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We discuss the question of time in a Bianchi I quantum cosmology in the framework of singularity
avoidance. We show that time parameters fall into two distinct classes, that are such that the time
development of the wave function either always leads to the appearance of a singularity (fast-gauge time) or
that always prevents it from occurring (slow-gauge time). Furthermore, we find that, in the latter case, there
exists an asymptotic regime, independent of the clock choice. This may point to a possible solution of the
clock issue in quantum cosmology if there exists a suitable class of clocks all yielding identical relevant
physical consequences.
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I. INTRODUCTION

The problem of time [1–4] in quantum gravity [5,6] is a
longstanding one [7] that stems from the fact that the
underlying notions in general relativity (GR) and quantum
theory are incompatible. Among the numerous proposals
that have been suggested is that of using a perfect fluid [8]
whose Hamiltonian, being linear in a momentum, naturally
transforms the Wheeler-De Witt equation in the Schrödinger
form upon quantization of this momentum. Such a solution
also permits, in the trajectory approach of quantum mechan-
ics, one to naturally avoid cosmological singularities [9–11].
Note that using an internal degree of freedom (d.o.f.) to
define time was also used in completely different contexts;
see, e.g., Ref. [12].
It is well known that the canonical formulation of general

relativity is given by a totally constrained Hamiltonian
system. In these systems the dynamics takes place inside
the first-class constraints hypersurface and as a conse-
quence the symplectic structure projected on this hypersur-
face is no longer symplectic (it is actually a presymplectic
form). The hypersurface orbits generated by the vector
constraint representing infinitesimal spatial diffeomorphisms
are removed by imposing appropriate gauge-fixing condi-
tions, whereas the hypersurface orbits generated by the

Hamiltonian constraint representing the physical motion of
the gravitational system require another treatment.
For this physical motion, one can choose a foliation for

the constrained manifold such that in each sheet the
restriction of the 2-form yields again a symplectic structure,
which consequently defines a Hamiltonian system (where
the Hamiltonian generates the motion across sheets). In this
language, the example of the perfect fluid cited above
(with spatial diffeomorphisms being absent), where the
Hamiltonian depends linearly on a momentum variable pT
and is independent of its conjugate variable T, defines a
natural foliation: the constraint is solved in terms of pT and
T ¼ const: gives the desired foliation; and consequently pT
generates “time” translations. Thus, as discussed in [13],
even at the classical level, if the constraints hypersurface
M does not admit a global foliation of the form M ¼
R ×N , it seems that even classically one cannot define
time globally in these cases.
When a time variable is well defined (and consequently a

foliation on the constraints hypersurface), it is usually not
unique. Classically, this is not a problem: it just corre-
sponds to different ways to parametrize time with respect to
some internal d.o.f., using a combination of the canonical
variables. On the other hand, it is not clear if this choice of
time variable affects the quantized system, i.e., if the choice
of time variable implies any physical consequence for the
quantized system. Arguably, one can demand, as a desired
property of a reasonable quantum gravity theory, that
changing the time variable should not modify the physical

*Przemyslaw.Malkiewicz@ncbj.gov.pl
†peter@iap.fr
‡vitenti@uel.br

PHYSICAL REVIEW D 101, 046012 (2020)

2470-0010=2020=101(4)=046012(16) 046012-1 © 2020 American Physical Society

https://orcid.org/0000-0001-6159-6328
https://orcid.org/0000-0002-7136-8326
https://orcid.org/0000-0002-4587-7178
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.101.046012&domain=pdf&date_stamp=2020-02-11
https://doi.org/10.1103/PhysRevD.101.046012
https://doi.org/10.1103/PhysRevD.101.046012
https://doi.org/10.1103/PhysRevD.101.046012
https://doi.org/10.1103/PhysRevD.101.046012


content of the theory. However, within the reduced phase
space approach, where we use a particular foliation for M,
considered in the present paper we explicitly show that this
seemingly reasonable property does not necessarily hold
once the system is quantized. Let us briefly overview the
reason why this happens, postponing a more detailed
description to the later sections.
The key observation to make here is that the gauge-

invariant content of a constrained theory, such as canonical
general relativity, comprises expressions solely in terms
of gauge-invariant variables, defined as quantities that
commute with the constraints; they are called Dirac
observables. Since the Hamiltonian in canonical relativity
is a constraint itself, no dynamical variable can be gauge
invariant as none can commute with the Hamiltonian
constraint. As a result, dynamical variables are not
equipped with a well-defined Poisson structure, and this
forbids straightforward quantization. As discussed above,
one way to circumvent this difficulty is to introduce a
foliation with an internal time variable which, by assump-
tion, commutes with all the Dirac observables. This way,
the internal time and all the dynamical quantities, which are
functions of Dirac observables, can be included in the
reduced phase space formalism. An immediate conse-
quence of this prescription is that the commutation relations
involving dynamical variables depend on the choice of
internal time.
Another idea to circumvent the conceptual difficulty

discussed above is expressed in the idea of evolving
constants [13–15]. This approach relies on the observation
that Dirac observables, though nondynamical themselves,
could in fact be seen as particular functions of dynamical
variables and therefore encoding the dynamics as relations
between these variables. For instance, the value of a dyna-
mical quantity X when another dynamical quantity Y takes
the value y ¼ y0 is constant along any dynamical trajectory
and is thus a Dirac observable. In this way, the entire
dynamical trajectory of X is given by a y-parametrized
family of Dirac observables. As far as we can tell, such
an approach does not contradict that presented below. We
note that the values of a dynamical quantity X when another
dynamical quantity Z takes the values z ¼ z0 form a
different, now z-parametrized, family of Dirac observables.
Hence, for a fixed quantization of Dirac observables, the
y and z families may exhibit different quantum properties
though they describe the dynamics of the same dynamical
observable, X. Therefore, it is meaningful to speak about
dynamical observables at the quantum level only with
respect to specific internal time variables.
In this paper, we discuss the quantization of the vacuum

Bianchi I case, showing how it generates a time whose
arbitrariness in the definition produces a clock-choice issue.
We discuss some choices (fast and slow gauge times), and
this leads to a possible criterion: some clocks, upon
quantization of the system, are singularity free, while
others do exhibit a singularity. By imposing a specific

ordering of the operators in the Hamiltonian, we can put the
latter in a canonical form and obtain exact singularity-free
solutions for the average trajectories. We provide a clear
illustration of the dependence of quantum dynamics on the
choice of internal time. Surprisingly, we identify a certain
property of quantum gravitational dynamics which does not
depend on the choice of internal time and points to a
possible solution of the time problem.

II. EMPTY BIANCHI I

Our starting point is the vacuum GR gravitation theory,
whose classical Einstein-Hilbert action S reads, in units
with 8πGN ¼ 1,

S ¼ 1

2

Z
R

ffiffiffiffiffiffi
−g

p
d4x: ð1Þ

This theory admits the Bianchi I metric, given in terms of
the lapse function N by

ds2 ¼ −N2dτ2 þ
X3
i¼1

a2i ðdxiÞ2; ð2Þ

as a solution of the corresponding vacuum Einstein equa-
tions for a flat homogeneous but anisotropic spacetime.
The scale factors associated to each direction can be

recast as [16]

a1 ¼ eβ0þβþþ
ffiffi
3

p
β− ; ð3Þ

a2 ¼ eβ0þβþ−
ffiffi
3

p
β− ; ð4Þ

a3 ¼ eβ0−2βþ ; ð5Þ

where we introduced the anisotropy variables β� and β0,
the latter providing the volume V of the manifold, assumed
compact, through

V ≡ a1a2a3 ¼ e3β0 : ð6Þ

The action S for the metric (2) reads

S ¼
Z

dτðp0
_β0 þ pþ _βþ þ p− _β− − NCÞ; ð7Þ

where the Hamiltonian H ¼ NC is such that the constraint
C satisfies

C ¼ e−3β0

24
ð−p2

0 þ p2þ þ p2
−Þ: ð8Þ

The canonical one-form can be read directly from Eq. (7) as

dθ ¼ p0dβ0 þ pþdβþ þ p−dβ−: ð9Þ
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In terms of this one form the action is

S ¼
Z

dτ

�
dθ
dτ

− NC

�
: ð10Þ

The volume variable V turns out to be more convenient
than β0. One has

dβ0 ¼
e−3β0

3
dV; ð11Þ

and the new momentum associated to it has to be

pV ≡ e−3β0

3
p0; ð12Þ

in order to keep the one-form canonical, i.e.,

dθ ¼ pVdV þ pþdβþ þ p−dβ−: ð13Þ

Using this new variable the constraint (8) is written as

C ¼ 3V
8

�
−p2

V þ p2þ þ p2
−

9V2

�
: ð14Þ

This constrained system must classically satisfy

C ¼ 0; ð15Þ

the quantization of which we turn to below.
Let us first parametrize the above problem explicitly,

and to achieve that goal first rewrite the problem using
variables that evince the system symmetries. The variables
β� are clearly cyclic, and therefore their momenta are
conserved, i.e.,

_p� ¼ 0: ð16Þ

To avoid carrying these two constants around we perform
the transformation

pþ ¼ k cos α; p− ¼ k sin α; ð17Þ

where we can choose k > 0 without loss of generality.
Ensuring the one-form remains canonical, we obtain

dθ ¼ pVdV þ pkdkþ pαdαþ S:T:; ð18Þ

where we defined the new two momentum variables

pk ≡ −ðcos αβþ þ sin αβ−Þ; ð19Þ

pα ≡ ðk sin αβþ − k cos αβ−Þ; ð20Þ

and the surface term S:T: ¼ dðk cos αβþ þ k sin αβ−Þ in
Eq. (18) is an exact form, which we can and thus do ignore

from here on. Note also that neither pα nor α appears in the
Hamiltonian and consequently both are constant. We thus
also ignore them.
In terms of the above variables, our system is described

by the action (10), where the canonical one-form and the
constraint are

dθ ¼ pVdV þ pkdk; ð21Þ

C ¼ 3V
8

�
−p2

V þ k2

9V2

�
: ð22Þ

III. PARAMETRIZING THE PROBLEM

The system action (10) is constrained. The lapse function
N acts as a Lagrange multiplier and imposes that C ¼ 0. It
turns out that one can solve this constraint explicitly and
then obtain a parametrized Hamiltonian. While this is a
trivial recasting of the classical problem, when we move to
quantization this has a nontrivial effect. The parametriza-
tion of the problem involves turning one of its d.o.f. in a
monotonically evolving variable which, upon quantization,
acts as a time in the corresponding Schrödinger equation. It
therefore acquires a different status than the other variables:
with a physical clock (which in our case is internal to the
system) thus defined, this entails the existence of a time
parameter related to that particular clock, in terms of which
one derives the evolution of the dynamical variables.
Before starting with the parametrization, it is useful to

study the Hamilton equations of motion of our problem.
They read

_k ¼ 0;

_pk ¼ −
k

12V
N;

_V ¼ −
3VpV

4
N;

_pV ¼ −
�
3

8

�
−p2

V þ k2

9V2

�
−

k2

12V2

�
N; ð23Þ

together with the constraint

3V
8

�
−p2

V þ k2

9V2

�
¼ 0: ð24Þ

Since V ≠ 0, Eqs. (23) reduce to

_k ¼ 0 and _V ¼ −
3VpV

4
N; ð25Þ

for the variables, and

_pk ¼ −
k

12V
N and _pV ¼ 3p2

V

4
N ð26Þ

for the associated momenta.
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The system above is closed for pV and V and therefore
can be solved first for these two variables and then for k and
pk (when one has to impose the constraint above when
choosing the initial conditions for k and pk).

A. Reduced phase space and choice of time

Thus far, we have not chosen the time variable τ
appearing in the line element (2), and indeed the above
problem can be solved for any choice of this time, and
hence of the lapse function N. Indeed, in the previous
section, we wrote the equations of motion as derived from
the Hamiltonian as first order in time, which we called “τ”
but otherwise left undefined, merely assuming there exists
such an ordering of events labeling. In order to move
forward, we need to be more specific in the choice of this
time variable.
Classically, one can define/choose a time parametriza-

tion by solving the constraint directly in the one-form dθ:
using k2 ¼ 9p2

VV
2 (note that we do not have an ambiguity

in choosing the sign of k since we have assumed k > 0), we
obtain

dθ ¼ pVdV þ pk

2k
dk2 ¼ pVdV þ 9pk

2k
dðV2p2

VÞ: ð27Þ

Now, one can easily reduce the one-form above to a single
term,

dθ ¼
�
9pk

k
−

lnV
VpV

�
d

�
V2p2

V

2

�
þ S:T:; ð28Þ

and ignoring the surface term S:T: ¼ dðVpV lnVÞ since it
does not contribute to the action, we get

dθ ¼ −
V2p2

V

2
dϒ; ð29Þ

where we removed another surface term dðϒV2p2
V=2Þ,

and set

ϒ≡ 9pk

k
−

lnV
VpV

; ð30Þ

both ϒ and ðVpVÞ are constants of the motion.
Let us introduce an arbitrary function of the dynamical

variables TðV; pV; pkÞ, through which we define a time t

t ¼ ϒþ TðV; pV; pkÞ; ð31Þ

which also thus depends on the dynamical variables.
Setting

Q≡ VpVT; ð32Þ

pQ ≡ VpV; ð33Þ

and plugging (32) and (33) into (29), we get

dθ ¼ PQdQ −
p2
Q

2
dt; ð34Þ

where we again removed a surface term − 1
2
dðpQQÞ.

We note that the role of the phase space function T is
twofold: it defines both the time parameter t and the
position variable Q.
A given choice of T therefore implies, once the equations

of motion are solved, a classical solution QðtÞ. Assuming
one can invert this relation, one can thus find the interval
over which the corresponding time parameter varies. As the
dynamics of the system is that of a freely moving particle
independently of the choice of T, the ranges of Q and t
must be related. Many cases are then possible, depending
on whetherQ and t are bounded or unbounded. If the range
ofQ is real (Q ∈ R), then the motion is unbounded and the
singularity is never reached. If, on the other hand, the range
of Q contains a finite limit, say Q ∈ ½Q0;∞� for instance,
then the motion originates/terminates at Q ¼ Q0 in a finite
time and the dynamics is singular. Indeed, from (32) and
(33) we obtain the singularity time as t0 ¼ ϒþQ0=pQ.
The former case is dubbed the fast-gauge time because the
relevant clock ticks an infinite number of times before
reaching the singularity, whereas the latter is known as the
slow-gauge time. We see below examples of both situa-
tions. In both cases the time variable t is globally well
defined in the sense that it is always growing as the particle
approaches or recedes from the boundary (or, minus
infinity). We notice that any given value of the fast-gauge
clock is taken twice: once for the expanding and once for
the contracting universe, whereas any given value of the
slow-gauge clock is taken only once: either in the expand-
ing or contracting universe, depending on whether t > t0 or
t < t0. As we see, this property of slow-gauge clocks
enables one to remove the singularity by quantization while
extending the time variable across t0. In order to have a
single point t0 of the time axis correspond to the singularity,
we choose T such that Q0 ¼ 0.1

B. Fast-gauge time τ

Let us first consider a fast-gauge time example and
assume that

Tfast ¼
lnV
VpV

; ð35Þ

which diverges for V → 0. From (32), we see that the
relevant canonical variable is Qfast ¼ lnV for a time
defined through (31), namely, tfast ¼ 9pk=k, which is

1Otherwise we would have a whole interval of values of t for
which the system is singular.
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indeed monotonically related to the original time. We
expand below on the properties of this choice.

1. Classical time choice

We begin by noting that it is possible to rewrite the
equation for pk as

d
dτ

�
9
pk

k

�
¼ −

3

4

N
V
; ð36Þ

implying, as stated above, that the quantity 9pk=k is a
monotonic function of the arbitrary time τ appearing in
the metric (2), as V is positive definite and N is non-
vanishing, and hence either always positive or always
negative. As a result, the quantity 9pk=k can itself be used
as a time parameter. Assuming this is the case, we choose
τ ¼ tfast ¼ 9pk=k, which agrees with our general frame-
work (31) with the fast-gauge time function Tfast from (35),
leading to the following lapse function:

N ¼ −
4

3
V < 0: ð37Þ

This clearly shows that this choice of time parameter is
globally well defined.
For the sake of clarity, we repeat below the steps of

Sec. III A, starting directly with the action. As we have seen
above, solving the constraint directly in the one-form dθ
using k2 ¼ 9p2

VV
2 leads to (27), and therefore to

dθ ¼ pVdV þ d

�
9pk

2k
V2p2

V

�
−
V2p2

V

2
d

�
9pk

k

�
: ð38Þ

We can again safely ignore the exact form above since it
will not contribute to the equations of motion. Since we
solved the constraint the action is now merely given by

S ¼
Z

dθ ¼
Z

dτ

�
pV

_V −
V2p2

V

2

�
; ð39Þ

where we simply relabeled τ≡ 9pk=k. This is an uncon-
strained one-dimensional system whose dynamics stems
from the Hamiltonian H ¼ V2p2

V=2.
It is now a simple matter to check that the Hamilton

equations are indeed those obtained earlier. Indeed, they
read

_V ¼ V2pV; _pV ¼ −Vp2
V; ð40Þ

which are the correct equations of motion after substitution
of the lapse (37) in Eqs. (25) and (26). Once the equations
for V and pV are solved, we can use the constraint (24) to
obtain k2. Finally, since τ ¼ 9pk=k, we can determine both
quantities

k ¼ 3VjpV j; and pk ¼
kτ
9
: ð41Þ

We note that in the proposed internal time τ ¼ 9pk=k,
the classical dynamics is completely determined as the
solution to Eq. (40) reads

d
dτ

ðVpVÞ ¼ 0 ⇒ VpV ¼ V0pV0; ð42Þ

and

V ¼ V0eðVpV Þτ and pV ¼ pV0e−ðVpVÞ·τ: ð43Þ

The singularity is pushed to τ → �∞ for expanding and
contracting universes, respectively. These sorts of internal
times are sometimes called fast-gauge times, while the
slow-gauge times are those in which the dynamics termi-
nates at finite values. It has been conjectured [17] that the
canonical quantization cannot resolve the singularity prob-
lem in fast-gauge times since the Hamiltonian flow is
complete in this case. Although the relation between the
singularity resolution and the choice of time might be a
more subtle issue [18], it seems to us that using the fast-
gauge internal time chosen above can indeed not prevent
the appearance of a singularity even in the quantum case.
Let us illustrate this point.

2. Quantum dynamics

The Hamiltonian derived from the action (39) and acting
on the half-plane phase space ðV; pVÞ ∈ Rþ ×R can be
promoted to a symmetric operator on a suitable dense
subspace of the Hilbert space of square-integrable functions
on the half-line, L2ðRþ; dVÞ.2 One can choose the sym-
metric ordering

H ¼ 1

2
V2p2

V ↦ Ĥ ¼ 1

2

ffiffiffiffi
V

p 1

i
∂V

ffiffiffiffi
V

p
·

ffiffiffiffi
V

p 1

i
∂V

ffiffiffiffi
V

p
: ð44Þ

In order to understand the quantum dynamics generated by
the above Hamiltonian, we make a coordinate transformation
from the half-line to the real line, V ↦ Qfast ¼ lnV ≡ Z.
The corresponding unitary map between the respective
Hilbert spaces, U∶ L2ðRþ; dVÞ ↦ L2ðR; dZÞ, readsZ
Rþ

jψðVÞj2dV ¼
Z
R
jðUψÞðZÞj2dZ ⇒ ψðVÞ ↦ ðUψÞðZÞ

¼ e
Z
2ψðeZÞ: ð45Þ

2The measure dV is chosen so that V̂ ¼ V and p̂V ¼ −i∂V are
symmetric operators provided the wave functions vanish both at
V ¼ 0 and at V → ∞. One could include an arbitrary function of
the volume in the definition of the measure such as, e.g., the scale
factor a ¼ V1=3 and correspondingly modify the definition of the
relevant operators; such a choice would however merely com-
plicate matters with no physically meaningful difference.
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It is straightforward to find that

� ffiffiffiffi
V

p 1

i
∂V

ffiffiffiffi
V

p �
ψðVÞ ¼ e−

Z
2
1

i
∂Ze

Z
2ψðeZÞ; ð46Þ

leading to

U

� ffiffiffiffi
V

p 1

i
∂V

ffiffiffiffi
V

p �
U−1 ¼ 1

i
∂Z; ð47Þ

and hence

Z
Rþ

ψ�ðVÞHðVÞψðVÞdV

¼
Z
R
jðUψÞðZÞj�ðUHU†ÞðUψÞðZÞdZ ⇒ UĤU−1

¼ −
1

2
∂2
Z; and Z ∈ R: ð48Þ

It is now clear that the Hamiltonian (44) must be
essentially self-adjoint and the unique dynamics it gen-
erates is unbounded with wave packets approaching the
singularity Z → −∞ (i.e., V → 0) as τ → �∞, depending
on the initial condition. Figure 1 illustrates the fast-
gauge evolution of the probability distribution ρðZ; τÞ≡
jψðZ; τÞj2 carried by a Gaussian wave packet as it
approaches the singularity, Z → −∞,

ρðZ; τÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πð1þ τ2=4Þ

p exp

�
−
ðZ − kτÞ2
1þ τ2=4

�
; ð49Þ

which when mapped onto the half-line reads ρðlnV; τÞ=V
and approaches the Dirac delta picked at V ¼ 0. As the

singularity does not seem to be avoided in the present case
let us now turn to considering a slow-gauge internal time.

C. Slow-gauge time η

Let us now consider another transformation, using the
function

Tslow ¼ 1

pV
; ð50Þ

whose limit is well defined when V → 0: since VpV ¼ pQ

is a constant, we must have pV →�∞, and thus Tslow→0�.
The choice (50) translates into tslow ¼ ϒþ 1=pV and
Qslow ¼ V, again monotonically related to the original
time. Now tslow is not defined in the full real line, but
only in two separate branches, namely, tslow ∈ ½ϒ;∞½ if
pV > 0 or tslow ∈� −∞;ϒ� for pV < 0. This entails a
contracting universe ending at a singularity, or an expand-
ing one originating from a singularity. The complete
solution is then given by

V ¼ pQðtslow −ϒÞ: ð51Þ

Let us develop these points.
As before, we solve the constraint directly in the one-

form dθ, now using a different parametrization, namely

dθ ¼ ðVpVÞdV −
�
V2p2

V

2

�
d

�
9pk

k
þ V − lnV

VpV

�

þ d

�
9pk

2k
V2p2

V þ 1

2
V lnVpV −

1

2
V2pV

�
: ð52Þ

We can again safely ignore the exact form above since it
does not contribute to the equations of motion. Then, since
we solved the constraint the action is given by

FIG. 1. The fast-gauge evolution of the probability distribution for a Gaussian packet on the real line Z (left panel) for k ¼ −1, τ ¼ 0,
2, 4 and the respective packet to the half-line V (right panel) for k ¼ −1 and τ ¼ 0, 1, 2. Because of the packet spreading, the probability
density can initially grow with time for any sufficiently large V. Nevertheless, the probability of finding the system on the interval [0; ϵ]
for any ϵ > 0 tends to 1 as τ → ∞ and thus, the distribution converges to δð0Þ. Notice that for every value of τ the probability vanishes at
V ¼ 0.
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S ¼
Z

dθ ¼
Z

dη

�
VpVV́ −

1

2
V2p2

V

�
; ð53Þ

where we introduced the notation V́ ≡ dV=dη and simply
relabeled the new time variable η through

η≡ 9pk

k
þ V − lnV

VpV
¼ tslow; ð54Þ

which one can directly check indeed satisfies the require-
ments for being a time, in the sense that it is a monotonic
function: using the equations of motion (25) and (26), one
readily obtains

d
dτ

�
9pk

k
þ V − lnV

VpV

�
¼ −

3

4
N: ð55Þ

Note that the unconstrained Hamiltonian again is just
H ¼ 1

2
V2p2

V . However, unlike in the previous case,
Eq. (53) shows that it is now pVV and not pV anymore
that plays the role of the canonically conjugate momentum
to the volume V. This seemingly innocuous fact actually
drastically transforms the problem as upon introducing a
new canonical variable, πV ¼ pQ ¼ pVV, the Hamiltonian
H again becomes that of a freely moving particle, but in this
case the dynamics is limited to the half-line,

H ¼ 1

2
π2V; fV; πVg ¼ 1; where ðV; πVÞ ∈ Rþ ×R:

ð56Þ

The dynamics therefore terminates at a finite value of η,
forwards/backwards in time for contracting/expanding
universes, respectively. As we show in the next section,
in this case the singularity can be resolved by quantization
of the Hamiltonian formalism.

D. Other time variables η0

It is worth noting that there are many more allowed
choices of time variable when we parametrize the system.
Let us consider a new internal time,

η0 ¼ η0ðη; V; πVÞ; ð57Þ

and redefine the dynamical variables,

π0V ¼ πV; V 0 ¼ V þ πVðη0 − ηÞ: ð58Þ

Then Eq. (52) without the exact form is

dθ ¼ πVdV −
π2V
2
dη ¼ π0VdV

0 −
π02V
2
dη0 þ d

�
ðη − η0Þ π

02
V

2

�
:

ð59Þ

Since the exact form can be again ignored, the last
expression above shows that the formulation of the dynam-
ics in a new internal time (57) is formally identical to
the initial formulation provided that Eq. (58) holds. This
property has significant practical value as now it suffices to
quantize one formalism in order to obtain quantum for-
mulation in any internal time remembering that the basic
variables may have different physical meaning for different
choices of time.
Note that the general transformation (57) and (58)

includes transformations to fast-gauge clocks, the situation
that we want to avoid. Indeed, writing the difference
between the new and old time variables, thereby defining
the delay function Δ ¼ η0 − η from now on, we find that
one goes from the slow to the fast-gauge times through

Δslow→fast ¼
V − lnV
VpV

; ð60Þ

whose limit diverges when V → 0. In order to ensure that
such a situation never occurs, we assume the transformation
does not alter the ranges of basic variables; i.e., we demand
that

0 < V 0 ¼ V þ πVΔ < ∞: ð61Þ

If we furthermore assume that the delay function depends
on the phase space only, i.e.,

Δ ¼ ΔðV; πVÞ; ð62Þ

the transformation (58) does not involve time variables.
This largely simplifies comparison between different time
variables dynamics. Note that the new time variable is
monotonic if and only if

dη0

dη
¼ ∂η0

∂η þ fΔ; Hg ¼ ∂η0
∂η þ

�
Δ;

1

2
π2V

�
≠ 0; ð63Þ

i.e.,

∂Δ
∂η þ 1þ πV

∂Δ
∂V ≠ 0; ð64Þ

which in the simpler case ∂Δ=∂η ¼ 0 yields

∂V 0

∂V ≠ 0: ð65Þ

Observe that this condition is equivalent to simply assum-
ing that the time transformation (57) and (58) is C1-
invertible, ensuring that the canonical one-form dθ in both
parametrizations is identical (up to a total derivative).
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IV. QUANTIZATION IN THE
SLOW-TIME GAUGE

Quantization of the half-plane phase space ðV; πVÞ ∈
Rþ ×R is not an obvious task.3 The problem occurs
because πV does not generate a global translation on that
phase space and the respective operator, −i∂V on the half-
line V > 0, admits no self-adjoint extension. Nevertheless,
the square of this operator, i.e., the (minus) Laplacian, can
be given a self-adjoint extension (in fact, it admits unac-
countably infinite many such extensions).
There are many ways to obtain a unitary evolution with

the Laplacian, and Sec. IV B emphasizes one involving
reordering of the basic operators, making use of the
commutation relations to produce a “naturally” self-adjoint
Hamiltonian. Another, perhaps more straightforward,
method, which we discuss below, consists in restricting
the action of the Laplacian to functions that satisfy the
Dirichlet condition at the boundary V ¼ 0,

−△DψðVÞ ¼ −△ψðVÞ for ψð0Þ ¼ 0; ð66Þ

and then to close the operator −△D in L2ðRþ; dVÞ. It can
be shown that the generalized eigenfunctions are

ψλðVÞ ¼ ei
ffiffi
λ

p
V − e−i

ffiffi
λ

p
V; λ ∈ Spð−△DÞ ¼ Rþ; ð67Þ

and the propagator reads

GDðη; V; V 0Þ ¼
exp

h
− ðV−V 0Þ2

4iη

i
ffiffiffiffiffiffiffiffiffi
4πiη

p −
exp

h
− ðVþV 0Þ2

4iη

i
ffiffiffiffiffiffiffiffiffi
4πiη

p ; ð68Þ

taking the original wave function from 0 to η.

A. Comparison with fast-time gauge

Let us consider an initial wave function given by a
Gaussian wave packet centered at V0 with standard
deviation σ and initial phase ikV, namely

u0ðVÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

p
σ

p exp

�
−
ðV − V0Þ2

4σ2
þ ikV

�
: ð69Þ

In order for this waveform to satisfy the Dirichlet boundary
condition at V ¼ 0 and thus be an acceptable initial wave
function, we consider its odd part, i.e.,

ψ0ðVÞ ¼
u0ðVÞ − u0ð−VÞ

N
; ð70Þ

where the normalization is given by

N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − exp

�
−
V2
0 þ 4k2σ4

2σ2

�s
: ð71Þ

Applying the propagator to this wave function gives us

ψðV; ηÞ ¼ −
2 exp

	
−ik2η − V2þV2

η

4σση



N ð2πÞ1=4 ffiffiffiffiffi

ση
p sinh

�
VVη

2σση
þ ikV

�
;

ð72Þ

where Vη ¼ V0 þ 2kη and ση ¼ σ þ iη=σ. Rewriting the
sinh above in terms of exponentials, it is easy to see that we
can complete the square in each exponent resulting in the
following expression:

ψðV; ηÞ ¼
exp

h
þikðV − kηÞ − ðV−VηÞ2

4σση

i
N ð2πÞ1=4 ffiffiffiffiffi

ση
p

−
exp

h
−ikðV þ kηÞ − ðVþVηÞ2

4σση

i
N ð2πÞ1=4 ffiffiffiffiffi

ση
p : ð73Þ

The above wave function (73) solves the Schrödinger
equation corresponding to a freely moving particle on
the half-line with the Hamiltonian −△D with respect to our
time variable η, namely

i
∂
∂η ψ ¼ −△Dψ : ð74Þ

Disregarding the different phases, we end up with a linear
combination of two Gaussian wave packets centered on

FIG. 2. The bouncing of a Gaussian wave packet against the
end point V ¼ 0 assuming the Dirichlet boundary condition.
The wave packet momentum is k ¼ 7.5 and times are as Fig. 1.
The packet starts centered around V0 ¼ 15 and variance σ ¼ 1=2
(arrow to the left); after one unit of time it reaches the boundary
where it interferes with itself and after two units of time it returns
to its initial position, though with larger spreading (arrow to
the right).

3Here and in what follows, we made a further canonical
transformation, namely πV →

ffiffiffi
2

p
πV and V → V=

ffiffiffi
2

p
, thus, re-

moving the factor of one half from the Hamiltonian.
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V�ðηÞ ¼ �ðV0 þ 2kηÞ with spreading variance σðηÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 þ η2=σ2

p
. Its evolution is shown in Fig. 2. Contrary

to the fast-gauge time, the boundary is now reached by the
wave packet within a finite time interval, which must
bounce in order to preserve the unitarity.
The quantum model presented here with Ĥ ¼ −Δ is

based on an implementation of canonical quantization rules
in the case of the half-line. This approach, however, is not
fully satisfactory as it assumes the momentum on the half-
line, ð−i∂VÞ, to be one of the basic operators despite the
fact that it is not a self-adjoint operator. As a related
problem, the quantum Hamiltonian, −Δ, is not an essen-
tially self-adjoint operator either; therefore its domain is
confined to a certain dense subspace of the full Hilbert
space of the model and its action beyond this restricted
domain is redefined in order to make it self-adjoint. This
procedure is highly ambiguous and produces a significant
technical inconvenience: once the action of Ĥ is redefined,
its commutation with other operators can no longer be
determined from its representation as a differential oper-
ator, i.e., as −Δ. This is a drawback because, as we show
below, by making use of commutation rules, one is able to
prove the existence of a symmetry in the quantum dynam-
ics of the Bianchi I model, which enables one to immedi-
ately obtain the evolution of some operators.
Therefore, in what follows, we implement affine

quantization in which the nonself-adjoint momentum
operator is replaced with the self-adjoint dilation operator,4

D≡ 1
2
ðV 1

i ∂V þ 1
i ∂VVÞ. The dilation and position opera-

tors provide two basic operators from which any compound
operator such as the Hamiltonian can be obtained. In this
case one is faced with the ordering issue. Nevertheless, all
the orderings are shown to produce the same form of the
quantum Hamiltonian and a wide class of them are self-
adjoint operators which produce a unique dynamics and
can be represented as differential operators.

B. Affine quantization

Our Hamiltonian thus reduces to π2V , which can be
classically expressed in terms of the symmetric combina-
tion D≡ 1

2
ðVπV þ πVVÞ as π2V ∼D2=V2. Upon quantiza-

tion, it is well known that this leads to an ambiguity as the
order of the corresponding operators becomes relevant.
Indeed, with the canonical commutation relation

½V̂; π̂V � ¼ i, one finds ½V̂; D̂� ¼ iV̂, so that one can express
the Hamiltonian in the symmetric form

Ĥ ¼ V̂αD̂V̂βDV̂α with 2αþ β ¼ −2; ð75Þ

for generic values of α. Using the commutation relation

½V̂α; D̂� ¼ iαV̂α

to move all the V̂ factors to the left, and going back to π̂V in
the final result, leads to

Ĥ ¼ π̂2V þKðαÞ
V̂2

with KðαÞ≡ α2 þ 2αþ 3

4
: ð76Þ

It turns out this new Hamiltonian is essentially self-adjoint
if KðαÞ > 3

4
(see Ref. [19], page 161), i.e., for α > 0 or

α < −2. We assume in what follows that α is chosen to
ensure the required self-adjointness of the Hamiltonian.5

The appendix shows that the wave packet behavior in
this case is essentially the same as that illustrated on
Fig. 2, Eq. (A9) showing the generalization for KðαÞ ≠ 0
of Eq. (73).
Let us note at this point that one could expect self-

adjointness to be naturally derived from some other physi-
cally justified assumptions and not, as we are here proposing,
imposed as a mathematical input. One could however argue
in the opposite direction: consider for instance the simple
case of the Hydrogen atom. Applying the correspondence
principle to the classical Hamiltonian already yields a self-
adjoint operator whose quantization permits one to calculate
the energy levels and compare those with data. Expanding
the electron momentum operator into radial and angular
components, one could apply our ordering procedure to find
an extra potential of the form C=r2, the arbitrary constant C
being then fixed by comparison of the resulting (different)
energy levels with the data. One could then argue that the
operator ordering choice can be determined experimentally,
even in situations where the original Hamiltonian is already
self-adjoint.

C. General time evolution

Let us begin by working in the Heisenberg representa-
tion and discuss time evolution of the relevant operators.

Using the usual relation ½π̂V; fðV̂Þ� ¼ −i dfðV̂Þ
dV̂

together with

the commutation relations ½π̂V; Ĥ� ¼ 2iKV̂−3 and
½V̂; Ĥ� ¼ 2iπ̂V , one readily finds that the algebra made
with V̂2, D̂ and Ĥ is closed, namely8>><

>>:
½V̂2; Ĥ� ¼ 4iD̂;

½D̂; Ĥ� ¼ 2iĤ;

½V̂2; D̂� ¼ 2iV̂2;

ð77Þ

leading to the Heisenberg equations of motion for the time
development of the operators, namely

4The name affine is due to the fact that the dilation and position
operators generate the unitary irreducible representation of the
affine group of the real line.

5One recovers exactly the same result by assuming the
correspondence π2V ↦ V̂sπ̂VV̂

−2sπ̂VV̂
s, leading to a similar po-

tential term: π2V ↦ π̂2V þ sV̂−2, and a self-adjoint Hamiltonian
provided s > 3=4.
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d
dη

V̂2 ¼ −i½V̂2; Ĥ� ¼ 4D̂; ð78Þ

for the squared volume operator, and

d
dη

D̂ ¼ −i½D̂; Ĥ� ¼ 2Ĥ; ð79Þ

with Ĥ being a constant operator.
Because of the constancy of Ĥ in time, one can explicitly

integrate (79), namely

D̂ðηÞ ¼ 2Ĥηþ D̂ð0Þ; ð80Þ
which, once plugged into (78), leads to

V̂2 ¼ 4Ĥη2 þ 4D̂ð0Þηþ V̂2ð0Þ: ð81Þ
The expectation values of these operators follow simple
trajectories, whatever the state one integrates over. They
read

hD̂ðηÞi ¼ 2hĤiηþ d0 ð82Þ

where we have set d0 ≡ hD̂ð0Þi, and
hV̂2ðηÞi ¼ 4hĤiη2 þ 4d0 þ v20; ð83Þ

with v20 ≡ hV̂2ð0Þi.
Shifting the time variable to t ¼ ηþ d0=ð2hĤiÞ and

setting V2
0 ¼ v20 − d20=hĤi (assuming v20hĤi ≥ d20), one can

now define semiclassical variables V̌ðtÞ and π̌VðtÞ through

V̌ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hV̂2ðtÞi

q
and π̌VðtÞ ¼

hD̂ðtÞi
V̌ðtÞ ; ð84Þ

and finally obtain a set of trajectories in phase space labeled
by the arbitrary time t, namely

V̌ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4hĤit2 þ V2

0

q
;

π̌VðtÞ ¼
2hĤitffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4hĤit2 þ V2
0

q : ð85Þ

Each trajectory is thus labeled by two parameters, namely
the average value of the Hamiltonian hĤi and the minimum
volume V0, and indeed, we have

hĤi ¼ V̌2ðtÞπ̌2VðtÞ
V̌2ðtÞ − V2

0

¼ π̌2VðtÞ þ
K

V̌2ðtÞ ; ð86Þ

provided one sets K ¼ hĤiV2
0.

It is interesting to realize that the phase portrait for the
regular case of the slow-gauge time is transformed, using
the delay function (60), into singular solutions: as shown on
Fig. 4, all solutions now either terminate in or originate
from a singularity V → 0.

D. Comparison of different slow-gauge dynamics

So far we have shown quantization of the model in a
single internal time, η. As we have shown in Sec. III D, all
other choices of internal time, denoted by η0, can lead to
formally the same Hamiltonian framework provided that a
suitable choice of the new canonical pair, V 0 and π0V ,

0 2 4 6 8 10

-1.6

-0.8

0.0

0.8

1.6

FIG. 3. Effective phase space trajectories (85) for the effective
Hamiltonian (86), taking hĤi ∈ ½1; 5� from the inside to the
outside of the graph, as indicated, full (hĤi ¼ 1), dashed
(hĤi ¼ 2), dotted (hĤi ¼ 3), dot-dashed (hĤi ¼ 4) and long-
dashed (hĤi ¼ 5). We use KðαÞ ¼ 2 for the plot.

FIG. 4. Same as Fig. 3 after application of the delay function
(60). The originally regular trajectories (thin lines) are now all
singular (thick lines).
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defined in Eq. (58), is made. In this case, the quantization
introduced in Sec. IV B and the subsequent integration of
the quantum motion given in Sec. IV C can be repeated
simply by replacing the labels of the canonical variables,
V → V 0 and πV → π0V . Actually, there is a much better
reason than mere technical convenience for repeating
the quantization in this particular manner: since the
Hamiltonian frameworks are formally identical, the con-
stants of motion derived within them must be formally
identical functions of the respective basic variables and
internal time. Hence, repeating the quantization in all
internal times promotes the constants of motion to the

same operators irrespectively of the choice of internal
time. On the other hand, the constants of motion enjoy a
physical interpretation that must not depend on the par-
ticular choice of time. Therefore, the quantization of the
system is in this sense unique for all internal frames. One
also notices that since the number of elementary constants
of motion is equal to the dimensionality of the phase space,
the quantization cannot be more unique, i.e., it is com-
pletely determined by the quantization of the constants.
We expect that, contrary to the case of constants of

motion, quantization of dynamical observables in general
leads to different operators for different internal times.

(a)

(c) (d)

(b)

FIG. 5. Same as Fig. 3 after application of the delay functions Δ ¼ Ve−2jπV j=3 sinð3VπVÞ=ð10πVÞ (a),Δ ¼ VðπV − 10−0.2π3V þ π5V=10Þ
(b), Δ ¼ 10−0.5V sinð2πVÞ=πV (c) and Δ ¼ 10−0.5ðV þ 1Þ cosð3πVÞ=πV (d). It can be checked that these delay functions satisfy the
requirement (64). The new trajectories happen to be not necessarily symmetric like their counterpart of Fig. 3.
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This is the reflection of the fact already mentioned in the
introduction that dynamical observables are not gauge
invariant in Hamiltonian constraint systems. For a more
detailed discussion of these and related issues, we refer the
reader to [20].
Let us explain our approach to making the comparison

between quantum dynamics in different internal times.
First, we note that all quantum dynamics are placed in a
single Hilbert space that carries a unique quantum repre-
sentation of constants of motion. Second, the quantum
dynamics viewed as a curve in the Hilbert space is actually
unique because the quantum Hamiltonian generating the
dynamics is a quantum constant of motion that is unique in
all internal times. Third, to describe the quantum dynamics,
one needs operators that do not commute with the
Hamiltonian and are not quantum constants of motion.
However, such operators are exactly the operators which
correspond to different physical observables in different
internal clocks. Therefore, using the same operator(s) for
the purpose of describing the time evolution of the quantum
system must be complemented by a physical interpretation
of the operator(s), which must depend on the choice of
internal time. Hence, formally the same dynamics in the
Hilbert space will render different physical portraits for
different internal times. The extent to which the physical
portraits differ is the result of the choice of internal time and
we refer to it as “time effect.”
Finally, let us notice that one could instead choose the

same physical observable and determine the respective
operators in each internal time and then compare the
dynamics of these operators. Such an approach, in principle
valid, is technically much more involved or even impos-
sible to apply if a given physical observable does not enjoy
a self-adjoint representation in a given internal time.
Let us now establish a concrete computational scheme

for the comparison method outlined above. Equation (85)
defines the semiclassical portrait of the dynamics of the
model in terms of V̌ and π̌V in one internal time. As
discussed above, the quantization of the same model in
another internal time yields the same form of the semi-
classical portrait except for that now the coordinates are V̌ 0

and π̌0V rather than V̌ and π̌V . In order to compare the two
portraits we use the relation between the basic observables
given in Eq. (58), i.e.,

π̌V ¼ π̌0V; V̌ ¼ V̌ 0 þ π̌0VΔðV̌0; π̌0VÞ: ð87Þ

By choosing various delay functions ΔðV̌ 0; π̌0VÞ we are able
to generate infinitely many new semiclassical portraits, all
of which describe the quantum dynamics of the Bianchi I
model in terms of the same observables V̌ and π̌V but
produced with different internal times.
Figure 5 shows various cases for which we have picked

arbitrary but acceptable delay functions ΔiðV̌ 0; π̌0VÞ. It is
clear from these graphs that the “actual” motion in phase

space can be for the most part arbitrary. In particular, it
is neither necessarily symmetric in the ðV̌ 0; π̌0VÞ plane.
Moreover, one can even find a minimum volume at points
for which the momentum is nonvanishing, thereby ruining
the usual interpretation of the latter as the Hubble factor.

V. CONCLUSIONS

We studied the empty Bianchi I universe to exemplify the
use of a clock in quantum cosmology. Solving the classical
Hamilton equations, we find two different categories of
clocks, dubbed fast and slow-gauge times. The fast-gauge
time appears in a more natural way in the canonical one-
form, and yields a singular classical motion, although it
requires an infinite amount of fast-gauge time to reach it
(hence the gauge name). It has been conjectured, and we
provide an explicit example that canonical quantization
cannot remove the singularity, the wave function eventually
evolving toward a Dirac distribution at vanishing volume.
Solving the constraint using a more sophisticated sol-

ution provides another category of clocks, dubbed slow-
gauge times. Classically, such clocks are slow in the sense
that the singularity is now reached in a finite amount of
time. The question of time is now manifested by the fact
that there exist many choices, all involving a delay function
thanks to which new sets of canonical variables may be
defined.
The main difference between fast and slow-gauge times,

in the Bianchi I case, resides in the domain of definition of

FIG. 6. Comparison between five delay functions Δ (shown on
Fig. 5) and the original time phase space trajectories from Fig. 3,
illustrated here on the case hĤi ¼ 3. The asymptotic behaviors
being identical, the classical limit appears to be well defined
whatever the delay function used, which is significant only
around the bouncing epoch.
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the variables. In the fast case, the evolution is naturally
unbounded, the Hamiltonian being that of a free particle on
the full real line, whereas the slow-gauge time yields a
similar evolution but only on the half-line. Up to some
technical points regarding the self-adjointness of operators,
this permits one to resolve the classical singularity through
quantum mechanical effects.
We show that in the Heisenberg picture, it is possible to

explicitly solve the relevant operators (Hamiltonian, dila-
tion and square of the volume) as functions of time,
allowing to draw phase portraits. We then find that, in a
way mostly independent of the explicit choice of state itself
(which is an advantage of the Heisenberg picture over
Schrödinger’s), the phase space trajectories are always
similar, depending on the eigenvalue of the Hamiltonian.
A Gaussian wave packet evolution shows exactly the same
behavior, as expected.
Shifting to different times by picking arbitrary delay

functions, one finds that the phase space trajectories
depend strongly on the time choice only when quantum
effects are relevant, i.e., close to the bouncing point
(minimum of the volume). However, we also show that
there exists an asymptotic regime in which the semi-
classical motion is a good approximation and which does
not depend on the choice of time (Fig. 6). These results
are in agreement with earlier results on the time issue for
the Friedmann model filled with radiation [21]. It could
thus be conjectured that the question of time in a
quantum cosmological setting is naturally resolved in
the classical domain provided such a regime exists. In
other words, time would cease to be a relevant physical
object in the quantum gravitational realm, recovering its
meaning only for configurations for which the use of
general relativity is appropriate. At the moment, one
needs to implement a time parameter to order events, but
it may not be necessary in a more complete theory.
Since the empty Bianchi I model with internal time

effectively becomes one dimensional, it is fully justified
to ask whether the results obtained in this paper are
restricted to one-dimensional models and no longer hold
when an additional d.o.f. is present and the space of
solutions has more structure. This question was in fact to
some extent already investigated for the case of the
Bianchi I with a fluid playing the role of the internal time
variable [22], and the results obtained there appear to be
in full agreement with the ones presented herein.
Nevertheless, it seems to us that more such studies are
desirable.
The next and related question that needs be asked

concerns perturbations, and in particular whether they also
enjoy a unique classical limit independent of the choice of
time. If true, such a statement would permit deriving
“matching conditions” (as discussed, e.g., in Ref. [23]);
we postpone a discussion of perturbations in a vacuum
Bianchi I universe for future work.
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APPENDIX: WAVE PACKET FOR
THE AFFINE CASE

In Sec. IVA, we presented the evolution of a Gaussian
wave packet for the simple case where the Hamiltonian is
given by Ĥ ¼ −△D. In this appendix, we discuss the
equivalent situation for the affine case (75) for which we
obtained the Hamiltonian (76). Still using the representa-
tion for which V̂ is multiplicative, i.e.,

V̂ψðVÞ ¼ VψðVÞ; π̂VψðVÞ ¼ −i∂VψðVÞ;

the Hamiltonian operator reads

Ĥ ¼ −∂2
V þKðαÞ

V2
: ðA1Þ

All the eigenfunctions of this operator satisfy the Dirichlet
conditions ψlð0Þ ¼ 0, and they read

ψl ¼
ffiffiffiffiffiffiffi
lV

p
JνðlVÞ; l ∈ SpðĤÞ ¼ Rþ;

ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4KðαÞp

2
; Ĥψl ¼ l2ψl; ðA2Þ

where JνðxÞ is the Bessel function of the first kind.
The propagator G is given by the integral of the

eigenfunctions over the spectrum, namely

Gðη; V; V 0Þ ¼
ffiffiffiffiffiffiffiffi
VV0p Z

∞

0

dlle−il
2η̃JνðlVÞJνðlV 0Þ; ðA3Þ

where η̃ ¼ ηð1 ∓ iϵÞ for ϵ > 0 gives the correct propagator
prescription after taking ϵ → 0 for η > 0 and η < 0
respectively. This integral can be done analytically using
Weber second integrals (see [24], Sec. 10.22.67),

Gðη; V; V 0Þ ¼
ffiffiffiffiffiffiffiffi
VV0p

2iη̃
exp

�
−
V2 þ V 02

4iη̃

�
Iν

�
VV 0

2iη̃

�
; ðA4Þ
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where IνðxÞ is the modified Bessel function of the first
kind. Note that KðαÞ → 0 ⇒ ν → 1=2, and the Bessel
function reduces to the sinh ∶ I1=2ðxÞ ¼ sinhðxÞ= ffiffiffiffiffiffiffiffiffiffi

πx=2
p

.
Substituting this expression in the propagator above then
reproduces, up to an irrelevant phase, Eq. (68).
One useful property of the propagator (68) is that its

integral over a Gaussian distribution generates another
Gaussian distribution, as we have seen in Sec. IVA.
Although the integral of the propagator (A4) does not
have the same property when integrated over Gaussian
distribution, it is still possible to choose a different initial
wave packet that reduces to our earlier choice (74) when
ν → 1=2 and retains the same functional form when
propagated through time. By analogy with the Gaussian
case, we consider an initial wave function having the same
functional form as the propagator, namely

ψ0ðVÞ ¼
ffiffiffiffiffiffiffiffiffi
VV0

p
N ν

exp

�
−
V2 þ V2

0

4σ2

�
Iν

�
VV0

2σ2
þ ikV

�
;

ðA5Þ

whose normalization is found, still using Weber second
integral, to be given by

N 2
ν ¼ σ2V0 exp

�
−

V2
0

4σ2
− σ2k2

�
Iν

�
V2
0

4σ2
þ σ2k2

�
; ðA6Þ

this choice reduces to Eq. (74) for ν → 1=2.
In the large volume limit V; V0 ≫ 1, we can use the

asymptotic expansion of IνðxÞ,

IνðxÞ ∼
exffiffiffiffiffiffiffiffi
2πx

p −
e−xþiπðν−1

2
Þffiffiffiffiffiffiffiffi

2πx
p ; ðA7Þ

(with corrections of order x−1 for each term) to obtain

ψðVÞ ≈
V→∞

eiμffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

p
σ

p �
exp

�
−
ðV þ V0Þ2

4σ2
− ikV

�

− exp

�
−
ðV − V0Þ2

4σ2
þ ikV þ iπ

�
ν −

1

2

���
;

ðA8Þ

where μ is a constant phase given by

V0

2σ2
þ ik ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
0

4σ4
þ k2

s
eiμ:

The asymptotic expansion above shows that our choice of
wave packet reduces to a Gaussian when computed far from
the boundary. In addition, we can again use Weber second
integral to calculate explicitly the solution by applying the
propagator to the initial wave function, namely

ψðV; ηÞ ¼
Z

∞

0

dV 0Gðη; V; V 0Þψ0ðV 0Þ:

This yields

ψðV; ηÞ ¼
ffiffiffiffiffiffiffiffiffi
VV0

p
N νðση=σÞ

exp
�
−ik2η −

V2 þ V2
η

4σση

�

× Iν

�
VVη

2σση
þ ikV

�
; ðA9Þ

where Vη ¼ V0 þ 2kη and ση ¼ σ þ iη=σ are the same
parameters used in the free particle case. As below Eq. (A4),
the limit K → 0 reproduces the solution (72), up to an
irrelevant phase.
Far from the boundary, this solution reduces to a simple

Gaussian packet traveling with speed 2k. On the other
hand, if the packet travels towards the boundary, Vη even-
tually vanishes and consequently the modified Bessel
function argument, whose real part reads

ℜe

�
VVη

2σση
þ ikV

�
¼ VVη

2jσηj2
;

also vanishes. At this stage, the asymptotic expansion is
clearly not valid so the wave function cannot be approxi-
mated by a Gaussian packet. Nonetheless, −Vη sub-
sequently again increases monotonically, so that, given
enough time, the wave function again behaves as a
Gaussian wave packet traveling away from the boundary.
This happens because as the sign of the real part of the

FIG. 7. Variation of the mean value hV̂iwith the conformal time
η using the solution (A9) (full line), compared with the semi-
classical approximation given by the V̌ (85) (dashed line). Also
shown is the classically singular trajectory (dotted line).
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argument changes to negative, the asymptotic expansion of
the modified Bessel function (A7) becomes dominated by
the second term.
With the help of the actual wave function solution (A9),

it is possible to estimate the average value of the relevant
variable V̂, namely

hV̂i ¼
Z

∞

0

jψðV; ηÞj2dV

and π̂V ,

hπ̂Vi ¼ −i
Z

∞

0

ψ�ðV; ηÞ∂VψðV; ηÞdV:

Figure 7 shows hV̂i as a function of the conformal time and
compares with the semiclassical trajectory. It is clear from

this figure that although using
ffiffiffiffiffiffiffiffiffi
hV̂2i

q
may be questionable,

it provides a reasonable approximation to hV̂i almost at all
times. This is due to the fact that we considered a very
peaked Gaussian state for large negative times, and
although the variance increases with time after the bounce,
the difference remains small because the growing variance
is just compensated by the simultaneous shift of the wave
packet to larger and larger values of V: for large values of η,
we have hV̂i ∝ ση ∝ η.
The relevant phase space trajectory is illustrated on

Fig. 8, showing again that the semiclassical approximation
is a valid one, especially if one is interested in the
asymptotic (large time) behaviors. The solution (85) is
symmetric, contrary to the mean value case. This stems
from the fact that the variance of the wave packet has a
nonsymmetric evolution in time (Fig. 9).
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