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In this article we explore the holographic duals of tensor models using collective field theory.
We develop a description of the gauge invariant variables of the tensor model. This is then used to develop a
collective field theory description of the dynamics. We consider matrixlike subsectors that develop an extra
holographic dimension. In particular, we develop the collective field theory for the matrixlike sector of an
interacting tensor model. We check the correctness of the large N collective field by showing that it
reproduces the perturbative expansion of large N expectation values. In contrast to this, we argue that
melonic large N limits do not develop an extra dimension. This conclusion follows from the large N value
for the melonic collective field, which has delta function support. The finite N physics of the model is also
developed and nonperturbative effects in the 1=N expansion are exhibited.
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I. INTRODUCTION

In the last 20 years genuinely new and fascinating insights
into the large N expansion have been achieved. The ribbon
graph expansion proposed by ’t Hooft suggested a deep
connection between non-Abelian gauge theories and string
theoriesmore than 40 years ago. The expansion identifies the
surface triangulated by the ribbon graph with a string world
sheet [1]. This initial proposal has found beautiful con-
firmation in the duality between the large N expansion of
N ¼ 4 super-Yang-Mills theory and the loop expansion of
IIB string theory on asymptotically AdS5 × S5 spacetimes
[2–4]. This connection goes by the name of holography, or
the gauge theory/gravity duality and for any theory with
adjoint valued variables, one expects a duality with a string
theory. The largeN limits of vectormodels aremuch simpler.
There are fewer gauge invariants that one can form and the
large N limit of these models is explicitly solvable.
Remarkably, they are also equivalent to higher dimensional

theories of gravity [5,6], but in this case the relevant gravity
theories are the so-called higher spin theories [7,8]. In the
light of this progress, it is natural to work out the large N
expansion and holography for tensor models. This is the
main motivation for our study.
Tensor models have recently gained popularity, as close

cousins of the Sachdev-Ye-Kitaev (SYK) model [9,10]. The
SYK model is a quantum mechanical model of Majoranna
fermions, interacting with a random coupling. The model is
fascinating because it develops an emergent conformal
symmetry in the IR where it is strongly coupled [11]. Its
strongly coupled large N limit has been constructed exactly
and used to demonstrate that the model saturates the chaos
bound [12]. These features strongly suggest that the model
is holographically dual to a black hole. The tensor models
share many of these features with one significant advan-
tage: they have no disorder [13].
Tensor models are rather interesting in their own right.

Tensor models are asymptotically free [14–16]. The largeN
limit of tensor models involves specific discretizations of
the d sphere, known as melonic [17], which provide an
analytic description of the universality class of the branched
polymer phase of Euclidean dynamical triangulations [18].
Further, the multicritical behaviors [19] can be interpreted
as critical, nonunitary matter [20,21], just like in 1-matrix
models [22]. Our main focus is on the holography of tensor
models. For related studies, see [23–25], as well as [26–34].
One possible approach to the holography of tensor

models is to express the dynamics of the model in terms
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of gauge invariant variables. A systematic method to
approach this problem is the collective field theory
[35,36]. The collective field theory for vector models
expresses the dynamics in terms of a bilocal field, which
has a very direct connection to the dual higher spin gravity in
anti–de Sitter space [37–41]. The bilocal description gives a
higher dimensional theory, with 1=N as the loop expansion
parameter. A similar analysis for singlematrix dynamics can
be carried out using the eigenvalue density as the gauge
invariant variable. This gives the Das-Jevicki Hamiltonian,
which reproduces the dynamics of the c ¼ 1 string [42]. The
resulting collective field theory is higher dimensional and it
too has 1=N as the loop expansion parameter. For multi-
matrix models it is hard to parametrize the loop space of
gauge invariants in a useful way and this has proved to be a
central obstacle to deriving collective field theory. Since
there are suggestions that tensor models are richer than
vector models, but perhaps simpler than matrix models, it is
worth examining their collective description. This is our
main goal in this article. If an example can be found, with a
space of invariant variables that is richer than vector models,
it may shed important insights into how to tackle the space of
invariant variables for multimatrix models.
Since collective field theory plays a central role in our

study, we give a brief review of the method in Sec. II. This
review includes a discussion of how the Jacobian for the
change to invariant variables is computed and then how
it determines the collective Hamiltonian. Section III dis-
cusses one approach towards enumerating and then con-
structing the gauge invariants of tensor models. We focus
on rank-3 tensors which transform in the fundamental of
UðN1Þ ×UðN2Þ ×UðN3Þ. This space of invariants is
enormous and hard to handle. We start by constructing
invariants under UðN1Þ × UðN2Þ, which can be managed.
The result is a collection of UðN3Þ tensors of arbitrary even
rank, which is a definite intermediate result on the path
towards characterizing the complete space of invariants.
Section IV looks for and identifies sectors that are dynami-
cally decoupled. These correspond to stringy states and
indicate that there are strings in the Hilbert space of the
tensor model and further, that this is a useful language for
classes of questions that can be pursued. We explicitly
demonstrate how collective field theory reproduces corre-
lators in a model with interactions. This physics recovers
many features expected of matrix models. In an attempt to
find some truly tensor model physics, Sec. V considers the
construction of the collective field theory of melonic
variables. Using certain known results for the melonic
variables, we are able to construct the leading large N
descriptions of the melonic invariant variables. We find that
there is no holographic dimension emergent at large N. In
Sec. VI we use a complete basis of the tensor model
invariants provided by the restricted Schur polynomials to
investigate nonperturbative contributions to the large N
expansion. We end with conclusions in Sec. VII.

II. COLLECTIVE FIELD THEORY

The basic method we employ in this paper is the
collective field theory [35,36]. Our goal in this section is
to give a general review of the method. Collective field
theory provides a systematic construction of the dynamics
of invariant observables of the theory. This is typically
accompanied by the emergence of extra holographic
dimensions as well as a reorganization of the dynamics
such that 1=N is the new loop counting parameter. It is
therefore the ideal framework with which to pursue the
holography of tensor models and to provide insight into the
structure of the large N expansion for these models.
Collective field theory achieves a direct change of variables
to the invariant observables, taking careful account of the
Jacobian associated to this change of variables. The
Jacobian is a highly nontrivial functional of the fields
and it produces a nonlinear (collective) Hamiltonian which
provides a complete description of the theory. The actual
set of invariant variables relevant for the tensor model will
be described in Sec. III.
We will begin with some comments to orient the reader

who may not be familiar with the details of collective field
theory. The method begins by identifying a suitable set of
invariant observables. Rewriting the Hamiltonian of the
theory in terms of the invariant variables entails using the
chain rule to express the kinetic energy in the new
variables. After the rewriting the Hamiltonian is no longer
explicitly Hermitian. This is of course a consequence of the
fact that the change of variables is accompanied with a
nontrivial Jacobian J and consequently, there is a nontrivial
measure on the space. By rescaling all states and operators
as follows:

jΨi → J
1
2jΨi Ô → J

1
2ÔJ−

1
2 ð2:1Þ

one trivializes the measure. Thus after the transformation
the Hamiltonian has to be manifestly Hermitian. The
equation H −H† ¼ 0 then implies a differential equation
that determines the Jacobian. Before the rewriting, N
counts the number of dynamical variables of the system.
For example, we may consider a vector model where the
field ϕa has N components a ¼ 1; 2;…; N or a matrix that
has N eigenvalues. After the rewriting, N simply appears as
a parameter of the theory and this greatly facilitates
carrying out the large N expansion.
Consider a system with Hamiltonian

H ¼ −
1

2

XN
i¼1

∂
∂xi

∂
∂xi þ VðxiÞ: ð2:2Þ

Here xi are the original variables of the system. Denote the
invariant field variables by ϕC where C is an index for the
invariants. In the largeN limit, the change of variables from
the original variables to invariants is a reduction in the
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number of degrees of freedom. These variables are treated
as independent in the large N limit. This last point is highly
nontrivial: one might have expected that the transformation
only makes sense if the number of old and new variables
are the same. This is clearly not the case. We might for
example be changing from N eigenvalues to a density of
eigenvalues ϕðxÞ that now has a continuous parameter x.
This simply implies that not all ϕðxÞ are independent.
There are further constraints that arise at finite N related to
the stringy exclusion principle [43,44]. Convincing evi-
dence coming from explicit computations in a number of
examples [45–48] suggest that we should treat the collec-
tive variables as independent when formulating the pertur-
bative large N expansion. Our computations in this article
add to this list of evidence.
Consider changing variables from the original variables

to a set of gauge invariant variables. The kinetic term
becomes

T ¼ −
1

2

XN
i¼1

∂
∂xi

∂
∂xi

¼ −
1

2

X
C;C0

ΩðC;C0Þ ∂
∂ϕC

∂
∂ϕC0

þ 1

2

X
C

ωðCÞ ∂
∂ϕC

ð2:3Þ

where

ΩðC;C0Þ ¼
XN
i¼1

∂ϕC

∂xi
∂ϕC0

∂xi ωðCÞ ¼ −
XN
i¼1

∂2ϕC

∂xi∂xi ð2:4Þ

ΩðC;C0Þ “joins” invariant variables so that we write
schematically

ΩðC;C0Þ ¼
X

ϕCþC0 ð2:5Þ

where the sum runs over all possible ways of “joining” ϕC
and ϕC0 to produce ϕCþC0 . Similarly,ω “splits” loops so that

ωðCÞ ¼
X

ϕC0ϕC00 ð2:6Þ

where the sum runs over all possible ways of splitting the
word C into C0 and C00. This change of variables is
accompanied by a nontrivial Jacobian. This Jacobian will
be the source of the nonlinear interactions of collective field
theory. It ensures the unitarity of the new description.
Indeed, after the similarity transformation

∂
∂ϕC

→ J1=2
∂

∂ϕC
J−1=2 ¼ ∂

∂ϕC
−
1

2

∂ ln J
∂ϕC

ð2:7Þ

one requires that the Hamiltonian is explicitly Hermitian,
which implies a differential equation for the Jacobian,
which determines the Hamiltonian in terms of the invariant
variables. The differential equation is

−
X
C0

ð∂C0 ln JÞΩðC0; CÞ ¼ ωðCÞ þ
X
C0

∂C0ΩðC0; CÞ: ð2:8Þ

The collective field Hamiltonian is now obtained as
follows:

H ¼ −
X
C;C0

ΩðC;C0Þ
� ∂
∂ϕC

−
1

2

∂ lnJ
∂ϕC

�� ∂
∂ϕC0

−
1

2

∂ lnJ
∂ϕC0

�
þV:

ð2:9Þ

Using the differential equation for the Jacobian, this can be
simplified as follows:

H ¼
X
C;C0

ΠðCÞΩðC;C0ÞΠðC0Þ

þ 1

4

X
C;C0

ωðCÞΩ−1ðC;C0ÞωðC0Þ þ V þ ΔH ð2:10Þ

where

ΠðCÞ ¼ −i
∂

∂ϕðCÞ ð2:11Þ

and

ΔH¼−
X
C

1

4

∂ωðCÞ
∂ϕC

þ1

4

X
C;C0;C00

∂ΩðC00;C0Þ
∂ϕC00

Ω−1ðC0;CÞωðCÞ

þ1

4

X
C;C0;C00;C000

∂ΩðC00;CÞ
∂ϕC00

Ω−1ðC;C0Þ∂ΩðC
0;C000Þ

∂ϕC000
:

ð2:12Þ

The key obstacle in applying collective field theory lies
in handling the space of invariant variables. The set of
invariants for both multimatrix models and tensor models is
large and, consequently, difficult to handle. If one starts
with a truncated set of invariants C and their conjugates C0,
through the process of “joining” [contained in ΩðC;C0Þ]
one typically generates new loops not in the original set.
This makes it hard to find simpler subsectors whose
dynamics can be studied. For relevant related work on
this issue, that we use in this study, see [49–51].
Applying the collective field theory to matrix quantum

mechanics leads to a highly nontrivial string field theory
that beautifully captures the dynamics of the c ¼ 1 string
[42]. Our primary motivation in this paper is to initiate the
construction of the analogous theory of the invariants of the
tensor model quantum mechanics.

III. INVARIANT VARIABLES

In matrix models the basic gauge invariant observ-
ables are built from a matrix Za

b which transforms as Z →
U†ZU under a gauge transformation. The gauge invariant
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observables are given by traces and products of traces. For
theories with more than one matrix, traces are populated
with arbitrary products of the different matrices. Although
this space of invariants is complicated, many results have
been established. We know how to count gauge invariant
operators both at infinite and at finite N for any number of
matrices [52–58]. There is a systematic 1=N expansion for
correlation functions, the expansion is phrased in terms of
ribbon graphs and corrections to the planar limit come in
powers of 1

N2. The expansion has a graphical meaning as a
sum over surfaces (string world sheets) [1]. Our goal is to
generalize as much of this description as possible to tensor
models.
In the tensor model we consider, the basic field is

ϕabc and its conjugate ϕ̄abc. The gauge group is UðN1Þ×
UðN2Þ ×UðN3Þ. Under a gauge transformation the fields
transform as

ϕabc → ðU1ÞadðU2ÞbeðU3Þcfϕdef

ϕ̄abc → ðU1ÞdaðU2ÞebðU3Þfcϕ̄def ð3:1Þ
where Ui ∈ UðNiÞ. The complete set of gauge invariant
operators is enormous and making sense of this space of
invariants is the basic obstacle that we must overcome. Our
approach is to deal with the problem in two steps: first
construct the gauge invariants under UðN1Þ ×UðN2Þ, and
then deal with the last gauge symmetry as the second
step. The advantage of breaking the problem up in this way
is that the first step can be tackled: there is a simple solution
that can be written down explicitly. The set of UðN1Þ ×
UðN2Þ invariants is spanned by the UðN3Þ tensors given by

Tð2nÞi1i3���i2n−1i2i4���i2n ¼ ϕa1b1i1 ϕ̄a1b2i2ϕ
a2b2i3 ϕ̄a2b3i4 � � � ϕ̄anb1i2n :

ð3:2Þ

To prove that these span the UðN1Þ ×UðN2Þ invariants,
we will count the number of UðN3Þ invariants and then
compare to an independent count.
Our first task is to provide the independent count of the

number of UðN1Þ ×UðN2Þ × UðN3Þ invariants. This prob-
lem has been solved in [23,59]. Invariants constructed
using n ϕabcs and n ϕ̄abcs are in one-to-one correspondence
with elements of the double coset

SnnSn × Sn × Sn=Sn ð3:3Þ

where Sn is the symmetric group. The number N 3 of
invariants, which is equal to the order of this double coset is
given by

N 3 ¼
1

ðn!Þ2
X

σ1;σ2;σ3∈Sn

X
β1;β2∈Sn

δðβ1σ1β2σ−11 Þδðβ1σ2β2σ−12 Þ

× δðβ1σ3β2σ−13 Þ: ð3:4Þ

The delta functions appearing in this expression are equal
to 1 if the argument of the delta is the identity permutation,
and are otherwise equal to zero. The first few values of N 3

are shown in Table I below.
To argue that (3.2) are a complete set of UðN1Þ ×UðN2Þ

invariants, we want to reproduce the counting above, using
(3.2) as the dynamical variables. The counting for n ¼ 1, 2
is simple. For n ¼ 1 we have a single invariant given by
Tð2Þii in agreement with Table I above. For n ¼ 2 we have
Tð2ÞiiTð2Þjj, Tð2ÞijTð2Þji , Tð4Þijij or Tð4Þijji. This gives a total
of four gauge invariants, in agreement with Table I. For
higher values of n things are less trivial as there are
nontrivial relations between different invariant variables.
To see the origin of these relations, note that Tð2nÞ enjoys a
Zn generated by the n cycle (12 � � � n). For example, Tð6Þ
enjoys a Z3 generated by the three cycle (123). The
symmetry acts as

Tð6Þi1i3i5i2i4i6
¼ Tð6Þi5i1i3i6i2i4

¼ Tð6Þi3i5i1i4i6i2
: ð3:5Þ

A nice example in which these symmetries play a role is
for n ¼ 4. For n ¼ 4 there are 5 possible combinations of
fields that can be used to construct the gauge invariant,
namely

Tð2Þi1j1Tð2Þ
i2
j2
Tð2Þi3j3Tð2Þ

i4
j4

or Tð4Þi1i2j1j2
Tð2Þi3j3Tð2Þ

i4
j4

or Tð6Þi1i2i3j1j2j3
Tð2Þi4j4 or Tð4Þi1i2j1j2

Tð4Þi3i4j3j4

or Tð8Þi1i2i3i4j1j2j3j4
: ð3:6Þ

For each of these the number of gauge invariant variables is
given by computing a sum of the form1

jS4==Gj ¼
1

jGj
X
h1∈G

X
g∈S4

δðh1gh−11 g−1Þ: ð3:7Þ

The notation used for the lhs of this equation is explained
in Appendix A. Using an element g ∈ S4, the invariants
constructed from a product of four Tð2Þ s are given by
Tð2Þi1igð1ÞTð2Þ

i2
igð2ÞTð2Þ

i3
igð3ÞTð2Þ

i4
igð4Þ . There is a symmetry

TABLE I. N 3 counts the number of gauge invariant operators
for rank-3 tensor fields constructed using 2n fields. We take
Ni ¼ ∞ for i ¼ 1, 2, 3, i.e., we have not accounted for any
relations between invariants that appear at finite Ni.

n ¼ 1 n ¼ 2 n ¼ 3 n ¼ 4 n ¼ 5 n ¼ 6

N 3 1 4 11 43 161 901

1This is an application of the orbit counting lemma. See [60]
for relevant background.
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under permuting the fields so that G ¼ S4 and we find
5 gauge invariant operators. G swaps the Tð2Þ s. For
Tð4Þi1i2igð1Þigð2ÞTð2Þ

i3
igð3ÞTð2Þ

i4
igð4Þ we find that G ¼ S2 × Z2 and

we find 10 gauge invariant operators. G swaps the two
Tð2Þ’s and does cyclic permutations of the upper and lower
indices of Tð4Þ. For Tð6Þi1i2i3igð1Þigð2Þigð3ÞTð2Þ

i4
igð4Þ we have G ¼ Z3

and we find 10 gauge invariant operators. G performs
cyclic swaps of the upper and lower indices of Tð6Þ. For
Tð4Þi1i2igð1Þigð2ÞTð4Þ

i3i4
igð3Þigð4Þ we have G ¼ S2 × Z2 × Z2 and we

find 8 gauge invariant operators. G swaps the two Tð4Þ’s
and performs cyclic permutations of the upper and lower
indices. For Tð8Þi1i2i3i4igð1Þigð2Þigð3Þigð4Þ we have G ¼ Z4 and we find

10 gauge invariant operators. G performs cyclic permuta-
tion of the upper and lower indices of Tð8Þ. This gives a
total of 43 gauge invariant operators which reproduces the
n ¼ 4 entry in Table I.
For n ¼ 6 we have also verified that there is a total of

901 operators. The pattern follows that of the computations
above, but this example is complicated enough that it is
worth the effort to set things up in a more general way.
To illustrate the comments that follow, consider the number
of gauge invariant operators constructed for n ¼ 32 i.e., we
use a total of 64 fields. Each possible collection of
operators that can be used to construct an invariant
can be labeled with a Young diagram that has n boxes.
Further, we will see that the group G can be read straight
from the Young diagram. Each row containing k boxes
translates into a tensor Tð2kÞi1���j1���. As an example, the Young
diagram

ð3:8Þ

labels the gauge invariant operators constructed using
Tð16ÞTð16ÞTð8ÞTð8ÞTð8ÞTð4ÞTð4Þ. To read G from the
Young diagram, first note that for each row we get a cyclic
group Zk, where k is the number of boxes in the row. For
the above Young diagram we would get

Z8 × Z8 × Z4 × Z4 × Z4 × Z2 × Z2: ð3:9Þ

For p rows of equal length we get a factor of Sp. For the
above Young diagram we get

S2 × S3 × S2: ð3:10Þ

G is a product of these cyclic and symmetric groups. For
the above Young diagram we would have

G ¼ Z8 × Z8 × Z4 × Z4 × Z4 × Z2 × Z2 × S2 × S3 × S2:

ð3:11Þ

To illustrate these rules, we count the number of gauge

invariant operators for n ¼ 6. For , G ¼ S6 and we find

11 gauge invariant operators. For , G ¼ Z2 × S4 and we

find 34 gauge invariant operators. For , G ¼ Z3 × S3

and we find 58 gauge invariant operators. For , G ¼
Z2 × Z2 × S2 × S2 and we find 70 gauge invariant oper-

ators. For , G ¼ Z4 × S2 and we find 108 gauge

invariant operators. For , G ¼ Z3 × Z2 and we find

136 gauge invariant operators. For , G ¼ Z2 × Z2 ×

Z2 × S3 and we find 34 gauge invariant operators. For
, G ¼ Z5 and we find 148 gauge invariant oper-

ators. For , G ¼ Z4 × Z2 and we find 108 gauge

invariant operators. For , G ¼ Z3 × Z3 × S2 and we
find 58 gauge invariant operators. For , G ¼ Z6

and we find 136 gauge invariant operators. This gives 901
operators in total, reproducing the n ¼ 6 entry in Table I.
The counting arguments we have given above provide

convincing evidence that the UðN1Þ ×UðN2Þ invariants
given in (3.2) indeed provide a complete list. The simple
model, of rank-3 tensors considered above, is equivalent to
a model of interacting UðN3Þ tensors of every even rank.
We can attempt a similar construction for higher rank
tensors again constructing the invariants of two of the
groups appearing. In this way tensor models of higher rank
tensors are described by a collection of tensors that trans-
form in all but 2 gauge groups. Dealing with this remaining
gauge symmetry becomes more and more nontrivial as the
rank is increased beyond 3 and for this reason we will
restrict attention to rank-3 tensors. In the sections that
follow we will consider constructing collective field theory
based on a subset of these invariant variables.

IV. A “PLANAR LIMIT” FOR THE
TENSOR MODEL

In the previous section we have described the structure of
the space of invariants for tensor models. The complete
space is difficult to manage. Consequently, we seek subsets
of invariant variables that are dynamically closed. In this
section we will find a matrixlike subsector, which has
nontrivial dynamics but is still simple enough to manage.
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Consider a model with two basic flavors of tensors, ϕabc,
ϕ̄abc and ψabc, ψ̄abc. There are also momenta conjugate to
these fields and we have the equal time commutation
relations

½Πabc;ϕdef� ¼−iδdaδebδ
f
c ½Π̄def; ϕ̄abc� ¼−iδdaδebδ

f
c

½Pabc;ψdef� ¼−iδdaδebδ
f
c ½P̄def; ψ̄abc� ¼−iδdaδebδ

f
c: ð4:1Þ

All commutators between barred and unbarred fields, as
well as all others commutators not shown, vanish. The
Hamiltonian for the free theory is

H ¼ ΠabcΠ̄abc þ ω2ϕabcϕ̄abc þ PabcP̄abc þ ω2ψabcψ̄abc

¼ −
∂

∂ϕabc

∂
∂ϕ̄abc

þ ω2ϕabcϕ̄abc −
∂

∂ψabc

∂
∂ψ̄abc

þ ω2ψabcψ̄abc: ð4:2Þ

A simple set of invariants that are closed under both the
splitting and joining operations of collective field theory,
are the traces of products of Tϕð2Þij and Tψð2Þij, where

Tϕð2Þij ¼ ϕabiϕ̄abj Tψð2Þij ¼ ψabiψ̄abj: ð4:3Þ

Both transform in the adjoint of UðN3Þ. Following [23] we
can construct an exact collective description for Tϕð2Þ. We
will extend the discussion of [23] by considering a model
with a quartic potential. Choosing a potential which is a
sum VðTϕð2ÞÞ þ VðTψð2ÞÞ preserves the fact that the
dynamics of Tϕð2Þ defines a dynamically closed subsector.
Motivated by this remark, we consider the interacting
dynamics of the Hamiltonian

H ¼ ΠabcΠ̄abc þ ω2ϕabcϕ̄abc þ gϕabcϕ̄abdϕ
efdϕ̄efc ð4:4Þ

where we dropped the ψ terms since they play no role in the
present discussion. The ψ terms will be needed below when
we construct Berenstein-Maldacena-Nastase (BMN) loops.
The collective field

ϕðxÞ ¼
Z

dk
2π

e−ikxϕk ϕk ¼ TrðeikTϕð2ÞÞ ð4:5Þ

is the density of eigenvalues of Tϕð2Þ. A straightforward
computation gives

Ωk;k0 ¼
∂ϕk

∂ϕabc

∂ϕk0

∂ϕ̄abc
¼ ikk0

∂
∂kϕkþk0

ωk ¼ −
∂

∂ϕabc

� ∂ϕk

∂ϕ̄abc

�
k
Z

1

0

dτϕτki
∂
∂τ ϕð1−τÞk

− ikN1N2ϕk: ð4:6Þ

In position space we obtain2

Ωðx; x0Þ ¼ ∂
∂x

∂
∂x0 ðxϕðxÞδðx− x0ÞÞ

ωðxÞ ¼ 2
∂
∂x⨍ dyϕðxÞϕðyÞ

x
x− y

þ ðN1N2 −N3Þ
∂ϕðxÞ
∂x :

ð4:7Þ

This easily leads to the Hamiltonian (after discarding
constant terms)

H ¼
Z

dx
∂π
∂x xϕðxÞ

∂π
∂x þ Veff ð4:8Þ

where the effective potential is

Veff ¼
Z

dx

�
π2x
3

ϕ3 þ N2
3 − N2

1N
2
2

4x
ϕðxÞ þ gx2ϕðxÞ

þ ω2xϕðxÞ − μϕðxÞ
�
: ð4:9Þ

The last term above is a Lagrange multiplier enforcing the
constraint

R
dxϕðxÞ ¼ N3. The large N classical field

minimizes the effective potential, which implies the follow-
ing equation of motion:

0 ¼ δVeff

δϕðxÞ ¼ π2xϕ2 þ N2
3 − N2

1N
2
2

4x
þ ω2x − μþ gx2

⇒ ϕðxÞ ¼ 1

π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ

x
− ω2 −

N2
3 − N2

1N
2
2

4x2
− gx

s
ð4:10Þ

where μ is fixed by requiring thatZ
x0

0

dxϕðxÞ ¼ N3ϕðx0Þ ¼ 0: ð4:11Þ

The above dynamics simplifies if we set N1N2 ¼ N3,
something that we do from now on. In Appendix B we
demonstrate that this collective field reproduces the correct
large N expectation values in perturbation theory.
The discussion of this section shows that there is a

matrixlike subsector in the Hilbert space of the tensor
model. In particular, there will be string states. This has all
been extracted from a single matrix subsector. To see
stringy states and their excitations, we will construct the
analog of the BMN loops [65]. We carry out the discussion
in the context of the free theory, using both the ϕabc and
ψabc fields. The fields have the following expansions in
terms of creation and annihilation operators:

2The formula for Ωðx; x0Þ coincides with the radial sector of
multimatrix models and the formula for ωðxÞ is very similar;
see [61–64].
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ϕabcðtÞ ¼ 1

2ω
ðe−iωtaabc þ eiωtbabc†Þ

ϕ̄abcðtÞ ¼
1

2ω
ðe−iωtbabc þ eiωta†abcÞ

ψabcðtÞ ¼ 1

2ω
ðe−iωtcabc þ eiωtdabc†Þ

ψ̄abcðtÞ ¼
1

2ω
ðe−iωtdabc þ eiωtc†abcÞ ð4:12Þ

and the oscillators obey the following commutation relations:

½aabc; a†def� ¼ ½cabc; c†def� ¼ 2ωδadδ
b
eδ

c
f

¼ ½bdef; babc†� ¼ ½ddef; dabc†�: ð4:13Þ

We can also write expansions for the conjugate momenta as
follows:

Π̄abcðtÞ ¼ −
i
2
ðe−iωtaabc − eiωtbabc†Þ

ΠabcðtÞ ¼ −
i
2
ðe−iωtbabc − eiωta†abcÞ

P̄abcðtÞ ¼ −
i
2
ðe−iωtcabc − eiωtdabc†Þ

PabcðtÞ ¼ −
i
2
ðe−iωtdabc − eiωtc†abcÞ: ð4:14Þ

Expressing the Hamiltonian in terms of oscillators, we have

H¼ 1

4
ða†abcaabcþbabc†babcþc†abcc

abcþdabc†dabcÞþ2ω:

ð4:15Þ

Introduce the pair of fields

Zi
j ≡

a†kljb
kli†

2ω
ffiffiffiffiffiffiffiffiffiffiffiffi
N1N2

p Yi
j ≡

c†kljd
†kli

2ω
ffiffiffiffiffiffiffiffiffiffiffiffi
N1N2

p : ð4:16Þ

Using these we can construct the following gauge invariant
observables:

Φðn1; n2; � � �Þ ¼ TrðZn1YZn2−n1YZn3−n2 � � �Þ: ð4:17Þ

These loop variables have a large N dynamics that
matches the dynamics of BMN loops. We want to compute
correlators of the form

h0jΦðn01; n02; � � �Þ†Φðn1; n2; � � �Þj0i: ð4:18Þ

Let us start by making a few observations. It is straightfor-
ward to argue that

h0jðZ†ÞijZk
l j0i ¼ δkjδ

i
l ¼ h0jðY†ÞijYk

l j0i ð4:19Þ

and

h0jðZ†Þi1j1ðZ†Þi2j2Z
k1
l1
Zk2
l2
j0i

¼ h0jðY†Þi1j1ðY†Þi2j2Y
k1
l1
Yk2
l2
j0i

¼ δi1l1δ
k1
j1
δi2l2δ

k2
j2
þ δi1l2δ

k1
j2
δi2l1δ

k2
j1

þ 1

N1N2

ðδi1l1δ
k1
j2
δi2l2δ

k2
j1
þ δi1l2δ

k1
j1
δi2l1δ

k2
j2
Þ ð4:20Þ

The generalization of this formula to n fields is

h0jðZ†Þi1j1 � � � ðZ†ÞinjnZ
k1
l1
� � �Zkn

ln
j0i

¼ h0jðY†Þi1j1 � � � ðY†ÞinjnY
k1
l1
� � �Ykn

ln
j0i

¼
X
σ∈Sn

σILðσ−1ÞKJ
�
1þO

�
1

N1N2

��
: ð4:21Þ

We have introduced a notation [66] which uses a capital
roman letter to collect the little letter indices, so that for
example I stands for i1; i2;…; in. We refer to I as a multi-
index. The formula (4.21) is a nice result because it is what
we would get from a matrix model so that we have a
detailed and specific grasp on how the single matrix
dynamics emerges from the tensor model. Note that the
above observations continue to work if we use the fields

Zi
j ≡

a†kljb
kli†

2ω
ffiffiffiffiffiffiffiffiffiffiffiffi
N1N2

p Yi
j ≡

a†kljd
†kli

2ω
ffiffiffiffiffiffiffiffiffiffiffiffi
N1N2

p ð4:22Þ

which employ one less oscillator. The subleading correc-
tions to the two descriptions [i.e., (4.16) vs (4.22)] do not
agree, i.e., the Oð 1

N1N2
Þ-terms in (4.21) depend on which

description one uses. Again, we stress that the mapping to
matrix model correlators holds at the leading order in
large N1N2.
The BMN spectrum of excited states is obtained by

adding an interaction

∝ Trð½Z†; Y†�½Z; Y�Þ ð4:23Þ

to the free Z, Y matrix model. It is simple to check that the
spectrum of the tensor model quantum mechanics, with
loops (4.22) and with the interaction

∝ ðb†mnha†qrhd
†qri − d†mnha†qrhb

†qriÞ
× ðbkliakljdmnj − dkliakljbmnjÞ ð4:24Þ

agrees with the spectrum of excited string states, at leading
order at large N1N2.
The observation (4.21) above has a number of immediate

implications. The subset of tensor model correlators we
consider follow by using the usual rules for Wick con-
tracting matrices. Consequently, we will have many of the
matrix model results in this tensor model setting. This
includes the fact that different trace structures do not mix,
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which implies a Fock space type description of this limit
with the number of traces identified with the number of
particles. At large N1N2 gauge invariant observables
constructed using Z and Y will have a genus expansion,
exactly like the usual ’t Hooft expansion in matrix models.
We will have ribbon graphs that triangulate surfaces and the
genus of these surfaces determines the power of N3 of the
graph. This is a nice geometrical interpretation for the 1=N3

expansion and it provides convincing evidence for emer-
gent strings.3 We will also have the usual simplifications of
large N for matrix models including factorization in the
planar limit. It is also possible to consider the finite N3

physics of the model using Schur polynomials [66],
restricted Schur polynomials [68] and other methods
[69–71] that have been developed for matrix models.

V. THE COLLECTIVE FIELD THEORY
OF MELONS

The space of all possible invariants of the tensor model
appears to be too complicated to manage without further
input. In the previous section we have studied some closed
subsectors which are matrixlike. The dynamics of these
subsectors are certainly manageable, but one might worry
that they do not exhibit behavior which is characteristic of
the tensor model. For that reason, we turn in this section to
an approximation scheme in which we take advantage
of known results for the large N limit of tensor models.4

The novelty of the largeN limit of tensor models is that it is
dominated by melonic diagrams and it is precisely this
feature that it has in common with SYK. The large N limit
we consider in this section is obtained by setting
N1 ¼ N2 ¼ N3. While reading this section, the reader will
find it useful to consult [72–77]. The first result we will
make use of is the fact that the largeN limit is dominated by
melonic diagrams [17,19]. For some examples of melonic
diagrams see Fig. 1 below.

By closing the loop in these melonic graphs, we obtain a
graphical representation of a gauge invariant operator. Each
white vertex corresponds to a field ϕabc and each black
vertex to a field ϕ̄abc. The lines in the graph are an
instruction for how to contract indices to obtain the
invariant. The lines are labeled by an index i telling us
that the corresponding index transforms under UðNiÞ. We
refer to the melon shown in (a) as an elementary melon. The
melons shown in (b) and (c) are dressed. It is clear that each
melon, after removing all dressing, is defined by a pair of
vertices. There is a single Feynman diagram that contrib-
utes to the large N limit, given by contracting the pairs of
vertices that define a given melon.5 Later we will see that
this gives us important insights into how the collective field
theory of melons simplifies.
In what follows, we focus our attention on the invariants

formed by closing the loop in the melon graphs. This is an
enormous set of invariant variables. However, we can write
equations for the resulting dynamics thanks largely to the
fact that there is a very niceway to label these invariants: they
can be labeled by D-ary trees, as explained in [17]. An
example of this labeling is given in Fig. 2 above.The fact that
we can label melonic invariants with trees has immediate
implications for collective field theory. The operation of
joining given by Ω implies that joining melonic invariants
keeps us within the space of melonic invariants. Denote the
loop for a melonic invariant labeled by a tree with pmelons
Tp by ϕMðTpÞ. Joining a tree of p melons and a tree of p0

melons gives a tree of pþ p0 − 1 melons

ΩðϕMðTpÞ;ϕMðTp0 ÞÞ ¼
X

Tpþp0−1

ϕMðTpþp0−1Þ: ð5:1Þ

The sum on the right-hand side above includes pp0-terms.
An example of the joining operation is given in Fig. 3.
Splitting does not keep us inside the space of melons.

Splitting a single melonic invariant can give us back a
melonic invariant (this occurs when we split on vertices
defining an elementary melon), a product of disconnected
melonic invariants (this occurs when we split on vertices

FIG. 1. Examples of melonic graphs. (a) is an elementary melon. The melons shown in (b) and (c) are dressed.

3For another geometrical interpretation of the N dependence
see Sec. 6 of [67]. This interpretation seems to be distinct to the
interpretation we obtain here from triangulated world sheets.

4Some of the equations we write only hold at the leading order
in the large N expansion. With this approximation, the collective
field theory does not take us outside the space of melonic gauge
invariants.

5This follows immediately after computing a few examples.
Alternatively, consult Sec. III A of [75] for a proof that uses the
Schwinger-Dyson equations.
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defining a melon which is not elementary) or an invariant
which is not melonic (this occurs when we split on vertices
that belong to different melons). This means that the
melonic invariants are not dynamically decoupled and
there is mixing between melonic and nonmelonic invari-
ants. This is a significant complication. Our approach
towards this issue is to treat the problem systematically
in the 1=N expansion. At the leading order we can simply
omit all terms involving nonmelonic invariants, since these
are subleading. Further, the expectation values of discon-
nected melonic invariants have the same large N behavior
as the original melonic invariant that produced them
(because the relevant splitting is a Wick contraction
contributing to the unique Feynman diagram giving the
complete large N expectation value of the melonic observ-
able). The main obstacle to completing the construction of
the collective Hamiltonian is now determining the inverse
of ΩðϕMðTpÞ;ϕMðTp0 ÞÞ. This is a formidable task that is

under current investigation.
Although we have not yet managed to determine the

collective Hamiltonian, even at large N, there is a little
more we can say. To illustrate the argument, consider a
Gaussian one matrix model with action

S ¼
Z

dt

�
1

2
Tr _M2 −

ω

2
TrM2

�
: ð5:2Þ

The collective field is given by

ϕðxÞ ¼
Z

dk
2π

e−ikxϕkϕk ¼ TrðeikMÞ: ð5:3Þ

Summing the planar diagrams we find

hϕki ¼
X∞
l¼0

ðikÞ2l
ð2lÞ! hTrðM

2lÞi

¼
X∞
l¼0

ðikÞ2l
ð2lÞ!

Nlþ1

ωl

ð2l − 1Þ!!
ðlþ 1Þ!

¼
ffiffiffiffiffiffiffiffiffiffi
2Nω

p

k
J1

� ffiffiffiffiffiffiffi
2N
ω

r
k

�
ð5:4Þ

where J1ð·Þ is a Bessel function of the first kind. After a
Fourier transform we obtain the usual Wigner distribution

hϕðxÞi ¼ ω

π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2N
ω

− x2
r

ð5:5Þ

describing the large N eigenvalue density. The coordinate x
here is the extra holographic coordinate that emerges from
collective field theory. We will now carry out the corre-
sponding computation in the free tensor model. Denote
N1 ¼ N2 ¼ N3 ¼ N. Denote the melonic variable (before
closing the loop as in Fig. 1) byMðTpÞ. As a consequence
of the fact that a single Feynman diagram contributes, we
find

hTrðMðTpÞnÞ ¼
N1þ2pn

ð2ωÞpn : ð5:6Þ

Defining the collective field

ϕðxÞ ¼
Z

dk
2π

e−ikxϕk ϕk ¼ TrðeikMðTpÞÞ ð5:7Þ

and working as we did above, we find

FIG. 2. The tree labeling a melonic invariant.

FIG. 3. An example of tree joining. This figure shows the
possible values for Cþ C0 for the given C and C0. The joining is
performed by contracting a solid vertex in C with a hollow vertex
in C0.
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hϕðxÞi ¼ Nδ

�
x −

N2p

ð2ωÞp
�
: ð5:8Þ

The density has support at a single point so that no
holographic dimension emerges. This is a consequence
of the simplicity of the melonic limit, namely that a single
Feynman diagram contributes.

VI. FINITE N CONTRIBUTIONS

An interesting limit of matrix model dynamics, quite
distinct from the planar limit, is the limit of finite N. This
limit of the matrix model is accessed by studying operators
built from a parametrically (in N) large number of fields
[78–80]. While the planar limit is dual to the fundamental
string and its excitations, finite N sectors of the theory are
dual to giant graviton branes and new spacetime geom-
etries, including black holes [44,66,81]. They also provide
an interesting window into the structure of the large N
expansion: in this limit one finds nonperturbative contri-
butions that obstruct the perturbative 1=N expansion [82].
Another important point that should be stressed is that these
nonperturbative effects are already visible in the free matrix
model since they are concerned with the expansion in 1=N
and not with the ’t Hooft coupling expansion. Given this
motivation, it is clearly interesting to probe the analogous
limits of free tensor models, something that is within reach
of existing methods.
One approach towards the finite N physics of the tensor

model is to use representation theory techniques, as
developed in [23,59]. The basic idea is to construct gauge
invariant operators as a product of the basic fields multi-
plied by a projection operator. Correlation functions reduce
to traces of products of projectors. This implies that they
can be computed exactly in the free theory. The projectors
are labeled by Young diagrams and finite N effects are
encoded as a cutoff on the number of rows in the Young
diagram labeling the operator. In what follows we will
simply state and use the results we need. The reader
requiring more details is encouraged to consult [23,59],
as well as [83–86].
We consider products of tensors to build the general

gauge invariant operator. As an example, we could use

ϕi1j1k1ϕi2j2k2 � � �ϕinjnkn : ð6:1Þ

In terms of multi-indices [see the discussion after (4.21)]
we can write

ΦIJK ¼ ϕi1j1k1ϕi2j2k2 � � �ϕinjnkn

Φ̄IJK ¼ ϕ̄i1j1k1ϕ̄i2j2k2 � � � ϕ̄injnkn : ð6:2Þ

The basis we study is as follows:

Oγ1γ2
r1;r2;r3 ¼

X
σ1∈Sn

X
σ2∈Sn

X
σ3∈Sn

Cγ1γ2
r1;r2;r3ðσ1; σ2; σ3ÞOðσ1; σ2; σ3Þ

ð6:3Þ

where

Oðσ1; σ2; σ3Þ ¼ Φ̄IJKΦσ1ðIÞσ2ðJÞσ3ðKÞ ð6:4Þ

Cγ1γ2
r1;r2;r3ðσ1; σ2; σ3Þ ¼ Bγ1

α1α2α3Γr1
α1β1ðσ1ÞΓr2

α2β2ðσ2Þ
× Γr3

α3β3ðσ3ÞBγ2
β1β2β3

ð6:5Þ

is in fact a restricted character, in the language introduced
in [58,87]. Thus, (6.3) provides the restricted Schur
polynomial basis for the gauge invariant operators of the
bosonic tensor model. In this formula, Γr

αβðσÞ denotes the
matrix (with row label α and column label β) representing
σ ∈ Sn in irreducible representation r, and we have made
use of the branching coefficients Bγ

α1α2α3 defined by

1

n!

X
σ∈Sn

Γr1
α1β1ðσÞΓr2

α2β2ðσÞΓr3
α3β3ðσÞ ¼

X
γ

Bγ
α1α2α3B

γ
β1β2β3

:

ð6:6Þ

The branching coefficients provide an orthonormal basis
for the subspace of r1 ⊗ r2 ⊗ r3 that carries the trivial
representation, i.e.,

Bγ1
α1α2α3B

γ2
α1α2α3 ¼ δγ1γ2 ð6:7Þ

and where we employ the usual convention that repeated
indices are summed. The advantage of the restricted Schur
polynomial basis follows because we are able, in the free
theory, to compute correlators exactly. The results we will
use are [23]

hOγ1γ2
r1r2r3i¼ n!fr1ðN1Þfr2ðN2Þfr3ðN3Þδγ1γ2 ð6:8Þ

h∶Oγ1γ2
r1r2r3∶∶O

γ3γ4
s1s2s3∶i ¼ ðn!Þ2δr1s1δr2s2δr3s3fr1ðN1Þfr2ðN2Þ

× fr3ðN3Þ
n!
dr1

n!
dr2

n!
dr3

δγ1γ4δγ2γ3 :

ð6:9Þ

If we normalize the operators to have unit one point
function as N → ∞

Oγ1γ2
r1r2r3 ¼

Oγ1γ2
r1r2r3

n!fr1ðN1Þfr2ðN2Þfr3ðN3Þ
ð6:10Þ

the two point function becomes
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h∶Oγ1γ2
r1r2r3∶∶O

γ3γ4
s1s2s3∶i

¼δr1s1δr2s2δr3s3
1

fr1ðN1Þfr2ðN2Þfr3ðN3Þ
n!
dr1

n!
dr2

n!
dr3

δγ1γ4δγ2γ3 :

ð6:11Þ

Now, for simplicity, set N1 ¼ N2 ¼ N3 ¼ N and consider
the case that r1 ¼ r2 ¼ r3 ¼ 1N , that is, r is a single
column with N boxes. This is the melonic large N limit
used in Sec. V and not the matrixlike large N limit of
Sec. IV. In the matrix model case this choice of represen-
tations corresponds to a giant graviton and wewould expect
this computation to exhibit nonperturbative effects, even for
a real matrix where the one point function does not vanish.
The giant graviton description nicely explains the stringy
exclusion principle as a bound that exists because the giant
graviton brane stretches to its maximum size in a compact
space, see [44] for a detailed discussion. We have explicitly
verified that the corresponding matrix model correlators
receive nonperturbative corrections in Appendix D. The
tensor model two point function becomes

h∶Oγ1γ2
1N1N1N

∶∶Oγ3γ4
1N1N1N

∶i ¼ δr1s1δr2s2δr3s3δ
γ1γ4δγ2γ3 : ð6:12Þ

This is an exact result, with no sign of any nonperturbative
effects, and no hint into the mechanism behind the finite N
cutoff. This is a significant difference as compared to
matrix model physics.
Next consider the case that we set N1 ¼ N2 ¼ N3

(i.e., melonic large N) and consider the case that r1 ¼ r2 ¼
r3 ¼ N, that is, r is a single row with N boxes. This choice
of r1, r2, r3 would correspond, in the matrix model
description, to dual giant gravitons. In this case

h∶Oγ1γ2
1N1N1N

∶∶Oγ3γ4
1N1N1N

∶i
¼ δr1s1δr2s2δr3s3

ffiffiffiffiffiffiffiffiffiffiffi
π3N3

p
e6N logð2NÞ−6Nδγ1γ4δγ2γ3 : ð6:13Þ

This is only the leading order result. It is clearly signaling
nonperturbative corrections to the large N expansion, which
is similar to what we find for the matrix model physics.

VII. CONCLUSIONS

In this article our goal has been to explore the holog-
raphy of tensor models using collective field theory. We
have obtained a number of definite results that we will
summarize in this section. The first step in a collective field
theory description entails identifying the space of gauge
invariant variables. We have developed an approach
towards describing the space of gauge invariant variables
associated to tensor models, which is complicated and rich.
Our first result is that

(i) For a rank-3 tensor model with gauge group
UðN1Þ ×UðN2Þ ×UðN3Þ, we have shown that the
gauge invariant variables for the UðN1Þ ×UðN2Þ

gauge symmetries are tensors of the UðN3Þ gauge
group. There is a single tensor with k indices
transforming in the fundamental and k indices
transforming in the antifundamental for k ¼ 1; 2;….

There is an enormous space of gauge invariants that can be
constructed from this set ofUðN3Þ tensors. Through simple
counting arguments we have given nontrivial evidence that
the resulting set of gauge invariants is complete.
We have expressed the dynamics of the tensor model in

terms of the invariant variables. Our initial strategy was to
identify sets of invariant variables that are dynamically
closed.
(ii) Closed subsets that mimic the dynamics of a matrix

model have been identified in Sec. IV, and they define
a nonlinear large N theory that is very similar to the
large N dynamics of a matrix model. The interaction
of the effectivematrix degrees of freedom is attractive
causing eigenvalues to clump. In moving from the
matrix to gauge invariant degrees of freedom we
effectively generate a Van der Monde–like repulsion.
The net result of the competition of these two effects
is that there is a nontrivial function describing the
density of eigenvalues and this leads to an extra
holographic dimension.

This is precisely the same mechanism at work in the c ¼ 1
string [42], which is the only example in which a holo-
graphic duality has been proved. We stress that we can
obtain this limit by holding N1N2

N3
fixed and taking N3 → ∞,

which is quite different from the large N limit that is
dominated by melons. By working with a second tensor
field, we have defined complex combinations of fields that
transform in the adjoint of UðN3Þ.
(iii) Wick contraction of these complex composite fields

are identical, at large N1N2, to the Wick contraction
of matrix fields. This has allowed us to recover a
ribbon graph expansion, factorization and BMN
loops for this sector of the theory.

In a distinct effort to develop dynamics characteristic of
the tensor model, we have explored the large N melonic
limits of the theory. This limit fixes N1

N2
and N1

N3
and takes

N3 → ∞. The resulting collective field theory has a number
of promising features: the joining operation leaves one
within the space of melonic invariants. Although splitting
does not leave us in the space of invariants, excursions
away from melonic gauge invariants are suppressed at large
N. Motivated by these initial encouraging signs, we have
considered the collective field theory of melons. Although
we have not managed to write a closed form for the
resulting collective field theory Hamiltonian, we have
carried out a direct evaluation of the largeN collective field.
(iv) We find that the collective field relevant for the

melonic limit has delta function support and that an
extra holographic dimension does not emerge.

This is a consequence of the fact that a single Feynman
diagram determines the large N value of melonic gauge
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invariants, so that the Schwinger-Dyson equations become
linear, as commented in [75]. The nonlinearity of the Van
der Monde term is suppressed in the melonic limit.
The fact that there is an extra holographic dimension

emerging in the matrixlike limit that we have considered,
but not in the melonic limit, is a consequence of how we
take the large N limit in these different settings. In Fig. 4
we have shown the Feynman diagrams that contribute to
hϕabcϕ̄abdϕ

efdϕ̄efci. In our matrix model limit we set
N1N2 ¼ N3 so that both diagrams survive, matching the
fact that two planar diagrams contribute to the large N limit
of hTrðZZ̄ZZ̄Þi. On the other hand, in the melonic large N
limit, where we set N1 ¼ N2 ¼ N3, diagram (a) is sup-
pressed and the large N value is completely given by
diagram (b).
One of the claims often made in the literature, is that

tensor models and tensor field theories admit a 1=N
expansion and a melonic large N limit which is simpler
than the planar limit of random matrices and richer than the
large N limit of vector models. This gives hope that tensor
models may provide an interesting toy model that sheds
light on the large N limit of matrix models. Our results
imply that the melonic limit does not lead to a loop space
that has enough structure to provide a useful insight into
how to organize the loop space of the matrix model. In
contrast to the matrix model, there is no holographic
dimension emerging from the color combinatorics. To
see the emergence of an extra holographic dimension, in
the melonic large N limit, it seems to be necessary to look
at a bilocal description, along the lines of similar dis-
cussions for SYK [88–90]. In this collective field theory
description, one changes to bilocal (two time) variables
which are accompanied by a nontrivial Jacobian [91] which
generates nonlinear interactions. This is a key message of
our study: for holography in the melonic limit, one must
use a bilocal description since an extra holographic
dimension does not emerge from the combinatorics of
the gauge indices.
We have considered nonperturbative contributions to the

1=N expansion, in the large N melonic limit.6

(v) We have identified nonperturbative contributions to
the 1=N expansion of invariant observables in the
tensor model.

It would be interesting to find the physical interpretation of
these contributions.
We have initiated a study of the collective field theory of

the melonic limit. Completing this description would
provide a detailed understanding of corrections to the large
N melonic limit. It is evident from the description we have
sketched that this leads to a theory of interacting random
trees which appears to make contact with the ideas put
forward in [92].
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APPENDIX A: NOTATION FOR
EQUIVALENCE CLASS

In Sec. III, we have counted the number of invariants by
taking into account certain symmetries of the variables
involved. This amounts to formulating an equivalence
relation which implements the symmetry and then counting
the resulting number of equivalence classes. Equivalences
classes associated to the equivalence g1 ∼ g2 if g2 ¼ hg1 for
g1; g2 ∈ G and h ∈ H lead to the usual notion of a coset.
The equivalence just described is the right coset HnG. The
equivalence g2 ∼ g1 if g2 ¼ g1h defines elements of the left
coset G=H.
The equivalences classes used in Sec. III are of a

different type. They can be related to our usual notion
of conjugacy classes. The equivalence relation used to
define conjugacy classes says g1 ∼ g2 if g1 ¼ gg2g−1 for
some g ∈ G. Although the conjugacy classes are not related
to cosets, they are related to double cosets. The conjugacy
classes are given by the double coset

DiagðGÞnðG ×GÞ=DiagðGÞ: ðA1Þ

Here Diag denotes the diagonal action of G obtained by
allowingG to act in the sameway on both factors inG ×G.
The equivalence is

ðg1; g2Þ ∼ ðg3g1g4; g3g2g4Þ: ðA2Þ

Now, choose g3 ¼ g−11 to map ðg1; g2Þ to ð1; g−11 g2Þ. Then
the g4 action leads to

(a) (b)

FIG. 4. The Feynman diagrams that contribute to hϕabcϕ̄abdϕ
efd

ϕ̄efci. (a) and (b) are the only two possible contractions. They are
both planar.

6For the matrixlike large N limit we have verified the answer
matches the matrix model dynamics—the analysis contains no
surprises.
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ð1; g−14 ðg−11 g2Þg4Þ: ðA3Þ

We will use the notation G==H when we want to talk
about the equivalence classes of the relation g1 ∼ g2 if g1 ¼
hg2h−1 for g1; g2 ∈ G and for some h ∈ H.

APPENDIX B: PERTURBATIVE COLLECTIVE
FIELD THEORY

In this section we set N1N2 ¼ N3, which simplifies a
number of the formulas that follow. We also set the
frequency ω ¼ 1

2
. The collective field is given by

ϕðxÞ ¼ 1

π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ

x
−
1

4
− gx

r
ðB1Þ

where the chemical potential μ is fixed by the requirementZ
x0

0

ϕðxÞdx ¼ N3 ðB2Þ

where x0 is the positive zero of the equation

x − 4μþ 4gx2 ¼ 0: ðB3Þ

At weak coupling g, we find

x0 ¼
−1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 64μg
p
8g

¼ 4μ − 64μ2gþOðg2Þ: ðB4Þ

It is now straightforward to find μ ¼ N3 þ 6gN2
3 þOðg2Þ.

Using this collective field we can compute correlators, at
large N, perturbatively. As an example

hϕabcϕ̄abci ¼ N3
3Gðt; tÞ − 4igN3

3

Z
∞

−∞
dt0Gðt; t0Þ2Gðt0; t0Þ

þOðg2Þ
¼ N2

3 − 8gN3
3 þOðg2Þ ðB5Þ

where we have used the Green’s function

Gðt1; t2Þ ¼
Z

∞

−∞

dE
2π

i
E2 − 1

4
þ iϵ

eiEðt1−t2Þ: ðB6Þ

The diagrams summed to obtain this result are shown in
Fig. 5. The collective field computation reproduces this
result Z

xþ

0

ϕðxÞxdx ¼ N2
3 − 8gN3

3 þOðg2Þ: ðB7Þ

APPENDIX C: RELATING MATRI MODEL AND
TENSOR MODEL CORRELATORS

In Sec. IV we have argued that there is a subsector of the
tensor model that is closely related to a matrix model. In
this Appendix we exhibit a connection between the
correlators of the two. Consider first correlators in the
tensor model. Assuming the basic contraction

hϕajkϕ̄
blmi ¼ δbaδ

l
jδ

m
k ðC1Þ

we easily find

hϕjkaϕ̄
jkbϕlmbϕ̄

lmai ¼ N2
1N

2
2N3 þ N1N2N2

3

hϕjkaϕ̄
jkbϕlmbϕ̄

lmcϕpqcϕ̄
pqai

¼ 3N2
1N

2
2N

2
3 þ N1N2N3

3 þ N3
1N

3
2N3 þ N1N2N3

hϕjkaϕ̄
jkbϕlmbϕ̄

lmcϕpqcϕ̄
pqdϕrsdϕ̄

rsai
¼ N4

1N
4
2N3 þ 5N2

1N
2
2N3 þ 5N1N2N2

3

þ 6N3
1N

3
2N

2
3 þ 6N2

1N
2
2N

3
3 þ N1N2N4

3: ðC2Þ

Now consider correlators in the matrix model. Assuming
the basic contraction

hZi
jZ̄

k
l i ¼ δilδ

k
j ðC3Þ

we easily find

hTrðZZ̄ZZ̄Þi ¼ 2N3

hTrðZZ̄ZZ̄ZZ̄Þi ¼ 5N4 þ N2

hTrðZZ̄ZZ̄ZZ̄ZZ̄Þi ¼ 10N3 þ 14N5: ðC4Þ

Notice that if we set N1N2 ¼ N and N3 ¼ N, the tensor
model correlators map into the matrix model correlators.

FIG. 5. The Feynman diagrams contributing to hϕabcϕ̄abci. The dashed lines indicate which operators are Wick contracted.
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It is simple to understand this rule diagrammatically: the
correspondence holds diagram by diagram. Consider the
operators shown in Fig. 6.
The black line in the tensor model operator is associated

to UðN3Þ, the red line to UðN1Þ and the blue line to UðN2Þ.
One Feynman diagram contributing to the correlator is
shown in Fig. 7. Notice that in the tensor model graph, the
red and blue lines follow each other, and if they are
collapsed into a single black loop, we recover the matrix
model diagram. This is the explanation for the rule we
have found.
There are a number of interesting results implied by this

correspondence between the correlators. For example,
factorization in the matrix model immediately implies that
correlators of gauge invariant observables in the tensor
model factorize at the leading order at large N. The fact that
the correspondence holds diagram by diagram immediately
implies that the Feynman diagrams contributing to tensor
model observables can be identified as triangulations of
string world sheets, with the N dependence of the graph
fixed by the topology of the world sheet.

APPENDIX D: SOME MATRIX
MODEL CORRELATORS

In this section we will consider correlators of Schur
polynomials of a free Hermitian matrix model. As far as we
are aware, these results are new. They are obtained using
ideas and formulas developed in [93]. The Schur poly-
nomial is given by

h χRðMÞi ¼ 1

ð2nÞ!
X
σ∈S2n

χRðσÞTrðσM⊗2nÞ ðD1Þ

where R ⊢ 2n, i.e., R is a Young diagram with 2n boxes.
Wick’s theorem for theHermitianmatrix can be expressed as

hMi1
j1
Mi2

j2
� � �Mi2n

j2n
i ¼

X
σ∈½2n�

σIJ: ðD2Þ

Using this result, we find that

h χRðMÞi ¼ 1

ð2nÞ!
X
σ∈S2n

χRðσÞhTrðσM⊗2nÞi

¼ 1

ð2nÞ!
X
σ∈S2n

X
ψ∈½2n�

χRðσÞTrðσψÞ

¼ 1

ð2nÞ!
X
σ∈S2n

X
ψ∈½2n�

X
T⊢2n

χRðσÞ χTðσψÞDimT

¼ 1

ð2nÞ!
X
σ∈S2n

χRðσÞfR: ðD3Þ

For the case that R is a single column with 2n ¼ N this
becomes

h χRðMÞi ¼ h χð1NÞðMÞi ¼ ð−1Þnð2n − 1Þ!! ðD4Þ

For the case that R is a single row with 2n ¼ N this
becomes

h χRðMÞi ¼ h χðNÞðMÞ ¼ ð2n − 1Þ!! ð4n − 1Þ!
ð2nÞ!ð2n − 1Þ! ðD5Þ

The two point function of normal ordered operators is

h∶ χRðMÞ∶∶ χSðMÞ∶i ¼ δRSfR: ðD6Þ

We now introduce the normalized operators

Oð1NÞ≡
χð1NÞ

ðN−1Þ!! OðNÞ≡ N!ðN−1Þ!
ðN−1Þ!!ð2N−1Þ! χðNÞ: ðD7Þ

The two point functions of these correlators are

h∶Oð1NÞ∶∶Oð1NÞ∶i ¼
ffiffiffiffiffiffiffi
Nπ

2

r

h∶OðNÞ∶∶OðNÞ∶i ¼
ffiffiffi
2

p
Nπe−N log 4: ðD8Þ

Notice that both of these results are nonperturbative in N.
As explained in Sec. VI, the analog of these correlators in
the tensor model has a different behavior.

FIG. 6. TrðZZ̄ZZ̄Þ is shown on the left and ϕjkaϕ̄
jkbϕlmbϕ̄

lma

on the right.

FIG. 7. A Feynman diagram contributing to hTrðZZ̄ZZ̄Þi is
shown on the left and to hϕjkaϕ̄

jkbϕlmbϕ̄
lmai on the right.
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