
 

New conformal field theory from N = ð0; 2Þ Landau-Ginzburg model
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By studying the infrared fixed point of an N ¼ ð0; 2Þ Landau-Ginzburg model, we find an example of
modular invariant partition function beyond the ADE classification. This stems from the fact that a part
of the left-moving sector is a new conformal field theory which is a variant of the parafermion model with
level twenty-five.
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I. INTRODUCTION

A two-dimensional (2D) conformal field theory (CFT) is
endowed with an infinite-dimensional Lie algebra [1], and
modular invariance further constrains its spectrum on the
torus [2]. Consequently, a number of models have been
exactly solved. (For instance, see [3].) In a rational
conformal field theory, a modular invariant partition func-
tion consists of finitely many pairs I of left- and right-
moving characters of chiral algebras A ⊗ Ā,

Z ¼
X
ði;īÞ∈I

Niīχ
A
i ⊗ χ̄Āī : ð1Þ

If we write MA
ij ⟳ fχjg and ðMĀ

ī j̄Þ�⟳ fχ̄ j̄g for actions of

M ∈ SLð2;ZÞ on the spaces of the left and right-moving
characters [4], then the modular invariance requires

MA
ijNjj̄ðMĀ

j̄ īÞ� ¼ Niī:

As a result, modular invariant partition functions of SUð2Þk
WZNW models and unitary Virasoro minimal models
admit the celebrated ADE classifications [5–8]. If a CFT
is described by a nonchiral coset model [9] involving
SU(2) and U(1), its modular invariant partition function
fits into the ADE classification. As such, one can find
modular invariant partition functions for parafermion (PF)
models SUð2Þk=Uð1Þk [10] and N ¼ 2 minimal models
(MMs) ðSUð2Þk × Uð1Þ2Þ=Uð1Þkþ2 [11]. Furthermore,

with N ¼ ð2; 2Þ supersymmetry, Landau-Ginzburg (LG)
models with ADE quasihomogeneous superpotential are
described by the MMs of corresponding ADE type in the
infrared (IR) limit [12,13].
On the other hand, the class ofN ¼ ð0; 2Þ LG models is

much richer because first they are chiral in general and
secondly there is more freedom due to the E- and J-terms
[14, §6] Witten:1993yc. Therefore, it is natural to ask how
IR CFTs incorporate the richness ofN ¼ ð0; 2Þ LGmodels
by encoding the information of the E- and J-terms.
In this article, we make a modest step towards under-

standing the LG/CFT correspondence with N ¼ ð0; 2Þ
supersymmetry by studying the IR fixed point of a certain
N ¼ ð0; 2Þ LG model along the line of [15]. We obtain its
modular invariant partition function, which turns out to
be beyond the ADE classification. Careful analysis of the
Hilbert space shows that a part of the left-moving sector is
described by a new CFT which is a close cousin of the
parafermion model.

II. LG/CFT CORRESPONDENCE

To begin with, we describe the N ¼ ð0; 2Þ LG model
we focus on. It is a theory of two chiral multiplets ϕ1;ϕ2

and two Fermi multiplets ψ1, ψ2 with interactions deter-
mined by a superpotential

W ¼ ψ1ðϕ4
1 þ ϕ2

2Þ þ ψ2ϕ
2
1ϕ2: ð2Þ

The E-term is set to 0. This theory is called class 2.b with
k ¼ 4 in [16].
Since the numbers of chiral and Fermi multiplets

are equal, the vanishing of the gravitational anomaly
Trγ3 ¼ c̄ − c ¼ 0 guarantees the equality of the left- and
right-moving central charges. Furthermore, the c-extrem-
ization [17] calculates

*snawata@gmail.com

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 101, 046008 (2020)

2470-0010=2020=101(4)=046008(6) 046008-1 Published by the American Physical Society

https://orcid.org/0000-0003-0423-3330
https://orcid.org/0000-0002-1179-0437
https://orcid.org/0000-0001-5002-9176
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.101.046008&domain=pdf&date_stamp=2020-02-06
https://doi.org/10.1103/PhysRevD.101.046008
https://doi.org/10.1103/PhysRevD.101.046008
https://doi.org/10.1103/PhysRevD.101.046008
https://doi.org/10.1103/PhysRevD.101.046008
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


c ¼ c̄ ¼ 75

27
; ð3Þ

where the R-charges of all the multiplets are listed in the
following table. There is also a left-moving Uð1Þl global

ϕ1 ϕ2 ψ1 ψ2

Uð1ÞR 5
27

10
27

7
27

7
27

Uð1Þl 1 2 −4 −4

symmetry with ’t Hooft anomaly 27. Therefore, these data
suggest that, in the IR fixed point, the right-moving sector
is the N ¼ 2MM25 with level k ¼ 25, and the left-moving
sector is the Uð1Þ27

2
WZNWmodel with level k ¼ 27=2 and

a CFT of central charge 16=9. It is tempting to identify the
CFT of central charge 16=9 with the parafermion model
PF25 of level 25 as in [15], and we indeed write a modular
invariant partition function using characters of PF25 in the
next section. However, as we see later, it is not exactly the
PF25, but a certain variant of the PF25.
Let us extract more information about the IR CFT from

the UV data. Since an elliptic genus is protected under the
RG flow [18], it can be computed from the information of
the LG model. We evaluate it in the NS-NS (Neveu-
Schwarz) sector

EGðτ; zÞ ¼ TrNSNSð−1ÞFqL0− c
24yJ0e−βðL̄0−1

2
J̄0Þ

¼ q−
25
216

θðy−4q17=27;qÞ2
θðyq5=54; qÞθðy2q5=27; qÞ ; ð4Þ

where θðx;qÞ ¼ Π∞
i¼0ð1 − xqiÞð1 − qiþ1=xÞ, and J0 is the

Uð1Þl charge. Note that q ¼ e2πiτ, y ¼ e2πiz.
Among chiral primary states ðL̄0 ¼ J̄0=2Þ in the right-

moving sector that contribute to the elliptic genus, the state
subject to L0 ¼ q=2 in the left-moving sector form the
topological heterotic ring Htop [19,20] where q is equal to
the Uð1ÞR charge rϕ for a chiral field and rψ − 1 for a
Fermi field. Since the numbers of chiral and Fermi
multiplets are equal in the LG theory, it receives contri-
butions only from chiral multiplets with L0 ¼ J̄0=2, which
is isomorphic to the Jacobi ring of the J-term,

Htop ¼ C½ϕ1;ϕ2�=ðϕ4
1 þ ϕ2

2;ϕ
2
1ϕ2Þ

≅ Span½ϕi
1�5i¼0 ⊕ Span½ϕ2;ϕ1ϕ2�: ð5Þ

In fact, the holomorphic part of the stress-energy tensor
[18,21] is written as

T ¼
X2
a¼1

��
1 −

rϕa

2

�
∂ϕa∂ϕ̄a −

rϕa

2
ϕa∂2ϕ̄a

�

þ
X2
a¼1

�
i
2
ð1þ rψa

Þψa∂ψ̄a −
i
2
ð1 − rψa

Þ∂ψaψ̄a

�
; ð6Þ

and the operator product expansion (OPE) of a generator of
Htop with the stress-energy tensor shows that it is a primary
state with L0 ¼ J̄0=2.

III. MODULAR INVARIANT
PARTITION FUNCTION

Our goal is to find the modular invariant partition
function of the IR CFT in the NS-NS sector as the following
form,

Z¼TrNSNSqL0− c
24yJ0 q̄L̄0− c̄

24x̄J̄0

¼
X
wts

NSUð2Þ
ll̄

NUð1Þ
νλβ̄

χPF25l;ν ðτÞχ
Uð1Þ27

2

λ ðτ;zÞ · χ̄MM25

l̄;β̄
ðτ̄;w̄Þ; ð7Þ

which is consistent with the elliptic genus (4), where
q̄ ¼ e−2πiτ̄, x̄ ¼ e−2πiw̄ and wts stands for all the weights
labeled by l; l̄; ν; λ; β̄. To obtain an elliptic genus from a
partition function, we fix the right-moving sector to be
chiral primary states ðL̄0 ¼ J̄0=2Þ only from which the
elliptic genus receives contributions. Then, we insert ð−1ÞF
or equivalently ð−1Þ2ðL0−L̄0Þ in each term of the left-moving
sector [22].
For this purpose, we find the modular invariant combi-

nation of U(1) WZNW characters by following [15,23].
In fact, the quadratic forms given by U(1) levels are
rationally equivalent,

diag

�
27

2
; 27

�
¼ RTdiagð25; 2ÞR;

where

R ¼ 1

10

�
2 10

25 −10
�
:

This rational equivalence gives rise to an identity among
theta functions,

χUð1Þ25μ ðτ; 2uþ 10vÞðχUð1Þ20 þ χUð1Þ22 Þðτ; 25u − 10vÞ

¼
X27×10−1

i¼0

(
χ
Uð1Þ

27×102
2

2μþ50i ðτ; uÞχUð1Þ27×10210μ−20i ðτ; vÞ

þ χ
Uð1ÞÞ

27×102
2

2μþ50i ðτ; uÞχUð1Þ27×102
10μ−20iþ27×102

ðτ; vÞ
)

≡X
λ0;ρ0

Aμλ0ρ0χ
Uð1Þ

27×102
2

λ0 ðτ; uÞχUð1Þ27×102ρ0 ðτ; vÞ:

Furthermore, there is another identity of theta functions,

χ
Uð1Þ27

2

λ ðτ; 10uÞχUð1Þ27ρ ðτ; 10vÞ

¼
X

i1;i2∈Z10

χ
Uð1Þ

27×102
2

10ðλþ27i1Þðτ; uÞχ
Uð1Þ

27×102

10ðρþ54i2Þðτ; vÞ

≡X
λ0;ρ0

Bλρλ0ρ0χ
Uð1Þ

27×102
2

λ0 ðτ; uÞχUð1Þ27×102ρ0 ðτ; vÞ:
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From these identities, one can construct the U(1) modular
invariant tensor by

NUð1Þ
νλβ̄

¼
X
λ0;β0

Aν;λ0;β0Bλ;β̄;λ0;β0 ;

which satisfies

ðMUð1Þ25
ν0ν Þ�MUð1Þ27=2

λ0λ NUð1Þ
νλβ̄

MUð1Þ27
β̄β̄0 ¼ NUð1Þ

ν0λ0β̄0 ;

for all M ∈ SLð2;ZÞ. More explicitly, one can write

Z ¼
X
wts

NSUð2Þ
ll̄

χPF25l;5mðτÞχ
Uð1Þ27

2
27m−5n

2

ðτ; zÞ · χ̄MM25

l̄;n
ðτ̄; w̄Þ; ð8Þ

where the summation over weights runs m ∈ Z10, n ∈ Z54

and l; l̄ ∈ Z26.
Next, we need to determine the SU(2) modular invariant

tensorNSUð2Þ
ll̄

. For the SU(2) level k ¼ 25, only the diagonal

(type-A) combination NSUð2Þ
ll̄

¼ δll̄ is listed in the ADE
classification [5–8]. However, with the diagonal SU(2)
combination, one can check that the partition function
would not realize the elliptic genus (4).
To circumvent this situation, we need to relax some of

the assumptions in [5–8] for the classification. We notice
that the following matrix commutes with all the modular
matrices MSUð2Þ,

Nnd
ll̄ ¼ ðδ2;l − δ14;l þ δ20;lÞðδ2;l̄ − δ14;l̄ þ δ20;l̄Þ

þ ðδ5;l − δ11;l þ δ23;lÞðδ5;l̄ − δ11;l̄ þ δ23;l̄Þ;

where the indices range l; l̄ ∈ Z26. Then, we set

NSUð2Þ
ll̄

¼ δll̄ −
1

3
Nnd

ll̄: ð9Þ

This clearly violates the assumption that Niī in (1) are non-
negative integer multiplicities, which has been adopted in
the literature including [5–8]. However, if we use (9) in (8),
the partition function is a formal series of ðq; y; q̄; x̄Þ with
non-negative integer coefficients and it is moreover con-
sistent with the elliptic genus (4). We claim that it is the
partition function of the IR CFT.

IV. HILBERT SPACE AND A NEW CFT fPF25

To demystify the multiplicities (9) with negative frac-
tional numbers, let us investigate the Hilbert space of the
IR CFT. To this end, we denote by VPF25

l;m a highest weight
representation of PF25. In addition, by taking the direct sum
of s ¼ 0 and s ¼ 2 weight of Uð1Þ2, we write by VMM25

l;m a
highest weight representation of MM25 in the NS sector.
There are isomorphisms of irreducible modules,

VPF25
l;m ≅ VPF25

l;50−m ≅ VPF25
25−l;mþ25;

VMM25

l;m ≅ VMM25

l;54−m ≅ VMM25

25−l;mþ27:

First, we note an identity of the parafermion characters

3 ¼
X4
m¼0

χPF252;10m − χPF2514;10m þ χPF2520;10m

¼
X4
m¼0

χPF255;10mþ5 − χPF2511;10mþ5 þ χPF2523;10mþ5; ð10Þ

which counts the number of primary states jl; miPF25 with
conformal dimension hPF25l;m ¼ 2=27 in PF25,

jl; miPF25 ¼ j2; 0i; j20; 20i; j20; 30i; or

jl; miPF25 ¼ j23; 25i; j5; 5i; j5; 45i: ð11Þ
Hence, roughly speaking, the nondiagonal part of (9) adds
or eliminates a certain linear combination of these states to
or from VPF25

l;m .
To see how the spectrum is organized, we compare the

diagonal spectrum

Hdiag ¼ ⨁
l;m;n

VPF25
l;5m ⊗ V

Uð1Þ27
2

27m−5n
2

⊗ V̄MM25

l;n ; ð12Þ

where NSUð2Þ
ll̄

¼ δll̄ with the information of the Hilbert
space of the IR CFTobtained from the LG model. Note that
the diagonal spectrum Hdiag contains primary states of
PF25 × Uð1Þ27

2
×MM25,

j5s; 5siPF25 ⊗ j − siUð1Þ27
2

⊗ j5s;−5siMM25
;

j5s; 50 − 5siPF25 ⊗ j − siUð1Þ27
2

⊗ j5s;−5siMM25
; ð13Þ

which obey the condition L0 ¼ J̄0=2 ¼ L̄0. Here we have
s ¼ 0; 1;…; 5 and the states in the first and second line are
identical to the vacuum state when s ¼ 0. Thus, there are
ten primary states subject to the condition inHdiag, whereas
the topological heterotic ring (5) of the IR CFT is eight
dimensional as a vector space.
Hence, the diagonal spectrum (12) is not the actual

Hilbert space. To realize the ring structure of Htop in (5),
let us suppose that ϕ1 and ϕ2 in Htop respectively
correspond to

j5; 5iPF25 þ j5; 45iPF25 and

j10; 10iPF25 − j10; 40iPF25 : ð14Þ

Here and in what follows, we suppress the parts of Uð1Þ27=2
and MM25 of (13). Then the fusion rule tells us that ϕ2

1ϕ2

corresponds to
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j20; 20iPF25 − j20; 30iPF25 ð15Þ

in (13), which is decoupled from the spectrum due to the
equation of motion. In addition, there is no generator in
Htop corresponding to

j5; 5iPF25 − j5; 45iPF25 ð16Þ

in (13). Thus, the IR CFT excludes these two states, (15)
and (16), and the identification of (14) with ϕ1 and ϕ2 as
well as the fusion rule indeed reproduces the topological
heterotic ring (5).
On the other hand, one can show that ϕ2

1∂ϕ2 ∼
−2ϕ1ϕ2∂ϕ1 is a primary in the IR CFT from the OPE
with the stress-energy tensor (6) up to the equations of
motion (∂W=∂ϕi ¼ 0 ¼ ∂W=∂ψ i and their complex con-
jugates). Moreover, ϕ2

1∂ϕ2 and its descendants contribute
to the elliptic genus by

ðχPF25j20;20i−j20;30i − 1ÞχUð1Þ27=2−4 ¼ ðχPF2520;20 − 1ÞχUð1Þ27=2−4

¼ ðqþ 3q2 þ 6q3 þ 12q4 þ 21q5 þ � � �ÞχUð1Þ27=2−4 :

Ignoring the Uð1Þ27=2 part, the subtraction by 1 means the
omission of (15), and the primary ϕ2

1∂ϕ2 contributes
to q1 whereas the subsequent higher order terms
count its descendants. This implies that although the IR
CFT is not endowed with the parafermionic symmetry
SUð2Þ25=Uð1Þ25, it is still a character of a module of
the Virasoro algebra in the left-moving sector. Similarly, it
is easy to check from the OPE that ϕ3

1∂ϕ̄2 ∼ −2ϕ2∂ϕ̄1

is also a primary in the IR CFT, and the contribution
from its conformal family to the elliptic genus is

ðχPF25j5;5i−j5;45i − 1ÞχUð1Þ27=2−1 .
Furthermore, an explicit computation using (10) shows

that the elliptic genus (4) receives all the contributions from
the part of l ¼ 5, n ¼ −5 inHdiag except the states (15) and
(16), and their Uð1Þ27=2 descendants. Indeed, the Hilbert
space is organized at the IR fixed point in such a way that
the states (15) and (16) are excluded in the PF25 part but it
preserves the Virasoro symmetry and the modular invari-
ance. Denoting the CFTof central charge 16=9 by fPF25, the
l ¼ 5, 20 parts of the Hilbert space are isomorphic to the
quotient spaces

H
ePF25
5 ≅ ⨁

4

m¼0

VPF25
5;10mþ5=Cðj5; 5i − j5; 45iÞ;

H
ePF25
20 ≅ ⨁

4

m¼0

VPF25
20;10m=Cðj20; 20i − j20; 30iÞ;

as vector spaces graded by L0.

In order to keep the modular invariance, one needs to
arrange the primary states (11) of PF25 according to the
nondiagonal part of (9),

H
ePF25
2 ≅ ⨁

4

m¼0

VPF25
2;10m=Cj2; 0i;

H
ePF25
23 ≅ ⨁

4

m¼0

VPF25
23;10mþ5=Cj23; 25i;

H
ePF25
14 ≅ Cðj20; 20i þ j20; 30iÞ ⊕ ⨁

4

m¼0

VPF25
14;10m;

H
ePF25
11 ≅ Cðj5; 5i þ j5; 45iÞ ⊕ ⨁

4

m¼0

VPF25
11;10mþ5: ð17Þ

Here, ≅ means an isomorphism as vector spaces graded
by L0. For the other l ≠ 2, 5, 11, 14, 20, 23, they are
isomorphic to those of PF25,

H
ePF25
l ≅ ⨁

4

m¼0

VPF25
l;10mþ5ðlmod 2Þ:

All in all, the Hilbert space of the IR CFT is then
expressed as

H ¼ ⨁
l;n

H
ePF25
l ⊗ V

Uð1Þ27
2

27l−5n
2

⊗ V̄MM25

l;n ; ð18Þ

whose generating function is (8) with (9). This explains the
reason why the partition function (8) with (9) is a formal
power series with non-negative integer coefficients. If we
restrict the right-moving sector to be chiral primary states,
we have

HjL̄0¼J̄0=2 ¼ ⨁
l
H
ePF25
l ⊗ V

Uð1Þ27
2

16l ;

which exactly reproduces the elliptic genus (4) by appro-
priately including signs. In fact, under the equations of
motion, the conformal families of two primaries ψ i∂ϕ̄1

(i ¼ 1; 2) contribute to (4)

ðχPF252;0 − 1ÞχUð1Þ27=25

¼ ð2qþ 3q2 þ 6q3 þ 10q4 þ 18q5 þ � � �ÞχUð1Þ27=25 :

ð19Þ

For l ¼ 23, those of two primaries ψ̄ iϕ
2
1ð∂ϕ2Þ2 (i ¼ 1; 2)

yield the contribution ðχPF2523;25 − 1ÞχUð1Þ27=217 . In addition, the
conformal family of a primary ψ1ψ2 combines the two
irreducible characters of PF25 into one “irreducible” char-
acter of fPF25,
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ð1þ χPF2514;20 þ χPF2514;30Þχ
Uð1Þ27=2
8

¼ ð1þ 2qþ 4q2 þ 10q3 þ 20q4 þ 38q5 þ � � �ÞχUð1Þ27=28 :

In a similar fashion, that of a primary ψ̄1ψ̄2ϕ1ϕ2ð∂ϕ1Þ2
gives the contribution ð1þ χPF2511;5 þ χPF2511;45Þχ

Uð1Þ27=2
14 . Hence,

this provides a strong evidence that the graded vector
spaces (17) are decomposed into modules of the Virasoro
algebra and fPF25 preserves the conformal symmetry. In
conclusion, the N ¼ ð0; 2Þ LG model flows to

ðfPF25 × Uð1Þ27
2
Þ ⊗

�
SUð2Þ25 × Uð1Þ2

Uð1Þ27

�
;

and the modular invariant Hilbert space (18) on a torus
is decomposed into modules of the left-moving Virasoro
algebra and the right-moving N ¼ 2 super-Virasoro
algebra.

V. DISCUSSIONS

We find the modular invariant partition function
beyond the ADE classification [5–8] because a part of
the left-moving sector is the new CFT fPF25 obtained by
breaking the parafermionic symmetry of PF25. Certainly,
more investigation needs to be carried out to understandfPF25. In particular, it is desirable to determine two
“irreducible” characters of the primaries ψ i∂ϕ̄1 (respec-
tively ψ̄ iϕ

2
1ð∂ϕ2Þ2) in fPF25 whose sum is equal to χPF252;0 − 1

in (19) (respectively χPF2523;25 − 1).
In [16], N ¼ ð0; 2Þ LG models with the same left

and right central charges ≤3 have been classified. In
the classification of [16], IR CFTs of class 2.a with
superpotential

ψ1ðϕm
1 þ ϕn

2Þ þ ψ2ϕ1ϕ2; m; n ∈ Z>0

are described by diagonal modular pairing of PFs and U(1)
WZNWmodels in the left-moving-sector andN ¼ 2MMs
in the right-moving sector [15]. This is because their
topological heterotic rings are simple and it does not
contain a mixed generator like ϕ1ϕ2. Like in our example,
the topological heterotic rings of the other classes in [16]
are more complicated, and we observe that their elliptic
genera cannot be realized by characters of PFs and U(1)
WZNW models except our example (2). [Another excep-
tion is class 2.b with k ¼ 3, but it is equivalent to
N ¼ ð2; 2Þ MM of type E7.] It is expected that the left-
moving sectors of IR CFTs would be unknown ones so
that it requires further study to understand how J-terms of
N ¼ ð0; 2Þ LG models are encoded in IR CFTs. It is also
worth mentioning that the condition of the same left and
right-moving central charges in [16] is rather special in

N ¼ ð0; 2Þ LG models, and a vast class of general
N ¼ ð0; 2Þ LG models are waiting to be investigated.
Since A.B. Zamolodchikov has identified the LG/CFT

correspondence [24], it has given drastically new insights
in quantum field theories and mathematical physics. This
article just takes a peek at the LG/CFT correspondence with
N ¼ ð0; 2Þ supersymmetry, but we hope that our example
shows its fertility and will intensify further study on it.
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APPENDIX: NOTATIONS

Here, we summarize convention and definitions
necessary in this article. Uð1Þk and SUð2Þk characters
are given by

χUð1Þkm ðτ; zÞ ¼ Θm;kðτ; zÞ
ηðτÞ ;

χSUð2Þkl ðτ; zÞ ¼ Θlþ1;kþ2ðτ; zÞ − Θ−ðlþ1Þ;kþ2ðτ; zÞ
Θ1;2ðτ; zÞ − Θ−1;2ðτ; zÞ

;

where ηðτÞ ¼ q
1
24

Q∞
m¼1ð1 − qmÞ is the Dedekind eta func-

tion and the theta function is defined as

Θm;kðτ; zÞ≡
X
n∈Z

qkðnþm
2kÞ2ykðnþm

2kÞ:

Theweights ofUð1Þk andSUð2Þk run overm ¼ 0;…; 2k − 1
and l ¼ 0;…; k, respectively. It is well known that the
modular group SLð2;ZÞ is generated by T and S, and a T
transformation on characters of a chiral algebra A is always
diagonalizable,

χAr ðτ þ 1Þ ¼ e2πiðhr−c=24ÞχAr ðτÞ;

where hr is the conformal dimension of the corresponding
highest weight state. Under the S transformation, the char-
acters of Ak ¼ Uð1Þk, SUð2Þk are transformed as

χAk
r

�
−
1

τ
;
z
τ

�
¼ e

iπkz2
2τ

X
r0
SAk
rr0 χ

Ak
r0 ðτ; zÞ;

where
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SSUð2Þkl;l0 ≡
ffiffiffiffiffiffiffiffiffiffiffi
2

kþ 2

r
sin

�
πðlþ 1Þðl0 þ 1Þ

kþ 2

�
;

SUð1Þkm;m0 ≡ 1ffiffiffiffiffi
2k

p e−2πi
mm0
2k :

A character of a coset modelA=B can be computed via a
branching rule

VA
l ¼ ⨁

m
VB
m ⊕ VA=B

l;m ;

where VA
l and VB

m are highest weight representations of the
chiral algebra A and B, respectively. By defining the string

function cðkÞl;m [10],

χSUð2Þkl ðτ; zÞ ¼
X
m∈Z2k

cðkÞl;mðτÞΘm;kðτ; zÞ;

a character of the parafermion is then expressed as

χPFkl;mðτÞ ¼ ηðτÞcðkÞl;mðτÞ;

where lþm ∈ 2Z, and otherwise χPFkl;m ¼ 0. Note that the

characters obey χPFkl;m ¼ χPFkl;2k−m ¼ χPFkk−l;mþk.
In addition, a character of the N ¼ 2 minimal model in

the NS sector [11] is given by

χMMk
l;m ðτ; zÞ ¼

X
r∈Z2k

cðkÞl;rðτÞΘðkþ2Þr−km;kðkþ2Þ

�
τ

2
;

z
kþ 2

�
;

where the weights s ¼ 0; 2 of Uð1Þ2 are summed. Note
that the weights are subject to lþm ∈ 2Z, and other-
wise χMMk

l;m ¼ 0. Note that the characters satisfy χMMk
l;m ¼

χMMk
l;2ðkþ2Þ−m ¼ χMMk

k−l;mþkþ2.
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