivalent procedure of
supplementing 4d, N ¼ 1 supergravity by a nilpotent
multiplet.4 In M-theory, the analogous procedure has not

4Examples of dS vacua without an uplifting anti-Dp-brane
(without a nilpotent multiplet) based on perturbative and non-
perturbative contributions are given in [18] and based on higher
derivative R4 correction in M-theory models in [19].
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been worked out in detail yet and it will be a matter of
future investigations.

A. Model 1, with S, T, and U exponents

The superpotential of this model is given in (10). For our
first example, we choose to solve the Minkowski con-
ditions W ¼ 0 and ∂iW ¼ 0 in terms of the parameters AS,
ATI

, AUI
(I ¼ 1, 2, 3), and the seven-flux g7. All of the

other parameters, as well as the position of the minimum in
moduli space, remain free. Then, we choose values for
these free parameters in a way that avoids flat directions,
which might happen in case of accidental cancellations, for
very specific values of the parameters. One possible choice
for the free parameters is given in Table I. These parameters
lead to a stable, supersymmetric Minkowski vacuum with
canonical masses given in Table II.

B. Model 1, with the tadpole condition satisfied
without sources

Another interesting variation of the model with bK and
CIJ terms is connected to the tadpole conditions, as taken
from Table 2 of [9]. Usually the tadpole conditions are
satisfied by inclusion of sources. However, we find that, if
we include exponents in all directions, we are able to satisfy
all of the tadpole conditions without sources in this model.
The relevant tadpole conditions, without sources, are:

bICIJ þ bJCII ¼ 0;

CIJCJK þ CIKCJJ ¼ 0; ðno summationÞ: ð14Þ

We choose to solve these conditions in terms of the CIJ

with I ≠ J, keeping the other parameters as in Table I. This
leads to a stable solution with masses given in Table III.

C. Model 2, without S exponent

It is possible to set AS ¼ 0 from the very beginning, as
given in (11), in order to eliminate the nonperturbative
contributions for the S-direction. Then, solving the 8
supersymmetric Minkowski equations for such a reduced
model gives a restriction on one of the flux parameters, for
example b1, besides the 7 parameters g7, ATI

, and AUI
.

Keeping all of the other parameters the same as in Table I
leads to a stable solution, with masses given in Table IV.

D. Model 3, without U exponents

The superpotential of this model is given in (12).
Compared to Model 1 and Model 2, it contains an addi-
tional term aI U1U2U3

UI
, which allows one to build dS vacua

without the U-exponent. When evaluating the conditions
for supersymmetric Minkowski vacua, we can now solve
for the three parameters aI (these aI parameters should not
be confused with the parameters in the exponents, aΦi

). We
find a stable dS solution with the same parameters as in
Table I and give the masses in Table V.

E. Model 4, without T and U exponents

The superpotential of Model 4 is defined in (13).
Including the terms cI T1T2T3

TI
, from (13), we find that it

is in fact possible to find a Minkowski solution without

TABLE I. Our set of chosen parameters for Model 1. Note that
S0 corresponds to the imaginary part of the modulus, similarly for
all of the other moduli. The values of the moduli UI are chosen in
this way because, in our conventions, ImðUIÞ corresponds to the
volume of the internal manifold, which should be large in IIA.
Included are the downshift Δg7 and uplift parameter μ4 for the
mass production procedure.

S0 1.0 aS 1.0 C11 0.11 C32 0.32
T1;0 1.1 aT1

1.1 C12 0.12 C33 0.33
T2;0 1.2 aT2

1.1 C13 0.13 b1 0.55
T3;0 1.3 aT3

1.1 C21 0.21 b2 0.60
U1;0 5.1 aU1

0.51 C22 0.22 b3 0.65
U2;0 5.2 aU2

0.52 C23 0.23 Δg7 5 × 10−3

U3;0 5.3 aU3
0.53 C31 0.31 μ4 9 × 10−9

TABLE II. The canonical normalized masses for Model 1. We
choose to give only the masses of the moduli, omitting the axions.
The behavior follows exactly as described in [2].

m1 m2 m3 m4 m5 m6 m7

Mk 0.6421 0.4700 0.3216 0.1757 0.1406 0.1129 0.08219
dS 0.6427 0.4705 0.3218 0.1758 0.1407 0.1130 0.08227

TABLE III. The canonical normalized masses for Model 1 with
all tadpole conditions solved.

m1 m2 m3 m4 m5 m6 m7

Mk 0.3006 0.1641 0.1179 0.07467 0.06229 0.03988 0.02517
dS 0.2997 0.1637 0.1176 0.07449 0.06227 0.03976 0.02513

TABLE IV. The canonical normalized masses of the moduli
for Model 2 without nonperturbative contributions for the S
direction.

m1 m2 m3 m4 m5 m6 m7

Mk 0.6360 0.4629 0.3295 0.1491 0.1225 0.09989 0.03602
dS 0.6365 0.4633 0.3297 0.1492 0.1226 0.09993 0.03607

TABLE V. The canonical normalized masses for Model 3,
without nonperturbative exponential corrections in the
U-directions.

m1 m2 m3 m4 m5 m6 m7

Mk 0.2569 0.2342 0.1706 0.1424 0.1260 0.1030 0.02566
dS 0.2572 0.2344 0.1707 0.1425 0.1261 0.1030 0.02565
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any exponents other thanASeiasS; i.e., we setATI
¼ AUI

¼ 0

for all I. Instead of solving for the prefactors of the exponents
in the T and U directions, we now obtain the solutions in
terms of the parameters aI and cI of the terms quadratic inU-
and T-moduli. Once again, we use the parameters of Table I
and obtain the Minkowski and dS masses for the moduli
given in Table VI. Once more, we found a stable dS solution
after the mass production procedure.
To summarize the results obtained so far, in Model 2,

Model 3, and Model 4 we find that quadratic tree-level
contributions to the superpotential can take the place of
some of the nonperturbative exponential terms that are
usually required.

V. IIB THEORY, GAUGED SUPERGRAVITY
AND DS VACUA

In this section, we continue the investigation of the
seven-moduli model with the Kähler potential given in (1).
The superpotential W of the type IIB theory [12,20,21] has
the following 3 structures: contributions coming from the
F-flux, from the H-flux, and from the Q-flux, which are all
known fluxes in type IIB string theory. In addition, it was
conjectured in [12] that certain P-fluxes should be present
due to S-duality of string theory. In [20], it was recognized
that terms in W of the form coming from the conjectured
P-fluxes appear naturally as components of gauged super-
gravity in 4d, when the embedding tensor procedure is
performed consistently.
For our purpose we will keep only terms even in the

moduli in the superpotential; namely, we will use

W5 ¼ a0 þ aI
U1U2U3

UI
þ SðbIUI þ b3U1U2U3Þ

þ TKðCIKUI − cKU1U2U3Þ

− STK

�
dK −DIK U1U2U3

UI

�
: ð15Þ

The first, second, third, and fourth line represent the even
parts ofF-,H-,Q-, andP- flux, respectively.We find that the
terms with coefficients bI andDIK are not necessary for full
stabilization of moduli, in this model. One can use (15), with
or without terms proportional to bI andDIK , as a new model
which does not have non-perturbative exponents inW. Thus,
we use (15) with DIK ¼ 0 as a new model which does not
have nonperturbative exponents in W. As a numerical
example, we have found that there is a Minkowski minimum

without flat directions. This means that we were able to
employ this model in order to get a dS minimum, using the
technology developed in [1,2].

A. Model 5, without any exponents

In order to find an explicit example of a dS vacuum from
the above model, we again have to solve the Minkowski
conditions, W ¼ 0 and ∂iW ¼ 0, where i ¼ S; TI; UI with
I ¼ 1, 2, 3. This will fix 8 of the parameters in (15). We
choose, in this case, to solve for the following set:
a0; aI; b3, and cK . For the position in moduli space, the
downshift to AdS, Δa0 ¼ Δg7, and uplift to dS, we choose
the same values as in Table I. These values are supple-
mented by the ones in Table VII.
We found a stable Minkowski solution and then were

able to follow the mass production procedure to obtain a
dS vacuum with masses given in Table VIII. We also found
that it is easy to change the parameters and still have
dS minima, without particular fine-tuning. This model is
very interesting since it has only polynomial terms in the
superpotential.

VI. DISCUSSION

M-theory is supposed to unify all of the consistent
versions of superstring theory. At low energies it should
be approximated by 11d supergravity. Furthermore, it
should also describe various extended objects, like M2
and M5 branes, KK6 monopoles, and KKO6-planes, such
that extended objects of string theory, like Dp-branes and
Op-planes, are included. The existence of such a theory was
first conjectured by Witten in 1995. Some early papers on
M-theory include [22–24] and more information can be
found in the books [14,25]. A particularly relevant descrip-
tion of M-theory and 4d gauged supergravity is given in
[3,5,10,20]. We are using these models in our construction
of 4d dS vacua. The main issue in studies of specific models
of dS minima in 4d gauged supergravity is their motivation
from string theory or M-theory.

TABLE VI. The canonical normalized masses for the model
with only one exponent, in the S-direction.

m1 m2 m3 m4 m5 m6 m7

Mk 0.2639 0.2520 0.1469 0.06163 0.04579 0.03365 0.02874
dS 0.2636 0.2513 0.1467 0.06163 0.04565 0.03363 0.02871

TABLE VII. The independent parameters for our Model 5.
These produce the values for the masses in Table VIII. No
particular fine-tuning is necessary.

b1 0.55 C11 −0.11 C21 0.21 C31 0.31 d1 5.1
b2 0.60 C12 0.12 C22 −0.22 C32 0.32 d2 −5.2
b3 0.65 C13 0.13 C23 0.23 C33 −0.33 d3 5.3

TABLE VIII. For the IIB model without exponents, where all
contributions come from tree-level fluxes, we find these canoni-
cal masses for the moduli.

m1 m2 m3 m4 m5 m6 m7

Mk 0.5392 0.4551 0.1037 0.06185 0.05355 0.02389 0.01263
dS 0.5391 0.4552 0.1036 0.06183 0.05357 0.02381 0.01260
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Here we focused on a model where seven complex
scalars are coordinates of the coset space ½SLð2;
R=SOð2Þ�7. This model is available in M-theory and in
type IIA and type IIB string theory. As a technical tool for
constructing dS minima, we use the method of mass
production of dS vacua proposed in [1,2], based on the
possibility to make parametrically small deformations
(downshift and uplift) of a supersymmetric Minkowski
vacuum state, without flat directions. In all of the cases, the
uplift is due to the existence of the pseudocalibrated anti-
Dp-branes in string theory, which in 4d supergravity is
equivalent to the presence of a nilpotent chiral multiplet
[17]. In M-theory, the details of the uplifting procedure
need to be investigated. We presented several classes of
models with stable dS vacua, with numerical examples in
Models 1–5. In these models a better understanding of the
role of the geometric fluxes and tadpole conditions will be
required, based on earlier studies of these issues in [26–28].
In all of the models which we studied in M-theory,

namely Models 1, 2, 3, 4, we used a superpotential W with
polynomial terms in the moduli, of degrees 0 and 2, and a
single nonperturbative KKLT-type exponent for some of
the moduli, as shown in (9). This is different from the case
without terms quadratic in the moduli, where supersym-
metric Minkowski vacua without flat directions are possible
with KL-type double set of exponents in every moduli
direction [1,2]. After adding quadratic terms, we found
supersymmetric Minkowski vacua without flat directions
by engaging a single nonperturbative exponent for each of
the 7 moduli, or only for 4 of them, or only for the S field.
In all of the models of this kind, namely Models 1, 2, 3, 4,
we found locally stable dS minima.

Perhaps the most surprising result is the model in Sec. V,
in type IIB string theory, which we call Model 5. Only
terms which are even polynomials in moduli, of degree 0, 2,
4, are present in (15), and no nonperturbative exponents
are required. In a model of 4d supergravity associated
with IIB string theory presented in Sec. V, all of the terms in
the Kähler and superpotential are identified with type IIB
string theory. The only somewhat unusual term in (15) is

STKd
ðKÞ
0 . It was conjectured to be present in type IIB theory

in [12], to support S-duality. It is interesting that this same
term is also present in M-theory in (9), as well as in a
consistent gauged supergravity in [20]. We have con-
structed supersymmetric Minkowski minima without flat
directions, and the corresponding dS minima in this seven-
moduli model.
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