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We study the existence of self-dual solitons in a gauged version of the baby Skyrme model in which the
Maxwell-Chern-Simons term governs the gauge field dynamic. For such a purpose, a detailed
implementation of the Bogomol’nyi-Prasad-Sommerfield formalism provides a lower bound for the
energy and the respective self-dual equations. The energy lower bound is quantized because it is
proportional to the topological charge of the Skyrme field. Furthermore, neither the magnetic flux nor the
electric charge is quantized. We find two types of self-dual Skyrme field profiles: the first is described by a
solution which follows a Gaussian decay law, and the second is portrayed by a solution having a power-law
decay. For both types of skyrmion profiles, the asymptotic behavior of the respective gauge field is similar
to the one for the Abrikosov-Nielsen-Olesen vortices. The localized inversion of the magnetic flux is
another feature not observed in other gauged Skyrme models already studied in the literature.
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I. INTRODUCTION

The Skyrme model [1] is a nonlinear field theory which is
originally defined in (3þ 1) dimensions and whose topo-
logical soliton solutions are called skyrmions. It has been a
prolific subject in several branches of physics. It is currently
understood as an effective field theory for nuclear phenom-
ena describing several hadron and nucleon properties [2],
circumventing some technical difficulties present in the
underlining quantum chromodynamics. Furthermore, in
the realm of condensedmatter physics, it has caused exciting
research to be applied in the description of some physical
systems, such as liquid helium [3], the quantum Hall effect
[4], Bose-Einstein condensates [5], chiral nematic liquid
crystals [6], magnetic materials [7], and superconductors [8].
The (2þ 1)-dimensional version of the full model [1] is

called the baby Skyrme model [9], which is described by
the Lagrangian density

L ¼ ν2

2
∂μϕ⃗ · ∂μϕ⃗ −

λ2

4
ð∂μϕ⃗ × ∂νϕ⃗Þ2 − VðϕnÞ: ð1Þ

The first contribution is the well-known nonlinear sigma
model term. The second term is the counterpart of the

Skyrme term in Ref. [1]. The last term, VðϕnÞ≡ Vðn⃗ · ϕ⃗Þ,
is the self-interacting potential guaranteeing the stability of
the soliton solutions [10]. The triplet of real scalar fields

ϕ⃗ ¼ ðϕ1;ϕ2;ϕ3Þ represents the Skyrme field, satisfying the

constraint ϕ⃗ · ϕ⃗ ¼ 1, which describes a spherical surface
with unitary radius (denoted by S2). The unitary vector
n⃗ ∈ S2 provides a preferred direction in the internal space.
The sigma model and Skyrme terms are invariant under
SOð3Þ global symmetry, whereas the potential breaks
partially but preserves the Uð1Þ subgroup. Such a potential
has a unique vacuum configuration and must satisfy the
condition VðϕnÞ → 0 when ϕn → 1. Although the standard
baby Skyrme model describes stable solitons, it does not
possess a self-dual or Bogomol’nyi-Prasad-Sommerfield
(BPS) structure. On the other hand, in absence of the sigma
model term, the so-called restricted baby Skyrme model
[11] possesses a BPS structure [12].
A natural physical extension in the study of the baby

Skyrme model is the possibility of its coupling to the
electromagnetic field in order to investigate their electric
and/or magnetic properties. The study of BPS solitons in the
gauged restricted baby Skyrme model has already been
performed in some cases: theSkyrme fieldminimally coupled
to the Maxwell field [13,14] and the Chern-Simons gauge
field [15–17]. In the case inwhich the Skyrme field is coupled
to the Maxwell-Chern-Simons gauge field, the study by
means of the BPS technique remains open, but it was
performed recently in the supersymmetry context [17].
This paper is devoted to the BPS description of the

soliton solutions (and their main features) emerging in a
gauged baby Skyrme model in which the Maxwell-Chern-
Simons action rules the gauge field dynamic. Our study is
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divided as follows. In Sec. II, we present the Maxwell-
Chern-Simons restricted baby Skyrme model and the
necessity to introduce an auxiliary dynamical field with
the aim of gaining a BPS model. The development of the
BPS formalism immediately provides the BPS potential,
the self-dual equations, and the Bogomol’nyi bound for the
total energy. In Sec. III, we restrict our analysis to the study
of rotationally symmetric solutions by discussing the
boundary conditions and obtaining the physical quan-
tities—namely, the magnetic flux and the electric charge.
In Sec. IV, we depict some relevant profiles and discuss
their quantitative and qualitative features. In Sec. V, we
present our remarks and conclusions.

II. SELF-DUAL MAXWELL-CHERN-SIMONS
BABY SKYRME MODEL

First, we consider a gauged restricted baby Skyrme
model in which the Skyrme field is minimally coupled to
the Maxwell-Chern-Simons gauge field described by the
following Lagrangian function:

L ¼ E0

Z
d2xL; ð2Þ

where the factor E0 sets the energy scale (which will be
taken as E0 ¼ 1 hereafter). The Lagrangian density is

L ¼ −
1

4g2
F2
μν −

κ

4g2
ϵρμνAρFμν

−
λ2

4
ðDμϕ⃗ ×Dνϕ⃗Þ2 − VðϕnÞ; ð3Þ

where the coupling between the gauge field and the Skyrme
field is given though covariant derivative

Dμϕ⃗ ¼ ∂μϕ⃗þ Aμn⃗ × ϕ⃗: ð4Þ

The first contribution in Eq. (3) is the Maxwell term, where
Fμν ¼ ∂μAν − ∂νAμ, with Aμ being the Uð1Þ gauge field,
and g the electromagnetic coupling constant. The other
contributions, listed in order, are the Chern-Simons term
and κ, its coupling constant, the Skyrme term, and the self-
interacting potential VðϕnÞ. Also, it will be assumed that all
of the coupling constants are non-negative quantities.
Moreover, the Skyrme field is dimensionless and the gauge
field has mass dimension 1, both coupling constants κ and g
have mass dimension 1, and the Skyrme coupling constant
λ has mass dimension −1.
To date, no research about soliton solutions obtained

from the Lagrangian density (3) has been able to engender a
self-dual or BPS configuration. In what follows, we
propose a modified version of model (3) supporting a
BPS structure.
The corresponding self-dual model is constructed by

introducing a neutral scalar field which, besides interacting

only with the Skyrme field, also modifies the potential.
Such a BPSMaxwell-Chern-Simons baby Skyrme model is
described by the following Lagrangian density:

L ¼ −
1

4g2
F2
μν −

κ

4g2
ϵρμνAρFμν −

λ2

4
ðDμϕ⃗ ×Dνϕ⃗Þ2

þ 1

2g2
∂μΨ∂μΨþ λ2

2
ðn⃗ · ∂μϕ⃗Þ2Ψ2 −Uðϕn;ΨÞ; ð5Þ

where Uðϕn;ΨÞ is the corresponding potential which is
now a function of both ϕn and neutral scalar field Ψ. The
term ðn⃗ · ∂μϕ⃗Þ2Ψ2 is gauge invariant because ðn⃗ · ∂μϕ⃗Þ2 ≡
ðn⃗ ·Dμϕ⃗Þ2, but such as the potential, it partially breaks the
SOð3Þ symmetry, preserving only the Uð1Þ subgroup.
Furthermore, it is worth mentioning that this term can
be expressed as

ðn⃗ · ∂μϕ⃗Þ2 ¼ ðn⃗ ·Dμϕ⃗Þ2 ¼ ðDμϕ⃗Þ2 − ðn⃗ ×Dμϕ⃗Þ2: ð6Þ

Thus, model (5) can be considered a type of Maxwell-
Chern-Simons baby Skyrme model due to the presence of
the sigma model–like term ðDμϕ⃗Þ2Ψ2.
The procedure used to achieve model (5) through the

introduction of a neutral scalar field with the aim of attaining
a successful implementation of the Bogomol’nyi technique
is already well known in the literature. It was first used in the
context of Maxwell-Chern-Simons-Higgs models [18]
based on supersymmetry (SUSY) requirements [19]. A
similar approach has also been successfully implemented
in other investigations, e.g., in Refs. [20,21] and in some
Lorentz-violating scenarios [22–24].
The equation of motion of the gauge field reads

∂σFσμ −
κ

2
ϵμαβFαβ ¼ g2jμ; ð7Þ

where jμ ¼ n⃗ · J⃗μ is the conserved current density with

J⃗μ ¼ λ2½ϕ⃗ · ðDμϕ⃗ ×Dνϕ⃗Þ�ðDνϕ⃗Þ: ð8Þ

For the Skyrme field, we obtain

DμJ⃗
μ ¼ −

�
λ2∂μ½ðn⃗ · ∂μϕ⃗ÞΨ2� þ ∂U

∂ϕn

�
ðn⃗ × ϕ⃗Þ; ð9Þ

while for the neutral scalar field results

∂μ∂μΨ − λ2g2ðn⃗ · ∂μϕ⃗Þ2Ψþ g2
∂U
∂Ψ ¼ 0: ð10Þ

Our effort will be focused on the study of stationary
solutions. Thus, from Eq. (7), the Gauss law reads
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∂iEi − κB ¼ g2j0; ð11Þ

with j0 ¼ −λ2A0ðn⃗ · ∂iϕ⃗Þ2 being the electric charge den-
sity. The electric field is defined by Ei ¼ F0i ¼ −∂iA0

while the magnetic field is given by B ¼ F12 ¼ ϵij∂iAj.
The Gauss law shows the mixing of the electric and
magnetic sectors, implying that the soliton solutions are
carriers of both magnetic flux and electric charge.
Also, from Eq. (7), the stationary Ampère law gives

∂iB − κEi ¼ −λ2g2ðn⃗ · ∂iϕ⃗ÞQ; ð12Þ

withQ≡ ϕ⃗ · ðD1ϕ⃗ ×D2ϕ⃗Þ, which can still be expressed as

Q ¼ ϕ⃗ · ð∂1ϕ⃗ × ∂2ϕ⃗Þ þ ϵijAiðn⃗ · ∂jϕ⃗Þ: ð13Þ

The term ϕ⃗ · ð∂1ϕ⃗ × ∂2ϕ⃗Þ is related to the topological
charge or topological degree (also called the winding
number) of the Skyrme field,

deg½ϕ⃗� ¼ −
1

4π

Z
d2xϕ⃗ · ð∂1ϕ⃗ × ∂2ϕ⃗Þ ¼ k; ð14Þ

where k ∈ Zn0.
Similarly, from Eq. (9), the stationary equation of motion

of the Skyrme field becomes

∂U
∂ϕn

ðn⃗ × ϕ⃗Þ ¼ λ2∂i½ðn⃗ · ∂iϕ⃗ÞðΨ2 − A2
0Þ�ðn⃗ × ϕ⃗Þ

− λ2ϵijDiðQDjϕ⃗Þ: ð15Þ

In the next section, we will show how the BPS formalism
is implemented. During the procedure, the self-dual poten-
tial Uðϕn;ΨÞ is determined, allowing us to obtain the
energy lower bound and the self-dual equations to be
satisfied by the solitonic configurations saturating such
a bound.

A. The BPS structure

The stationary energy density of model (5) is

ϵ ¼ 1

2g2
B2 þ 1

2g2
ð∂iA0Þ2 þ

λ2

2
ðA0Þ2ðn⃗ · ∂iϕ⃗Þ2 þ

λ2

2
Q2

þ 1

2g2
ð∂iΨÞ2 þ

λ2

2
Ψ2ðn⃗ · ∂iϕ⃗Þ2 þUðϕn;ΨÞ; ð16Þ

where we have used Q2 ¼ 1
2
ðDiϕ⃗ ×Djϕ⃗Þ2. The require-

ment that the energy density be null when jx⃗j → ∞
establishes the boundary conditions satisfied by the fields
of the model.
The total energy is defined by integrating the energy

density (16) so that the implementation of the BPS
formalism allows us to write

E ¼
Z

d2x

�
1

2g2
ðB� ΣÞ2 þ λ2

2
ðQ ∓ ZÞ2

þ 1

2g2
ð∂iA0 ∓ ∂iΨÞ2 þ

λ2

2
ðA0 ∓ ΨÞ2ðn⃗ · ∂iϕ⃗Þ2

� λ2A0Ψðn⃗ · ∂iϕ⃗Þ2 ∓ 1

g2
BΣ −

1

2g2
Σ2

� λ2QZ −
λ2

2
Z2 � 1

g2
ð∂iA0Þ∂iΨþ U

�
; ð17Þ

where we have introduced two auxiliary functions—
namely, Σ≡ Σðϕn;ΨÞ and Z≡ ZðϕnÞ—which we shall
determine later. By using expression (13) and the Gauss law
(11), we arrive at

E ¼
Z

d2x

�
1

2g2
ðB� ΣÞ2 þ λ2

2
ðQ ∓ ZÞ2

þ 1

2g2
ð∂iA0 ∓ ∂iΨÞ2 þ

λ2

2
ðA0 ∓ ΨÞ2ðn⃗ · ∂iϕ⃗Þ2

� λ2Zϕ⃗ · ð∂1ϕ⃗ × ∂2ϕ⃗Þ �
1

g2
∂iðΨ∂iA0Þ

∓ 1

g2
ϵjið∂jAiÞðΣ − κΨÞ � λ2ϵijAiZðn⃗ · ∂jϕ⃗Þ

−
1

2g2
Σ2 −

λ2

2
Z2 þU

�
: ð18Þ

At this point, we transform the fourth row of Eq. (18)
into a total derivative. To achieve this, we first choose

Σ≡ λ2g2W þ κΨ; ð19Þ

where W ≡WðϕnÞ. Thus, the fourth row in Eq. (18)
results

�λ2ϵij½ð∂jAiÞW þ AiZðn⃗ · ∂jϕ⃗Þ�; ð20Þ

and it becomes a total derivative if ZðϕnÞ is defined by

Z ¼ ∂W
∂ϕn

; such that ∂jW ¼ ∂W
∂ϕn

ðn⃗ · ∂jϕ⃗Þ: ð21Þ
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Therefore, the total energy becomes

E ¼
Z

d2x

�
1

2g2
½B� ðλ2g2W þ κΨÞ�2

þ λ2

2

�
Q ∓ ∂W

∂ϕn

�
2

þ λ2

2
ðA0 ∓ ΨÞ2ðn⃗ · ∂iϕ⃗Þ2

þ 1

2g2
ð∂iA0 ∓ ∂iΨÞ2 � λ2

�∂W
∂ϕn

�
ϕ⃗ · ð∂1ϕ⃗ × ∂2ϕ⃗Þ

� 1

g2
∂iðΨ∂iA0Þ ∓ λ2ϵij∂jðAiWÞ

−
1

2g2
ðλ2g2W þ κΨÞ2 − λ2

2

�∂W
∂ϕn

�
2

þ U

�
: ð22Þ

To continue with the implementation of the BPS
formalism, we require the potential Uðϕn;ΨÞ to be
defined as

Uðϕn;ΨÞ ¼
λ2

2

�∂W
∂ϕn

�
2

þ λ4g2

2

�
W þ κ

λ2g2
Ψ
�

2

: ð23Þ

Notably, WðϕnÞ plays the role of a superpotential
function, and it must be constructed (or proposed) such
that the self-dual potential Uðϕn;ΨÞ becomes null when
ϕn → 1 (or jx⃗j → ∞), in accordance with Eq. (16).
Consequently, the following boundary conditions must
be satisfied:

lim
ϕn→1

WðϕnÞ¼0; lim
ϕn→1

∂W
∂ϕn

¼0; lim
jx⃗j→∞

Ψ¼0: ð24Þ

Considering the boundary conditions (24), we observe
the contributions of the total derivatives in the fourth row
of Eq. (22) vanish. Therefore, we can express the total
energy as

E ¼ Ēþ EBPS; ð25Þ

where Ē represents the integral composed by the quadratic
terms,

Ē ¼
Z

d2x

�
1

2g2
½B� ðκΨþ g2λ2WÞ�2

þ λ2

2

�
Q ∓ ∂W

∂ϕn

�
2

þ 1

2g2
ð∂iA0 ∓ ∂iΨÞ2

þ λ2

2
ðA0 ∓ ΨÞ2ðn⃗ · ∂iϕ⃗Þ2

�
; ð26Þ

and EBPS defines the energy lower bound,

EBPS ¼ �λ2
Z

d2x

�∂W
∂ϕn

�
ϕ⃗ · ð∂1ϕ⃗ × ∂2ϕ⃗Þ: ð27Þ

The total energy (25) satisfies the inequality

E ≥ EBPS ð28Þ

because Ē ≥ 0. Then, the energy lower bound will be
achieved when the fields possess configurations such that
Ē ¼ 0, i.e., the bound is saturated when the following set of
first-order differential equations are satisfied:

B ¼ ∓g2λ2W ∓ κΨ; ð29Þ

Q ¼ � ∂W
∂ϕn

; ð30Þ

∂iΨ ¼ �∂iA0; Ψ ¼ �A0: ð31Þ

These BPS configurations can be considered as classical
solutions related to an extended supersymmetric theory
[25] of the model (5). Indeed, such affirmation was shown
in Ref. [17]; i.e., the BPS equations belong to an N ¼ 2
SUSY extension model whose bosonic sector would be
given by the Lagrangian (5). Besides, the solutions of
Eqs. (32)–(34) are type BPS 1=4, corresponding to the
nontrivial phase of the N ¼ 2 SUSY extension model.
From Eq. (31), we observe that Ψ ¼ �A0 automatically

satisfies both equations; consequently, the self-dual or BPS
charged solitons are described by the equations

B ¼ ∓g2λ2W − κA0; ð32Þ

Q ¼ � ∂W
∂ϕn

; ð33Þ

together with the Gauss law (11),

∂i∂iA0 þ κB ¼ g2λ2A0ðn⃗ · ∂iϕ⃗Þ2: ð34Þ

A straightforward calculation shows that the Euler-
Lagrange equations provided by the Lagrangian density
(5) can be recovered starting from the set of BPS equations.

III. ROTATIONALLY SYMMETRIC SKYRMIONS

We investigate solitons rotationally symmetric saturating
the energy lower bound (27). Henceforth, without loss of
generality, we set n⃗ ¼ ð0; 0; 1Þ such that ϕn ¼ ϕ3, and we
assume the usual ansatz for the Skyrme field,

ϕ⃗ðr; θÞ ¼

0
B@

sin fðrÞ cosNθ

sin fðrÞ sinNθ

cos fðrÞ

1
CA; ð35Þ
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where r and θ are polar coordinates, N ¼ deg½ϕ⃗� is the
winding number introduced in Eq. (14), and fðrÞ is a
regular function satisfying the boundary conditions

fð0Þ ¼ π; lim
r→∞

fðrÞ ¼ 0: ð36Þ

We now introduce the field redefinition [13],

ϕ3 ¼ cos f ≡ 1 − 2h; ð37Þ

with the field h ¼ hðrÞ obeying

hð0Þ ¼ 1; lim
r→∞

hðrÞ ¼ 0: ð38Þ

For the gauge field Aμ, we consider the ansatz

Ai ¼ −ϵijxj
NaðrÞ
r2

; A0 ¼ ωðrÞ; ð39Þ

where aðrÞ and ωðrÞ are well-behaved functions satisfying
the boundary conditions

að0Þ ¼ 0; lim
r→∞

aðrÞ ¼ a∞; ð40Þ

ωð0Þ ¼ ω0; lim
r→∞

ωðrÞ ¼ 0; lim
r→∞

dω
dr

¼ 0; ð41Þ

where a∞ and ω0 are finite constants.
The superpotential WðhÞ must satisfy

lim
r→0

WðhÞ ¼ W0; lim
r→∞

WðhÞ ¼ 0; lim
r→∞

dW
dh

¼ 0;

ð42Þ

with the two last conditions having been obtained from
Eq. (24). The constant W0 is a positive-definite quantity.
The magnetic field and electric field are expressed as

B ¼ N
r
da
dr

; Er ¼ −
dω
dr

: ð43Þ

whereas the BPS bound (27) becomes

E ≥ EBPS ¼ �2πλ2NW0: ð44Þ

As this is a positive-definite quantity, the sign þð−Þ
corresponds to N > 0ðN < 0Þ.
Similarly, the BPS equations and the Gauss law become

N
r
da
dr

þ λ2g2W þ κω ¼ 0; ð45Þ

4N
r

ð1þ aÞ dh
dr

þ dW
dh

¼ 0; ð46Þ

d2ω
dr2

þ 1

r
dω
dr

þ κN
r
da
dr

¼ 4λ2g2ω

�
dh
dr

�
2

; ð47Þ

respectively. Furthermore, for the BPS energy density, we
have

ϵBPS¼
B2

g2
þ 1

g2

�
dω
dr

�
2

þ4λ2ω2

�
dh
dr

�
2

þλ2

4

�
dW
dh

�
2

: ð48Þ

Note that in the BPS equations (45) and (46), without
loss of generality, we have chosen the upper sign. Such an
assumption will be considered in the remainder of
the paper.
In the following sections, we study the behavior of the

self-dual profiles at origin and in the limit r → ∞ by
solving the BPS equations (45) and (46) and the Gauss
law (47).

A. Behavior of the profiles at origin

We perform the analysis around the origin (r ¼ 0) by
using the boundary conditions previously defined and
considering the superpotential WðhÞ well-behaved func-
tion. Hence, we find the following behavior for the field
profiles:

hðrÞ ≈ 1 −
ðWhÞh¼0

8N
r2 þ ðWhÞh¼0ðWhhÞh¼0

128N2
r4; ð49Þ

aðrÞ ≈ −C0r2 þ C1r4; ð50Þ

ωðrÞ ≈ ω0 þ
κNC0

2
r2 −

κNC1

4
r4; ð51Þ

where Wh ¼ dW=dh, Whh ¼ d2W=dh2, and the constants
C0, C1 are defined as

C0 ¼
g2λ2W0 þ κω0

2N
; ð52Þ

C1 ¼
g2λ2ðWhÞ2h¼0 − 4κ2N2C0

32N2
: ð53Þ

The behaviors for magnetic and electric fields near the
origin are

BðrÞ ≈ −2NC0 þ 4NC1r2; ð54Þ

ErðrÞ ≈ −κNC0rþ κNC1r3; ð55Þ

respectively, while the BPS energy density gives
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ϵBPS ≈
4N2C2

0

g2
þ λ2

4
ðWhÞh¼0 þ

�
3κ2N2C2

0

g2

þ λ2ðWhÞ2h¼0

4N2

�
ω2
0 − 2N2C0 −

NðWhhÞh¼0

4

��
r2:

ð56Þ

It is verified that the amplitude of the BPS energy density at
the origin increases in accordance with the growth of the
electromagnetic coupling g.

B. Behavior of the profiles for large values of r

For our analysis in the asymptotic limit, r → ∞, we
consider a superpotential WðhÞ behaving as

WðhÞ ≈WðσÞ
∞ hσ; ð57Þ

where W∞ is a positive real constant and the parameter
σ ≥ 2. Under the boundary conditions, the asymptotic
analysis leads us to two types of Skyrme field profiles:
(i) for σ ¼ 2, we have found soliton solutions whose tail
decays following a Gaussian decay law, and (ii) for σ > 2,
the profiles of the Skyrme field have a power-law decay.
For both cases (σ ¼ 2 and σ > 2), the gauge field profiles
aðrÞ and ωðrÞ decay following an exponential-law type.

1. Behavior of the profiles for σ = 2

We select a superpotential whose behavior is

WðhÞ ≈Wð2Þ
∞ h2; ð58Þ

such that the field profiles possess the following asymptotic
behavior,

hðrÞ ≈ CðhÞ
∞ e−Λr

2

; ð59Þ

aðrÞ ≈ a∞ − C∞
ffiffiffi
r

p
e−κr; ð60Þ

ωðrÞ ≈ −C∞
Nffiffiffi
r

p e−κr; ð61Þ

where the quantity Λ has been defined as

Λ ¼ Wð2Þ
∞

4Nð1þ a∞Þ
: ð62Þ

The finite constants CðhÞ
∞ and C∞ are fixed for every set of

coupling constants and can be determined numerically. We
note that the behavior shows explicitly that the Chern-
Simons coupling constant κ plays the role of the effective
mass of the gauge field.
In addition, the magnetic and electric fields for large

values of r behave as

BðrÞ ≈ C∞
Nκffiffiffi
r

p e−κr; ð63Þ

ErðrÞ ≈ −C∞
Nκffiffiffi
r

p e−κr; ð64Þ

respectively. We must highlight the behavior of the gauge
field (including the ones for the electric and magnetic
fields) resembles that of the Abrikosov-Nielsen-Olesen
vortices arising in Abelian Higgs models [26]. The
Maxwell-Higgs electrodynamics is the relativistic version
of the Ginzburg-Landau theory of superconductivity, and
the BPS limit of the Maxwell-Higgs model separates the
superconducting phases type I and type II. Recently, similar
gauge field behavior has also been found in other gauged
Skyrme models [27,28].

2. Behavior of the profiles for σ > 2

In this case, our analysis considers a superpotential
behaving like Eq. (57) with σ > 2. Hence, when r → ∞,
the field profiles have the following asymptotic behavior:

hðrÞ ≈
�
8Nða∞ þ 1Þ
σðσ − 2ÞWðσÞ

∞

�
1=ðσ−2Þ�1

r

�
2=ðσ−2Þ

; ð65Þ

aðrÞ ≈ a∞ − C∞
ffiffiffi
r

p
e−κr; ð66Þ

ωðrÞ ≈ −C∞
Nffiffiffi
r

p e−κr; ð67Þ

where C∞ is a finite constant determined numerically.
We note that the profiles of the Skyrme field follow

a power-law decay contrasting the behavior for σ ¼ 2
given in Eq. (59). Field profiles following a power-law
decay for large distances are called delocalized. This type
of solution also arises in the study of fractional vortices in
two-component superconductors [29], diamagnetic vortices
in Chern-Simons theory [30], and in some k-generalized
Abelian Higgs models [31]. On the other hand, the gauge
field profiles aðrÞ and ωðrÞ remain localized because they
follow the same behavior of the ones analyzed in the
previous case σ ¼ 2, and, consequently, the magnetic and
electric field behaviors are given by Eqs. (63) and (64),
respectively.

IV. NUMERICAL SOLUTIONS

A. Numerical solutions for σ = 2

Our first numerical analysis is devoted to solve the BPS
equations (45) and (46) and the Gauss law (47) by
considering the superpotential

WðhÞ ¼ h2

λ2
; ð68Þ

where, without loss of generality, we have chosen

W0 ¼ Wð2Þ
∞ ¼ 1=λ2. Thus, the BPS energy (44) is given by
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EBPS ¼ �2πN; ð69Þ

To solve the BPS equations, we set N ¼ 1, λ ¼ 1, κ ¼ 1
and run the electromagnetic coupling constant g. The
resulting solutions are shown in Figs. 1–6.
The profile functions hðrÞ characterizing the Skyrme

field are plotted in Fig. 1. Note that, for increasing values of
g, the profiles become more localized around the origin.
Also, for sufficiently large values of g (in our analysis,
g≳ 2.5), the profiles rapidly attain the vacuum value,
acquiring a structure resembling that of a compacton
(a soliton of finite extent having its exact vacuum value
outside of the compact region [32]). The arrival of the
compactonlike structure is consistent with the behavior (59)
of the Skyrme field profile which yields a fast exponential
decay in the strong coupling limit of g, i.e., the parameter
Λ → ∞ as a consequence of a∞ → −1 (see Fig. 2).
Figure 2 depicts the vector potential profiles aðrÞ. Unlike

the case of the uncharged BPS soliton solutions addressed
in Ref. [13], here the vector potential profiles present an

inverted ringlike shape (in our analysis, such a feature is
better seen in the interval 0 < g < 2) which goes vanishing
for sufficiently large values of g, when the vector potential
achieves a constant vacuum value a∞ → −1. Furthermore,
as previously mentioned, when we have a∞ → −1, the
soliton profiles become compactonlike structures. It is
worth emphasizing that the appearance of ringlike struc-
tures is associated with the presence of a Chern-Simons
term. In order to better visualize the ringlike effect for weak
coupling, the profile for g ¼ 0.1 (blue line) was rescaled by
multiplying it by 100.
The profiles for the scalar potential ωðrÞ and BPS energy

density ϵBPSðrÞ are shown in Figs. 3 and 4, respectively. In
both cases, the amplitude at origin (in absolute value)
increases with the growing of g. It is again observed that the
profiles for sufficiently large values of g present the
compactlike format.
Additionally in Fig. 4, we have inserted the BPS energy

density profiles for N ≥ 1 (g ¼ 2.5). The inset reveals that,

FIG. 1. Skyrme field profiles hðrÞ.

FIG. 2. Vector potential profiles aðrÞ. The profile for g ¼ 0.1
(blue line) has been rescaled by multiplying by 100. The
conventions are as in Fig. 1.

FIG. 3. Scalar potential ωðrÞ. The profile for g ¼ 0.1 (blue line)
has been rescaled by multiplying it by 10. The conventions are as
in Fig. 1.

FIG. 4. BPS energy density ϵBPSðrÞ. The conventions are as in
Fig. 1. (Inset) Profiles of ϵBPSðrÞ for N ≥ 1 with the electro-
magnetic coupling fixed at g ¼ 2.5.
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for increasing values of N, the profiles acquire a more
ringlike shape. Such an effect also happens in other
Maxwell-Chern-Simons systems such as the Abelian
Higgs model, gauge sigma model, or gauged CPð2Þmodel.
Furthermore, it is worthwhile to comment that the magnetic
field profiles also present a ringlike format for increasing
values of N.
The profiles of the electric field ErðrÞ are present in

Fig. 5. The profiles are rings whose maximum amplitude is
localized closer to the origin as the coupling constant g
grows, acquiring a compactonlike form. Furthermore, we
have done a rescaling (multiplying by 50) the profile for
g ¼ 0.1 (blue line) in order for the ring format to become
more visible. The numerical solutions tell us that the
electric field is negative for all values of r and g.
Figure 6 depicts the profiles of the magnetic field BðrÞ

for a set of values of the coupling constant g. At first sight,
we observe that whenever g increases, the absolute value of
the amplitude in r ¼ 0 also increases. The profiles also
become more localized around the origin, acquiring a

compactonlike format. However, for sufficiently large
values of r, an enlargement of the profiles (see the inset
in Fig. 6) reveals a flip (sign inversion) of the magnetic
field, which directly implies a localized magnetic flux
inversion. Such a flip of the magnetic field becomes clearer
in view of Eqs. (63) and (64). Given the behavior of the
magnetic and electric fields, they tell us that, for large
values of r, the fields have opposite signs. Thus, if
the electric field is always negative, for large distances,
the magnetic field will be positive. In our analysis, the
maximum amplitude of the inversion grows in the interval
of 0 < g ≤ 1.2; thereafter, it decreases continuously for
g > 1.2 until it disappears for sufficiently large values of
the coupling constant g. We highlight the fact that such a
localized magnetic flux inversion in the present BPS model
is a genuine effect due to presence of both the Maxwell and
Chern-Simons terms once such an effect is absent when
coupled separately with the Skyrme field [13,16].
The flip of the magnetic field is a peculiar phenomenon

which also has been reported in some other (2þ 1)-
dimensional systems. For example, such behavior arises
in the study of two-component superconductors whose
fractional vortices present a delocalized magnetic field
[29]. It also occurs in some Lorentz-violating Maxwell-
Higgs electrodynamics [22,33] and in a Lorentz-violating
gauged Oð3Þ sigma model [23].

B. Numerical solutions for σ > 2

Our second numerical analysis is performed by consid-
ering the superpotential

WðhÞ ¼ hσ

λ2
: ð70Þ

Similarly, we have chosen W0 ¼ WðσÞ
∞ ¼ 1=λ2. This way,

the BPS energy (44) is given also by Eq. (69).
We have solved the set of equations (45)–(47) for

different values of the parameter σ by fixing N ¼ 1,

FIG. 5. Electric field ErðrÞ. The profile for g ¼ 0.1 (black
dotted line) has been rescaled by multiplying it by 50. The
conventions are as in Fig. 1.

FIG. 6. Magnetic field BðrÞ. (Inset) Enlargement of the flip in
the magnetic field.

FIG. 7. Skyrme field profiles hðrÞ for different values of σ in
superpotential (70).
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λ ¼ 1, κ ¼ 1, g ¼ 1. The numerical profiles are shown in
Figs. 7–12.
Figure 7 shows clearly that for σ > 2 the Skyrme field

profile hðrÞ decays more slowly to its vacuum value
whenever σ increases, in accordance with the power law
given in Eq. (65).

The general characteristics for profiles of the vector
potential aðrÞ, scalar potential ωðrÞ, electric field
ErðrÞ, self-dual energy density ϵBPSðrÞ, and magnetic
field BðrÞ are similar to the ones described in a previous
section, but they become more and more localized near
the origin with the growth of the parameter σ; see
Figs. 8–12. Nevertheless, it is worthwhile to make some
comments about the vector potential and magnetic field.
In Fig. 8, we note the ringlike structures of the vector
potential profiles are vanishing with an increase of σ,
whereas aðrÞ tends to zero. As a consequence of such
behavior, the flip of the magnetic field is also present,
and its maximum amplitude diminishes with an increase
of σ; see Fig. 12.

C. Magnetic flux and electric charge

The numerical results presented in the case of σ ¼ 2
allow us to analyze important results about the magnetic
flux and the total electric charge.

FIG. 9. Scalar potential ωðrÞ. The conventions are as in Fig. 7.

FIG. 10. Electric field ErðrÞ. The conventions are as in Fig. 7.

FIG. 11. BPS density energy ϵBPSðrÞ. The conventions are as in
Fig. 7.

FIG. 12. Magnetic field BðrÞ for other values of σ in the
superpotential (70). (Inset) Enlargement of the flip of the
magnetic field for σ ≥ 2.

FIG. 8. Vector potential profiles aðrÞ. The conventions are as in
Fig. 7.
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The total magnetic flux is

Φ ¼
Z

d2xB ¼ 2πNa∞; ð71Þ

remembering that parameter a∞ is a finite real constant, in
accordance with the boundary conditions established in
Sec. III. Therefore, the magnetic flux is in general a
nonquantized quantity (in the topological sense), unlike
that belonging to the Chern-Simons Abelian Higgs models
[34,35]. However, recent investigations have shown the
existence of quantized magnetic flux in some Skyrme
models [36].
By integrating the Gauss law (11), we compute the total

electric charge in terms of the magnetic flux,

Qem ¼
Z

d2xj0 ¼ −
κ

g2
Φ ¼ −

2πκ

g2
Na∞; ð72Þ

showing that it is nonquantized, too.
We observe, in the description of Fig. 2, that, for a

sufficiently strong coupling g, the vacuum value of the
potential vector a∞ → −1, which implies that the magnetic
flux (71) becomes quantized in this limit. Such behavior of
the magnetic flux profiles for N ¼ 1 (black dotted line) and
N ¼ 2 (red dotted line) is depicted in Fig. 13. This effective
quantization implies that the total electric charge (72) also
becomes quantized in such a regime.
Figure 14 exhibits the behavior of the total electric

charge as a function of the coupling constants g [QemðgÞ
with κ fixed] and κ [QemðκÞ with g fixed] by adopting the
superpotential (68) with λ ¼ 1. For the first analysis, we
fixed κ ¼ 1. We note that the total electric charge QemðgÞ
increases in accordance with g, achieving a maximum value
at gmax ≃ 1.387 for N ¼ 1 (green dotted line) after the
electric charge diminishes when g increases continuously,
i.e., QemðgÞ ∼ g−2 for g ≫ gmax, which is compatible with
Eq. (72).

The second analysis presented in Fig. 14 is performed by
considering the gauge coupling constant fixed at g ¼ 1. We
observe that the total electric charge QemðκÞ grows as κ
does and reaches a maximum value at κmax ≃ 1.045 for
N ¼ 1 (red dotted line). From then on, it gradually
lessens with the continuous growth of the Chern-Simons
coupling. Although that behavior is not directly explained
by Eq. (72), we find numerically that, for the interval
0 < κ < κmax, the vacuum value a∞ seems to grow linearly
with κ; see Fig. 15. For κ > κmax, the values of a∞ increase
slower than the growth of coupling κ; this behavior can be
better understood by analyzing the inset of Fig. 15, where
we have ln ja∞j as a function of ln κ. We note that ja∞j ∼
κ−2 for κ ≫ κmax.
Now let us briefly comment on the magnetic flux and

total electric charge for the case where σ > 2. In Fig. 8, we
note that, for a fixed value of the gauge coupling g, the
vacuum value a∞ goes to zero continuously as σ grows, i.e.,
limσ→∞a∞ ¼ 0. Consequently, the magnetic flux and the

FIG. 13. The magnetic flux jΦj in units ofN as a function of the
gauge coupling g for the superpotential (68) with fixed values
λ ¼ 1 and κ ¼ 1.

FIG. 14. The total electric charge in units of N as a function of
both the constant electromagnetic coupling QemðgÞ and Chern-
Simons coupling QemðκÞ for the superpotential (68) with λ ¼ 1.

FIG. 15. The gauge vacuum value a∞ as a function of the
Chern-Simons coupling κ when assuming the superpotential (68)
with g ¼ 1, λ ¼ 1. We have depicted N ¼ 1 (violet dotted line)
and N ¼ 2 (dark red dotted line). (Inset) Logarithm of the
absolute value of a∞ as a function of the logarithm of κ.
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total electric charge become null. An analogous result also
was obtained in the generalized Chern-Simons baby
Skyrme model [16].

V. CONCLUSIONS AND REMARKS

In this paper, we show the existence of BPS charged
configurations in a gauged baby Skyrme model (5) whose
gauge field is governed by the Maxwell-Chern-Simons
action. The BPS model (5) is constructed by introducing a
scalar field Ψ into model (2) which couples adequately to
the Skyrme field ϕ⃗ but does not couple to the gauge field.
The successful implementation of the BPS technique
allows us to obtain the Bogomol’nyi bound (related to
the topological charge of the Skyrme field), and hence the
self-dual or BPS equations whose solutions saturate this
bound. We point out that the introduction of a super-
potential function determining the self-dual potential is an
important step in the successful implementation of the BPS
technique. Such a superpotential is considered to be a well-
behaved function in the whole target space and plays an
important role in defining the BPS configurations.
With the aim of studying the properties of self-dual

configurations, we use a rotationally symmetric ansatz.
Thus, it is verified that the total energy (44) is topologi-
cally quantized because it is proportional to the topological
charge N of the Skyrme field. Next, we analyze the
asymptotic behavior (r → ∞) of the solutions by choosing
a superpotential function that in such a limit behaves as
WðhÞ ≈ hσ=λ2. It allows us to find two types of self-dual
profiles for the Skyrme field. The first one was obtained for
σ ¼ 2, providing solutions whose tail decays following a
Gaussian law e−Λr

2

, with Λ given in Eq. (62). The second
type occurs for σ > 2, solutions whose tail decays following
a power law r−βðσÞ, with βðσÞ ¼ 2=ðσ − 2Þ; see Eq. (65). For
both types of skyrmion profiles, the respective gauge fields
possess an exponential-law type e−κr (i.e., the Chern-Simons
coupling constant becomes the gauge field mass), very
similar to behavior found for such fields in Abelian Higgs
models describing Abrikosov-Nielsen-Olesen vortices.
Next, we dedicate our effort to solve numerically the

differential equations describing the BPS configurations
in order to attain the main properties or characteristics.
For such a purpose, we consider the superpotential defined
byWðhÞ ¼ hσ=λ2 and study the solitons for σ ≥ 2. We show

that the soliton profiles exhibit a compactonlike format for
sufficiently large values of the electromagnetic coupling
constant g. Furthermore, the soliton solutions carrymagnetic
flux and possess nonzero total electric charge, and, although
both of them are proportional to thewinding numberN, they
are nonquantized quantities because the vacuum value a∞ is
a noninteger [see Eqs. (71) and (72), respectively]. However,
it is shown numerically that, for sufficiently large values of
the electromagnetic coupling g, the vacuum value a∞ → −1;
thus, both quantities become effectively quantized, in accor-
dance with previous investigations [13,16,37].
The more remarkable property is the emergence of the

flip of the magnetic field, resulting in a localized magnetic
flux inversion. This interesting feature emerges due to the
presence of both Maxwell and Chern-Simons terms in the
BPS model (5). We emphasize that such a feature is absent
from previous investigations of gauged restricted baby
Skyrme models with the Maxwell term [13] or the
Chern-Simons term [16] alone.
It is worthwhile to point out the deep connection that has

already been established between theories with extended
supersymmetry and BPS structures [25]. In this sense,
supersymmetry has provided us with a better understanding
of the BPS sectors of some Skyrme models; see, e.g.,
Refs. [17,38,39]. In particular, the BPS structure obtained
from model (5) has a close relation with the correspondent
BPS sector of a N ¼ 2 SUSY extension model studied
in Ref. [17].
We now are investigating the existence of BPS solitons

in gauged baby Skyrme models in the presence of Lorentz
violation. The results will be reported elsewhere.
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