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Diophantine equations are in general undecidable, yet appear readily in string theory. We demonstrate
that numerous classes of Diophantine equations arising in string theory are decidable and propose that
decidability may propagate through networks of string vacua due to additional structure in the theory.
Diophantine equations arising in index computations relevant for D3-instanton corrections to the
superpotential exhibit propagation of decidability, with new and existing solutions propagating through
networks of geometries related by topological transitions. In the geometries we consider, most divisor
classes appear in at least one solution, significantly improving prospects for Kähler moduli stabilization
across large ensembles of string compactifications.
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I. INTRODUCTION

Many problems arising in string theory are computa-
tionally hard, which could be dynamically relevant. While a
thorough investigation of the question of how hard they are
is still in its infancy, a number of results are known. In [1],
which introduced computational complexity into studies
of the string landscape, it was shown that a version of
the Bousso-Polchinski model [2] for the cosmological
constant is NP complete, where NP (Non-deterministic
polynomial time) is the set of decision problems for which
the problem instances, where the answer is “yes”, can be
verified in polynomial time. Furthermore, computing the
scalar potential in string theory, finding its critical points,
and establishing that they are metastable vacua all require
solving NP-hard or co-NP-hard problems [3]. Within the
last 2 years, machine learning was introduced into the study
of string theory problems [4–7] to make progress on
computationally hard problems.
Even worse, problems arising in physics may be unde-

cidable. In this paper, we focus on the Diophantine undecid-
ability, which is the solution to Hilbert’s tenth problem. In
modern language, the problem is to find an algorithm that
solves the following decision problem: HILBERT Given a
polynomialDðx1;…; xsÞ ¼ 0 with integer coefficients, does
there exist a solution in the integers? Dðx1;…; xsÞ ¼ 0 is a

Diophantine equation. Famously, no such algorithm exists,
and therefore HILBERT is undecidable. The proof, which
shows that every recursively enumerable set is Diophantine,
is due to Matiyasevich [8], building on work [9] of
Robinson, Davis, and Putnam; the complete result is known
as the MRDP theorem.
The way in which Diophantine equations arise in string

compactifications is by the appearance of integer topologi-
cal data, such as Chern classes, that describe the compac-
tification space, internal gauge fluxes, and the cycles
wrapped by branes. Since these data fix some physical
observables of the string theory compactification, decision
problems involving Diophantine equations abound in
studies of the string landscape. Even more broadly, by
the MRDP theorem any decidable or partially decidable
decision problem can be turned into a Diophantine equa-
tion, and therefore any yes/no question one might ask about
the physics of string theory implicitly introduces another
Diophantine equation into its study.
The presence of computationally hard or undecidable

problems can affect the dynamics of the underlying system.
For instance, folding proteins [10,11] and relaxing spin
glasses [12,13] are both associated with NP-hard problems,
which correlate with the existence of proteins and spin
glasses that relax on timescales exponential in the system
size. Such considerations can give an increased under-
standing of the dynamics and necessitate additional explan-
ations, including why our proteins fold quickly, while
general proteins do not. For physics examples, the question
can be posed of how the Universe “found” the state it is
currently in if this requires solving a hard or undecidable
problem. For instance, when applied to finding a small
cosmological constant in an eternally inflating universe
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[1,3,14–16], this gives a measure that differs significantly
from others [17–20].
Given that Diophantine equations arise in string theory in

numerous ways and also the size [2,21–25] of the string
landscape, one might imagine that the resulting equations
can be diverse enough to be up against Diophantine
undecidability [26]. Of course, this formal concern is
notoriously difficult to quantify, since we do not yet have
a handle on all of the Diophantine problems of physical
interest in string theory.
The focus of this work is to study cases in which

Diophantine equations from string theory are easier to
decide than the MRDP theorem might naively suggest.
That is, given a class of seemingly intractable Diophantine
equations that arise for a physical problem in string theory,
does the additional structure of the theory render them
decidable? We will see this is sometimes the case.
Since there may be transitions between string vacua/

compactifications, for instance, due to topology or flux
change, it also natural to consider the landscape as a
network where edges represent the transitions; see, e.g.,
[20]. In this framework, Diophantine equations on one
node may be related to Diophantine equations on another,
in which case it is natural to study if decidability of one
implies decidability of the other. We refer to this as the
propagation of decidability through the network.
Though we analyze the decidability of many problems

in string theory, our primary focus is on one important
example, for the sake of concreteness. We study the stabi-
lization of Kähler moduli in string compactifications. These
scalar fields are massless at tree level, but may be stabilized
by nonperturbative corrections to the superpotential, spe-
cifically world-sheet instantons in heterotic theories or
Euclidean D3-instantons (E3) in the type IIB/F-theory
compactifications that we study. The existence and struc-
ture of the superpotential correction depend crucially on the
spectrum of instanton zero modes, of which there are many,
but we focus on a constraint [27] on the holomorphic Euler
character χðD̂;OD̂Þ ¼ 1, where D̂ is a divisor in an
elliptically fibered Calabi-Yau fourfold X!π B. This con-
straint is equivalent [28] to an index related to a divisor
D ⊂ B where D̂ ¼ π−1ðDÞ,

χE3 ¼ −
1

2

Z
B
c1ðBÞ ∧ D ∧ D ¼ 1; ð1Þ

with Poincaré duality implied. Expanding D in an integral
basis Di of the second cohomology H1;1ðX;ZÞ,

D ¼
Xh1;1
i¼1

niDi; ð2Þ

it may be expressed as a quadratic Diophantine equation in
the integers ni, which is the central object of our study.
Our main result is that networks of base geometries B

connected by topological transitions realize the propagation

of decidability. Specifically, for a geometry B̃ that is a
blowup of another base B, solutions to χE3 ¼ 1 on B
significantly aid in determining solutions to χ̃E3 ¼ 1 on B̃.
This applies to the largest known ensembles of such bases,
which exhibit similar physical features and have 2.96 ×
10755 and Oð103000Þ geometries [24,25]. Clearly, these
extremely large (but finite) networks are intractable by
brute force techniques, but propagation of decidability
nevertheless allows for concrete statements about instanton
solutions. Furthermore, one ensemble [24] may be ran-
domly sampled from a uniform distribution, which is
utilized to show that on average 99.2% percent of divisor
classes appear as a component in some divisor with
χE3 ¼ 1, even utilizing only the simplest solutions, sug-
gesting that (up to thoroughly discussed caveats) Kähler
moduli stabilization across large ensembles of string
compactifications may be easier than naively expected.
Our analytic derivations relating solutions on B̃ and B

likely give rise to many more solutions in the networks, but
some will depend on details of large sequences of blowups
that introduce model dependence. We leave a statistical
analysis of this type for future work.
This paper is organized as follows. In Sec. II, we review

known theorems about Diophantine equations, including
decidability of certain cubics and all quadratics. We use
them to show that numerous physical Diophantine prob-
lems, often of a geometric nature, are decidable. In Sec. III,
we study the E3 index on varieties related by blowup and
use associated recursion relations that demonstrate the
propagation of solutions. In Sec. IV, we derive concrete
implications of the results of Sec. III for Kähler moduli
stabilization in type IIB/F-theory compactifications. In
Sec. V, we conclude.

II. PHYSICS IMPLICATIONS OF KNOWN
DIOPHANTINE RESULTS

In this section, we discuss numerous physical applica-
tions in string theory of known Diophantine results.
Physically relevant Diophantine equations in string

theory are often of relatively low degree. This arises
because compactification of the extra dimensions in string,
M-, or F-theory often involves a complex algebraic variety
X with dimCðXÞ ≤ n, and the Diophantines can arise from
intersection theory on X. Such Diophantines are of degree n
or less. It is sometimes the case that the intersection of
interest on X can be realized within a fixed subvariety V
with dimCðXÞ ≤ d, in which case the degree is d or below.
We will restrict to the case of quadratic and cubic
Diophantine equations1 and then discuss their application
in string theory.

1Linear Diophantine equations can be solved in polynomial
time [29].
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In fact, any set of Diophantine equations can be written
as a single quartic Diophantine equation [30], albeit in
(many) more variables. This is based on the observation
that an arbitrary Diophantine equation can be written as a
system of quadratic Diophantine equations by introducing
auxiliary variables. Then, a set of quadratic Diophantine
equations can be turned into a single quartic Diophantine
equation by taking the sum of the squares of each
individual quadratic equation; since the squares are non-
negative, the resulting equation will have a solution iff the
original set of quadratic Diophantine equations had a
solution. However, given the MRDP result, this makes it
very hard to make general statements about quartic
Diophantine equations.

A. Quadratic Diophantines in string theory

A quadratic Diophantine equation is of the form

Qðx1;…; xsÞ ¼ 0; ð3Þ

where the polynomial Qðx1;…; xsÞ ∈ Z½x1;…; xs� is of
degree 2. The equation may be rewritten as

aijxixj þ hixi ¼ n; ð4Þ

and H ¼ maxfjaijj; jhij; ng is known as the height.
Quadratic Diophantine equations are decidable due to a

result of Siegel [31]. One way in which this arises is due to
the existence of search bounds. ΛsðHÞ is a search bound if
the existence of an integral solution ðx1;…; xsÞ to (4)
requires that there is a solution with jxij ≤ ΛsðHÞ for
1 ≤ i ≤ s. Siegel proved that there is a search bound for any
number of variables s, and thus quadratic Diophantine
equations are decidable. Though Siegel’s search bounds
grow exponentially in H, later results [32] demonstrate the
existence of search bounds that are polynomial in H for all
s ≥ 3. That is, one can always decide existence of a
solution to a quadratic Diophantine equation by searching
through a finite set of possibilities that grows polynomially
(or exponentially for s ¼ 2) in the maximum of the
absolute values of its coefficients.
Despite being decidable, determining whether there is a

solution to a quadratic Diophantine equation is hard. For
instance, even in the two-variable case

ax21 þ bx2 þ c ¼ 0; ð5Þ

determining whether there is a solution ðx; yÞ ∈ Z2, it is NP
complete via reduction from 3SAT [33].
A few examples of physically relevant quadratic

Diophantines, to which these results can be applied, are
as follows:

(i) D3 charge: Seven branes with gauge bundles give
rise to induced D3-brane charges that appear in
consistency conditions for the theory.

Specifically, given a type IIB/F-theory compacti-
fication on a Calabi-Yau threefold X with a seven
brane on a divisor D and a target D3-brane charge
T ∈ Z, is there a worldvolume flux L (a line bundle)
that induces a D3-brane charge T? This may be
studied via an integral parametrization of L as

c1ðLÞ ¼
X
i

niσi; ð6Þ

where σi is a basis for H1;1ðD;ZÞ. Then the answer
to the decision problem is yes if and only if

Z
D
ch2ðLÞ ¼ T; ð7Þ

where a standard computation expresses the left-
handed size as a quadratic Diophantine equation in
the variables ni.

(ii) Chiral three to seven modes: Instanton zero modes
crucially affect the structure of nonperturbative
corrections to the 4d N ¼ 1 superpotential. Some
of these zero modes are so-called three to seven
strings [34] between a Euclidean D3 instanton and a
spacetime filling seven brane, and the correction
depends crucially on whether there are chiral modes
of this type [35–37].

Specifically, given a type IIB/F-theory compacti-
fication on a Calabi-Yau threefold X with a seven
brane on a divisor D, is there a divisor D̃ such that a
Euclidean D3 brane on D̃with instanton flux L gives
rise to no chiral three to seven modes at the
intersection C ¼ D · D̃? Integrally, parametrizing
D as a linear combination D ¼ miDi of effective
divisors Di and L in a way similar to before,
answering the question is equivalent to solving

Z
C
TdðCÞchðLjC ⊗ K1=2

C Þ ¼ 0; ð8Þ

where the left-hand side may be expressed as a
quadratic Diophantine equation in ni, mi. Related
issues are discussed in [26].

(iii) Bianchi identities: Given a heterotic string compac-
tification on a Calabi-Yau threefold X with a vector
bundle V, we need to solve the Bianchi identities for
the three-form field H, which can be written as

ch2ðXÞ − ch2ðVÞ ¼ 0: ð9Þ

In many cases that have been studied, the bundle V is
described as a sum of line bundles, a monad bundle
of line bundle sums, or an extension bundle of line
bundles. In all cases, we can specify the line bundles
via their first Chern classes on the h1;1ðXÞ divisors
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Di of X, Li ¼ OXðk1i ;…; kh
1;1

i Þ. The Bianchi iden-
tities then become a (set of coupled) quadratic
Diophantine equations in the integers kai (note that
decidability as discussed above only applies to a
single quadratic Diophantine equation, not to a
system of equations).

(iv) GLSM (gauged linear sigma model) anomalies:
Given a two-dimensional N ¼ ð0; 2Þ gauged linear
sigma model, the U(1) charges qai of all defining
fields Φi under the a U(1) factors have to be chosen
such that the GLSM anomalies vanish. This leads to
a (set of coupled) quadratic Diophantine equations
in the qai (which can be chosen integral upon
changing the U(1) normalization).

Of course, many more physical examples could be pro-
duced from index formulae in a similar way. The main one
that we will study in this paper has to do with instanton
corrections on divisors D in a Kähler threefold B, where
in index χE3 ¼ − 1

2

R
B c1 ∧ D ∧ D defines a quadratic

Diophantine equation in the integers parametrizing D.

B. Cubic Diophantine equations in string theory

There are also a collection of interesting results for cubic
Diophantine equations Cðx1;…; xsÞ ¼ 0. When there is a
solution to C ¼ ∂iC ¼ 0 ∀ i, we will say that C is
singular; if not, it is nonsingular. When the equation is
homogeneous of degree 3, we will say that it is a cubic
form. Results of interest include as follows:

(i) A cubic form has a nontrivial solution [38] if s ≥ 16.
(ii) Therefore, cubic forms are decidable if s ≥ 16.
(iii) A nonsingular (disallowing the trivial solution)

cubic form has a solution [39] if s ≥ 10.
Given these results about cubic forms and the previous ones
about quadratic Diophantine equations, it is natural to try to
make further progress by decomposing a general cubic
Diophantine equation as

Cðx1;…; xsÞ ¼ Fðx1;…; xsÞ þHðx1;…; xsÞ; ð10Þ

where Fðx1;…; xsÞ is a cubic form and Hðx1;…; xsÞ is a
quadratic polynomial. Then Cðx1;…; xsÞ is decidable if
any one of the following three conditions holds [40]:

(i) vðFðx1;…; xsÞÞ ≥ 17.
(ii) s ≥ 15 and 4 ≤ vðFðx1;…; xsÞÞ ≤ s − 3.
(iii) s ≥ 14 and we can factor the cubic form as a

new variable x̃n times a quadratic form in n − 1
variables x̃i,

Cðx1;…; xsÞ ¼ x̃nQðx̃1;…; x̃n−1Þ; ð11Þ

subject to some additional conditions on the fac-
torization.

These conditions are all, themselves, decidable.
In these conditions, vðFÞ is an invariant of the cubic form

F defined as follows: given a cubic form, it can be written

(nonuniquely) as a sum of products of linear forms Li and
quadratic forms Qi,

F ¼
XN
i¼1

LiQi: ð12Þ

Now, vðFÞ is the minimum number of terms N in this sum
for which this decomposition is possible.
The simplest results for cubic Diophantine equations are

in the case in which they are homogeneous (i.e., cubic
forms). While such equations sometimes occur in string
theory, one often faces more general cubic Diophantine
equations, e.g.,

(i) Existence of elliptic fibrations: It was conjectured by
Kollár [41] (which is a proven result by Oguiso [42]
andWilson [43] under some additional assumptions)
that a Calabi-Yau threefold X admits an elliptic
fibration if D3 ¼ 0, D2 ≠ 0, and D · C ≥ 0 for all
algebraic curves C ⊂ X. Deciding the existence of
an elliptic fibration using Kollár’s criterion thus
requires solving a coupled set of a cubic form, a
quadratic form inequality, and a linear condition.

(ii) Three generations: In heterotic compactifications on
a Calabi-Yau X with a vector bundle V that is given
by a sum of line bundles Li, the condition to obtain
three net generations of Standard Model particles is
given in terms of the Hirzebruch-Riemann-Roch
index theorem and reads

X
i

χðLi; XÞ ¼
X
i

Z
X
TdðTXÞchðLiÞ

¼
X
i

1

6
c1ðLiÞ3 þ

1

12
c1ðLiÞc2ðTXÞ

¼! 3n; ð13Þ
where n is the order of a freely acting symmetry that
is commonly used to obtain the Standard Model
gauge group. By parametrizing again the line bun-
dles Li as Li ¼ OXðk1i ;…; kh

1;1

i Þ, this becomes a
cubic (inhomogeneous) Diophantine equation.
Equation (13) computes the net number of quark
doublets, but the net numbers of the other particles
are given by similar cubic equations.

Interestingly, decidability of cubic Diophantines also
arose recently in quantum field theory, via the derivation
[44] of the most general solution to the Uð1Þ anomaly
cancellation conditions in four-dimensional G ¼ Uð1Þ
theories.

III. PROPAGATION OF INSTANTON
SOLUTIONS THROUGH NETWORKS

OF STRING GEOMETRIES

We now turn to the central physical problem of this
paper: finding Euclidean D3 (E3)-instanton corrections to
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the superpotential across large networks of compactifica-
tion manifolds in type IIB string theory and F-theory. In
cases where a heterotic dual exists, this will also imply the
presence of (world sheet and space-time) instantons in
heterotic theories. Such corrections are of great importance
for string cosmology and global dynamics on the
landscape.
The detailed structure of an instanton correction depends

crucially on its spectrum of zero modes, and here we study
the simplest case; additional subtleties are discussed in the
conclusions. Using various dualities, there are a number
of ways to formulate the study of these zero modes.
Consider a compactification of M-theory on an elliptically
fibered Calabi-Yau fourfold X!π B with Kähler threefold
base B. In [27], Witten showed that if X is smooth, and
M5-brane instanton on a vertical divisor D̂ in X satisfying
hiðD̂;OD̂Þ ¼ ð1; 0; 0; 0Þ contributes to the superpotential.
Such instanton divisors have holomorphic Euler character

χðD̂;OD̂Þ ¼
X
i

ð−1ÞihiðD̂;OD̂Þ ¼ 1: ð14Þ

An F-theory compactification may be obtained by taking
M-theory on X in the limit of vanishing fiber, in which case
the M5-instanton correction becomes and E3-instanton
correction, arising from an E3 wrapped on D ⊂ B where
D̂ ¼ π−1ðDÞ. In this duality frame, one would like to
rewrite the condition χðD̂;OD̂Þ ¼ 1 in terms of data
intrinsic to D and B. This was done via a Leray spectral
sequence in work of Kollár [45] that relates cohomology on
D̂ to cohomology on D. The result matches a detailed IIB
instanton zero mode count [28], which defined a new index
χE3 related to cohomology onD. If B is P1 fibered, one can
moreover apply heterotic/F-theory duality, and D̂ captures
world sheet as well as space-time instanton contributions.
In order to not rely on a rational ruling of B in the
following, we will focus on E3 instantons, but keep in
mind implications for heterotic theories if their dual exists.
Witten’s instanton condition becomes

χðD̂;OD̂Þ ¼ χE3 ¼ χðD;ODÞ − χðD;KXÞ ¼ 1: ð15Þ

We choose to utilize χE3 written in terms of data on B rather
than χðD̂;OD̂Þ written in terms of data on X. We will see
that this simplifies calculations.
In order to address decidability issues, we would like to

formulate the condition as a natural decision problem
relevant for determining instanton corrections to the super-
potential. E3-INDEX: Given a smooth threefold B, is there
an effective divisor D with χE3 ¼ 1? Inserting the expan-
sion of D in Eq. (2) into Eq. (1), the decision problem E3-
INDEX becomes a Diophantine equation of degree two in
h1;1ðBÞ variables ni. Given D with χE3 ¼ 1, we may say
that D or the associated set of ni provides a yes solution to
E3-INDEX, i.e., the ni’s solve the Diophantine equation.

Since χE3 is quadratic, E3-INDEX is decidable, a signi-
ficant improvement from the general case of Diophantine
undecidability. Of course, a decision problem being decid-
able does not mean that it is tractable. For instance, a
smooth toric F-theory base is presented in Appendix A, for
which the associated χE3 is given in (A4). To the naked eye,
this seems intractable, even though it is decidable. To
estimate the brute force tractability, we use the search
bounds of [32]

ΛsðHÞ ¼ C4ðsÞH5sþ19þ74=ðs−4Þ when s ≥ 5; ð16Þ

where in Appendix A example s ¼ h1;1 ¼ 9 and therefore
Λ11ðHÞ ∝ H78.8. Since (A4) has H ¼ 44, taking C4ð9Þ ≥ 1
would give a search set Ssearch with

jSsearchj ≥ ð2 × 4478.8 þ 1Þ9 ≃ 101200: ð17Þ
Using the concrete quadratic decidability result is already
intractable in this h1;1 ¼ 9 case, which is actually quite a
low value for h1;1. For instance, a generic base in the tree
ensemble [24] has h1;1 ≃ 2000, in which case brute force
search using the search bound becomes even worse. One
must find another way to solve E3-INDEX.
Our central idea is to utilize additional structure to aid in

solving E3-INDEX, in particular the fact that 2 three-
dimensional varieties B̃ and B may be related to one
another by topological transitions. Specifically, we will
study how the index χ̃E3 of a divisor D̃ on B̃ is related to
χE3 of a divisor D on B, where B̃ and B are related via the
blowdown π∶B̃ → B. The relation is captured by the
difference Δχ ¼ χ̃E3 − χE3, and pullbacks under π will
be implicit throughout.
This approach is in the spirit of Mori theory, where a

given variety is to be understood from the perspective of
simpler models from which it arises via birational trans-
formations. To this end, a related decision problem is E3-
INDEX-PROP Given a blowdown π∶B̃ → B with B̃ and B
smooth, is there an effective divisor D̃ on B̃ such that
χ̃E3 ¼ 1? Clearly, any solution to this problem is a solution
to E3-INDEX. However, often the blown down variety is
simpler to analyze since h1;1 and hence the search space
become exponentially smaller, so we would study E3-
INDEX-PROP on B̃ by its relation to E3-INDEX on B.
Specifically, under which circumstances does a solution of
E3-INDEX on B persist to B̃? Alternatively, when do
properties of B ensure that a new solution exists on B̃?
To aid in answering these questions, we will study the

following two cases of E3-INDEX-PROP on B̃:
(i) Case 1: E3-INDEX on B has a solution.
(ii) Case 2: The blowup locus V ⊂ B has χV ¼ 1,

where χV ≔ χðV;OVÞ is the holomorphic Euler character
of the blowup locus V.
In both cases, we will show that E3-INDEX-PROP on B̃

has yes solutions. Case 1 is useful if B is simple enough
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(i.e., the search bounds are low enough) to find solutions
to the Diophantine equation (15). Case 2 can be used if
E3-INDEX is hard to solve on B, but we have additional
information about the nature of the blowup. Moreover, the
result can be used in some cases to engineer manifolds for
which the answer to E3-INDEX is yes by choosing
appropriate blowup loci. We summarize the procedure
and propagation of decidability of E3-INDEX in Fig. 1.
In both cases, we will show that E3-INDEX-PROP on B̃

has yes solutions, which will motivate the definition of a
third decision problem which is decidable, covers most
instances of E3-INDEX and yields yes solutions. SEQ-E3-
INDEX Given B̃ that has a sequence of blowdowns
B̃ → … → B̂!π B, such that the blowup locus V ⊂ X has
χV ¼ 1, is there an effective divisor D̃ ⊂ X̃ with χ̃E3 ¼ 1?
Our results and calculations depend critically on whether

the blowup is along a curve C ¼ D1 ·D2 or at a single point
P ¼ D1 ·D2 ·D3. In the following, we expand a divisor in
the blown up variety B̃ as

D̃ ¼ D̄þ neE; ð18Þ

where E is the exceptional divisor of the blowup and the
divisor D̄ can be expanded, analogously to Eq. (2), as

D̄ ¼
Xh11
i¼1

n̄iDi: ð19Þ

Here, Di is the proper transformation of the divisors Di.
When it causes no confusion, we will use the same notation
Di for both the divisor class on X and its pullback under the
blowup.
For a blowup at P, we have

χ̃E3 ¼ −
1

2
D̄2c1 þD1D2D3n2e: ð20Þ

If there already exists a divisor D on B that solves χE3 ¼ 1,
we set D̄ ¼ D in Eq. (20) and see that the only solution to

Δχ ¼ 0 is ne ¼ 0; the solution D to E3-INDEX on B
propagates to a solution of E3-INDEX on B̃.
Alternatively, if D̄2c1 ¼ 0 and the blowup locus is a

single point D1D2D3 ¼ 1, then D̄� E is a solution. For
D̄ ¼ 0, this matches a result in [27], but we note that the
solution is much more general. For instance, if D̄ is either a
K3 surface with trivial normal bundle or if it is a toric
divisor associated with a facet interior of a reflexive
polytope, the condition D̄2c1 ¼ 0 is satisfied and D̄� E
are solutions; others likely exist.
For a blowup along C ¼ D1 ·D2, we have

χ̃E3 ¼ −
1

2
D̄2c1 − neD̄ · Cþ χCn2e

¼ χE3 − neD̄ · Cþ χCn2e; ð21Þ

where χC ¼ 1
2
D1D2ðc1 −D1 −D2Þ is the holomorphic

Euler characteristic of the curve C.
Again, if we know a D on B that satisfies χE3 ¼ 1, we

can also use it after the blowup, i.e., set D̄ ¼ D. The
condition χ̃E3 ¼ 1 is then equivalent to

Δχ ¼ χ̃E3 − χE3 ¼ neðχCne −D · CÞ ¼ 0: ð22Þ

Therefore, we see that a solution (besides the pullback ofD,
i.e., the ne ¼ 0 case) is D̃ ¼ Dþ kE where k ¼ D·C

χC
, where

k must be an integer.
Alternatively, if we set all ni ¼ 0 in (19), the condition

(21) becomes

χ̃E3 ¼ χCn2e ¼ 1; ð23Þ

which is solved only for χC ¼ 1 and ne ¼ �1. However,
since −E is not effective, only E is a solution. That is, when
B is blown up along a genus 0 curve, E is a solution to E3-
INDEX on B̃.
Finally, if D̄2c1 ¼ 0 but D̄ ≠ 0,

χE3 ¼ neðχCne − D̄ · CÞ ¼ 1; ð24Þ

which requires

ne ¼ �1; χC ¼ 1 − gðCÞ ¼ 1� D̄ · C: ð25Þ

This can be solved in many ways for different choices of
gðCÞ and D̄, e.g.,

(i) If gðCÞ ¼ 1, then D̄� E is a solution if D̄ · C ¼∓ 1.
(ii) If gðCÞ ¼ 0, then D̄� E is a solution provided

D̄ · C ¼ 0.
The latter solution can be nontrivial due to self-cancellation
in D̄ · C. For instance, if c1 · C ¼ 0, then ðD1 þD2Þ · C ¼
−2 since gðCÞ ¼ 0 and D̄ ¼ D1 þD2 þD3 þD4 make
D̄� E a solution provided ðD3 þD4Þ · C ¼ 2. This sounds
contrived, but it arises naturally in toric geometry contexts:

FIG. 1. Flow chart of some cases related to the decision
problem E3-INDEX-PROP on B̃, which is a blowup of B. If
the answers to the posed questions are both no, there may or may
not be a solution; further study is needed, and a few special cases
that yield yes solutions are discussed below.
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if C is a toric curve meeting at the intersection of two
3 cones with associated divisors ðD3; D1; D2Þ and
ðD4; D1; D2Þ, and the four divisors D1;2;3;4 are facet
interiors, then all of the conditions are met.
To summarize, some guaranteed solutions to E3-

INDEX-PROP on B̃ are as follows:
(S1) The pullback of a solution from B to B̃.
(S2) The exceptional divisor E. It is always a solution in

the point blowup case, and also in the curve blowup
case if gðCÞ ¼ 0.

(S3) D̄þ kE in the curve blowup case if it is effective
and D̄ is a solution on B, where k ¼ D̄ · C=χC.

(S4) D̄� E, where D̄ is not necessarily a solution on B,
if certain conditions hold. In the point blowup case,
the condition is that D̄2c1 ¼ 0. In the curve blowup
case, D̄� E is a solution provided that D̄2c1 ¼ 0

and χC ¼ 1 − gðCÞ ¼ 1� D̄ · C.
We have labeled the classes (S1)–(S4) to allow for
simplified discussions. Solutions of classes (S1) and (S2)
are fairly automatic and correspond to Case 1 and Case 2
above, whereas those of classes (S3) and (S4) require some
additional nontrivial checks. There could be other interest-
ing classes of guaranteed solutions, as well.
We wish to also take into account the fact that string

geometries arise in large networks. The transition from B to
B̃ we discussed, along with its associated solutions, are
only two nodes and one edge in that network. One would
like to know how solutions propagate through the entire
network, rather than just from one node to its neighbor.
This question is addressed by the decision problem

SEQ-E3-INDEX defined above. By the results of Case 1
and Case 2, SEQ-E3-INDEX is not only decidable, but
has yes solutions. Case 2 guarantees the existence of a
solution to E3-INDEX on X̂ when blowing up at a curve C
with χC ¼ 1 or when blowing up at a point, and then
Case 1 applied to X̂ guarantees a solution on X̃. That is,
SEQ-E3-INDEX is always decidable, and yes solutions
always exist.

A. Concrete solutions to SEQ-E3-INDEX

We showed above that the exceptional divisor E of a
blowup along V ⊂ X is always a solution to E3-INDEX if
χV ¼ 1. We now want to see whether there exists a solution
of the form E1 þ kE2 after a second blowup where E1 is the
exceptional divisor of the first blowup and E2 is that of the
second blowup.
There four possible combinations, since either of the

blowups could be the blowup of a point or of a curve.
However, if the second blowup is a point blowup, we must
have k ¼ 0. Hence, we consider the two cases where the
second blowup is along a curve.
First blowup is at a curve: We first consider cases where

the first and the second blowups are all blowups along a
curve. There are three such cases. The first blowup is along

a curve C ¼ D1 ·D2. For the exceptional divisor E1 of the
first blowup to solve E3-INDEX on X̃, we require χC ¼ 1.
Blowup 1: The first case is the sequence of blowups,

X̃⟶
ðE2jE1;D3Þ

X̂⟶
ðE1jD1;D2Þ

X; ð26Þ

where the notation ðE1jD1; D2Þ denotes a blowup along
C ¼ D1 ·D2 with exceptional divisor E1 and similarly for
ðE2jE1; D3Þ. We have

χ̃E3 ¼ 1þD1D2D3ðk2 þ kÞ: ð27Þ

Since χC ¼ 1, we see that k ¼ 0 is a solution to χ̃E3 ¼ 1, as
is k ¼ −1 provided that D1D2D3 ¼ 1, which is always the
case in toric examples where these three divisors form a
three cone. Therefore, we see that besides the pullback of
E1 on X̃, E1 − E2 is a solution to E3-INDEX under mild
assumptions.
Blowup 2: The second case is the sequence of blowups,

X̃⟶
ðE2jE1;D̃1Þ

X̂⟶
ðE1jD1;D2Þ

X: ð28Þ

We have

χ̃E3 ¼ 1 − ðD2 · CÞkþ k2: ð29Þ

We see that the solutions to χ̃E3 ¼ 1 are

k ¼ 0 or k ¼ D2 · C: ð30Þ

Therefore, we see that besides the pullback of E1 on X̃,
E1 þ ðD2 · CÞE2 is also a solution to E3-INDEX, provided
that it is an effective divisor. It is not uncommon that
D2 · C ¼ −1, for instance, if D2 is itself the exceptional
divisor of a blowup along a curve that meets D1 at a point.
Blowup 3: The third case is the sequence of blowups,

X̃⟶
ðE2jD̃1;D3Þ

X̂⟶
ðE1jD1;D2Þ

X: ð31Þ

We have

χ̃E3 ¼ 1 −D1D2D3kþ χC0k2; ð32Þ

where C0 ¼ D1 ·D3; we emphasize that C0 is a curve on the
original space that is not a blowup locus. We see that the
solutions to χ̃E3 ¼ 1 are

k ¼ 0 or k ¼ D1D2D3

χC0
: ð33Þ

Therefore, we see that besides the pullback of E1 on X̃,
E1 þ D1D2D3

χC0
E2 is also a solution to E3-INDEX. First

blowup is at a point: There are two cases where the first
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blowup is at a point and the second is along a curve. In both
cases, for the first exceptional divisor to be a solution, the
first blowup is at a single point, given by D1D2D3 ¼ 1.
Blowup 1: The first case is the sequence of blowups,

X̃⟶
ðE2jD̃1;D̃2Þ

X̂⟶
ðE1jD1;D2;D3Þ

X: ð34Þ

We have

χ̃E3 ¼ 1 − kþ χCk2; ð35Þ

where C ¼ D1 ·D2; we emphasize that C is a curve on the
original space that is not a blowup locus. We see that the
solutions to χ̃E3 ¼ 1 are

k ¼ 0 or k ¼ 1

χC
: ð36Þ

Therefore, we see that besides the pullback of E1 on X̃,
E1 þ 1

χC
E2 is also a solution to E3-INDEX, provided that it

is effective, which requires χC ¼ 1.
Blowup 2: The second case is the sequence of blowups,

X̃⟶
ðE2jD̃1;E1Þ

X̂⟶
ðE1jD1;D2;D3Þ

X: ð37Þ

We have

χ̃E3 ¼ 1þ kþ k2: ð38Þ

We see that the solutions to χ̃E3 ¼ 1 are k ¼ 0, −1.
Therefore, we see that besides the pullback of E1 on X̃,
E1 − E2 is also a solution to E3-INDEX.

IV. IMPLICATIONS OF PROPAGATION FOR
KÄHLER MODULI STABILIZATION

Having formulated various decision problem related to
instanton corrections to the superpotential and having
found different classes of solutions, we wish to discuss
the implications for the stabilization of Kähler moduli.
This is subtle, because as we have emphasized the

presence of additional zero modes not captured by the
condition χE3 ¼ 1 can alter the structure of the correction.
However, given the importance of Kähler moduli stabili-
zation for realistic string cosmology, it behooves us to
proceed with a discussion under the assumption that
additional zero modes do not kill the corrections associated
with our solutions. This will allow us to discuss how many
Kähler moduli appear in the superpotential. A detailed
study of the assumption and also the importance of
instantons that do not have χE3 ¼ 1, such as in [28], are
interesting directions for future work.
For the purposes of Kähler moduli stabilization, a more

relevant question is “How many Kähler moduli appear in at
least one instanton correction?” This can be encoded in a

counting problem NAIVE-STABLE: Given threefold B and
all divisors D ⊂ B with χE3 ¼ 1, how many Kähler moduli
appear in at least one of the instanton corrections?
Equivalently, what is the rank of the lattice spanned by
the divisors? This is the “naïve” stability count because of
the above assumption, and also because a single correction
does not guarantee that the modulus is stabilized, for
instance, due to a runaway. However, since it can be
studied across large networks of geometries, it is a good
starting point.
For simplicity, let us study the concrete case of networks

of toric varieties that serve as bases of F-theory elliptic
fibrations. Consider the so-called tree ensemble [24], which
forms a single-component connected network of 2.96 ×
10755 toric threefolds. The network is formed by recursively
performing blowups of a fixed initial weak-Fano toric
threefold B along toric curves, which are P1’s, and toric
points. Either of these blowup loci V have χV ¼ 1, and
therefore any geometry B̃ in the network (provided it is not
the initial threefold B) has a sequence of blowdowns
B̃ → … → B̂ → B. That is, all but one of the 10755

geometries in the tree ensemble provide instances of
SEQ-E3-INDEX, and therefore have at least one instanton
solution.
For Kähler moduli stabilization, one would rather like to

know the answer to NAIVE-STABLE on B̃. Since the
number of Kähler moduli h1;1ðBÞ on the variety B and
h1;1ðB̃Þ on the variety B̃ are fixed, and any single blowup
increases h1;1 by 1, all directed paths in the network
between B and B̃ are necessarily of the same length.
However, the toric blowups only have loci V with χV ¼ 1,
and therefore the exceptional divisor associated to each
blowup in the sequence yields a solution to χ̃E3 ¼ 1 on B̃,
i.e., at least

Δh1;1ðB̃Þ ≔ h1;1ðB̃Þ − h1;1ðBÞ: ð39Þ
Kähler moduli satisfy NAIVE-STABLE. The corrections
are schematically of the form

W ¼
Xh11ðB̃Þ
i¼1

AiðϕÞe−2πTEi þ…; ð40Þ

where

TEi
¼

Z
Ei

1

2
J ∧ J þ iC4 ð41Þ

is the complexified Kähler modulus associated to the
exceptional divisor Ei, J is the Kähler form, and C4 is
the Ramond-Ramond four form.
The probability that a Kähler modulus on B̃ satisfies

NAIVE-STABLE is therefore at least Δh11ðB̃Þ=h11ðB̃Þ. In
the tree ensemble, the expected percentage of Kähler
moduli naively stabilized using just exceptional divisors is
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100% × EB̃∼Utree

�
Δh11ðB̃Þ
h11ðB̃Þ

�
¼ 100% ×

2448

2483
¼ 98.6%;

ð42Þ

whereUtree is the uniform distribution on the tree ensemble.
This could be improved even further by the inclusion of
divisors pulled back from B in mixing terms, as we will
discuss momentarily.
We emphasize that all of these results also apply to the

so-called Skeleton ensemble [25], which is less restrictive
than the tree ensemble and is estimated to have Oð103000Þ
elements. Generally, these results apply to any network of
toric varieties constructed by recursively performing toric
blowups from an initial toric B, which are automatically
along loci with χV ¼ 1.
Let us discuss be more details by studying both mixing

terms and potential caveats.
One caveat to note is that if Ei intersects a later blowup

locus in the sequence, the nature of the blowup could render
a generic representative of class Ei a reducible variety, for
instance, with normal crossing singularities. In such a case,
a careful zero mode analysis is required to determine
whether
(1) there are additional zero modes present at the normal

crossing locus and
(2) additional physics gives interactions to lift these

modes.
This has not been studied in detail in the literature.
However, if an exceptional divisor E is involved in N

additional blowups with exceptional divisors Ei, the divisor
E −

P
N
i¼1 Ei can be irreducible and does not suffer from

normal crossing singularities. To that end, one would like to
understand under which conditions such divisors solve
χ̃E3 ¼ 1. For simplicity, suppose that N ¼ 1, and consider
B̃!π Bwith exceptional divisor Ẽ and another divisorE that
is the exceptional divisor of a previous blowup along a
locus V with χV ¼ 1. The latter condition guarantees that E
solves χE3 ¼ 1 on B, and therefore it also solves χ̃E3 ¼ 1

on B̃. Since E is a solution, having a new solution of the
form Eþ kẼwith k ≠ 0 requires that the blowup locus of π
be a curve C̃ ⊂ B, cf. (S3). A solution of the proposed form
requires

k ¼ E · C̃
χC̃

¼ −1; ð43Þ

where for the sake of irreducibility we took k ¼ −1. In the
toric case, where gðC̃Þ ¼ 0, this amounts to requiring
that E · C̃ ¼ −1.
Corrections of the type that we just discussed induce

mixing terms, which could give rise to important competi-
tion (such as in racetrack scenarios) and couplings between
Kähler moduli in the scalar potential. Any given blowup
such as B̃!π B in a sequence of blowups allows to study

solutions of type (S1)–(S4) for that transition, i.e., whether
the exceptional divisor E of the blowup gives rise to a
superpotential mixing of that Kähler modulus with some of
the others. The pullback solutions (S1) and the exceptional
divisor solution (S2) do not, but by their very form,
solutions of types (S3) and (S4) give rise to mixing. A
detailed study of the prevalence of (S3)- and (S4)-type
solutions could give crucial information on Kähler modulus
mixing, but is beyond the scope of this paper.
We note, however, that in the previous section we

described toric cases in which such solutions exist. For
instance, consider a toric divisorD on the original base B in
the tree ensemble, which is associated with a fine regular
star triangulation of a reflexive polytope. These are not
contributing to the simple estimate (42), and we would like
to improve the situation. On the biggest three-dimensional
polytopes, which dominate the ensemble, 16 of the 38 toric
divisors correspond to facet interiors, and therefore satisfy
Dc1 ¼ 0. While these do not satisfy χE3 ¼ 1 on B, after
any blowup involving D, D̃ ¼ D − E is a solution. Nearly,
all geometries in the tree ensemble have such a blowup, and
therefore the moduli corresponding to facet interiors raise
the expectation for NAIVE-STABLE,

100% × EB̃∼Utree

�
Δh11ðB̃Þ
h11ðB̃Þ

�
¼ 100% ×

2464

2483
¼ 99.2%;

ð44Þ
where the moduli that we have still not taken into account
correspond to edge interiors and vertices of the polytope.
Mixing terms are also important from another perspec-

tive: they might allow for a correction involving a Kähler
modulus T that does not appear on its own in any instanton
correction, which is therefore crucial for the stabilization
of T. Consider, for instance, the case where B is the result
of a blowup along a curve C with gðCÞ ≠ 0. Then by (S2),
the exceptional divisor E is not a solution to χE3 ¼ 1 on B.
Working on B, one could try searching for solutions of type
(S3) or (S4) which potentially give rise to an instanton
contribution involving E. Alternatively, if one passes to
B̃!π Bwith exceptional divisor Ẽ and blowup locus C̃, then
E − Ẽ solves χ̃E3 ¼ 1 on B̃ provided that

gðC̃Þ ¼ 1 − gðCÞ þ E · C̃ ð45Þ
and E − Ẽ effective. If one wants Ẽ to automatically be a
solution, gðC̃Þ ¼ 0 and the condition simplifies to

E · C̃ ¼ 1 − gðCÞ; ð46Þ

which is a search problem for an appropriate C̃.

V. DISCUSSION AND SUMMARY OF RESULTS

We studied Diophantine equations that arise in string
theory with regard to their decidability and physics.
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In Sec. II, we reviewed known theorems about
Diophantine equations. The central theorems for our
applications are that all quadratic Diophantines are decid-
able, as are cubic form Diophantines in more than 15
variables. We presented simple examples in which quad-
ratic and cubic Diophantine equations appear in string
theory. In the quadratic case, we presented examples related
to D3-brane charge, chiral three to seven instanton zero
modes, Bianchi identities, and GLSM anomalies. In the
cubic case, examples included Kollár’s condition for the
existence of an elliptic fibration in a Calabi-Yau threefold,
as well as obtaining three generations of Standard Model
chiral multiplets in heterotic line bundle compactifications.
In Sec. III, we focused on a Diophantine equation which

is relevant for instanton corrections to the superpotential.
More specifically, for an elliptic Calabi-Yau fourfold X!π B,
M5-brane instanton corrections may arise from divisors D̂
in X satisfying Eq. (14). In this case, the instanton should
be thought of in the type IIB/F-theory limit, where it is a
Euclidean D3-brane instanton wrapped on D. In cases
where a heterotic dual exists, the corresponding instantons
are world-sheet and space-time instantons. Since the
instanton condition leads to a quadratic Diophantine
equation, the question whether there exists a suitable D
is decidable. We call this decision problem E3-INDEX.
Our central idea is to make progress on E3-INDEX by

considering how the problem behaves under topological
transition. That is, given a geometry B̃ that is the blowup of
a geometry B, may E3-INDEX on B̃ be understood in terms
of the problem on B? From this perspective, one thinks of a
network of string geometries related by topological tran-
sitions, which are represented by edges, and asks whether
decidability of E3-INDEX on one node (geometry) decides
E3-INDEX on an adjacent node. This is the propagation of
decidability.
We formalize it in terms of a decision problem E3-

INDEX-PROP, which introduces the blowup into the
problem and the notion that solutions on B may be related
to those on B̃, based on the structure of the topology
change. We find two rather useful subcases of the problem.
In Case 1, E3-INDEX on B itself has a solutionD. For both
point and curve blowups, that solution pulls back to a
solution on B̃, i.e., it has χ̃E3 ¼ 1 on B̃. Additionally, in the
case of a blowup along a curve C, an extended solution for
E3-INDEX on B̃ exists under mild assumption. It is of the
form Dþ kE where k ¼ ðD · CÞ=χC must be an integer
and the divisor must be effective. This is often true in toric
varieties. In Case 2, we simply note that the exceptional
divisor itself is a solution to E3-INDEX on B̃ if
χV ≔ χðV;OVÞ ¼ 1, where V is the blowup locus in B.
This is the case if V is a genus 0 curve or a point.
The results of the two cases motivate a third decision

problem, SEQ-E3-INDEX, which postulates that the vari-
ety of interest B̃may be obtained by a sequence of blowups
from a blowup of an initial variety with blowup locus

satisfying χV ¼ 1. Then by the results of Case 1 and Case
2, all instances of SEQ-E3-INDEX have a yes solution, i.e.,
a divisor with χ̃E3 ¼ 1 on B̃.
We derive numerous classes of solutions to E3-INDEX-

PROP on B̃, sometimes with mild assumptions. We
categorize them according to whether they are pullbacks
of solutions from B [called (S1)], the exceptional divisor
of the blowup (S2), of the form Dþ kE where D is a
solution on B (S3), or of the form D0 � E where D0 is not
necessarily a solution on B.
In Sec. III A, we derive solutions that depend only on

two exceptional divisors in a sequence of blowups, for
instance, E − Ẽ, with E the exceptional divisor of the first
blowup. If E itself is a solution, then a necessary condition
for Eþ nẽẼ to be a solution is that the second blowup is a
curve blowup, so that interesting solutions involving both
E and Ẽ arise in the cases of point-then-curve blowup
sequences, or curve-then-curve blowup sequences. There
are five total possibilities, which we study in detail and
present solutions accordingly.
In Sec. IV, we discuss the implications for Kähler moduli

stabilization, which are of great importance for string
cosmology and global dynamics on the landscape.
We define a problem called NAIVE-STABLE that counts

the number of Kähler moduli that appear in some instanton
correction. Our results immediately demonstrate that all
exceptional divisors in well-studied ensembles of toric
geometries generated by blowups are necessarily solutions,
which make giving lower bounds on NAIVE-STABLE
straightforward. Some mixing terms, associated with facet
interiors, are also easy to take into account.
By studying NAIVE-STABLE, we find that 99.2% of

Kähler moduli appear in some instanton correction, on
average, across the tree ensemble. Additional possibilities
for mixing terms are also studied.
This provides ample motivation for future work.
On the formal side, there is additional research that must

be done into aspects of instanton physics that are not fully
understood. One has to do with instantons wrapped on
divisors with normal crossing singularities, which appear in
our work and [46]. Open questions include whether the
singularities give rise to zero modes and whether additional
physics may lift the zero modes. There is also the question
of a general formalism for understanding the role of three to
seven modes in instanton corrections, though progress has
been made in specific contexts, e.g., [47–51]. Lifting
deformation modes, for instance, via instanton fluxes
[28,52], could also be crucial in stabilizing moduli that
do not arise in any divisor with χE3 ¼ 1.
On the statistical/data side, it would be interesting to

systematically explore the toric ensembles with respect
to the instanton solutions that we have derived. Our
analytic analysis and estimates are only the simplest
possible cases, and there is likely much more structure
to be understood.
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More broadly, we have demonstrated a case in which
structure in string theory allows for the avoidance of worst-
case complexity. In the present case, we showed that
geometric structures in string theory allow us to decide
Diophantine equations that arise in string theory, despite
them being undecidable in general. It would be interesting
to find other cases where physical problems in string theory
are easier than might naively be expected, both for practical
reasons and questions concerning the dynamics of
string vacua.
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APPENDIX: AN EXAMPLE OF PROPAGATION

We construct a smooth toric variety XP8
that is the result

of eight blowups on P3. The fan associated with XP8
has the

following rays:

v0 ¼ ð1; 0; 0Þ; v1 ¼ ð0; 1; 0Þ; v2 ¼ ð0; 0; 1Þ;
v3 ¼ ð−1;−1;−1Þ; e1 ¼ ð1; 1; 1Þ; e2 ¼ ð1; 1; 2Þ;
e3 ¼ ð1; 1; 3Þ; e4 ¼ ð1; 1; 4Þ; e5 ¼ ð1; 0; 1Þ;
e6 ¼ ð1; 0; 2Þ; e7 ¼ ð1; 0; 3Þ; e8 ¼ ð1; 0; 4Þ:

We will use the same notation for both the rays and their
corresponding coordinates. From the linear relation
between the rays, we see that XP8

is obtained from XP0
¼

P3 via the following sequence of blowups:

XP8
⟶
ðe8jv2;e7Þ

XP7
⟶
ðe7jv2;e6Þ

XP6
⟶
ðe6jv2;e5Þ

XP5

⟶
ðe5jv0;v2Þ

XP4
⟶
ðe4jv2;e3Þ

XP3
⟶
ðe3jv2;e2Þ

XP2

⟶
ðe2jv2;e1Þ

XP1
⟶
ðe1jv1;v2;v3Þ

XP0
¼ P3: ðA1Þ

We denote the nine generators of the Kähler cone (and
by abuse of notation, the Poincaré dual divisors) by
G0, G1;…; G8. A divisor D ⊂ XP8

can be expanded
as D ¼ P

8
i¼0 niGi.

Using the results of Sec. III, we know that the excep-
tional divisor E8 corresponding to the last blowup

XP8
⟶
ðe8jv2;e7Þ

XP7
ðA2Þ

is a solution to χE3 ¼ 1 on XP8
. We can express E8 as a

linear combination of Gi ’s,

E8 ¼ −G0 þG8: ðA3Þ

We also compute χE3 on XP8
, which is a quadratic

polynomial in the 9 ni’s. We have

χE3 ¼ −18n20 − 22n1n0 − 33n2n0 − 44n3n0 − 42n4n0 − 12n5n0 − 11n6n0 − 40n7n0 − 38n8n0 − 5n21

− 12n22 − 22n23 − 21n24 − 2n25 − n26 − 20n27 − 19n28 − 16n1n2 − 22n1n3 − 33n2n3 − 22n1n4 − 33n2n4

− 44n3n4 − 8n1n5 − 12n2n5 − 16n3n5 − 15n4n5 − 5n1n6 − 8n2n6 − 11n3n6 − 11n4n6 − 4n5n6

− 22n1n7 − 33n2n7 − 44n3n7 − 42n4n7 − 14n5n7 − 11n6n7 − 22n1n8 − 33n2n8 − 44n3n8 − 42n4n8

− 13n5n8 − 11n6n8 − 40n7n8: ðA4Þ

Using Eq. (A3), it is easy to check that following set of integers solves χE3 ¼ 1:

−n0 ¼ n8 ¼ 1 and ni ¼ 0; ∀ i ≠ 0; 8: ðA5Þ

This agrees with our result that E8 solves χE3 ¼ 1 on XP8
via the analytic algebro-geometric method.
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