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The holographic recipe for the calculation of decay constants is revisited. Starting from the holographic
two-point function and using the fact that normalizable bulk modes scale as zΔ−S, with S the spin, we can
obtain a consistent expression that depends on the value of the mode at the boundary, not the derivative. We
apply our decay constant expression to other AdS=QCD (static and dynamic) models proving its
consistency. We also demonstrated that our approach is equivalent to the usual holographic prescription.
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I. INTRODUCTION

One of themost interesting and prolific applications of the
AdS=CFT correspondence [1,2] is the holographic descrip-
tion of QCD that can be done with two possible method-
ologies: top-down or bottom-up models. In the former, we
tried to fix the dual QFT theory with the QCD [3,4]. In the
latter, we do the opposite: we tried to fix the gravity
background to describe the QCD phenomenology.
For example, confinement a la top down is realized with

the interaction of open strings attached to the conformal
boundary with the geometric background. In the bottom-up
case, confinement is realized by deforming the anti–de
Sitter (AdS) space. This deformation is manifested in a
holographic potential constructed from the geometry itself
and other background fields, usually the dilaton. Hadrons
appear here as bounded states of this potential. In this
paper, we will focus on bottom-up approaches.
Altogether with the meson spectra, with the bottom-up

models is possible to explore other hadronic observables as
the form factors (see [5–11]), structure functions (see
[12–16]), decay constants (see [17–20]), etc. In this work,
we will focus on the decay constants for scalar and vector
mesons written in AdS-like QCD models, such as the soft
wall model. Other approximation to the decay constant
calculation can be found in [19], but in the context of heavy
quarkonium.
The calculation process of the decay constant, as it was

exposed in [21], requires to compute the second derivative
of the eigenmode associated to the bulk field, dual to the

meson, at the boundary located at z → 0. Unless the
solution is analytical, in the numerical process, the decay
result is strongly tied to the value of the UV cutoff used to
describe the boundary numerically. For example, in the
scalar meson case, the two-point function, and conse-
quently, the decay constant, has a z−3 factor coming from
the geometry, that makes unstable any result computed:
small changes in the numerical tolerance are translated into
bigger numerical errors in the holographic decay constant.
Inspired by this fact we tried to find an alternative method
to compute decay constants, allowing us to avoid this
numerical issue. The basis of the idea presented here has its
grounds on the behavior of the eigenmodes at the boundary.
According to the AdS=CFT correspondence, bulk field
should scale as zΔ−S when z → 0, with Δ being the
conformal dimension. In AdS-like backgrounds, this spe-
cific form of the solutions makes it possible to rewrite the
derivatives near to the boundary as the eigenmode itself
evaluated at the same place. All of the divergent contri-
butions are naturally suppressed, as Eq. (22) demonstrates.
Thus, as a direct conclusion, the holographic decay con-
stants depend only on three aspects: the value of the dilaton
field at the boundary, the normalization constant coming
from the bulk action, and the value of the eigenmode
solution at the origin. This reduces the numerical error due
to the derivative calculations.
This document is organized as follows. In Sec. II, we

define the geometric configuration and the action for the
bulk fields dual to mesons. In Sec. III, we do a summary of
the ideas of the holographic calculation of the decay
constants starting from the holographic two-point function.
We also present there our main result for the decay
constants in terms of the bulk modes evaluated at the
boundary. Section IV is devoted entirely to test our formula
for the decays with some of the AdS=QCD models
available in the literature. Finally, Sec. VI collects the
conclusions and perspectives of this work.
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II. GEOMETRIC CONFIGURATION

To describe the holographic frame to construct the decay
constants, we will focus on a five-dimensional AdS-like
geometry given by the line element

dS2 ¼ e2AðzÞ½dz2 þ ημνdxμdxν�; ð1Þ

where ημν is the Minkowski four-dimensional metric tensor
and AðzÞ is the warp factor, that can be fixed to be the usual
Poincare one AðzÞ ¼ logR=z.
Scalar and vector mesons are described in AdS=QCD

models by the bulk fields. The normalizable part of such
fields is dual the hadronic states, while the nonnormalizable
part is connected to the operators that create mesons. In this
case, they are dual to the electromagnetic currents of the
form Jμ ¼ eψ̄γμψ . These bulk fields are defined, as usual,
by the five-dimensional action,

IMesons ¼ IVector þ IScalar; ð2Þ

where

IVector ¼ −
1

4g2V

Z
d5x

ffiffiffiffiffiffi
−g

p
e−ΦðzÞFmnFmn;

IScalar ¼
1

2g2S

Z
d5x

ffiffiffiffiffiffi
−g

p
e−ΦðzÞ½∂mS∂mSþM2

5S
2�;

with Amðz; xÞ and Sðz; xÞ are the bulk vector and bulk scalar
fields, respectively. The constants gV and gS fix the action
units and also contribute to the value of the holographic
decay constants. These constants are fixed by the large
Nc–QCD two-point function at the large q2 limit [22]. The
bulk mass associated with the fields defines the identity of
the hadronic state: for vector, mesons is zero, for scalar
mesons takes the value of −3.
Notice also that the action (2) can be extended to

AdS=QCD models with dynamical backgrounds. This will
be done in Sec. IV.

III. HOLOGRAPHIC CONSTRUCTION
OF THE DECAY CONSTANTS IN A NUTSHELL

In general, in any AdS=QCD model, decay constants for
mesonic states are defined from the two-point function
[17,19,21,23–25]. This object is holographically con-
structed from the on-shell boundary action. The generic
result obtained for the two-point function is of the form

Πð−q2Þ ¼ −
e−BðzÞ

Kð−q2Þ ∂zVðz; qÞ
����
z→0

; ð3Þ

where BðzÞ ¼ ΦðzÞ þ βAðzÞ and K is a normalization
constant fixed with large Q2 ≡ −q2 behavior of the large
Nc QCD two-point function. The parameter β carries the
information of the spin: in case of scalar mesons β ¼ −3

and for vector mesons β ¼ −1. In general, β ¼ −ð3 − 2SÞ
for bosonic sector.
The bulk to boundary propagator VðzÞ comes from the

equations of motion for the non-normalizable part of the
bulk field associated with mesons. As it was shown by
[22,26], we can write VðzÞ in terms of the set of eigen-
functions ψnðz; qÞ defined by the normalizable part of the
bulk field. This normalizable part is dual to the mesonic
modes and gives rise to the mass spectrum, understood it as
the eigenvalue spectrum M2

n. Both sets are obtained from
the Sturm-Liouville form of the equations of motion for
such bulk fields,

∂z½e−B∂zψ � þM2
ne−Bψ −M2

5e
2A−Bψ ¼ 0: ð4Þ

This equation defines a boundary value problem (BVP)
with the following set of boundary conditions:

ψðz; qÞjz→0 ¼ zΔ−S; ð5Þ

ψðz; qÞjz→∞ ¼ 0: ð6Þ

Recall that M2
5 defines the hadronic identity of the bulk

field via the relation with the conformal dimension [2]

M2
5R

2 ¼ ðΔ − SÞðΔþ S − 4Þ; ð7Þ

where for mesons Δ ¼ 3.
Finally, we can introduce the Green’s function associated

with the BVP defined by Eq. (4) as

Gðz; z0; qÞ ¼
X∞
n¼1

ψðz; qÞψðz0; qÞ
−q2 −M2

n þ iϵ
: ð8Þ

From the second Green’s identity, we can construct the
connection between the bulk-to-boundary propagator
Vðz; qÞ with the Green’s function as

Vðz; qÞ ¼ lim
z→0

e−ϕðzÞþAðzÞ∂zGðz; z0; qÞ: ð9Þ

Now, we can insert expressions (9) and (8) into the
two-point function to get

Πð−q2Þ ¼ 1

KM2
n
lim
z;z0→0

e−2ΦðzÞe−ðβ−1ÞAðzÞ

×
X∞
n¼1

∂zψnðz; qÞ∂z0ψnðz0; qÞ
−q2 −M2

n þ iϵ
: ð10Þ

Evaluating the limit, we can write the standard form in
terms of second derivatives of the eigenfunction ψðz; qÞ,
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Πð−q2Þ ¼ 1

KM2
n
lim
z→0

e−2ΦðzÞe−ðβþ1ÞAðzÞX∞
n¼1

jψ 00
nðz; qÞj2

−q2 þM2
n þ iϵ

:

ð11Þ

The two-point function is a spectral decomposition of all
the states present in a radial Regge trajectory, that has a
general form given by

Πð−q2Þ ¼
X∞
n¼1

f2n
−q2 þm2

n þ iϵ
; ð12Þ

where fn are the decay constants, given in units of energy
squared.
Comparing (11) with (12), we can conclude that the

decay constants are

F2
n ¼ f2nM2

n ¼
1

K
lim
z→0

e−2ΦðzÞe−ðβþ1ÞAðzÞjψ 00
nðz; qÞj2: ð13Þ

It is customary to introduce the decay constant as
Fn ¼ Mnfn, where Fn is defined by h0jJaμjMbi ¼
Fnδ

abϵmu for a given meson M. See, for example,
Chapter 2 of [27].
The expression (13) is just a generalization of the

expression given by [21,23,25] for vector and scalar
mesons in the context of the soft wall and hard wall
models. It also has the advantage that it can be adapted to
any other AdS=QCD model. Only need to specify the
dilaton, the warp factor, and obtain the solutions. As a test,
we will compute the decay constants for scalar and vector
mesons in the soft wall model.

A. Ansatz for the eigenfunctions

According to the holographic prescription, the normal-
izable solutions should behave as zΔ−S. This fact motivates
us to propose the power expansion of the eigensolutions at
the conformal boundary as

ψnðz;qÞ¼ CΔ−Sðq;n;SÞzΔ−Sþ
X∞

m>Δ−S
Cmðq;n;SÞzm; ð14Þ

where CΔ−Sðq; n; SÞ is the lowest coefficient in the power
expansion. This coefficient is different from the normali-
zation constant, constructed as

Z
dz e−BðzÞψnðz; qÞψ�

mðz; qÞ ¼ δnm: ð15Þ

The second derivative in the limit z → 0 can be written in
terms of the eigenfunction ψn itself as

ψ 00
nðz; qÞjz→0 ¼ ðΔ − SÞðΔ − S − 1ÞCΔ−Sðq; n; SÞzΔ−S−2

¼ ðΔ − SÞðΔ − S − 1Þψnðz; qÞ
z2

����
z→0

; ð16Þ

where the constant CΔ−S extracted from (14).
In limit z → 0, all the terms, with a generic zm−ΔþS

dependence, vanish since m > Δ − S by construction.
Therefore, the decay constants can be written as

F2
n ¼

1

K̃
lim
z→0

e−2ΦðzÞe−ðβþ1ÞAðzÞ
����ψnðz; qÞ

z2

����
2

; ð17Þ

with K̃ ¼ K=ðΔ − SÞ2ðΔ − S − 1Þ2.
This expression connects decay constants with the AdS

normalizable mode directly in a similar form as the Van
Royen-Weisskopf formula [28] connects the decay con-
stants with the mesonic wave function at the origin.
In the case of asymptotic AdS spaces constructed

dynamically, the second derivative written in (11) cannot
be constructed directly. Thus, it is customary to use the first
derivative definition of the decay, i.e.,

F2
n ¼

1

K
lim
z→0

e−2ΦðzÞe−ðβ−1ÞAðzÞÞjψ 0
nðz; qÞj2; ð18Þ

that can be read off directly from holographic two-point
function. Following the same procedure as we did above,
we can prove that

F2
n ¼

ðΔ − SÞ2
K

lim
z→0

e−2ΦðzÞ−ðβ−1ÞAðzÞ
����ψnðz; qÞ

z

����
2

: ð19Þ

We will prove this expression in the case of dynamical
models in the next section.

B. Simplified form of the decay constants

If we go further with our analysis of the decay constant
expression, we can use the ansatz (14) into (17) considering
an AdS spacetime defined by the usual Poincare patch,
i.e., AðzÞ ¼ logðR=zÞ. Therefore, the decay constants are
written as

F2
n¼

C2Δ−Sðn;q;SÞðΔ−SÞ2ðΔ−S−1Þ2
K

lim
z→0

e−2ΦðzÞ
�
R
z

�
−ðβþ1Þ

×½z2Δ−2S−4þOðz2m−4Þ�: ð20Þ
The limit can be evaluated as follows:

lim
z→0

e−2ΦðzÞ
�
R
z

�
−ðβþ1Þ

½z2Δ−2S−4 þOðz2m−4Þ�

¼ R−ðβþ1Þ lim
z→0

e−2ΦðzÞ½z2Δ−6 þOðz2mþβþ3Þ�: ð21Þ

For mesons Δ ¼ 3, therefore the first term of the power
series in z is always z0. The next orders in the expansion are
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2m > jβ þ 3j > 0. Thus, in the limit z → 0, all of them
vanish. Therefore, the decay constants are finally written as

F2
n ¼

R−ðβþ1Þe−2Φ0

K
C2Δ−Sðn; q; SÞðΔ − SÞ2ðΔ − S − 1Þ2;

ð22Þ

where Φ0 means the value of the dilaton at the conformal
boundary. If we start from expression (19) instead of (17), it
is straightforward to prove that we arrive at a similar
expression for the decay constants.
Thus, we conclude that the decay constant depends on

the first coefficient on the power series only, as we would
expect from expression (17). This is a powerful form of
testing any AdS=QCD model easily, altogether with the
mass spectrum.

IV. TESTING THE NEW EXPRESSION

In the following paragraphs, we will prove our expres-
sions (22) for some specific models in the AdS=QCD
literature.

A. Hard wall model

Hard wall model was introduced in [12,29]. It considers
the appearance of confinement as a consequence of putting
a cutoff (hard wall) at some finite position zHW of the
AdS space. This wall is endowed with an extra Dirichlet
boundary condition. In other (geometrical) words, this wall
can be considered as a D-brane. The hard wall makes
possible the emerging of eigenmodes dual to hadrons at the
conformal boundary.
In this model, a B function is defined in terms of the warp

factor only, so the dilaton is fixed to be zero in all of our
expressions. Following this prescription, we can find the
solution of the equation of motion (4) in terms of Bessel
functions of first kind J1ðxÞ as

ψn;Sðz; qÞ ¼
ffiffiffi
2

p
z
1−β
2

zHWjJ2ðMnzHWÞj
J1ðMnzÞ; ð23Þ

where the mass spectrum Mn is given by the zeroes α1;n of
the Bessel function, i.e., J1ðα1;nÞ ¼ 0, as follows:

Mn ¼
α1;n
zHW

: ð24Þ

With these definitions, we can calculate the decay
constants. To do so, we follow the expression (17):

ψn;Sðz; qÞ
zΔ−S

����
z→0

¼ Mnffiffiffi
2

p
zHWjJ2ðMnzHWÞj

: ð25Þ

Thus, we can write the decay constants in the hard wall
model as

F2
n ¼

ðΔ − SÞ2ðΔ − S − 1Þ2
K

M2
n

2z2HWjJ2ðα1;nzHWÞj2
; ð26Þ

that evaluated in the scalar and vector mesons case gives

F2
n;Vector ¼

2M2
n

Kz2HWjJ2ðα1;nzHWÞj2
ð27Þ

F2
n;Scalar ¼

18M2
n

Kz2HWjJ2ðα1;nzHWÞj2
: ð28Þ

These expressions are consistent with those exposed in
[17], but they are, in fact, quite different. The fundamental
difference raises in the origin of the expressions. That work
starts from the bulk-to-boundary propagator itself, which is
written in terms of J0ðxÞ Bessel functions. In our case, we
start from the eigenmodes that are, as is expected, different:
the former scales as z−ΔþS, while the other does as zΔ−S.
To see how both expressions reproduce the same

physics, we can study the high excitation number limit.
In this case, Mn ¼ πn=zΛ ¼ πnΛ, with Λ some energy
scale associated to the theory [12]. Under these conditions,
the vector meson decay constant can be written as

Fn ¼
ffiffiffi
2

p
Mnffiffiffiffi

K
p

zHWjJ2ðα1;nÞj
∝ Λ2n3=2Nc; ð29Þ

where we have used the fact that K should scale with N2
c,

according to the matching condition at high q2 in the large
Nc limit. Notice that expression (29) has the supergravity
limit, Fn ∝ n3=2, expected for conserved currents in this
kind of dual models [22]. The same behavior can be
observed for the scalar case. Also, notice this scaling
behavior is inherit by the “conformal nature” that the hard
wall has. On the other hand, this scaling behavior is also
expected in the large-Nc QCD phenomenology [24], since
Fn ∼M2

n∂nM2
n (see [30] for details).

If we modify the conformal properties of the model by
introducing dilaton fields, this limit does not hold anymore.

B. Soft wall model

The soft wall model was introduced in [21], and it has
provided a lot of successful approximations to many QCD
phenomena, as structure functions, form factors, and meson
spectra.
In general, the soft wall model is defined by a quadratic

static dilaton field living in a geometry described by the
Poincare patch. This is expressed in the B function as

BðzÞ ¼ κ2z2 þ β log

�
R
z

�
; ð30Þ

where κ is the energy scale used to fix the radial Regge
linear trajectory. Using Eq. (4) and the definition of the bulk
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mass (7), we can arrive at the general form of the solutions
for mesons in the soft wall model in terms of associated
Laguerre polynomials La

nðxÞ as

ψn;Sðz; qÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
2

nþ 1

r
κ2z3−SL1

nðκ2z2Þ: ð31Þ

In order to apply (22), we need to compute CΔ−S. To do
this, we can use the expression (16) and the properties of
the associated Laguerre polynomials to get

CΔ−S ¼
ψnðz; qÞ
zΔ−S

����
z→0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðnþ 1Þ

p
κ2: ð32Þ

Thus, the decay constants are

F2
n ¼

2κ4R−ðβþ1Þ

K
ðnþ 1Þð3 − SÞ2ð2 − SÞ2: ð33Þ

Evaluating for scalar (β ¼ −3) and vector (β ¼ −1)
separately, we arrive to

F2
vector;n ¼

8κ4ðnþ 1Þ
K

; ð34Þ

F2
scalar;n ¼

72κ4ðnþ 1Þ
K

: ð35Þ

Notice that, beyond the normalization K fixed by
examining the large q2 behavior of the two-point functions,
the expressions are equivalent to those obtained for vector
mesons [Eq. (17) in [21] with K ¼ g25] and scalar mesons
[Eq. (33) in [25] withK → 9 kR=2]. Recall that these scales
are fixed by the high q2 limit at large Nc QCD [23,24].

C. Braga and Ferreira dilaton

In the paper [31], authors discuss a deformed version of
static quadratic soft wall model dilaton to address masses
and decay constants for the heavy vector quarkonium. The
proposed dilaton has the form

ΦðzÞ ¼ k2z2 þMzþ tanh

�
1

Mz
−

kffiffiffi
Γ

p
�
; ð36Þ

where the parameters are defined as follows: k is associated
to the quark mass, Γ is connected to the string tension
present in the strong interaction between quark inside the
meson, and M is the mass scale associated to the decay
process of the vector mesons going into leptons, i.e,
Vn → ll̄. In other words, M gives the correct energy scale
for the annihilation of any vector meson state, represented
by the decay constant h0jJμð0ÞjVni ∼ Fn.
Using this dilaton with geometrical frame given by the

usual Poincare patch, and following the same procedure
as we did with the other examples, we can write a Sturm-
Liouville equation as

− ψ 00ðzÞ −
�

1

Mz2
sech2

�
1

Mz
−

kffiffiffi
Γ

p
�
− 2zk2 þ β

z
−M

�
ψ 0

þM2
5R

2

z2
ψ ¼ M2

nψ : ð37Þ

Solutions to this equation are numerical, but fixing the
boundary asψðϵÞ ¼ ϵΔ−S andψðz → ∞Þ ¼ 0,we can obtain
the eigenmodes spectra for heavy quarkonium. By perform-
ing a Boguliobov transformation ψn → eϕ=2

ffiffiffi
z

p
ψn, we can

obtain the corresponding holographic potential.
The decay constant spectrum calculated for vector

charmonium using this model is summarized in Table I.
Notice the difference of almost 3% in all of the decays
calculated using (22) with the results obtained with the
standard formula. This systematic error is associated with
the numerical instability inherent to the derivative calcu-
lation process: since the quantities diverge so fast when
they approach zero, the numerical results are sensitive to
the choice of the cutoff. This problem can be observed also
in the scalar decay constant, where the AdS warp factor
(∼1=z) goes cubic, causing a convergence problem at the
boundary located near to zero. These kinds of problems can
be avoided with (22) since all of the divergent powers of z
are canceled when the warp factor is considered to be AdS.
The strongest feature of the formula (22) is at the

numerical level: once we know the eigensolution, we
can evaluate the Taylor expansion and the quotient with
zΔþS and read off directly the decay constant up to
normalization factors fixed by the large Nc behavior at
q2 → ∞. In this case, we obtain the decay constant
spectrum for the vector charmonia states, exposed in the
third column of Table I.

D. Li and Huang dilaton

Li and Huang propose a dilaton field to address the chiral
symmetry breaking in the context of a two flavor dynamical
AdS=QCD model [33]. In this approach, authors study the
effect of a dilaton field

TABLE I. Comparative of the calculated decay constants using
the Braga-Ferreira proposal [31] with the formula (22). The first
column shows the experimental results obtained from [32]. The
last column is the relative error (Δf) between both models.
Notice that same value of the error, 3%, tells that the differences
are systematic, i.e., related to the numerical implementation in
both cases.

Charmonium decay constant spectrum

n fPDG (MeV) [32] fBF (MeV) [31] fOurs (MeV) Δf

1 416� 5.25 399 410.5 2.9%
2 296.08� 2.51 255 262.6 3.0%
3 187.13� 7.61 198 204.1 3.0%
4 160.78� 9.70 169 174.1 3.0%
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ΦðzÞ ¼ μ2z2 tanh ðμ2z2Þ ð38Þ

onto the chiral expectation value, modeled by a scalar field
χðzÞ, and the geometry background, by solving the
dynamically the graviton-dilaton-scalar system.
The warp factor AðzÞ is constrained to be asymptotically

AdS and is calculated from (see Eq. (4.16) in [33])

−A00 þ A02 þ 2

3
ϕ00 −

4

3
A0Φ0 −

λ

6
eΦχ02 ¼ 0; ð39Þ

where λ is a constant related to five-dimensional gravita-
tional constantG5, the number of colors Nc and flavors Nf.
The chiral field χðzÞ is constructed from the dilaton as

χ0ðzÞ ¼
ffiffiffi
8

λ

r
μe−

Φ
2

�
1þ C1e−Φ þ C2e−2Φ −

1

2
e−3Φ

�
; ð40Þ

where μ is an energy constant; C1 and C2 are constants
defined in terms of the quark mass and the chiral con-
densate. In this sense, the LH model captures the chiral
symmetry breaking phenomenology.
The hadronic part is given by the standard SWM actions

exposed in [21,25], but evaluated with the dynamical
background.
To follow the same procedure as we did before, we need

to solve numerically the equation of motion for light vector
mesons, that in this model reads

∂z½eAðzÞ−ΦðzÞψ 0
nðz;qÞ�þð−q2ÞeAðzÞ−ΦðzÞψnðz;qÞ¼ 0: ð41Þ

Confinement in this model is realized by the holographic
potential obtained by performing a Boguliobov transfor-
mation ψn → e

1
2
ðΦ−AÞψn. Figure 1 shows a plot of this

potential for the case of ρ mesons.
In this model, decay constants are calculated using the

expression (see Eq. 5.2 in [33])

F2
n ¼

Nf

g25Nc
½eA−Φ∂zψn�z→0; ð42Þ

where Nf ¼ 2, Nc ¼ 3, and g25 ¼ 12π2

Nc
.

Alternatively, decay constants in this model can be
calculated with the master formula (22). The only necessary
ingredient is the numerical behavior of ψnðzÞ=zΔ−S in the
limit z → 0.
Numerical results for the calculation of the decay

constant for ρð770Þ are shown in Table II. Notice that
there is also a systematic error present in the calculation of
the decay since the instabilities associated with the numeri-
cal derivative. As in the case of the BF model, these
dynamical-type models are sensitive to the behavior of the
derivatives and divergent terms near to the boundary.
Another ingredient here is the AdS-like behavior of the
metric. Since the warp factor is not Poincare, we could be

FIG. 1. This panel depicts the holographic potentials associated to discussed models in this work. The plots were made using the
parameters given by the original authors, except for the hard wall model, where we used the ρð770Þmass to fix the wall locus. All of the
potentials correspond to vector meson cases.
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tempted to say that the master formula (22) is not
valid. But, as a manner of demonstration, just consider
that any AdS-like warp factor can be written in a generic
form as

AðzÞ ¼ log
R
z
þ FðzÞ; ð43Þ

where the deformation FðzÞ should be a well-behaved
function of the holographic coordinate z, that at the
boundary is zero, i.e., if z → 0 then FðzÞ → 0. If this
holds, then the cancellation of powers of z in the decay
constant expression is valid, since eFðzÞ will contribute with
termsOðznÞ, with n positive, implying that the deformation
does not affect the holographic decay constant.

This simple discussion also shows the limitation of the
master formula (22): if the geometry is allowed to be non-
AdS-like, the exact cancellation of powers of z is not
achieved.

V. HOW TO CHOOSE A PROPER BOUNDARY

Summarizing, the most important conclusion we made
up to this point by comparing the calculation process of
several AdS=QCD models is a strong dependence of the
decay with the boundary locus. At first sight, this 3% level
of confidence could be meaningless, but numerically it is
important. The conformal boundary used to compute
eigenstates from the usual AdS=QCD potentials depicted
in Fig. 1 is quite different from the one used in the
expression (13). From the Sturm-Liouville point of view,
the eigenvalue spectrum in these particular cases is always
defined by Dirichlet boundary conditions that are not so
sensitive to numerical boundaries chosen in the range of
ϵ → 10−7 or 10−2. The calculation of the decay constants is
controlled by Neumann boundary conditions, which
numerically are sensitive to small numerical differences
due to the derivative. In this sense, numerical calculations at
the numerical boundary used for the eigenvalue spectrum
are unstable. These calculations tend to stabilize at bigger
values than the eigenvalue boundary. This point is

TABLE II. Numerical results comparing the formula (22) with
the LH model [33]. Notice the difference with the experimental
value constructed from PDG. Again the numerical differences
can be related to the (systematic) numerical error in the
calculation.

ρ meson decay constant

State fPDG (MeV) [32] fLH (MeV) fOurs (MeV)

ρð770Þ 414.12� 0.85 299 297.6
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FIG. 2. The low z behavior of the second derivative for the first four vector states in the soft wall model, compared with corresponding
ψn=zΔ−S, is plotted. Each panel has the numerical second derivative, the analytical second derivative, and our proposal for the decay
plotted in a z interval from 0 up to 0.1. The small window inside each panel is a zoom of the depicted situation in the region of numerical
sensitivity. Observe how in the region before z ¼ 10−3, numerical estimations do not converge. The first one stabilizing is the ψ=z2 near
to z ¼ 10−3. Thus, any calculation before this point has no numerical reliability.
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illustrated in Figs. 2 and 3 for the first vector states
calculated in the soft wall model and Braga-Ferreira model.
This analysis suggests that the choice of the conformal

boundary for numerical calculations is not a trivial task. In
general, one should first plot the (first or second) derivative
of the mesonic eigenstates and check wherein the low z
region the decays stabilize. This low z issue is more
perceptible in the high excitation number part of the decay
constants spectrum. Fortunately, most of the mesonic
spectra do not have so high measured excited states.
Therefore, in this particular sense, any AdS=QCD model
that tries to calculate the decay constants have to fix
properly the boundary first. This is similar to the UV
cutoff AdS=QCDmodels [19,20] where the boundary has a
finite (no-null) boundary.

VI. CONCLUSIONS AND FINAL COMMENTS

In this work we have developed an alternative form to
calculate decay constants, avoiding the numerical interfer-
ence attached to derivatives and divergent quantities near to
the conformal boundary. The formula (22) connects the
decay constant of a mesonic state with the lowest

coefficient CΔ−S of the Taylor expansion for the eigenmode
ψnðz; qÞ, evading the numerical issues exposed above.
From the phenomenological point of view, we prove that

decay constants and AdS modes to zero are related when
z go, which is similar to the Van Royen-Weisskopf formula,
so Eq. (19) could be considered as a holographic realization
of this famous expression. The constant CΔ−S appearing in
the Taylor expansion carries all of the information about the
eigenmode ψn at the boundary. This information, as was
proved by [21], is one of the two things relevant to know
the decay constant.
The other is the proper value of K that comes from the

matching of the holographic two-point function with the
corresponding large Nc-QCD two-point function, both at
the large q2 limit [22,30]. If the dilaton field vanishes at the
boundary, as in the case of the soft wall model, constant K
is fixed to be g25 ¼ 4π2 for a theory with Nf ¼ 2 and
Nc ¼ 3. But, on the other hand, if the dilaton does not
vanish, then the constant K should include the information
about the value of the dilaton at the boundary. If we perform
the large Q2 ¼ −q2 expansion of the holographic vector
two-point function for an AdS-like bottom-up model with
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FIG. 3. The low z behavior of the first derivative for the first four vector states in the soft wall model, compared with corresponding
ψn=zΔ−S, is plotted. Unlike the soft wall model case, the BF model is not analytical; therefore, we cannot compare against the analytical
solution. Thus, the criterion, in this case, is set by the convergence of both solutions in the low z limit. Again, each panel ranges from
z ¼ 0 up to z ¼ 0.01. Each panel displays a zoom-in of the convergence region also. Notice that, in most of the cases, ψ=z2 power
expansion converges faster than the numerical derivative calculation. Notice that before z ¼ 5.0 × 10−4, decay constant numerical
calculations are not reliable.
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dilaton, we can arrive at the leading order expression

ΠV;holðQ2Þ ¼ −
e−2Φ0

2K
logQ2 ð44Þ

such that, if we compare with the corresponding large Nc
QCD object, also at leading order,

ΠVðQ2Þ ¼ −
Nc

24π2
logQ2; ð45Þ

therefore, we conclude that the normalization constant K
should be fixed to be keeping in mind the value of the
dilaton at the boundary, i.e., Φ0. This fixing process of K
seems meaningless since it does not affect directly the
confinement properties observed in the scalar and vector
mesons spectra. But in the case of the pseudoscalar and
axial mesons, K plays an important role since it appears

directly in the respective equations of motion for their
eigenfunctions [25]. But, since most of the deformed
dilatons introduced after soft wall model are constrained
to be vanishing at the boundary and quadratic at high z (see
[34–36]), the effect of the dilaton in K was not explored.
But, this feature opens the door to other possibilities to try
to fit decay constants by playing with the low z behavior of
the dilaton. This is an interesting topic that will be
addressed in future works.
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