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We propose a fully covariant model for smeared particle detectors in quantum field theory in curved
spacetimes. We show how effects related to accelerated motion of the detector and the curvature of
spacetime influence the way different observers assign an interaction Hamiltonian between the detector and
the field. The fully covariant formulation explicitly leaves the physical predictions of the theory invariant
under general coordinate transformations, hence providing a description of particle detector models (e.g.,
Unruh-DeWitt detectors, models for the light-matter interaction, etc.) that is suitable for arbitrary
trajectories in general spacetime backgrounds.
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I. INTRODUCTION

The notion of measurement in quantum field theory
(QFT) is much more delicate than its (already full of
subtleties) counterpart in nonrelativistic quantum mechan-
ics. Projective measurements on localized field observ-
ables, for example, raise issues regarding locality and
causality, thus being difficult to reconcile with the very
pillars of quantum field theory [1–3]. Circumventing these
problems while still being able to perform measurements
that extract information from a quantum field is achieved
by introducing the idea of particle detector models [4,5],
where a particle detector is conceived as a localized, first-
quantized system with internal degrees of freedom that
couple to a local field observable.
Particle detector models provide a very appealing opera-

tional framework from the point of view of how one
intuitively understands the notion of measurement of a
local observable in field theory. From the retinas of our
eyes to solid state sensors at the LHC, we never measure
a quantum field observable other than by coupling some-
thing to it.
Furthermore, detectors are very appealing as well from a

fundamental perspective, since they allow us to extract
information locally from a quantum field. In this context,
particle detector models have proven to be a powerful tool
to understand well-known effects in QFT such as Unruh
and Hawking effects [6,7]. What is more, particle detector

models have been shown to capture the fundamental
features of the interaction of atoms with the quantum
electromagnetic field, hence also providing a very natural
way to bridge fundamental theories with experimental
setups relevant to fields such as quantum optics and
relativistic quantum information.
Although most of the initial applications of detector

models in the previously discussed examples dealt with
pointlike detectors, there has been an increasing interest in
issues related to smeared detectors. One of the original
motivations to smear particle detectors was to regularize
UV divergences associated to purely pointlike interactions,
but it is also important to note that the notion of smeared
detectors naturally arises in the context of the light-matter
interaction, since atoms themselves are not pointlike
objects. Smeared detectors are also ideal from the point
of view of algebraic QFT, where the local algebras of
observables (to which smeared particle detectors happen to
couple) are considered to be the fundamental object of the
theory [8].
In the common approach to smeared detectors in the

literature, the Hamiltonian of smeared particle detectors
is prescribed in the detector’s “center of mass” frame.
The usual prescription is such that the local profile of the
interaction happens in the simultaneity surfaces to the
center of mass’ world line. However, there is a problem
with this approach, which is that the time evolution
operator obtained through this method cannot consistently
be made independent of the coordinates chosen to describe
the interaction, a requirement of covariance we would
like to have in any physical description of detector-field
interactions.
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One way of thinking about this problem while keeping
an explicitly covariant approach is to write the time
evolution operator in terms of a spacetime integral of a
Hamiltonian density, much in the spirit of what is done
when assigning interactions in field theory.
The covariance of physical predictions of particle detec-

tor models in arbitrary trajectories (in flat spacetimes) was
addressed in [9]. In the present paper, we aim to generalize
this formalism to scenarios where strong accelerations and
gravitational effects may play an important role (i.e., in
curved spacetimes and very noninertial trajectories). We
outline a systematic procedure by which one could identify
time evolution with respect to different notions of time
translation in curved spacetimes, and use that to formulate
an explicitly covariant coupling between detectors and
quantum fields. In this formulation, the predictions of the
theory are automatically invariant under general changes of
reference frame.
We will also explicitly evaluate the error that one incurs

when using the noncovariant approach as a function of the
relevant length scales of the detector smearing, showing in
what regimes the noncovariant model (used in the detec-
tor’s center of mass proper frame) is a good approximation
for the fully covariant predictions. In particular, we discuss
how, for a single detector, the noncovariant approach is a
good approximation in most scenarios. However, this is not
as simple when considering systems of several detectors,
where the covariant formulation becomes especially cru-
cial. This is the case in various problems of interest to the
field of relativistic information such as e.g., entanglement
harvesting [10–31] or classical and quantum communica-
tion through quantum fields [9,32–41].

II. TIME TRANSLATIONS IN
GENERAL SPACETIMES

The canonical interpretation of the Hamiltonian assigns
to it the status of generator of time translations. In a
relativistic scenario, however, one has to be aware of the
different notions of time translations for observers in
different states of motion—a problem which, for systems
of particle detectors, has already been addressed in e.g.,
[9,42]. The guiding line in such situations, where it may not
be clear with respect to which time coordinate you should
be evolving the system, is to interpret the time evolution
operator as an operator that takes the state of a system from
a spacelike surface E1 and evolves it to another spacelike
surface E2, and then the time evolution operator is obtained
from integrating a Hamiltonian density in the spacetime
region between E1 and E2 [9].
Often, in many physical scenarios there is some under-

lying criteria to choose the spacelike surfaces between
which the system is evolving in a clear and unambiguous
way, directly associating them to the surfaces of constant t
(where t is some relevant time coordinate to the physical
setup employed). However, when one has more than one

relevant notion of time translation in a given problem—and
perhaps even different Hamiltonians generating translations
with respect to different timelike directions—the situation
can become more complicated.
Take for example a particle detector that is not comoving

with a the quantization frame of a quantum field theory
(QFT). In that case it will be necessary to relate time
translations with respect to the detector’s proper time and
the time translations with respect to the coordinate time in
the frame where the field quantization is performed. Things
are even more complicated when the detector is spatially
smeared (something necessary to e.g., model the light-
matter interaction or avoid pervasive divergences associ-
ated with pointlike interactions), in which case it may not
even make sense to talk about the “detector’s proper time”.
In quantum field theory in flat spacetimes, canonical

quantization of a free field relies heavily on one being able
to describe the classical dynamics of the field in terms of a
complete set of solutions to the equations of motion (Klein-
Gordon, Maxwell, etc.). An analogous approach to the
quantization of a free field in a curved background M is
possible, provided that the background spacetime allows
for a well-defined initial-value formulation to the classical
equations of motion for the field. Whether this is possible
is determined by the causal structure of the particular
spacetime.
To formulate this problem, let us recall some relevant

definitions regarding causal structure. A causal curve is a
curve that is either timelike or null; an achronal surface is a
closed surface Σ ∈ M such that no two points in Σ can be
connected by a timelike curve; the domain of dependence
of a surface Σ [denoted by DðΣÞ] is the set of all points
p ∈ M such that every inextendible causal curve passing
through p intersects Σ; an achronal surface E ⊂ M is said
to be a Cauchy surface if DðEÞ ¼ M; and finally, a
spacetime is said to be globally hyperbolic if it possesses
a Cauchy surface. Global hyperbolicity is a sufficient
condition for the well-posedness of an initial value formu-
lation for the equations of motion, and therefore throughout
the present article we will always be assuming this
condition on the background spacetime.
In this situation, one can conceive a Hamiltonian that is

to be interpreted as the generator of time translations from
one Cauchy surface to another. (For more details on
relevant concepts for discussing causal structures of space-
times, see [43]; for further discussion on a detailed
procedure to quantize a free scalar field in a globally
hyperbolic spacetime, see [44]).
On the other hand, assume that there is an observer

following a timelike trajectory xðtÞ where t is a timelike
coordinate. It can then be reparametrized by its proper time
τ, yielding a parametrization zðτÞ ¼ xðtðτÞÞ. The constant
time surfaces associated to such an observer at proper time
τ0 are defined by the exponential of all vectors in Tzðτ0ÞM
orthogonal to its four velocity uμðτ0Þ. Let us call those
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surfaces Στ. There is a natural coordinate system to
describe these surfaces that is locally defined around such
trajectory: the Fermi normal coordinates x̄ ¼ ðτ; x̄Þ. These
coordinates are such that for each fixed τ0, ðτ0; x̄Þ defines local
coordinates for Στ0 around the observer’s position zðτÞ. Note
that, by construction, we have uðτÞ ¼ ∂τ along the curve.
According to the discussion above, the Hamiltonian that

generates time translations with respect to the observer’s
proper time will induce time evolution between the space-
like surfaces Στ1 and Στ2 . If we want to compare the time
evolution provided by the Hamiltonian associated to this
observer with the one provided by the quantization coor-
dinates, we must assume that for some value of τ1 and t1 we
have Et1 ¼ Στ1 , so that we evolve the system from the same
spacelike surface. We also assume that Et2 ¼ Στ2 for final
times t2 and τ2, in such a way that the final state of the field
is defined in the same region of spacetime after such an
evolution. In the present paper we shall assume that these
conditions hold true asymptotically.
The simplest possible scenario where these subtleties are

important is when one talks about time reparametrization
invariance. To illustrate this point, let us consider time
evolution in quantum mechanics, where we know that time
evolution with respect to a given coordinate time t can be
related to the Hamiltonian according to the Schrödinger
equation:

ĤtðtÞjψi ¼ i
d
dt
jψi: ð1Þ

This means that the Hamiltonian with respect to another time
parameter τ [say, for example, the proper time of an observer
along a curve zðτÞ] is expected to satisfy

ĤτðτÞjψi ¼ i
d
dτ

jψi; ð2Þ

which gives explicitly the relationship between Hτ and Ht

derived from time reparametrization:

Ĥτ ¼ dt
dτ

Ĥt ¼ utĤt: ð3Þ

The derivative of twith respect to τwaswritten in terms of the
t component of the four-velocity to emphasize that having the
curve is enough to relate the Hamiltonians in this case. In
more complicated cases, in which different notions of time
translations are not exclusively due to time reparametriza-
tion, but to general spacetime coordinate transformations,
and when we consider smeared particle detectors coupled to
quantum fields in curved spacetimes, the calculation is more
involved; we will explicitly develop the procedure below.

III. THE DETECTOR-FIELD SYSTEM
HAMILTONIAN

Let us then formulate our model for describing the
coupling between a free scalar field ϕ and an Unruh-DeWitt

detector in a spacetime M equipped with a metric g. The
assumption of globally hyperbolic spacetime allows us to
foliate it as M ¼ ⋃t∈REt, where each Et is a Cauchy
surface. This selects a timelike direction ∂t, and therefore
the surfaces Et generalize the idea of “constant time
surfaces”. This allows us to introduce “equal time” com-
mutation relations to canonically quantize a classical field.
For concreteness, we are going to focus on free scalar

field quantization and on particle detectors that couple
linearly to the field. This scenario is paramount in many
studies in quantum field theory in curved spacetimes,
relativistic quantum information, and in quantum optics,
since scalar particle detector models such as the Unruh-
DeWitt (UDW) [4,5] detector have been proven to be good
models for the light-matter interaction in most regimes
[9,18]. The theory of a free scalar field in an arbitrary
curved spacetime in D ¼ nþ 1 dimensions is described by
an action given by

S½ϕ� ¼
Z

dDx
ffiffiffiffiffiffi
−g

p �
−
1

2
∇μϕ∇μϕ −

1

2
m2ϕ2

�
; ð4Þ

whose Euler-Lagrange equations give us the Klein-Gordon
equation: ð∇μ∇μ −m2Þϕ ¼ 0.
Under the assumptions described above the free evolu-

tion of the field ϕ is given by a general solution that can be
written as

ϕðxÞ ¼
Z

dnkða�kukðxÞ þ aku�kðxÞÞ; ð5Þ

where the functions ukðxÞ form a complete set of solutions
to the Klein-Gordon equation. Upon quantization, the
amplitudes are promoted to creation and annihilation
operators â†k and âk which will be then imposed to
satisfying canonical commutation relations. Namely, we
impose ½âk; â†k0 � ¼ δðnÞðk − k0Þ1, with all other commuta-
tors vanishing.
The UDW detector will be described as a two-level

system that interacts with the field along a timelike
trajectory zðτÞ ¼ ðtðτÞ; zðτÞÞ parametrized by proper time
τ. This means that the free Hamiltonian that generates
translation with respect to the proper time of the center of
mass of the detector can be written as

Ĥτ
d ¼ Ωσ̂þσ̂−; ð6Þ

where Ω is the energy gap between ground and excited
states of the detector as measured in the detector’s proper
reference frame [9], and σ̂þ and σ̂− are the usual SU(2)
ladder operators. It is important to stress once again that
such a Hamiltonian generates time translations with respect
to the proper time of the detector, which can be related to
the quantization coordinate time t by the expression (3).
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Now, the last ingredient to be included is the coupling
between detector and field. One can define a monopole
operator for the detector which in the interaction picture
takes the form [9]

μ̂ðτÞ ¼ eiΩτσ̂þ þ e−iΩτσ̂−: ð7Þ

The interaction Hamiltonian between detector and field is,
as usual, prescribed in the proper frame of the detector,
which is well-defined for pointlike detectors [9]:

Ĥτ
I ¼ λχðτÞμ̂ðτÞϕ̂ðzðτÞÞ; ð8Þ

where χðτÞ is the switching function, responsible for
controlling the time duration and intensity of the
interaction.

IV. SMEARED DETECTORS IN
CURVED SPACETIMES

The interaction Hamiltonian defined in the previous
section models the detector as a pointlike object that
interacts with the field only along its trajectory, that is,
only at a single point in space for every value of its proper
time. Pointlike interactions, however, are linked to unphys-
ical divergences [45] and, although sometimes acceptable
approximations, pointlike systems are arguably controver-
sial choices to represent physically meaningful detectors
coupling to quantum fields. Take for instance the light-
matter interaction in quantum optics: atoms are reasonably
localized objects that couple to the electromagnetic field in
a finite region of space. Since such interactions happen
locally but not only in a pointlike manner, it is not enough
to restrict ourselves to pointlike detectors. Also, from a
fundamental point of view, a quantum field theory is
described by its local algebras of observables, which are
seen by many as the fundamental objects of the theory
[8,46,47]. These are all important motivations to look for a
model that allows the detector to interact with elements of
the local algebras of observables of a quantum field. In
summary, we need to introduce smeared detectors.
If one were asked to write down a Hamiltonian that

exhibits a coupling between detector and field with some
spatial extension, perhaps the first straightforward way one
could think of would be

Z
E0
t0
dnx0

ffiffiffiffiffiffi
g0E0

q
ĥIðx0Þ; ð9Þ

where ĥIðx0Þ is to be interpreted as a Hamiltonian density
that describes the spatial profile of the interaction in the
primed reference frame, and E0

t0 is a spacelike hyper-
surface naturally adapted to the given frame. g0E0 is the
determinant of the induced metric in these sheaves. One
could naively expect the Hamiltonian to change according

to expression (3) considering the fact that the space integral
must now be performed in the spacelike surfaces Et,
orthogonal to the new coordinate time. Therefore, it is
only natural to assume that the Hamiltonian in the
unprimed reference frame should be

dt0

dt

Z
Et

dnx
ffiffiffiffiffi
gE

p
ĥIðxÞ: ð10Þ

However, for reasons that will become clear in the
following sections, this prescription can only be appropri-
ate in the case of inertial detectors in flat spacetimes, not
being a satisfactory one for smeared detectors in arbitrary
trajectories in globally hyperbolic spacetimes since, as
discussed below, it would yield incompatible predictions
for different reference frames.
In constructing a fully covariant model for the interaction

of field and detector, wewill have to prescribe aHamiltonian
density that couples the field and the detector. Although
there is no natural way of assigning such Hamiltonian
density using nonrelativistic quantum mechanics, first prin-
ciple arguments will prescribe the form of this Hamiltonian
density in the detector’s center of mass frame, while the
explicit covariance demands that we should unambiguously
define how each observer extracts measurable quantities for
the system.
In what follows we will present the noncovariant

model often used in the literature, analyze its drawbacks,
then propose the fully covariant detector model described
above, and finally explicitly compare the predictions of
both models, discussing in what regimes keeping explicit
covariance is fundamental and in what regimes the non-
covariant model can be a good approximation.

A. Noncovariant prescription in the reference
frame of the detector

Let us assume we have a detector which is smeared and
whose center of mass describes a trajectory zðτÞ, where τ is
the proper time of such a curve. It is then useful to use
Fermi normal coordinates around zðτÞ. This coordinate
system is defined as follows: for a fixed value τ0, we have
the four-velocity of the curve given by uðτ0Þ ¼ _zðτ0Þ,
where the dot denotes derivatives with respect to τ. The
four-velocity is of course a normalized timelike vector. We
can choose vector fields ei in zðτ0Þ such that fuðτ0Þ; eig
define an orthonormal basis of Tzðτ0ÞM (the tangent vector
space to spacetime at zðτ0Þ. We then extend the basis ei to
the whole curve imposing that they are Fermi-Walker
transported along it. We say a given vector field vμ is
Fermi-Walker (FW) transported if it satisfies the following
differential equation:

uν∇νvμ ¼ ðvνaνÞuμ − ðvνuνÞaμ; ð11Þ

where aμ is the proper acceleration of the curve.
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It is worth mentioning that uμðτÞ is automatically FW
transported and such transport allows us to extend the basis
ei along the curve zðτÞ ensuring that the extensions eiðτÞ
together with uðτÞ are still an orthonormal basis for every τ.
We can thus write every vector orthogonal to uðτÞ in each
of the tangent spaces TzðτÞM as x̄ieiðτÞ, where x̄i are real
parameters. One can then define coordinates in the space-
like surfaces orthogonal to uμ by exponentiating the vectors
x̄ieiðτÞ. It is possible to show that such operation is well
defined locally around the curve, and that this actually
defines a coordinate system [48]. Let Στ stand for the
spacelike hypersurface generated by the eiðτÞ’s, that is,
the rest space (hyperplane of simultaneity) with respect to
the instantaneous four-position zðτÞ. If the moving frame is
associated with the trajectory of a particle detector, we
could think of zðτÞ ¼ ðτ; 0Þ as the trajectory of its center of
mass parametrized by proper time τ.
From this construction it follows that x̄ ¼ x̄i define

coordinates of the rest space relative to the trajectory
zðτÞ. We then define the Fermi normal coordinates around
the curve by ðτ; x̄Þ, which parametrize spacetime in an open
set around the zðτÞ. Furthermore, the properties of the
exponential ensure that the proper distance between zðτÞ
and a point with coordinates x̄i in the sheave Στ is given
by r ¼

ffiffiffiffiffiffiffiffi
x̄ix̄i

p
.

We denote the components of the metric in Fermi normal
coordinates by ḡμν, so that in each one of the sheaves Στ we
get an induced metric ḡij. It is also important to remark that
the Fermi normal coordinates are not orthogonal at every
point. In fact, it is not even true that the vector ∂τ is
orthogonal to the surfaces Στ at every point due to the
presence of curvature. In the Appendix we include the
expansion of the metric up to second order on the distance
from the points to the curve, where we see explicitly that
curvature breaks such orthogonality condition.
Having such a coordinate system naturally adapted to the

rest space around the world line of the center of mass of a
particle detector, we can define an interaction Hamiltonian
that takes into account a local interaction between the field
and the detector as follows:

Ĥτ
IðτÞ ¼ λχðτÞμ̂ðτÞ

Z
Στ

dnx̄
ffiffiffiffiffi
ḡΣ

p
fðx̄Þϕ̂ðx̄Þ; ð12Þ

where fðx̄Þ is called the smearing function, and is respon-
sible for determining the spatial profile of the interaction.
The term dnx̄

ffiffiffiffiffi
ḡΣ

p
is the induced volume element in the

surface Στ, with ḡΣ being the determinant of the spatial
metric coefficients ḡij. Just as in the pointlike case, we
could have made the physically reasonable assumption that
the interaction Hamiltonian is prescribed in the reference
frame of the detector, so that it generates time evolution
with respect to the parameter τ. This Hamiltonian is the one
that has been extensively used in the literature of particle
detectors (see, e.g., among many others, [9,45,49]).

It is then possible to calculate the time evolution
operator, given by the time ordered exponential of the
Hamiltonian

Û ¼ T exp

�
−iλ

Z
R
dτ

Z
Στ

dnx̄
ffiffiffiffiffi
ḡΣ

p
χðτÞμ̂ðτÞfðx̄Þϕ̂ðx̄Þ

�
;

ð13Þ

where the support of the switching function χðτÞ encodes
the possibly finite nature of the interaction.
However, we see that this prescription explicitly breaks

covariance. This can be seen by noting that the term in the
exponential of the unitary evolution operator is not a
covariant integral, in the sense that it cannot be written
as an integral over anD ¼ nþ 1 dimensional volume. This
is because Fermi normal coordinates are orthogonal strictly
on the trajectory of the centre of mass, but not around it. We
see therefore that when there is strong curvature or
acceleration, the prescription (12) may not be adequate.
Discussing this in greater detail is the topic of the following
section.

B. Covariant prescription of particle
detector physics

We now present a fully covariant description of a
smeared particle detector. As was seen in the previous
section, what broke covariance was the fact that the unitary
time evolution operator was defined as an integral in the
detector’s proper time in terms of the Hamiltonian seen in
its reference frame. To solve this problem, we instead
define a Hamiltonian density in a way thatU depends on an
integral over a spacetime volume. This will yield a
covariant formulation of this interaction. We then assume
there is a spacetime smearing compactly supported func-
tion Λðx0Þ, which regulates both the spatial and temporal
profile of the interaction. The interaction Hamiltonian
density can then be written as

ĥIðx0Þ ¼ λΛðx0Þμ̂ðτðx0ÞÞϕ̂ðx̄0Þ: ð14Þ

The time evolution operator can thus be written as the
exponential of the integral over the whole spacetime of
such density:

Û ¼ T exp

�
−i

Z
M

dDx0
ffiffiffiffiffiffiffi
−g0

p
ĥIðx0Þ

�
; ð15Þ

where ḡ represents the determinant of the full metric in
Fermi normal coordinates. It important to remark that the
fact that Λðx0Þ is compactly supported ensures that the
above integral is always taken in a compact region in
spacetime, associated to the total time in which the
interaction takes place and the spatial profile of the detector.
If one wants to then write the time evolution operator as the

GENERAL RELATIVISTIC QUANTUM OPTICS: FINITE-SIZE … PHYS. REV. D 101, 045017 (2020)

045017-5



time evolution generated by a Hamiltonian with respect to
an arbitrary time coordinate t0, the natural prescription for
such a Hamiltonian would be

Ĥt0
I ðt0Þ ¼

Z
E0
t0
dnx0

ffiffiffiffiffiffiffi
−g0

p
ĥIðx0Þ; ð16Þ

where E0
t0 are spacelike surfaces orthogonal to ∂t0 , and of

course g0 is the determinant of the metric in ðt0; x0Þ
coordinates.
We can compare the covariant prescription (15) with the

one made in Eq. (13) if, following the arguments of [9],
we make the physically reasonable assumption that in the
reference frame of the detector it is possible to separate
the spacetime smearing function as Λðx̄Þ ¼ χðτÞfðx̄Þ,
where χðτÞ and fðx̄Þ are the switching and smearing
functions from the previous sections [50]. In this case,
the fully covariant time evolution operator from (15) taken
in the reference frame of the detector can be rewritten as

Û ¼ T exp

�
−iλ

Z
R
dτ

Z
Στ

dnx̄
ffiffiffiffiffiffi
−ḡ

p
χðτÞfðx̄Þμ̂ðτÞϕ̂ðx̄Þ

�
:

ð17Þ

If we compare this expression with the noncovariant
prescription of Eq. (13), we see that time evolution
operators in the two prescriptions are different, i.e.,

Û ≠ Û: ð18Þ

The fundamental difference between (13) and (17) is that
the first arises from assigning a simultaneous interaction
between detector and field at each spacelike slice associated
to the center of mass’ trajectory. This is the main reason
why Û explicitly breaks covariance: in the presence of
curvature or acceleration the four-velocity of the center of
mass of the detector ∂τ is not the four-velocity of every
point of the smeared detector moving rigidly. The operator
Û, on the other hand, takes into account that the detector
has to move rigidly and therefore every point in the
smearing moves with four-velocities tangent to their
corresponding trajectories, thus being consistent with the
view of it as a congruence of coherent subsystems, each of
them mediating a point-wise interaction with the field
across the smearing.
We can quantify the difference between the covariant

model and the privileged-detector-frame one. There is, in
essence, only one difference between the integrals: the fact
that the first one depends on the determinant of the full
metric in Fermi normal coordinates, while the other one
depends on the metric in each one of the sheaves Στ. In the
Appendix we use the results from [48] to write an
expansion for

ffiffiffiffiffiffi
−ḡ

p
in terms of

ffiffiffiffiffi
ḡΣ

p
in the spatial extension

of the detector. We obtained

ffiffiffiffiffiffi
−ḡ

p ¼ ffiffiffiffiffi
ḡΣ

p �
1þ aix̄i þ

1

2
Rτiτjx̄ix̄j

�
þOðr3Þ; ð19Þ

where r ¼
ffiffiffiffiffiffiffiffi
x̄ix̄i

p
, a ¼ aiei is the proper acceleration of

the detector and Rτiτj are the corresponding components of
the curvature tensor in Fermi normal coordinates evaluated
at the center of mass of the detector zðτÞ. It is worth
mentioning that in such coordinates, the norm of the
vector x̄ ¼ ðx̄iÞ corresponds to the proper distance in the
sheaves Στ, so that the parameter of expansion corresponds
to the physical distance from the detector to the point
one integrates. That suggests, as we will discuss below,
that for small enough detectors the two approaches are
equally valid.
To study this difference in detail, let us evaluate the

argument of the exponent of (15) expanded as powers of the
local curvature and the proper acceleration at the center of
mass of the detector:

Z
R
dtĤt

I ¼
Z
R
dτĤτ

I ¼
Z
R
dτ

Z
Στ

dnx̄
ffiffiffiffiffiffi
−ḡ

p
ĥIðx̄Þ

¼
Z
R
dτ

Z
Στ

dnx̄
ffiffiffiffiffi
ḡΣ

p �
1þ aix̄i þ

1

2
Rτiτjx̄ix̄j

�
ĥI

þOðr3Þ

¼
Z
R
dτ

�
Ĥτ

IðτÞ þ aiĤ
τi
I ðτÞ þ

1

2
RτiτjĤ

τij
I ðτÞ

�

þOðr3Þ: ð20Þ

This equality implies the following equality between the
integrands:

Ĥτ
I ¼ Ĥτ

IðτÞ þ aiĤ
τi
I ðτÞ þ

1

2
RτiτjĤ

τij
I ðτÞ þOðr3Þ: ð21Þ

HereHIðτÞ,Hi
IðτÞ andHij

I ðτÞ are the monopole, dipole and
quadrupole moments of the Hamiltonian density in the
sheaves, defined as

Ĥτ
IðτÞ ≔

Z
Στ

dnx̄
ffiffiffiffiffi
ḡΣ

p
ĥIðx̄Þ; ð22Þ

Ĥτi
I ðτÞ ≔

Z
Στ

dnx̄
ffiffiffiffiffi
ḡΣ

p
x̄iĥIðx̄Þ; ð23Þ

Ĥτij
I ðτÞ ≔

Z
Στ

dnx̄
ffiffiffiffiffi
ḡΣ

p
x̄ix̄jĥIðx̄Þ: ð24Þ

Notice that these integrals depend only on properties of the
Hamiltonian in each one of the sheaves. Moreover, the
first term is exactly the Hamiltonian of the noncovariant
description in the detector’s reference frame [Eq. (12)] if we
work with the assumption that Λðx̄Þ ¼ χðτÞfðx̄Þ, that is,
the physically reasonable assumption that the spacetime
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smearing factors into a switching function and a smearing
function in the center of mass frame of the detector [9].
Equation (20) then allows us to compare the two terms in

the exponents of Û and Û. From (3), Ĥt
I is given by

Ĥt
I ¼

dτ
dt

Ĥτ
I : ð25Þ

Using Eqs. (21) and (25), we arrive to a relationship
between the Hamiltonians generating translations with
respect to lab frame time in the noncovariant model (i.e.,
Ĥt

I) and in the covariant model [i.e., Ĥt
I defined according

to (16)]:

Ĥt
I ¼ Ĥt

I −
dτ
dt

�
aiĤ

τi
I þ 1

2
RτiτjĤ

τij
I

�
þOðr3Þ: ð26Þ

Notice that the first term is what would covariantly be
defined as the Hamiltonian in the quantization reference
frame, while we get a correction that transforms as in
Eq. (3). We see that the first correction term (the dipole
term) appears for any noninertial motion of the detector,
even in flat spacetime. The second term (the quadrupole
term) is the first correction due to spacetime curvature.
One can wonder whether the error incurred when

considering the noncovariant model is relevant in the
regimes where these models are usually employed.
To get an idea of the orders of magnitude introduced by

the covariance correcting terms in (26) for usual exper-
imental settings, let us assume that the detector models an
atom, so that its typical size is of the order of the Bohr
radius 2a0 ≈ 10−10 m. In this case, the order of magnitude
for the acceleration of the detector so that the dipole term
becomes relevant is when we have accelerations a ≈ 1026g,
where g is the surface gravity of the Earth. This is far from
the values achieved in experimental settings with atoms and
actually beyond the acceleration levels where the electro-
magnetic interaction is not enough to keep the rigidity of
the atom. Compare this with the acceleration needed to
maintain a circular orbit in the Large Hadron Collider,
which is around 1013g. For the quadrupole order term to
contribute, we need a gravitational field such that the radius
of curvature is of the order of the size of the detector, which
would not even happen for any macroscopic black hole
scenarios (outside or on the event horizon). Notice that the
radius of curvature on the horizon of a solar mass black
hole is of the order of kilometers, that is, again 13 orders of
magnitude away from the typical size for such detectors.
This means that for practical purposes and experimental
settings, smeared detectors can be modeled in their own
reference frames in the way that has been traditionally done
in the literature, even though this prescription breaks
covariance in the ways discussed above. However, there
are some scenarios where switching to a different frame
is required (e.g., multiple detectors in different states of

motion) and in that case having a covariant formulation is
fundamental.

V. CONCLUSIONS

In this paper we have discussed two different ways
of handling smeared Unruh-DeWitt detectors in curved
spacetimes.
The first description that we have studied is usually

the one found in literature, (e.g., [9,45,49]), which is
adapted to the perspective of the reference frame of the
detector. We have discussed how this prescription is not
fully satisfactory for smeared detectors in curved space-
times since it explicitly breaks covariance. We have shown
how the use of this model for curved spacetimes or
accelerated trajectories would not yield the same predic-
tions (for example, detector transition probabilities) in all
reference frames.
Then we presented a fully covariant prescription for a

detector-field interaction that naturally captures the
expected covariant behavior of the theory. By doing so
we have been able to give the form of the interaction in the
Fermi-Walker frame of the detector’s center of mass, where
first principle arguments dictate the form of the Hamiltonian
density if we want the model to capture the features of the
light-matter interaction.
While being able to reproduce the same general physical

results of the noncovariant model when the noncovariant
approach is a good approximation (e.g., the two approaches
are equivalent for pointlike detectors), the fully covariant
approach removes any frame dependence of the physical
predictions from the model, something essential if we
discuss relativistic setups.
We have also analyzed what is the error incurred when

using the noncovariant approach instead of the fully covar-
iant one.Wehave explicitly computed thedifference between
the Hamiltonians in the fully covariant case and in the
noncovariant case. We have done so in two cases: a) when
they generate time translations with respect to the detector’s
center of mass proper time (that is, the difference Ĥτ

I − Ĥτ
I)

and b) when they generate translations with respect to the
lab’s time (that is, the difference Ĥt

I − Ĥt
I).

We have proven that the difference between the two
approaches can be expressed in terms of a power series on
the smearing length scale of the detector, and estimated
the magnitude of the acceleration for the detector or the
curvature of spacetime that would be needed for the
noncovariant model to yield significantly different results
than the covariant one. We found that until we reach
accelerations, or gravitational fields of order of 1026g for an
atomic sized detector the two approaches give approx-
imately the same results in the detector’s proper frame.
These accelerations are way below those where the Unruh
effect or other similar relativistic phenomena should be
visible (see e.g., [51–54]), and therefore we conclude that
for nonextreme spacetime curvature or accelerations the
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noncovariant model can be a good approximation to the
covariant one.
However in scenarios where several smeared detectors

have to be considered, and the causality of the predictions is
relevant for any conclusions extracted (e.g., in entangle-
ment harvesting setups or in quantum communication), we
have to restrict to the fully covariant formulation, as
different detectors in a curved spacetime (or in different
states of motion in flat spacetime) would have their
Hamiltonians prescribed in different reference frames.
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APPENDIX: VOLUME ELEMENT IN FERMI
NORMAL COORDINATES

From [48] the metric ḡ in Fermi normal coordinates
around the curve zðτÞ can be expressed as

ḡττ¼−ð1þ2aix̄iþðaix̄iÞ2þRτiτjx̄ix̄jÞþOðr3Þ; ḡτi¼−
2

3
Rτkijx̄kx̄jþOðr3Þ; ḡij¼ δij−

1

3
Rikjlx̄kx̄lþOðr3Þ; ðA1Þ

where x̄i are the coordinates in each of the sheaves, r2 ¼ P
iðx̄iÞ2 is the geodesic distance between the curve and each of the

points in Στ, Rαβμν is the Riemann tensor evaluated at zðτÞ in Fermi normal coordinates, and aðτÞ is the proper acceleration
of zðτÞ.
From that we can calculate the determinant of the metric detðḡÞ in such a coordinate system in terms of the determinant of

the spatial part of it, detðḡijÞ. Using the following expression for the determinant we can follow up with the calculations:

det ḡ ¼ ϵαβμνḡατḡβ1ḡμ2ḡν3

¼ ϵτijkḡττḡi1ḡj2ḡk3 − ϵτijkḡτiḡτ1ḡj2ḡk3 þ ϵτijkḡτjḡi1ḡτ2ḡk3 − ϵτijkḡτkḡi1ḡj2ḡτ3

¼ ḡττ detðḡijÞ −
4

9
ϵτijkRτaibx̄ax̄bRτc1dx̄cx̄d

�
δj2 −

1

3
Rje2fx̄ex̄f

��
δk3 −

1

3
Rkm3nx̄mx̄n

�

þ 4

9
ϵτijkRτajbx̄ax̄bRτc2dx̄cx̄d

�
δi1 −

1

3
Rie1fx̄ex̄f

��
δk3 −

1

3
Rkm3nx̄mx̄n

�

−
4

9
ϵτijkRτakbx̄ax̄bRτc3dx̄cx̄d

�
δj2 −

1

3
Rje2fx̄ex̄f

��
δi1 −

1

3
Rim1nx̄mx̄n

�
þOðr5Þ

¼ ḡττ detðḡijÞ −
4

9
ϵτi23RτaibRτc1dx̄ax̄bx̄cx̄d þ

4

9
ϵτ1j3RτajbRτc2dx̄ax̄bx̄cx̄d −

4

9
ϵτ12kRτakbRτc3dx̄ax̄bx̄cx̄d þOðr5Þ

¼ ḡττ detðḡijÞ −
4

9
ðϵτi23RτaibRτc1d − ϵτ1j3RτajbRτc2d þ ϵτ12kRτakbRτc3dÞx̄ax̄bx̄cx̄d þOðr5Þ

¼ ḡττ detðḡijÞ −
4

9
ðϵτ123Rτa1bRτc1d − ϵτ123Rτa2bRτc2d þ ϵτ123Rτa3bRτc3dÞx̄ax̄bx̄cx̄d þOðr5Þ

¼ ḡττ detðḡijÞ −
4

9
ðRτa1bRτc1d − Rτa2bRτc2d þ Rτa3bRτc3dÞx̄ax̄bx̄cx̄d þOðr5Þ

¼ − detðḡijÞ − ð2aix̄i þ ðaix̄iÞ2 þ Rτiτjx̄ix̄jÞ detðḡijÞ þOðr4Þ: ðA2Þ

This yields:

ffiffiffiffiffiffi
−ḡ

p ¼ ffiffiffiffiffi
ḡΣ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2aix̄i þ ðaix̄iÞ2 þ Rτiτjx̄ix̄j þOðr4Þ

q

¼ ffiffiffiffiffi
ḡΣ

p �
1þ aix̄i þ

1

2
ðaix̄iÞ2 þ

1

2
Rτiτjx̄ix̄j −

1

8
ð2aix̄iÞ2 þOðr3Þ

�
¼ ffiffiffiffiffi

ḡΣ
p �

1þ aix̄i þ
1

2
Rτiτjx̄ix̄j

�
þOðr3Þ: ðA3Þ

We also can calculate the determinant of ḡij in terms of the curvature tensor:

ḡΣ ¼ ϵijkḡi1ḡj2ḡk3 ¼ ϵijk
�
δi1 −

1

3
Rim1nx̄mx̄n

��
δj2 −

1

3
Rjm2nx̄mx̄n

��
δk3 −

1

3
Rkm3nx̄mx̄n

�

¼ 1 −
1

3
ðϵi23Rim1n þ ϵ1j3Rjm2n þ ϵ12kRkm3nÞx̄mx̄n þOðr4Þ ¼ 1 −

1

3
ðR1i1j þ R2i2j þ R3i3jÞx̄ix̄j þOðr4Þ: ðA4Þ
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Giving us:
ffiffiffiffiffi
ḡΣ

p ¼ 1 − 1
6
ðR1i1j þ R2i2j þ R3i3jÞx̄ix̄j þOðr4Þ. In the end, replacing this in the expression (A3), we get:

ffiffiffiffiffiffi
−g

p ¼ 1þ aix̄i þ
1

2

�
Rτiτj −

1

3
ðR1i1j þ R2i2j þ R3i3jÞ

�
x̄ix̄j þOðr3Þ: ðA5Þ
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