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We study in s general way the construction of string bit Hamiltonians which are supersymmetric,
We construct several quadratic and quartic polynomials in string bit creation and annihilation operators
ϕ̄A
a1���an , ϕ

A
a1���an , which commute with the supersymmetry generators Qa. Among these operators are ones

with the spinor tensor structure required to provide the lightcone worldsheet vertex insertion factors needed
to give the correct interactions for the IIB superstring, whenever a closed string separates into two closed
strings or two closed strings join into one.
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I. INTRODUCTION

The aim of string bit models [1] is to provide a bona fide
quantum mechanical system whose dynamics leads, in a
certain limit, to string theory. Since most consistent
versions of string theory in a Poincaré invariant background
contain a massless spin 2 particle, a successful string bit
model could also provide a bona fide quantum theory of
gravity.
The central premise underlying string bit models is that

spacetime is, at least in part, an emergent concept. This idea
has close parallels to ’t Hooft’s proposal that the world is a
hologram [2]. String bit models developed from an early
proposal to define the worldsheet system of string theory on
a lightcone lattice: Choose lightcone parametrization [3,4],
τ ¼ xþ, Pþ ¼ 1, where for a Lorentz vector Vμ, V� ¼
ðV0 � V1Þ= ffiffiffi

2
p

and Pμdσ is the Lorentz momentum con-
tained in the element dσ of string, and put the resultant
system on a rectangular σ, τ lattice [5]. Because of the way
σ has been fixed, each lattice site is assigned exactly one
unit m of Pþ. Then a little reflection shows that the lattice
system, after taking the continuum limit of the time
parameter, defines a quantum system of M ¼ Pþ=m
particles (string bits), ordered on a line, moving in the
transverse space only. Their dynamics is Galilei invariant
with m playing the role of Newtonian mass. These simple
observations already show that Pþ is emergent: it is simply
the total Newtonian mass of a chain of a very large number

of string bits. Its conjugate x− “emerges” from the string bit
dynamics.
However, there is an aspect of the story just told that is

artificial. The ordering of the string bits on a chain is by fiat.
If the string bits are indeed independent fundamental
entities, there should be interactions between all pairs of
bits, not just the nearest neighbors of bits ordered on a
chain. In other words, we should be able to describe the
presence of a string bit in the language of second quan-
tization by the action of a creation operator ϕ† on the empty
state j0i, with the dynamics given by the Hamiltonian as a
function of creation and annihilation operators. ’t Hooft has
identified a way to enhance chain ordering by taking a large
N limit [6]. Promote the bit annihilation operator to an
N × N matrix operator ϕβ

α. Then a Hamiltonian with the
structure N−1Trϕ†ϕ†ϕϕ describes chains of bits with
nearest neighbor interactions in the limit N → ∞ [7].
Taking N large rigs the dynamics in favor of chain
formation. But if the nearest neighbor interactions are
not sufficient to make a long chain of bits stable against
decay into smaller chains, continuous strings would not
form. Indeed, the tachyonic instability of the bosonic string
can be traced to such a failure.
As shown by the stability of superstring [8–10], one cure

for such an instability is to include a mix of bosonic and
fermionic string bits [11]. In recent work on these models
[12–17] and in this article, we adorn the string bit
annihilation operator with three types of indices

ðϕA
½a1���an�Þ

β
α : ð1Þ

The Greek letters α; β ¼ 1;…; N are color indices labeling
the matrix elements of the matrix operators, whose function
is to provide a way to favor nearest neighbor chain
interaction. The Hamiltonian is assumed to be invariant
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under color SUðNÞ. Since the adjoint of ðϕAÞαβ has the color
transformation properties of ðϕAÞβα it is convenient to define
the creation operator ðϕ̄AÞβα ¼ ððϕAÞαβÞ†.
Lower case Latin letters ak ¼ 1;…; s. are spin indices,

with the number of spin indices n ¼ 0; 1;…; s. Each
operator is completely antisymmetric under permutations
of the a’s. There are 2s distinct sets of these indices. The
Hamiltonian is assumed to be invariant under OðsÞ rota-
tions of these indices. For generic s these are vector indices,
but for some special values of s, they may alternatively be
taken as spinor indices. Whether or not the string bit system
leads to a Poincaré invariant string theory we specify that ϕ
satisfies commutation relations when n is even and anti-
commutation relations when n is odd. For s > 0 there are
an equal number of bosonic and fermionic annihilation
operators. With this assignment of statistics, the spin
statistics theorem implies that only values of s that admit
spinor representations can lead to the emergence of
Poincaré invariance. In the case of principal interest for
string theory, s ¼ 8 admits the SO(8) spinors comprising
the physical Majorana-Weyl degrees of freedom (d.o.f.)
required of the D ¼ 10 superstring. In the case of the
protostring s ¼ 24 can be taken as 3 SOð8Þ Majorana
spinors.
Finally, the capital Latin superscript A ¼ 1;…; Nf is a

label for internal (nonspin or “flavor”) d.o.f. For the
purposes of this article we make no assumptions about
their structure. In [13] it was shown how to choose their
dynamics so as to generate a Heisenberg spin system on a
chain of bits, which simulates noncompact transverse
coordinates. Such a choice would presumably be impor-
tant for precisely inducing the superstring, but in this
article we leave their structure arbitrary. We have bor-
rowed the terms color and flavor from the standard model,
because their roles in their respective models are similar:
String bits will be permanently confined in color singlet
string as quarks and gluons are in color singlet hadrons.
And flavor distinguishes otherwise identical string bits as
flavor distinguishes otherwise identical quarks and
leptons.
In string bit models, supersymmetry plays a fundamental

role in the dynamics of string formation. Consider a closed
chain of M bits in the limit of very large M. Stringy
behavior can ensue if there are excitation energies above
the ground state of order Oð1=MÞ. This occurs for example
if there are vibrational modes and also for ordinary spin
waves arising from fluctuations between different spin
states of each bit with the same statistics. In both cases
the largeM behavior of the ground energy has the behavior
EðMÞ ∼ αM þ γ=M with γ < 0. In our string bit models, at
order 1=N, a closed chain can split into two similar but
smaller closed chains such thatM ¼ M1 þM2. Then γ < 0
would mean that the longer chain is unstable to decay into
smaller chains (as long as the daughter chains are long
enough). This is ultimately the reason the bosonic closed

string as well as the Neveu-Schwarz (NS,NS) closed string
have tachyonic ground states.
If, however, there are waves arising from fluctuations

between bosonic and fermionic states of each string bit, the
sign of γ reverses and the single string is stable: it requires
added energy to transform into two smaller chains. This is
what happens in the Green-Schwarz lightcone superstring
in which the fermionic worldsheet field S is a rotational
spinor in target space i.e., it creates a target space fermionic
state from a bosonic one and vice versa. But for such 1=M
excitations to be possible each bit must possess a fermionic
and a bosonic state of the same energy: there must be at
least one Grassmann odd operatorQ which commutes with
the Hamiltonian. This is all that is meant by supersymmetry
in the following. It is a lot less supersymmetry than the full
supersymmetry of an emergent superstring, which among
other things would require another Grassmann odd operator
R such that H ¼ R2. This larger supersymmetry is not
necessary for stable string formation, but rather is crucial
for the Poincaré invariance of any emergent string theory.1

In this article we explore ways to construct supersym-
metric string bit Hamiltonians in the presence of internal
nonspin d.o.f. represented by the capital superscript in (1).
In Sec. II we recall some essential features of the string bit
formalism that we need for this work. The construction of
supersymmetric polynomials quadratic and quartic in bit
creation and annihilation operators is developed in Sec. III.
Finally, in Sec. IV, we conclude by applying the tools
developed in Sec. III to build quartic terms, which modify
the Hamiltonian of [13] to supply the necessary prefactors
to produce superstring scattering amplitudes.

II. REVIEW OF THE STRING BIT FORMALISM

The string bit creation and annihilation operators
described in the Introduction satisfy the (anti)commutation
relations

½ðϕA
a1���amÞ β

α ; ðϕ̄B
b1���bnÞ δ

γ ��
≡ ðϕA

a1���amÞ β
α ðϕ̄B

b1���bnÞ δ
γ − ð−Þmnðϕ̄B

b1���bnÞ δ
γ ðϕA

a1���amÞ β
α

¼ δABδmnδ
δ
α δ

β
γ

X
P

ð−ÞPδa1bP1 � � � δanbPn ; ð2Þ

which incorporate the fact that ϕ̄ creates a boson if n is even
and a fermion if n is odd. The sum over P is over all
permutations of 1; 2;…; n.
In [13] we studied a Hamiltonian with a very specific

implementation of the dynamics of these internal “flavor”
d.o.f. We wrote H ¼ HF þHS with HF diagonal in spin,
but nontrivial in flavor, and vice versa for HS

1It is not obvious how much of the symmetry one finds in the
emergent string theory should or even can be present in the string
bit Hamiltonian. After all the latter makes no reference to space at
all, to say nothing of super-Poincaré invariance.
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HF ¼ 2

N

Xs

n¼0

Xs
k¼0

1

n!k!
Trϕ̄A

a1���an ϕ̄
B
b1���bkϕ

C
b1���bkϕ

D
a1���anTABCD

ð3Þ

and for HS

HS ¼ H1 þH2 þH3 þH4 þH5; ð4Þ

where the Hi are

H1 ¼
2

N

Xs

n¼0

Xs
k¼0

s − 2n
n!k!

Trϕ̄A
a1���anϕ̄

B
b1���bkϕ

B
b1���bkϕ

A
a1���an ; ð5Þ

H2 ¼
2

N

Xs−1
n¼0

Xs−1
k¼0

ð−Þk
n!k!

Trϕ̄A
a1���anϕ̄

B
bb1���bkϕ

B
b1���bkϕ

A
ba1���an ; ð6Þ

H3 ¼
2

N

Xs−1
n¼0

Xs−1
k¼0

ð−Þk
n!k!

Trϕ̄A
ba1���anϕ̄

B
b1���bkϕ

B
bb1���bkϕ

A
a1���an ; ð7Þ

H4 ¼
2i
N

Xs−1
n¼0

Xs−1
k¼0

ð−Þk
n!k!

Trϕ̄A
a1���an ϕ̄

B
b1���bkϕ

B
bb1���bkϕ

A
ba1���an ; ð8Þ

H5 ¼ −
2i
N

Xs−1
n¼0

Xs−1
k¼0

ð−Þk
n!k!

Trϕ̄A
ba1���an ϕ̄

B
bb1���bkϕ

B
b1���bkϕ

A
a1���an :

ð9Þ

Torres [18] has shown that both HF and HS commute with
the supersymmetry operators

Qa ¼
Xs−1
n¼0

ð−Þn
n!

Tr½γϕ̄A
a1���anϕ

A
aa1���an þ γ�ϕ̄A

aa1���anϕ
A
a1���an �;

γ ≡ eiπ=4; ð10Þ

fQa;Qbg ¼ 2MNfδab; ð11Þ

M ¼
Xs

n¼0

1

n!
Trϕ̄A

a1���anϕ
A
a1���an ; ð12Þ

where M is the bit number operator, NF is the number of
flavors, and all repeated indices are summed. We have
introduced the complex number γ to reduce clutter in
subsequent equations. The vanishing commutator of Qa

withH guarantees equal numbers of bosonic and fermionic
eigenstates, at each energy level with bit number greater
than 0. In this article we will extend this conclusion to more
general Hamiltonians.
Using the commutation relations (2), it is straightforward

to obtain the action of the Hi on single trace states. We
recall from [11–13] the definition of superfields

ψ̄AðθÞ ¼
Xs

k¼0

1

k!
ϕ̄A
a1���akθ

a1 � � � θak ð13Þ

where θa are Grassmann variables, and using the notation

TðA1; θ1; � � � ;AM; θMÞ ¼ Trψ̄A1ðθ1Þ;…; ψ̄AMðθMÞ; ð14Þ

we find (suppressing flavor indices)

H1Tðθ1;…; θMÞj0i ¼ 2
XM
k¼1

�
s − 2θak

d
dθak

�
Tðθ1;…; θMÞj0i

þ 2

N

XM
k¼1

�
s − 2θak

d
dθak

� X
l≠k;kþ1

Tðθl � � � θkÞTðθkþ1 � � � θl−1Þj0i; ð15Þ

H2Tðθ1;…; θMÞj0i ¼ 2
XM
k¼1

θak
d

dθakþ1

Tðθ1;…; θMÞj0i

þ 2

N

XM
k¼1

X
l≠k;kþ1

θak
d
dθal

Tðθl � � � θkÞTðθkþ1 � � � θl−1Þj0i; ð16Þ

H3Tðθ1;…; θMÞj0i ¼ 2
XM
k¼1

θakþ1

d
dθak

Tðθ1;…; θMÞj0i

þ 2

N

XM
k¼1

X
l≠k;kþ1

θal
d
dθak

Tðθl � � � θkÞTðθkþ1 � � � θl−1Þj0i; ð17Þ
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H4Tðθ1;…; θMÞj0i ¼ −2i
XM
k¼1

θakθ
a
kþ1Tðθ1;…; θMÞj0i

−
2i
N

XM
k¼1

X
l≠k;kþ1

θakθ
a
l Tðθl � � � θkÞTðθkþ1 � � � θl−1Þj0i; ð18Þ

H5Tðθ1;…; θMÞj0i ¼ −2i
XM
k¼1

d
dθak

d
dθakþ1

Tðθ1;…; θMÞj0i

−
2i
N

XM
k¼1

X
l≠k;kþ1

d
dθak

d
dθal

Tðθl � � � θkÞTðθkþ1 � � � θl−1Þj0i: ð19Þ

We note that the differential operators are applied to nearest
neighbors on the same trace when they involve two distinct
Grassmann variables.
The action of theHi on multitrace states takes two forms.

When both annihilation operators contract on the same
trace, the action can be read off from the preceding
formulas. When they act on different traces the action is
to fuse them into a single trace as follows:

H1Tðθ1 � � � θKÞTðη1 � � � ηLÞj0iFusion

¼ 2

N

XK
k¼1

XL
l¼1

�
s − 2θak

d
dθak

�
Tðθkþ1 � � � θkηl � � � ηl−1Þj0i

þ 2

N

XK
k¼1

XL
l¼1

�
s − 2ηal

d
dηal

�
Tðθk � � � θk−1ηlþ1 � � � ηlÞj0i;

ð20Þ
H2Tðθ1 � � � θKÞTðη1 � � � ηLÞj0iFusion

¼ 2

N

XK
k¼1

XL
l¼1

θak
d
dηl

Tðθkþ1 � � � θkηl � � � ηl−1Þj0i

þ 2

N

XK
k¼1

XL
l¼1

ηal
d
dθk

Tðθk � � � θk−1ηlþ1 � � � ηlÞj0i; ð21Þ

with similar transcriptions for the other Hi. Here the
sequence of labels k � � � ðk − 1Þ means k���K;1���ðk−1Þ
and similarly for l � � � ðl − 1Þ. In each case the differential
operators have the same structure as the fission terms, but
the states on the right are a suitable pair of single trace
states. And when there are two distinct Grassmann oper-
ators they act on nearest neighbors on the large trace.

III. SUPERSYMMETRY WITH FLAVOR

The bit annihilation operator with flavor has, in addition
to spinor indices, another “flavor” index not associated with
spin, so we write ϕA

a1���ak and we take the supercharge to be
given by (10). Note that by construction Qa is Hermitian.
Our goal is to construct Hamiltonians which commute with
Qa and with M. To this end we work out the (anti)

commutators (½A;B�� ≡ AB� BA, with the þ sign chosen
only when both A and B are Grassmann odd):

½Qa; ϕ̄A
b1���bk �� ¼ ð−Þkγ�ϕ̄A

ab1���bk þ γ
Xk
l¼1

ð−Þlþkδabl ϕ̄
A
b1���b̂l���bk ;

ð22Þ

½Qa;ϕA
b1���bk �� ¼ −γϕA

ab1���bk þ γ�
Xk
l¼1

ð−Þlþ1δablϕ
A
b1���b̂l���bk ;

ð23Þ
where a hat over an index means that index is deleted. The
second line follows from the Hermitian conjugate of the
first line.

A. Supersymmetry transform of some
spinor-tensor bilinears

For two matrix operators A, B introduce the notation
A ⊗ B to denote the Hilbert space operator products of
independent matrix elements of A and B. This notation
allows us to suppress color indices in the derivations to
follow. When explicit indices are needed we will use the
following convention:

ðA ⊗ BÞβδαγ ≡ Aβ
αBδ

γ : ð24Þ

The Hermitian conjugate of these bilinears is given by

½ðA ⊗ BÞβδαγ�† ¼ ðBδ
γÞ†ðAβ

αÞ† ¼ B̄γ
δĀ

α
β ¼ ðB̄ ⊗ ĀÞγαδβ: ð25Þ

In addition to taking the trace of A or B, one can form a
matrix operator from A ⊗ B in two ways, which we
distinguish by a right arrow over the operator if we contract
β with γ and a left arrow if we contract α with δ. Thus if
C ¼ A ⊗ B we have

C⃗β
α ≡ Cγβ

αγ ¼ Aγ
αB

β
γ ¼ ðABÞβα; ð26Þ

C⃖β
α ≡ Cβγ

γα ¼ Aβ
γB

γ
α: ð27Þ
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We shall usually choose the first way which corresponds to
usual matrix multiplication AB. The second way would
correspond to BA only if the operator matrix elements all
commute. Then we can define several bilinear operators
with simple supersymmetry transformation rules. Two
bosonic bilinears are

ρAB ¼
Xs
n¼0

1

n!
ϕ̄A
b1���bn ⊗ ϕB

b1���bn ; ð28Þ

ρ0AB ¼
Xs
n¼0

n
n!

ϕ̄A
b1���bn ⊗ ϕB

b1���bn : ð29Þ

One must keep in mind that these bilinears have four
suppressed color indices, a pair for each of the factor
operators. Since Qa is a color singlet one body operator, its
commutator with any bilinear leaves these color indices and
the ordering of operators undisturbed. Then we calculate
the commutators

½Qa; ρAB� ¼
Xs

n¼0

1

n!
ð½Qa; ϕ̄A

b1���bn �� ⊗ ϕB
b1���bn þ ð−Þnϕ̄A

b1���bn ⊗ ½Qa;ϕB
b1���bn ��Þ

¼
Xs

n¼0

1

n!

�
ð−Þnγ�ϕ̄A

ab1���bn þ γ
Xn
l¼1

ð−Þlþnδabl ϕ̄
A
b1���b̂l���bn

�
⊗ ϕB

b1���bn

þ
Xs
n¼0

1

n!
ð−Þnϕ̄A

b1���bn ⊗
�
−γϕB

ab1���bn þ γ�
Xn
l¼1

ð−Þlþ1δablϕ
B
b1���b̂l���bn

�

¼
Xs

n¼0

�ð−Þn
n!

γ�ϕ̄A
ab1���bn ⊗ ϕB

b1���bn þ
ð−Þn−1
ðn − 1Þ! γϕ̄

A
b1���bn−1 ⊗ ϕB

ab1���bn−1

�

þ
Xs
n¼0

�
−
ð−Þn
n!

γϕ̄A
b1���bn ⊗ ϕB

ab1���bn −
ð−Þn−1
ðn − 1Þ! γ

�ϕ̄A
ab1���bn−1 ⊗ ϕB

b1���bn−1

�

¼ 0 ð30Þ

after shifting the sum index of the second terms in each set of parentheses n → nþ 1.
For ρ0, we have

½Qa; ρ0AB� ¼
Xs

n¼0

� ð−Þn
ðn − 1Þ! γ

�ϕ̄A
ab1���bn ⊗ ϕB

b1���bn þ
nð−Þn−1
ðn − 1Þ! γϕ̄

A
b1���bn−1 ⊗ ϕB

ab1���bn−1

�

þ
Xs

n¼0

�
−

ð−Þn
ðn − 1Þ! γϕ̄

A
b1���bn ⊗ ϕB

ab1���bn −
nð−Þn−1
ðn − 1Þ! γ

�ϕ̄A
ab1���bn−1 ⊗ ϕB

b1���bn−1

�

¼
Xs

n¼0

ð−Þn
n!

ðγϕ̄A
b1���bn ⊗ ϕB

ab1���bn − γ�ϕ̄A
ab1���bn ⊗ ϕB

b1���bnÞ

≡ γηaAB − γ�η̄aAB: ð31Þ

The next to last line is obtained by writing n ¼ n − 1þ 1 in the second terms inside parentheses on the previous two lines
and then recognizing that the “n − 1” parts cancel against the first terms, leaving the next to last line with the n summation
index shifted by 1.
We can similarly consider the supersymmetry properties of the Grassmann odd bilinears η, η̄, defined in the previous

equation

ηaAB ¼
Xs−1
n¼0

ð−Þn
n!

ϕ̄A
a1���an ⊗ ϕB

aa1���an : ð32Þ

Forming γηaAA þ γ�ηa†AA saturating the color indices as the trace of a matrix product, and summing over all flavors A gives the
supercharge Qa. Then we calculate
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fQa; ηbABg ¼
Xs−1
n¼0

ð−Þn
n!

�
ð−Þnγ�ϕ̄A

ab1���bn þ γ
Xn
l¼1

ð−Þlþnδablϕ̄
A
b1���b̂l���bn

�
⊗ ϕB

bb1���bn

þ
Xs
n¼0

1

n!
ϕ̄A
b1���bn ⊗

�
−γϕB

abb1���bn þ γ�
Xn
l¼1

ð−ÞlδablϕB
bb1���b̂l���bn

�
þ δabγ

� Xs
n¼0

1

n!
ϕ̄A
b1���bn ⊗ ϕB

b1���bn

¼
Xs−1
n¼0

1

n!
ðγ�ϕ̄A

ab1���bn ⊗ ϕB
bb1���bn þ nγϕ̄A

b1���bn−1 ⊗ ϕB
abb1���bn−1Þ

þ
Xs
n¼0

1

n!
ð−γϕ̄A

b1���bn ⊗ ϕB
abb1���bn − nγ�ϕ̄A

b1���bn−1 ⊗ ϕB
bb1���bn−1Þ þ δabγ

�Xs

n¼0

1

n!
ϕ̄A
b1���bn ⊗ ϕB

b1���bn

¼ δabγ
� Xs
n¼0

1

n!
ϕ̄A
b1���bn ⊗ ϕB

b1���bn : ð33Þ

By taking the Hermitian conjugate, we learn that

fQa; ηb†BAg ¼ δabγ
Xs

n¼0

1

n!
ϕ̄A
b1���bn ⊗ ϕB

b1���bn ð34Þ

and then it immediately follows that fQa;Qbg ¼ 2MNfδab
where M ¼ P

n
1
n!Trϕ̄

A
b1���bnϕ

A
b1���bn is the bit number oper-

ator. Another immediate corollary is

fQa; γηbAB − γ�ηb†BAg ¼ 0: ð35Þ

This process of building bilinears can be extended to
higher rank spinor-tensors. Consider the bilinears

ΩAB;p
a1���al ¼

X
k

ð−Þkl
k!

ϕ̄A
a1���apb1���bk ⊗ ϕB

apþ1���alb1���bk ð36Þ

which include as special cases the bilinears ρ, ηa and η̄a

discussed above. In the Appendix, we show that the (anti)
commutators of Qc with these bilinears are

½Qc;ΩAB;p
a1���al �� ¼ γ

Xp
m¼1

ð−ÞmþpδcamΩ
AB;p−1
a1���âm���al

− γ�
Xl

m¼pþ1

ð−ÞmδcamΩAB:p
a1���âm���al ð37Þ

where γ ¼ eiπ=4.

B. Supersymmetric bilinears

Among the bilinears constructed in the last subsection
we have noted that ρAB and the linear combination γηbAB −
γ�ηb†BA are supersymmetric, i.e., they commute and anti-
commute, respectively, with Qc. In fact they are just the
first two of a sequence of such bilinears we can form from
linear combinations of the ΩAB;p

a1���al . In the following we
suppress the flavor labels A, B since they are simply
spectators.
For a given l, let Ea1���al be a completely antisymmetric

spinor-tensor of rank l. For l ¼ s the unique choice is the
Levi-Cevita tensor. But for l < s there are multiple choices.
Then we calculate

½Qc; Ea1���alΩp
a1���al �� ¼ γ

Xp
m¼1

ð−ÞmþpEa1���c���alΩp−1
a1���âm���al − γ�

Xl

m¼pþ1

ð−ÞmEa1���c���alΩp
a1���âm���al

¼ γð−Þpþ1pEca1���al−1Ωp−1
a1���al−1 þ γ�ðl − pÞEca1���al−1Ωp

a1���al−1 : ð38Þ

In the first line the index c occupies themth location in the superscript of E. Then the last line is obtained by moving c to the
first location and relabeling the summation indices a1 � � � âm � � �al → a1 � � � al−1.
Now make the ansatz

ΩAB
El

¼
Xl

p¼0

cpEa1���alΩAB;p
a1���al ð39Þ

and require, still suppressing flavor indices,
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0 ¼ ½Qc;ΩE�� ¼
Xl

p¼0

cp½γð−Þpþ1pEca1���al−1Ωp−1
a1���al−1

þ γ�ðl − pÞEca1���al−1Ωp
a1���al−1 �

¼
Xl−1
p¼0

½cpþ1γð−Þpðpþ 1Þ

þ cpγ�ðl − pÞ�Eca1���al−1Ωp
a1���al−1 ð40Þ

which implies the recursion relation

cpþ1 ¼ −cp
ð−Þpγ�ðl − pÞ

γðpþ 1Þ ð41Þ

with the solution, setting c0 ¼ γl,

cn ¼ ð−Þnðnþ1Þ=2γ�nγl−n
�
l
n

�
: ð42Þ

C. Supersymmetric quartics

We now turn to the search for candidates for a super-
symmetric string bit Hamiltonian, under the working
hypothesis that H will be quartic in the string bit creation
and annihilation operators. The simplest possibilities are to
take the products of pairs of the supersymmetric bilinears
given in the previous section:

∶ΩAB
El

⊗ ΩCD
Fl0

∶ ð43Þ

is supersymmetric by construction. Except for l; l0 ¼ 0 or
¼ s, E and F break the OðsÞ symmetry, which could be
restored either by suitable averages over E, F, or by adding
new d.o.f. such as worldsheet coordinate fields, to com-
pensate. Here, as before, the ⊗ symbol signifies that none
of the suppressed color indices are contracted. Of course,
since we require that the Hamiltonian be a color singlet, all
these indices must be contracted. For example, the term in
H1 proportional to s can be generalized to

2

N

Xs
n¼0

Xs

k¼0

s
n!k!

Trϕ̄A
a1���anϕ̄

B
b1���bkϕ

C
b1���bkϕ

D
a1���an ð44Þ

which can be obtained from ∶ρAD ⊗ ρBC∶ by the index
contraction ∶ðρADÞβααδðρBGÞγδβγ∶. It commutes with Qa since
the latter commutes with ρAB. But any other contraction
scheme will also preserve supersymmetry, and any such
term can be included in modifying the Hamiltonian keeping
supersymmetry. The normal ordering does not interfere
with the product rule for commutators, because Qa is a one
body operator.

Next we implement a similar generalization of H2−5.

H2 →
2

N

Xs−1
n¼0

Xs−1
k¼0

ð−Þk
n!k!

Trϕ̄A
a1���anϕ̄

B
bb1���bkϕ

C
b1���bkϕ

D
ba1���an ;

ð45Þ

H3 →
2

N

Xs−1
n¼0

Xs−1
k¼0

ð−Þk
n!k!

Trϕ̄A
ba1���anϕ̄

B
b1���bkϕ

C
bb1���bkϕ

D
a1���an ;

ð46Þ

H4 →
2i
N

Xs−1
n¼0

Xs−1
k¼0

ð−Þk
n!k!

Trϕ̄A
a1���an ϕ̄

B
b1���bkϕ

C
bb1���bkϕ

D
ba1���an ;

ð47Þ

H5 → −
2i
N

Xs−1
n¼0

Xs−1
k¼0

ð−Þk
n!k!

Trϕ̄A
ba1���an ϕ̄

B
bb1���bkϕ

C
b1���bkϕ

D
a1���an :

ð48Þ

The right sides can be obtained, respectively, from

−
2

N
∶ηbAD ⊗ η̄bBC∶;

2

N
∶η̄bAD ⊗ ηbBC∶;

−
2i
N
∶ηbAD ⊗ ηbBC∶; −

2i
N
∶η̄bAD ⊗ η̄bBC∶: ð49Þ

Since the factor operators are not supersymmetric, the Hi
are not separately supersymmetric, but we shall see shortly
that the sum of the modified terms is supersymmetric.
The commutator of Qa with each of these expressions is

given, respectively, by

2

N
ðγ∶ηaAD ⊗ ρBC∶ − γ�∶ρAD ⊗ η̄aBC∶Þ; ð50Þ

2

N
ðγ∶ρAD ⊗ ηaBC∶ − γ�∶η̄aAD ⊗ ρBC∶Þ; ð51Þ

2

N
ðγ∶ηaAD ⊗ ρBC∶ − γ∶ρAD ⊗ ηaBC∶Þ; ð52Þ

2

N
ðγ�∶ρAD ⊗ η̄aBC∶ − γ�∶η̄aAD ⊗ ρBC∶Þ: ð53Þ

Notice that the sum of these four expressions is

4

N
ðγ∶ηaAD ⊗ ρBC∶ − γ�∶η̄aAD ⊗ ρBC∶Þ ð54Þ

which can be canceled by

4

N
½Qa; ∶ρ0AD ⊗ ρBC∶� ¼

4

N
∶ðγηaAD − γ�η̄aABÞ ⊗ ρBC∶:

ð55Þ
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Similarly, the sum of the first two lines minus the sum of
the last two lines is

4

N
ðγ∶ρaAD ⊗ ηaBC∶ − γ�∶ρAD ⊗ η̄aBC∶Þ ð56Þ

which can be canceled by

4

N
½Qa; ∶ρAD ⊗ ρ0BC∶� ¼

4

N
∶ρAD ⊗ ðγηaBC − γ�η̄aBCÞ∶: ð57Þ

To summarize, in addition to the numerous supersymmetric
quartics that can be written as products of supersymmetric
bilinears, we have constructed two supersymmetric struc-
tures, as bilinears in the nonsupersymmetric bilinears ηa,
η̄a, which enter the HS part of the original string bit
Hamiltonian. We have not tried to find other such structures
which are products of bilinears of tensors of higher rank,
though we expect many more should exist. The structures
entering HS are

2s
N

∶ρAD ⊗ ρBC∶ ð58Þ

2

N
ð−∶ηbAD ⊗ η̄bBC∶þ ∶η̄bAD ⊗ ηbBC∶ − i∶ηbAD ⊗ ηbBC

− i∶η̄bAD ⊗ η̄bBC∶ − ∶ρ0AD ⊗ ρBCÞ; ð59Þ

2

N
ð−∶ηbAD ⊗ η̄bBC∶þ ∶η̄bAD ⊗ ηbBC∶þ i∶ηbAD ⊗ ηbBC

þ i∶η̄bAD ⊗ η̄bBC∶ − ∶ρAD ⊗ ρ0BCÞ; ð60Þ

where the first is a product of supersymmetric bilinears, and
the last two are (at least apparently) not of this type. To
build a supersymmetric Hamiltonian from these structures,
simply multiply each of these forms by an independent
TABCD
k and sum over all flavors. All color indices need to be

contracted, but supersymmetry holds for all contraction
schemes.

IV. APPLICATIONS TO THE IIB SUPERSTRING

In [13] the connection of string bit models to string
formation has been established in the limit N → ∞, which
corresponds to zero string coupling. In that limit HS on
multitrace states acts independently on each trace with only
nearest neighbor interactions of the bits on the trace,
identical with those of a discretized lightcone quantized
Green-Schwarz Grassmann world sheet field. Interactions
between these discretized strings are present in HS at order
1=N, but they do not provide the operator prefactor
required for Poincaré invariance in the continuum limit.
To describe the IIB superstring, additional terms must be
added to HS which supply these prefactors at order 1=N,
while not contributing at N ¼ ∞.

In this section we determine supersymmetric terms,
involving the Ωp discussed in the previous section, which
can provide the necessary prefactors. In addition to the
eight pairs of Grassmann worldsheet fields Saðσ; τÞ,
S̃aðσ; τÞ, the superstring requires eight bosonic transverse
coordinates xkðσ; τÞ. In [13] we argued that these transverse
coordinates might actually be merely effective fields, which
describe the low energy dynamics of long Heisenberg spin
chains, in which the spin matrices act on internal d.o.f.,
which we have called “flavor.” However for the purposes of
this discussion we take them as fundamental worldsheet
fields rather than effective ones. Green, Schwarz, and Brink
[19] derived the vertex insertion required by Poincaré
invariance. It has the structure

X̃jðσI; τIÞXkðσI; τIÞVjkðYðσI; τIÞÞ ð61Þ

with Vjk a linear combination of the five structures

δjk; γjkabY
aYb; tjkabcdY

aYbYcYd;

γjkabϵ
abcdefghYcYdYeYfYgYh;

δjkϵ
abcdefghYaYbYcYdYeYfYgYh: ð62Þ

In these expressions X̃, X are left and right moving
derivatives of the transverse coordinate worldsheet fields
xkðσ; τÞ:

XðX̃Þ ∝ lim
σ→σI

ffiffiffiffiffiffiffiffiffiffiffiffiffi
σI − σ

p ½PðσÞ ∓ x0ðσÞ� ð63Þ

where P ¼ _x is the momentum density conjugate to x and
where the limit is taken at the end of the calculation. Also
the point on the worldsheet where a single string separates
into two strings is marked by σI, τI . The square root factor
is necessary because the interaction point is singular,
making the insertion blow up exactly at σ ¼ σI. This is
a drawback of trying to work with a continuous world
sheet. This drawback is not present in the string bit
approach because in those models the emergent worldsheet
is discretized and behaves as a continuous worldsheet only
for low energy excitations. In string bit models the X or X̃
insertion is simply pk � ðxkþ1 − xkÞ. The Ya are linear
combinations of the Grassmann worldsheet fields.

Y ∝ lim
σ→σI

ffiffiffiffiffiffiffiffiffiffiffiffiffi
σI − σ

p ½θðσÞ þ δ=δθðσÞ�: ð64Þ

Again, the limiting procedure is necessary because the
worldsheet is continuous. In this case it gives the mislead-
ing impression that the different powers of Y in the
complete insertion have different divergent behavior.
But, as shown in [14], because the relation of a discretized
local Grassmann variable such as θk to energy ladder
operators Bn is of the form
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θk ∼
1ffiffiffiffiffi
M

p
XM−1

n¼0

e2πink=MBn; ð65Þ

the square root divergence (∼
ffiffiffiffiffi
M

p
) indicated by (64) is

precisely what is needed to leave a finite nonzero effect in
the continuum limit (M → ∞), when the insertion is
applied to energy eigenstates. In string bit models the Y
dependent factor of the insertion will simply be sums of
powers of a linear combination of θk and δ=δθk, with no
further regulation.
We now show how these structures can be generated by

supersymmetric terms added to the string bit Hamiltonian.
We start by working out the commutator of ΩAB;p

El
with the

superstring bit creation operator ψ̄CðθÞ.
½ΩAB;p

El
; ψ̄CðθÞ�

¼ δBCEa1���al
X
k

ð−Þkl
k!

ϕ̄A
a1���apb1���bkθ

apþ1 � � � θalθb1 � � � θbk

¼ δBCEa1���alð−Þpðl−pÞθapþ1 � � � θal

×
X
k

ð−Þkp
k!

ϕ̄A
a1���apb1���bkθ

b1 � � � θbk : ð66Þ

To express the right side in terms of ψ̄ðθÞ we calculate

d
dθap

� � � d
dθa1

ψ̄AðθÞ ¼
Xs
k¼0

ð−ÞpðpþkÞ

k!
ϕ̄A
a1���apb1���bkθ

b1 � � � θbk :

ð67Þ

The sum on the right is proportional to the sum appearing in
the commutator, so we can write

½ΩAB;p
El

; ψ̄CðθÞ� ¼ δBCEa1���alð−Þplθapþ1 � � � θal d
dθap

� � � d
dθa1

× ψAðθÞ: ð68Þ

Finally we reorder the indices of E to match the ordering of
the θ and d=dθ factors

Ea1���al ¼ ð−Þpðl−pÞþpðp−1Þ=2Eapþ1���alap���a1 ð69Þ

and then rename them to get

½ΩAB;p
El

; ψ̄CðθÞ� ¼ δBCEa1���alð−Þpðpþ1Þ=2θa1 � � � θal−p

×
d

dθal−pþ1
� � � d

dθal
ψ̄AðθÞ=: ð70Þ

A clarification is needed about suppressed color indices in
this equation. The color indices can all be left uncontracted.
In that case there is a suppressed Kronecker delta δδαδ

β
γ on

the right side which requires the color indices of ðψ̄CÞβα to
match the color indices of the factor ðϕBÞδγ inΩAB. Then the
color indices of the factor ϕ̄A are identical to those of the ψ̄A

on the right side. With this in mind one can choose to do
any number of contractions on the color indices without
spoiling the validity of the equation.
Now one finds, for the supersymmetric combination

½ΩAB
El
; ψ̄CðθÞ� ¼ γlδBCEa1���al

Xl

p¼0

�
γ�

γ

�
p
�
l
p

�
θa1 � � � θal−p d

dθal−pþ1
� � � d

dθal
ψ̄AðθÞ

¼ γlδBCEa1���al
�
θa1 þ γ�

γ

d
dθa1

�
� � �

�
θal þ γ�

γ

d
dθal

�
ψ̄AðθÞ

¼ δBCEa1���al
�
γθa1 þ γ�

d
dθa1

�
� � �

�
γθal þ γ�

d
dθal

�
ψ̄AðθÞ: ð71Þ

A quick check on this final answer is to note that the action
of Qa on ψ̄C is given by

½Qa; ψ̄C�� ¼
�
γθa − γ�

d
dθa

�
ψ̄C ð72Þ

and the differential operator on the right anticommutes with
each of the factor operators in the action of ΩAB

El
:

�
γθa − γ�

d
dθa

; γθb þ γ�
d
dθb

�
¼ 0; ð73Þ

which is necessarily true if ΩAB
El

is indeed a supersymmetric
operator.

We have shown that ΩAB
El

can produce the insertion
operators required for the IIB superstring. It remains to use
them to construct color singlet terms to be added to the
Hamiltonian such that they do not contribute at leading
order as N → ∞, but they do contribute at order 1=N in
such a way that the necessary operators accompany each
closed string fission or fusion transition. The way to do this
is to construct color singlet quartic operators with the
schematic color structure

1

N
Tr∶ϕ̄ϕϕ̄ϕ ≔

1

N
∶ðϕ̄ÞβαðϕÞγβðϕ̄ÞδγðϕÞαδ∶ ð74Þ

where the color indices are contracted as in matrix
multiplication. The normal ordering removes the Oð1Þ
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contraction, which would arise if the normal ordering were
not specified. The terms dropped by normal ordering would
be supersymmetric bilinears which could be included
independently of the quartic terms, if desired.
Acting on multitrace states this operator does not con-

tribute at leading order because contraction of the two
annihilation operators will not produce a factor of N to
compensate the 1=N out front. Furthermore any such
contraction will change the trace structure of the state,
splitting a trace into two traces, or joining two traces into one.
To build the desired terms we first contract two of the

color indices of ΩAB
El

to form a matrix Ω⃗AB
El
. Then we

multiply this operator with ρ⃗CD and take the trace to form
the color singlet

1

N
Tr∶Ω⃗AB

El
ρ⃗CD∶: ð75Þ

By construction this is a supersymmetric color singlet
operator with the appropriate color contraction scheme to
first contribute at order 1=N in the large N expansion. We
confirm this by applying it to a multitrace state. On a single
trace state we have, consulting (71)

1

N
Tr∶Ω⃗AB

El
ρ⃗CD∶TðA1θ1; � � � ;AMθMÞj0i ¼

1

N

X
k;m

½δDAk
δBAm

;TðCθk; � � � ;Am−1θm−1Þ

× Ea1���alΛa1
m � � �Λal

mTðAθm;Amþ1 � � � ;Ak−1θk−1Þ�j0i ð76Þ

where

Λa
m ¼ γθam þ γ�

d
dθam

: ð77Þ

We see that the action has split the trace into two traces and the 1=N factor is uncanceled. For l ¼ 0, 2, 4, 6, 8 the action of
this operator produces the five insertions listed in (62) respectively.
The fusion of two traces into one is also produced by this operator acting on a state containing two or more traces.

This happens when the two annihilation operators contract against distinct traces,

1

N
Tr∶Ω⃗AB

El
ρ⃗CD∶TðA1θ1 � � �AKθKÞTðB1η1 � � �BLηLÞj0iFusion

¼ 1

N

XK
k¼1

XL
m¼1

δDAk
δBBm

Ea1���alΛa1
ηm � � �Λal

ηmTðCθk � � �Ak−1θk−1Aηm � � �Bm−1ηm−1Þj0i

þ 1

N

XK
k¼1

XL
l¼1

δDBl
δBAk

Ea1���alΛa1
θk
� � �Λal

θk
TðAθk � � �Ak−1θk−1Cηm � � �Bm−1ηm−1Þj0i: ð78Þ

If supersymmetry were the only requirement for modi-
fying the Hamiltonian, we could form JABCDTr∶Ω⃗

AB
El
ρ⃗CD∶

with JABCD arbitrary complex numbers and add it plus
its Hermitian conjugate to the Hamiltonian. A simple
choice for J which works for the IIB superstring is
JABCD ¼ δABδCD.
For the IIB superstring, the antisymmetric tensors El are

built from SOð8Þ gamma matrices [19]. For even l, as
required in (62), they are second rank tensors in SOð8Þ
vector indices, Ekl

2l, which can read off from (62). The
relative coefficients in the complete insertion operator
cannot be taken directly from [19], because in the latter
reference the continuum limit has already been partially
taken, holding the insertion a fixed distance from the
interaction point. The string bit approach is discrete at a
fundamental level, and the continuum limit is properly
regarded as a low excitation energy approximation on

chains with large numbers of bits, which must be carefully
analyzed to make a detailed comparison. The terms we
have constructed will prescribe that the insertion is within
one or two discrete units away from the location of the
separation or joining point, whereas the approach of [19]
would correspond to placing the insertion ϵM, with ϵ small
but fixed, units away. Such a prescription would be far from
natural in the string bit approach. The continuum limits in
these two methods are not taken in the same way. Although
it seems plausible that term by term the two methods will
give results that are proportional, it would be premature to
expect that the proportionality constants be exactly one.

V. CONCLUSION

We have found many ways to modify the string bit
Hamiltonian of [13] while maintaining supersymmetry.
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In particular, we have constructed explicit supersymmetric
operators which, added to the Hamiltonian, can provide
the insertion prefactors necessary for the overlap pre-
scription for lightcone superstring vertices to give correct
scattering amplitudes. This ties up one of the loose ends in
[13]. In this discussion we have treated the coordinate
worldsheet fields as fundamental rather than as effective
fields simulating low energy excitations of a discrete
flavor variable. In [13] we showed that a system of
Heisenberg chains described by such an effective field
can be obtained in the N → ∞ limit from the dynamics of
2d valued “flavor” indices. It will be interesting to pursue
this idea further by extending it to interactions.
Specifically, understanding how the X̃kXl factor in the

prefactor (61) can be obtained from such a discrete flavor
dynamics is a natural next step.
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APPENDIX: PROOF OF EQ. (38)

The first three lines of Eq. (A1) arise from the bracket of
Q with ϕ̄ and the last three lines from that of Q with ϕ,

½Qc;Ωp
a1���al � ¼

X
k

ð−Þlk
k!

�
ð−Þkþpγ�ϕ̄ca1���apb1���bkϕapþ1���alb1���bk

þ γ
Xp
m¼1

ð−Þmþkþpδcam ϕ̄a1���âm���apb1���bkϕapþ1���alb1���bk

þ γ
Xk
m¼1

ð−Þmþkþ1δcbm ϕ̄a1���apb1���b̂m���bkϕapþ1���alb1���bk

�

þ
X
k

ð−Þlk
k!

�
ð−Þkþpþ1γϕ̄a1���apb1���bkϕcapþ1���alb1���bk

þ γ�
Xl−p
m¼1

ð−Þmþkþpþ1δcamþp
ϕ̄a1���apb1���bkϕapþ1���âmþp���alb1���bk

þ γ�
Xk
m¼1

ð−Þmþkþlþ1δcbm ϕ̄a1���apb1���bkϕapþ1���alb1���b̂m���bk

�
ðA1Þ

The first line is canceled by the sixth line. To see this use the Kronecker delta of the latter to set bm ¼ c, and then use the
antisymmetry in indices. Then the summand is independent ofm, so the sum overm just gives a factor of k, which changes
1=k! → 1=ðk − 1Þ!. Then shifting k → kþ 1 gives − line 1. Similarly line 3 cancels line 4. Lines 2 and 5 are all that are left:

½Qc;Ωp
a1���al � ¼

X
k

ð−Þlk
k!

�
þγ

Xp
m¼1

ð−Þmþkþpδcamϕ̄a1���âm���apb1���bkϕapþ1���alb1���bk

þ γ�
Xl−p
m¼1

ð−Þmþkþpþ1δcamþp
ϕ̄a1���apb1���bkϕapþ1���âmþp���alb1���bk

�
: ðA2Þ

The two sums over k can now be recognized as two of the Ω’s:

½Qc;Ωp
a1���al � ¼ þγ

Xp
m¼1

ð−ÞmþpδcamΩ
p−1
a1���âm���al þ γ�

Xl

m¼pþ1

ð−Þmþ1δcamΩ
p
a1���âm���al ðA3Þ

which is (38).
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