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We revisit the scalar OðNÞ model in the dimension range 4 < d < 6 and study the effects caused by its
metastability. As shown in previous work, this model formally possesses a fixed point where, perturbatively
in the 1=N expansion, the operator scaling dimensions are real and above the unitarity bound. Here, we
further show that these scaling dimensions do acquire small imaginary parts due to the instanton effects. In
d dimensions and for large N, we find that they are of order e−NfðdÞ, where, remarkably, the function fðdÞ
equals the sphere free energy of a conformal scalar in d − 2 dimensions. The non-perturbatively small
imaginary parts also appear in other observables, such as the sphere free energy and two and three-point
function coefficients, and we present some of their calculations. Therefore, at sufficiently largeN, theOðNÞ
models in 4 < d < 6may be thought of as complex CFTs. When N is large enough for the imaginary parts
to be numerically negligible, the five-dimensional OðNÞ models may be studied using the techniques of
numerical bootstrap.

DOI: 10.1103/PhysRevD.101.045013

I. INTRODUCTION AND SUMMARY

One of the classic models of quantum field theory
(QFT) is the OðNÞ-symmetric theory of N real scalar
fields ϕi with interaction g

4
ðϕiϕiÞ2. For small values of N

there are physical systems in three and two spacetime
dimensions, whose critical behavior is described by this
QFT. While the infrared (IR) dynamics in these dimensions
is strongly coupled, there are various methods for studying
it, including dimensional continuation [1,2] and the 1=N
expansion (for a review, see [3]). Furthermore, the methods
of conformal bootstrap [4–6] (for reviews, see [7–11]) have
been fruitfully applied to the OðNÞ model in various
dimensions [12–15].
The 1=N expansion may be developed in continuous

dimension d using a generalized Hubbard-Stratonovich
transformation with an auxiliary field σ [16–24]. For
N ≥ 3, the lower critical dimension is 2, and the perturbative
expansions in d ¼ 2þ ϵ dimensions may be developed [25]
using the ultraviolet (UV) fixed point of theOðNÞ nonlinear
sigma model. (Recently, interesting nonlocal generalizations
of the 2-d sigma model are being explored [26].)
In d > 4, the quartic OðNÞ model is nonrenormalizable,

but there is a UV fixed point in d ¼ 4þ ϵ for g < 0.

Furthermore, the 1=N expansion may be formally con-
tinued to d > 4. There is an interesting range, 4 < d < 6,
where the theory appears to be unitary order by order in the
1=N expansion [27–31]. Yet, the fate of the theory with
large but finite N is unclear in view of the expectation,
supported by rigorous results [32], that the interacting ϕ4

theory cannot exhibit true critical behavior in d > 4.
Some light on this issue was shed by the series of papers

starting with [31], where a cubic OðNÞ-symmetric theory
with the action for N þ 1 scalar fields given by

S ¼
Z

ddx

�
1

2
ð∂ϕiÞ2 þ 1

2
ð∂σÞ2 þ g1

2
σϕiϕi þ g2

6
σ3
�
ð1:1Þ

was introduced as a possible UV completion of the OðNÞ
model in d < 6. Indeed, for N > Ncrit, where Ncrit ≈ 1038,
an IR stable fixed point of the theory (1.1) was found
perturbatively in ϵ [31,33,34]. Furthermore, it was found
that the 6 − ϵ expansions of various observables agree
with the results obtained from the formal 1=N expansions.
For N ¼ Ncrit the IR fixed point merges with another
fixed point, and for N < Ncrit these fixed points become
complex. This kind of merger of fixed points is a ubiquitous
phenomenon in studies of the renormalization group
[35–42], and theories at the complex fixed points for N <
Ncrit have been recently called “complex CFTs” [40,41].
At the same time, one should expect that, even the model

with N > Ncrit cannot be perfectly stable because of
tunneling from the perturbative vacuum at σ ¼ ϕi ¼ 0 to
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large negative values of σ, where the potential is unbounded
from below. The instantons mediating this tunneling were
found long ago in the 6-d cubic theory of a single scalar
field [43], as well as in the 4-d OðNÞ model with negative
coupling [44,45]. Via application of the instanton methods
to the UV fixed point in 4þ ϵ dimensions, it was shown
[45] that the critical exponents acquire imaginary parts of
order exp ð− Nþ8

3ϵ Þ. Extending the instanton calculations to
the OðNÞ-symmetric model (1.1) in d ¼ 6 − ϵ dimensions,
as well as to the large N model in the range 4 < d < 6, we
find that various observables pick up imaginary parts that
are exponentially suppressed as e−NfðdÞ at large N.1 We
calculate fðdÞ and find that it is given by the free energy of
a conformal scalar on Sd−2, which has the integral repre-
sentation [47]:

fðdÞ ¼ 1

sinðπd=2ÞΓðd − 1Þ
Z

1

0

dxx sinðπxÞΓ
�
d
2
þ x − 1

�

× Γ
�
d
2
− x − 1

�
: ð1:2Þ

In particular, fð5Þ ¼ log 2
8

− 3ζð3Þ
16π2

≈ 0.0638 [48]. The func-
tion fðdÞ is plotted in Fig. 1. In agreement with [45],
fð4þ ϵÞ blows up as 1=ð3ϵÞ. Similarly, near six dimensions
we find fð6 − ϵÞ → 1=ð90ϵÞ; as we show below, this pre-
cisely agrees with the contribution of the instanton in the
cubic theory (1.1). The relation between the nonperturbative
imaginary parts in d dimensions and the sphere free energy
of a conformal scalar in d − 2 dimensions is quite striking,
and it would be nice to understand its physical origin.
A simple argument for the exponential suppression of

the imaginary parts is that on the sphere Sd, or cylinder
Sd−1 ×R, the conformal coupling to curvature adds a
positive quadratic term to the scalar potential, making
the perturbative vacuum metastable. We demonstrate the
smallness of imaginary parts explicitly by computing, at
large N, the sphere free energy and the scaling dimensions
of the operator ϕi, which transforms as a vector of OðNÞ,
and of the singlet σ ∼ ϕiϕi. We also show that other CFT
data, such as three-point function coefficients and the
normalization CJ of the two-point function of the con-
served OðNÞ current, acquire the nonperturbatively small
imaginary parts.2

The fact that the imaginary parts are very small for large
N makes the OðNÞ models in 4 < d < 6 similar to the

robust examples [35–42] of complex CFTs corresponding
to the walking RG flows and weakly first-order phase
transitions.3 In d ¼ 5, for large enough N the imaginary
parts of scaling dimensions can be made so small that the
numerical bootstrap studies cannot distinguish such com-
plex CFTs from the regular CFTs. This is probably the
reason for the appearance in the d ¼ 5 conformal bootstrap
of the islands in parameter space surrounding the values of
operator dimensions which are in good agreement with the
large N expansions [15].
Our results may also be used to make predictions about

the behavior of the OðNÞ magnets on a 5-dimensional
lattice. While such spin systems are not expected to have
non-Gaussian second-order phase transitions, they may
exhibit effects similar to near-criticality in a long-lived
metastable state. Since the interacting OðNÞ models in 4 <
d < 6 have two OðNÞ invariant relevant operators [31,33],
one may be able to find the approximately critical behavior
by tuning both the nearest-neighbor and next-to-nearest-
neighbor couplings on a lattice.4

Our results may have interesting implications for the
AdS/CFT correspondence [54–56], in particular its higher
spin version (for reviews see [57,58]). The type AVasiliev
higher spin theories [59–61] have the minimal field content,
which consists of massless higher spin fields of even spin
and a massive scalar. It has been conjectured [62] that such
a theory in dimension dþ 1 is dual to the singlet sector of
the d-dimensional OðNÞ model, which is either free or

FIG. 1. The function fðdÞ controlling the nonperturbative
imaginary parts ∼�ie−NfðdÞ in the large N theory, plotted in
the relevant range 4 < d < 6, where it is positive. The function
blows up near d ¼ 4 and d ¼ 6, corresponding to the fact that the
OðNÞ complex CFT becomes a free theory in those dimensions.

1Similar large N calculations have been performed on Rd−1 ×
S1 producing a thermal mass whose imaginary part in d ¼ 5 is not
suppressed [46]. We reproduce these results using different
methods in Appendix C.

2Technically similar calculations of instanton corrections to
CFT correlation functions and operator scaling dimensions in the
N ¼ 4 SYM theory have been performed in [49–53]. In that case
there is no instability, and the instanton does not have a negative
mode responsible for the imaginary parts.

3We should note, however, that the generation of small
imaginary parts via the nonperturbative instanton effects is a
different phenomenon than the merger and annihilation of
perturbative fixed points. It would be interesting to look for
other examples of complex CFTs where the small imaginary parts
are generated nonperturbatively.

4We are grateful to Slava Rychkov for this suggestion.

SIMONE GIOMBI et al. PHYS. REV. D 101, 045013 (2020)

045013-2



interacting depending on the choice of boundary conditions
on the bulk scalar field. In d ¼ 3 both choices of boundary
conditions produce a stable theory, since both free and
interacting OðNÞ models are conventional CFTs. In d ¼ 5,
however, only the choice of boundary conditions corre-
sponding to the free OðNÞ model should be stable. In view
of our findings in this paper, the other choice is expected to
be metastable, with the decay amplitude ∼e−const=G, where
G ∼ 1=N is the bulk coupling constant. From the bulk point
of view, the instability may again be due to instantons,
whose existence should depend on the choice of boundary
conditions.5 It would be interesting to search for such
instanton solutions of the higher-spin theory in AdS6.
The rest of this paper is organized as follows. We begin

in Sec. II with a description of the instanton solutions in the
d ¼ 6 − ϵ and d ¼ 4þ ϵ expansions, where such solutions
can be found by solving the classical equations of motion of
the corresponding theories. In Sec. III we then describe the
instantons at large N, where these instantons extremize the
effective action for the Hubbard-Stratonovich field σ that is
obtained after integrating out the OðNÞ vector fields ϕi.
These solutions on Sd have constant σ ¼ −kðkþ 1Þ (for a
special choice of the instanton moduli), where k is a
positive integer. In 4 < d < 6 the dominant nonperturba-
tive effects come from the k ¼ 1 saddle point. We continue
with calculations of the instanton contribution to the round
sphere free energy in Sec. IV, to the operator scaling
dimensions in Sec. V, and to CJ and an example of a three-
point function coefficient in Sec. VI. In Sec. VII we exhibit
the classical solutions on S4 and S6 where the fields ϕi are
not constant, but are rather proportional to spherical
harmonics; these solutions correspond to the large N saddle
points with k > 1. Several technical details and related
calculations are relegated to the Appendixes.

II. CLASSICAL INSTANTONS IN THE
EPSILON EXPANSION

A. The instanton near six dimensions

The equations of motion of the OðNÞ invariant cubic
scalar theory with action (1.1) are given by

∇2ϕi ¼ g1σϕi;

∇2σ ¼ g1
2
ϕiϕi þ g2

2
σ2: ð2:1Þ

In d ¼ 6, in addition to the trivial solution σ ¼ ϕi ¼ 0,
these equations admit the OðNÞ-invariant instanton
solution

ϕi ¼ 0; ð2:2Þ

σ ¼ −
12

g2

4λ2

ð1þ λ2ðx⃗ − a⃗Þ2Þ2 : ð2:3Þ

Here a⃗ and λ are the moduli corresponding to the position
and size of the instanton. Since this solution has ϕi ¼ 0, it
is a simple generalization of the instanton solution in the
single scalar cubic theory studied in [43].6 Plugging this
solution into (1.1), one obtains the finite instanton action

Sinst ¼
768π3

5g22
: ð2:4Þ

The instanton solution (2.3) is responsible for tunneling
from the metastable ground state at σ ¼ ϕi ¼ 0. As we
show explicitly in Appendix B 1, computing the spectrum
of quantum fluctuations around this solution, one finds a
single negative mode, so that the instanton yields an
imaginary contribution ∼�ie−Sinst to the free energy and
to other observables. To leading order in the d ¼ 6 − ϵ
expansion, for N > Ncrit ≈ 1048 one finds a fixed point
at [31]

g�1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ϵð4πÞ3

N

r �
1þ 22

N
þ…

�
;

g�2 ¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ϵð4πÞ3

N

r �
1þ 162

N
þ…

�
; ð2:5Þ

so that at large N and small ϵ the instanton action is

S6−ϵinst ¼
N
90ϵ

ð1þOð1=NÞÞ: ð2:6Þ

Hence, the imaginary contribution to free energy and other
observables comes with the exponentially suppressed
factor ∼�ie−

N
90ϵ. Let us point out that the β-function of

the theory is also expected to receive such imaginary
contributions from the instanton (see [43–45]), so that
the value of the fixed point couplings (2.5) gets small
imaginary parts as well. This would give nonperturbative
corrections to the action (2.6), which we neglect in this
section as they are further suppressed.
Let us now consider a conformal mapping of the theory

(1.1) from flat space to the unit-radius round sphere Sd

parametrized in stereographic coordinates x⃗, with the
metric

ds2
Sd

¼ 4dx⃗2

ð1þ x⃗2Þ2 : ð2:7Þ

In d ¼ 6, the action (1.1) and the equations of motion (2.1)
are conformally invariant, so the instanton solution on S6

5Similar instanton solutions in AdSdþ1 were discussed in
[63,64].

6In the theory with classical action (1.1) there are other
instantonlike solutions, where both σ and ϕi are nonzero. We
will discuss these classical solutions in Sec. VII.
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can be simply obtained by a Weyl rescaling, and it is
given by

σ ¼ −
12

g2

λ2ð1þ x⃗2Þ2
ð1þ λ2ðx⃗ − a⃗Þ2Þ2 ; ð2:8Þ

where we have used that σ has scaling dimension 2. It is
easy to check that the classical action on S6

S ¼
Z

d6x
ffiffiffi
g

p �
1

2
∂μϕi∂μϕ

i þ 1

2
∂μσ∂μσ þ 3σ2 þ 3ϕiϕi

þ g1
2
σϕiϕi þ g2

6
σ3
�

ð2:9Þ

evaluated on the solution (2.8) has the same value as (2.4),
as expected from conformal invariance. The quadratic
terms in the action above come from the conformal
coupling to the sphere curvature.7

We now observe that for a special choice of the moduli,
λ ¼ 1

8 and a⃗ ¼ 0, the instanton solution on the sphere is
just a constant9

σ ¼ −
12

g2
: ð2:10Þ

This has a simple interpretation: it is the critical point
corresponding to the local maximum of the potential for
configurations with constant σ on S6:

VðσÞ ¼ 3σ2 þ g2
6
σ3: ð2:11Þ

A plot of this potential is given in Fig. 2.
Note that one may also conformally map the theory to

the cylinder Rt × S5. The constant solution (2.10) is then
mapped to the time-dependent configuration

σ ¼ −
12

g2 cosh2 t
: ð2:12Þ

This solves the equation

∂2
t σ ¼ 4σ þ g2

2
σ2; ð2:13Þ

where the right-hand side comes from the potential on
Rt × S5, VRt×S5 ¼ 2σ2 þ g2σ3=6. The solution (2.12) has
just the same form as the instanton in quantum mechanics

which is responsible for tunneling in a cubic potential. See,
for instance, [66,67] for reviews. In the rest of the paper we
will focus mainly on the Sd description of the instanton.
In Sec. III, we will describe how an analogous instanton

solution arises in the large N treatment of the OðNÞ model
in 4 < d < 6 (the integer dimension d ¼ 5 is, of course, the
most interesting). Essentially, the role of the “fundamental”
field σ above will be played by the Hubbard-Stratonovich
field, which is used to develop the large N expansion of the
model in general d.

B. The instanton near four dimensions

For completeness, let us also discuss how the instanton
solution looks like near the lower end of the range
4 < d < 6, where we can formally use the d ¼ 4þ ϵ
expansion in the OðNÞ invariant quartic scalar theory

S ¼
Z

ddx

�
1

2
ð∂ϕiÞ2 þ g

4
ðϕiϕiÞ2

�
: ð2:14Þ

In d ¼ 4þ ϵ, the one-loop beta function is given by

βg ¼ ϵgþ N þ 8

8π2
g2; ð2:15Þ

and thus we see that there is a formal UV fixed point at
negative coupling

g� ¼ −
8π2ϵ

N þ 8
þOðϵ2Þ: ð2:16Þ

At the level of perturbation theory in ϵ, the corresponding
fixed point appears to be unitary (all scaling dimensions are
real and above the unitarity bound) to all orders in ϵ.
However, due to the wrong sign quartic potential, we expect
the model to be nonperturbatively unstable. Indeed, it is
well known that for negative coupling the theory (2.14) in
d ¼ 4 has a real instanton solution [44,68]

FIG. 2. Potential for constant σ for the cubic OðNÞ theory on
S6. The instanton solution (2.10) corresponds to the local
maximum of the potential.

7In general d, the contribution of the conformal coupling to the
Lagrangian for a scalar field ϕ is given by d−2

8ðd−1ÞRϕ2, whereR is
the Ricci scalar. On Sd, we have R ¼ dðd − 1Þ=R2, and we have
set R ¼ 1 in (2.9).

8Or λ ¼ 1=R2 if we reinstate the radius of the sphere.
9This was also noticed and used in related models. For

example, see [43,44,65].
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ϕi ¼
ffiffiffiffiffiffiffi
−
8

g

s
λ

1þ λ2ðx⃗ − a⃗Þ2 û
i ð2:17Þ

where ûi is a constant unit N-component vector (ûiûi ¼ 1),
and λ; a⃗ are the size and position moduli as in the previous
section. Note that ûi are also exact moduli parametrizing an
SN−1. Integration over these moduli restores OðNÞ invari-
ance of correlation functions (see for instance [66] for a
review).
After a conformal mapping to S4, the instanton solution

takes the form

ϕi ¼
ffiffiffiffiffiffiffi
−
2

g

s
λð1þ x⃗2Þ

1þ λ2ðx⃗ − a⃗Þ2 û
i ð2:18Þ

which solves the equations of motion of the S4 theory with
the action

S ¼
Z

d4x
ffiffiffi
g

p �
1

2
∂μϕi∂μϕ

i þ ϕiϕi þ g
4
ðϕiϕiÞ2

�
: ð2:19Þ

Again, we observe that on the sphere there is a choice of
moduli where the solution becomes a constant

ϕi ¼
ffiffiffiffiffiffiffi
−
2

g

s
ûi; ð2:20Þ

which can be seen to correspond to the degenerate maxima
of the potential

VðϕÞ ¼ ϕiϕi þ g
4
ðϕiϕiÞ2: ð2:21Þ

As discussed above, the conformal coupling to the sphere
curvature makes the perturbative vacuum metastable for

g < 0, as shown in Fig. 3. The value of the classical action
on the instanton solution (computed either on R4 or S4) is

Sinst ¼ −
8π2

3g
: ð2:22Þ

Plugging in the value of the coupling at the fixed point in
d ¼ 4þ ϵ, this yields

S4þϵ
inst ¼

N þ 8

3ϵ
; ð2:23Þ

in agreement with [45]. We will see that this matches with
the large N method we introduce in the next section. In
Sec. VII we show that there are additional classical
solutions where ϕi is generalized from a constant to any
spherical harmonic on Sd.

III. “HUBBARD-STRATONOVICH
INSTANTON” AT LARGE N

Applying the familiar Hubbard-Stratonovich transfor-
mation to the ðϕiϕiÞ2 interaction in the OðNÞ model, one
arrives at the following action describing the critical OðNÞ
model:

Scrit ¼
Z

ddx

�
1

2
ð∂ϕiÞ2 þ 1

2
σϕiϕi

�
; ð3:1Þ

where σ is the Hubbard-Stratonovich field, and we have
dropped the term ∼σ2=λ which becomes irrelevant in the
critical limit.10 This action can be used to systematically
develop the 1=N expansion of the theory. The field σ,
which acquires induced dynamics due to ϕ loops, becomes
at large N a conformal scalar operator with scaling
dimension Δ ¼ 2þOð1=NÞ.
After a conformal transformation to the sphere metric

(2.7), one obtains the action

Scrit ¼
Z

ddx
ffiffiffi
g

p �
1

2
∂μϕi∂μϕ

i þ dðd− 2Þ
8

ϕiϕi þ 1

2
σϕiϕi

�
:

ð3:2Þ

Since this action is quadratic in ϕi, we can integrate out
these fields exactly, and hence obtain a path integral over σ
with action

Sσ ¼
N
2
log det

�
−∇2 þ dðd − 2Þ

4
þ σ

�
: ð3:3Þ

Given the intuition from the classical solution in d ¼ 6
described in the previous section, it is natural to look for

FIG. 3. Potential for ϕ in the quartic theory on S4 for negative
coupling, depicted here in the case of N ¼ 1. The instanton
solution (2.20) corresponds to the local maxima of the potential
(for N ¼ 1, one has û ¼ �1).

10We will use the same symbol σ as in the previous section to
denote this field, although of course the two quantities are not
identical, as they have different normalizations.
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configurations of constant σ that solve the equation of
motion. Recall that the eigenvalues λn and degeneracies Dn

of the scalar Laplacian on Sd are

λn ¼ nðnþ d − 1Þ;

Dn ¼
ð2nþ d − 1ÞΓðnþ d − 1Þ

n!ΓðdÞ : ð3:4Þ

So the action for constant σ is

Sσ ¼
N
2

X∞
n¼0

Dn log

�
nðnþ d − 1Þ þ 1

4
dðd − 2Þ þ σ

�
:

ð3:5Þ

Following [47], we find

∂Sσ
∂σ ¼ N

2 sinðπd
2
ÞΓðdÞΓ

�
d − 1

2
þ i

ffiffiffiffiffiffiffiffiffiffiffi
σ −

1

4

r �

× Γ
�
d − 1

2
− i

ffiffiffiffiffiffiffiffiffiffiffi
σ −

1

4

r �
cosh

�
π

ffiffiffiffiffiffiffiffiffiffiffi
σ −

1

4

r �
: ð3:6Þ

Consequently, the action (3.5) is extremized when

ffiffiffiffiffiffiffiffiffiffiffi
σ −

1

4

r
¼ i

2kþ 1

2
ð3:7Þ

for some integer k. This gives

σ ¼ −kðkþ 1Þ: ð3:8Þ

The k ¼ 0 solution is the perturbative vacuum where the N
fields ϕi are conformally coupled scalars. From (3.5) we
see that Sσ diverges logarithmically when σ approaches the
value σ ¼ −dðd − 2Þ=4. This is just the point where the
effective mass of ϕi, i.e., m2 ¼ dðd − 2Þ=4þ σ, goes to
zero. For d < 4, one can see that only the perturbative
saddle k ¼ 0 lies to the right of this divergence. On the
other hand, for 4 < d < 6, both the k ¼ 0 and k ¼ 1
saddles lie in the region σ > −dðd − 2Þ=4.11 It seems
natural to assume that an appropriate integration contour
in the σ complex plane can be chosen so that the leading
contributions at large N come from the saddle points with
σ > −dðd − 2Þ=4 (k ¼ 0, 1 for 4 < d < 6), as the physical
interpretation of the additional saddles seems unclear (in
particular, as will be shown in Sec. VII below, the solutions
with k > 1 have several negative modes). For instance, for
d < 4 the appropriate contour can be chosen to run along
the imaginary σ axis passing only through the k ¼ 0 saddle.

Let us now focus on the k ¼ 1 solution in 4 < d < 6,
i.e., that with σ ¼ −2. As in the cubic theory in d ¼ 6, this
solution can be seen to correspond to the local maximum of
the effective potential for constant σ in Eq. (3.5). A plot of
this potential in d ¼ 5 is given in Fig. 4 (for general
4 < d < 6, the behavior is analogous); it is qualitatively
similar to the classical potential for the cubic theory on S6

(except that it becomes unbounded from below as σ
approaches −15=4 as explained above, while in d ¼ 6 −
ϵ this happens only asymptotically as σ → −∞). It is then
natural to view the σ ¼ −2 solution as the instanton
configuration that is the large N counterpart of the classical
solution described in the previous section. Indeed, as we
will show below, studying the spectrum of fluctuations
around the σ ¼ −2 saddle point, one finds a single negative
mode and dþ 1 zero modes, which we interpret as the size
and position moduli of the instanton. Hence, even though
we have found the solution specializing to constant
configurations of σ, we expect that it belongs to a family
of instanton solutions

σ ¼ −2
λ2ð1þ x⃗2Þ2

ð1þ λ2ðx⃗ − a⃗Þ2Þ2 ; ð3:9Þ

where λ and a⃗ are the moduli, as seen explicitly in the d ¼ 6
analysis. We will compute the value of the action (3.5) on
the instanton solution, as well as the determinant for
quantum fluctuations, in Sec. IV below. Before doing
that, in the next section we give a useful description of
the instanton profile using embedding coordinates in the
instanton moduli space.

A. Instanton profile in embedding coordinates

On the round Sd with metric (2.7), the instanton profile in
the largeN theory is given by (3.9). If we make a conformal
transformation to flat Rd (parametrized by x⃗ and with line
element dx⃗2), the profile for σ will then be

FIG. 4. Effective potential for constant σ in the large N theory
on S5. The instanton solution σ ¼ −2 corresponds to the local
maximum of the potential.

11For d > 6, additional solutions lie in the region σ > −dðd −
2Þ=4 (e.g., for 6 < d < 8, we can have k ¼ 0, 1, 2), and it would
be interesting to understand their physical interpretation; we leave
this to future work.
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Rd∶ σ ¼ −8λ2

ð1þ λ2ðx⃗ − a⃗Þ2Þ2 : ð3:10Þ

As is familiar in instanton calculus, the moduli space
is expected to be given by the quotient SOðdþ 1; 1Þ=
SOðdþ 1Þ, which is the (dþ 1)-dimensional hyperbolic
space Hdþ1.12 We can then simplify the formulas by going
to a (dþ 2)-dimensional embedding space with signature
ðþ;þ; � � � ;þ;−Þ. In this space, Hdþ1 is given by the
hyperboloid

X · X ¼
Xdþ1

i¼1

ðXiÞ2 − X2
dþ2 ¼ −1: ð3:11Þ

The relation between these coordinates and a⃗ and λ is

X ¼
�
λa⃗;− 1

2λ þ λ 1−a⃗2
2

; 1
2λ þ λ 1þa⃗2

2

�
: ð3:12Þ

For the CFT coordinates, we use null vectors P in the same
(dþ 2)-dimensional space:

P · P ¼
Xdþ1

i¼1

ðPiÞ2 − P2
dþ2 ¼ 0: ð3:13Þ

For flat space, we have

Rd∶ P ¼ ð x⃗; 1−x⃗2
2

; 1þx⃗2
2

Þ; ð3:14Þ

while for the sphere we have

Sd∶ P ¼ ð 2x⃗
1þx⃗2 ;

1−x⃗2
1þx⃗2 ; 1 Þ: ð3:15Þ

These null vectors have the property that the induced line
element dP · dP ¼ Pdþ1

i¼1 ðdPiÞ2 − dP2
dþ2 is precisely equal

to the metric on flat space and on the unit sphere,
respectively.
In terms of these coordinates, the instanton profile (either

on flat space or on the sphere) can be written as

σ ¼ −
8

ð−2X · PÞ2 : ð3:16Þ

A different coordinate system that makes the symmetries
of Sd manifest can be found as follows. We parametrize Sd

by a unit vector p̂ embedded in Rdþ1, and we parametrize
the instanton moduli space by a radial coordinate ρ and a
unit vector n̂ in Rdþ1. We take

P ¼ ðp̂; 1Þ;
X ¼ ðn̂ sinh ρ; cosh ρÞ: ð3:17Þ

To find the relation between p̂ and x⃗ we equate the first
equation in (3.17) to (3.15), and to find the relation between
ðρ; n̂Þ and ðλ; a⃗Þ we should equate the second equation in
(3.17) to (3.12). In these new coordinates, the line elements
on Sd and on the instanton moduli space are

dP · dP ¼ dp̂2; dX · dX ¼ dρ2 þ sinh2ρdn̂2: ð3:18Þ

The instanton profile is

σ ¼ −
2

ðcosh ρ − sinh ρp̂ · n̂Þ2 : ð3:19Þ

Quite nicely, for ρ ≠ 0, an SOðdþ 1Þ rotation of the point
p̂ on Sd is equivalent to a rotation of the unit vector n̂. If we
want to preserve rotational symmetry on Sd when integrat-
ing over the moduli space of instantons, we should thus
impose a cutoff at a fixed value of ρ.13 We will make such a
choice shortly when computing the instanton contribution
to the sphere partition function and to various correlation
functions.

IV. THE Sd PARTITION FUNCTION

In the large N expansion, we have that the Sd partition
function is (keeping up to order N0 terms for each saddle)

ZSd ¼ A0ðdÞe−Nf0ðdÞ þ VolðHdþ1ÞA1ðdÞe−Nf1ðdÞ þ � � �
¼ A0ðdÞe−Nf0ðdÞ

×

�
1þ VolðHdþ1ÞA1ðdÞ

A0ðdÞ
e−Nðf1ðdÞ−f0ðdÞÞ þ � � �

�
:

ð4:1Þ

The quantities f0 and f1 come from the ϕ determinant, and
may be viewed as the “classical action” on the σ saddle
point, while A0 and A1 come from the σ determinants for
quadratic fluctuations around the saddle point. In the
contribution of the σ determinant around the instanton
saddle, we included an explicit factor of the (divergent)
volume VolðHdþ1Þ of the unit curvature radius hyperbolic
space, in anticipation of the fact that the integration over the
instanton moduli space yields such a factor.

12This statement is clear when we study the theory on Sd,
where the instanton solution preserves the SOðdþ 1Þ rotational
symmetry of Sd. Since the effective action for σ is classically
conformally invariant, it is invariant under SO (dþ 1, 1). Thus,
we expect the constant σ solution to correspond to a point on the
manifold of solutions SOðdþ 1; 1Þ=SOðdþ 1Þ.

13Note that at large ρ, the instanton profile (3.19) becomes
highly peaked around p̂ ¼ n̂. If θ is the angle between p̂ and n̂
defined by cos θ ¼ p̂ · n̂, then from (3.19) it can be shown that
the angular width Δθ of this peak scales as Δθ ∼ e−ρ at large ρ.
A cutoff ρm at large ρ is then equivalent to imposing a small angle
cutoff equal to e−ρm . If ϵ is the short distance cutoff and R is the
radius of the sphere, we can thus identify eρm ¼ R=ϵ.
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More explicitly, the partition function around a saddle
point σc to quadratic order in fluctuations is given by

ZSd jσc ¼
Z

Dσe−
N
2
tr logð−∇2þdðd−2Þ

4
þσÞjσ¼σcþδσ

≈ e−
N
2
tr logð−∇2þdðd−2Þ

4
þσcÞ

×
Z

½Dδσ�e−N
2

R
ddx⃗ddy⃗δσðx⃗Þð−G2ðx⃗;y⃗ÞÞδσðy⃗Þ

¼ ðdetð−NG2ÞÞ−1=2e−N
2
tr logð−∇2þdðd−2Þ

4
þσcÞ; ð4:2Þ

where Gðx⃗; y⃗Þ denotes the Green’s function for ϕ in the
background σc, which will be computed below.

A. “Classical action” from ϕ determinant

Let us now calculate the quantities appearing in (4.1).
From (3.5), we find that for the perturbative vacuum at
σ ¼ 0 we have

f0ðdÞ ¼
1

2

X∞
n¼0

Dn log

��
nþ d

2

��
n − 1þ d

2

��

¼ 1

2

X∞
n¼0

ðDn−1 þDnÞ log
�
n − 1þ d

2

�
: ð4:3Þ

For the σ ¼ −2 instanton solution, we instead have

f1ðdÞ ¼
1

2

X∞
n¼0

Dn log

��
nþ 1þ d

2

��
n − 2þ d

2

��

¼ 1

2

X∞
n¼0

ðDn−3 þDnÞ log
�
n − 2þ d

2

�
: ð4:4Þ

Subtracting, we obtain

f1ðdÞ − f0ðdÞ ¼
1

2

X∞
n¼0

½Dn−3ðdÞ þDnðdÞ −Dn−2ðdÞ

−Dn−1ðdÞ� log
�
n − 2þ d

2

�
: ð4:5Þ

It can be easily checked using a useful relation DnðdÞ ¼
Dn−1ðdÞ þDnðd − 1Þ that

f1ðdÞ − f0ðdÞ ¼
1

2

X∞
n¼0

½Dnðd − 2Þ þDn−1ðd − 2Þ�

× log

�
n − 1þ d − 2

2

�
: ð4:6Þ

This expression is identical to (4.3) with d shifted down by
2. So we find

f1ðdÞ − f0ðdÞ ¼ f0ðd − 2Þ ¼ Ffree scalar
Sd−2

: ð4:7Þ

Since the derivation above involved some formal mani-
pulations with divergent sums, in Appendix B we present
an alternative derivation of this result—see Eq. (B6).
In d ¼ 5, we then have

f1ð5Þ − f0ð5Þ ¼ Ffree scalar
S3 ¼ log 2

8
−
3ζð3Þ
16π2

≈ 0.0638;

ð4:8Þ

where we have used the value of Ffree scalar
S3 computed

in [48].
In general d, the value of F for a free conformal scalar

has the integral representation [47]

Ffree scalar
Sd

¼ 1

2
log det

�
−∇2 þ dðd − 2Þ

4

�

¼ −
1

sinðπd=2ÞΓðdþ 1Þ
Z

1

0

dxx sinðπxÞ

× Γ
�
d
2
þ x

�
Γ
�
d
2
− x

�
: ð4:9Þ

This expression can be easily expanded near even integer
dimensions, where one finds poles related to the conformal
a-anomaly coefficient. For the instanton in d ¼ 6 − ϵ
dimensions, we find from (4.7) and using the above
representation that

f1ð6 − ϵÞ − f0ð6 − ϵÞ ¼ Ffree scalar
S4−ϵ ¼ 1

90ϵ
; ð4:10Þ

which is in precise agreement with the result (2.6) obtained
from the classical instanton in the 6-d cubic theory. In the
case d ¼ 4þ ϵ, we find similarly

f1ð4þ ϵÞ − f0ð4þ ϵÞ ¼ Ffree scalar
S2þϵ ¼ 1

3ϵ
; ð4:11Þ

which agrees with the classical instanton in the quartic
theory given in Eq. (2.23).

B. Scalar Green’s function on the
instanton background

In order to compute the one-loop determinant for the σ
fluctuations, we will first need to evaluate the scalar two-
point function hϕiðx⃗1Þϕjðx⃗2Þi ¼ δijGðx⃗1; x⃗2Þ in the instan-
ton background. We will first perform this calculation on
the σ ¼ −2 constant solution (corresponding to moduli
λ ¼ 1, a⃗ ¼ 0).
In general, for the operator

Ox⃗1 ¼ −∇2
x⃗1
þm2 ð4:12Þ

and the Green’s function is given by
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Ox⃗1Gðx⃗1; x⃗2Þ ¼
1ffiffiffi
g

p δðx⃗1 − x⃗2Þ: ð4:13Þ

The solution of this equation is

Gðx⃗1; x⃗2Þ ¼ C · 2F1ða; b; c; zÞ; ð4:14Þ

where C is an m-dependent constant, which we will fix

below. Here 1 − z ¼ sðx⃗1;x⃗2Þ2
4

, with sðx⃗1; x⃗2Þ the chordal
distance on Sd, and the constants a, b, c are given by

a ¼ 1

2

�
d − 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd − 1Þ2 − 4m2

q �
;

b ¼ 1

2

�
d − 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd − 1Þ2 − 4m2

q �
; c ¼ d

2
: ð4:15Þ

When m2 ¼ 0, we have a conformally coupled scalar,
whose Green’s function G0ðx⃗1; x⃗2Þ is obtained by con-
formally mapping the flat space Green’s function for a

massless scalar, Γðd
2
−1Þ

4πd=2
1

jx⃗1−x⃗2jd−2:

G0ðx⃗1; x⃗2Þ ¼ C0

1

sðx⃗1; x⃗2Þd−2
; C0 ≡ Γðd

2
− 1Þ

4πd=2
: ð4:16Þ

When m2 ¼ dðd−2Þ
4

− 2, Eq. (4.14) gives

Gðx⃗1; x⃗2Þ ¼ C ·
2d−2

d

�
d − 4

sðx⃗1; x⃗2Þd−2
þ 1

sðx⃗1; x⃗2Þd−4
�
:

ð4:17Þ

To determine the constant C, we note that Gðx⃗1; x⃗2Þ must
have the same short-distance singularity as the propagator
of a conformally coupled scalar, so setting equal the
coefficients of 1=sðx⃗1; x⃗2Þd−2 terms in (4.16) and (4.17)

we obtain C ¼ dΓðd
2
−2Þ

2ð4πÞd=2, and then

Gðx⃗1; x⃗2Þ ¼
Γðd

2
− 1Þ

4πd=2

�
1

sðx⃗1; x⃗2Þd−2
þ 1

ðd− 4Þsðx⃗1; x⃗2Þd−4
�
:

ð4:18Þ

The general dependence on the moduli may be reinstated
by performing a conformal transformation to flatRd, where
a⃗ and λ are related simply to translations and dilations. One
finds that for the general instanton profile, using the
embedding coordinates introduced earlier, we can write

Gðx⃗1; x⃗2Þ ¼
Γðd

2
− 1Þ

4πd=2

�
1

sðx⃗1; x⃗2Þd−2

þ 1

ðd − 4Þsðx⃗1; x⃗2Þd−4
1

ðX · P1ÞðX · P2Þ
�
;

ð4:19Þ

where P1 and P2 are the embedding space coordinates of
the points x⃗1 and x⃗2. Noting that sðx⃗1; x⃗2Þ2 ¼ −2P1 · P2,
we can also write this formula completely in embedding
space as

Gðx⃗1; x⃗2Þ ¼
Γðd

2
− 1Þ

4πd=2
1

ð−2P1 · P2Þðd−2Þ=2

×

�
1 −

2P1 · P2

ðd − 4ÞðX · P1ÞðX · P2Þ
�
: ð4:20Þ

This formula is true both on Rd and on Sd provided we use
(3.14) or (3.15) as appropriate.
In the special case d ¼ 5, we have

Gðx⃗1; x⃗2Þ ¼
1

8π2
1

sðx⃗1; x⃗2Þ3
�
1þ sðx⃗1; x⃗2Þ2

ðX · P1ÞðX · P2Þ
�
: ð4:21Þ

C. The σ determinant

As per (4.2), the kernel for the σ fluctuations at any
saddle is given by −NGðx⃗1; x⃗2Þ2. This kernel is diagonal-
ized by expanding it in spherical harmonics Yn;m⃗ðx⃗Þ, with
eigenvalues λn:

−NG2ðx⃗1; x⃗2Þ ¼
X
n;m⃗

λnY�
n;m⃗ðx⃗1ÞYn;m⃗ðx⃗2Þ: ð4:22Þ

Here, the n ¼ 0; 1; 2;… index labels the distinct represen-
tations of the rotation group appearing in the spherical
harmonic decomposition of a scalar function, while the
multi-index m⃗ labels the various states in a given repre-
sentation, taking Dn values, with Dn given in (3.4). The
expansion (4.22) can be performed using the general
formula

1

sðx⃗1; x⃗2Þ2Δ
¼

X∞
n¼0

knðΔÞY�
n;m⃗ðx⃗1ÞYn;m⃗ðx⃗2Þ;

knðΔÞ ¼ π
d
22d−2Δ

Γðd
2
− ΔÞΓðnþ ΔÞ

ΓðΔÞΓðdþ n − ΔÞ : ð4:23Þ

Let us start by evaluating the σ determinant around the
perturbative vacuum σ ¼ 0, where the Green’s function is
given in (4.16). Applying (4.23) in this case, we obtain the
eigenvalues

λð0Þn ¼ −N
�
Γðd

2
− 1Þ

4πd=2

�
2

knðd − 2Þ

¼ N

2dð4πÞðd−3Þ=2 sinðπd
2
ÞΓðd−1

2
Þ
Γðnþ d − 2Þ
Γðnþ 2Þ : ð4:24Þ

The same computation at the constant instanton saddle with
the Green’s function (4.17) gives
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λð1Þn ¼ N

2dð4πÞðd−3Þ=2 sinðπd
2
ÞΓðd−1

2
Þ
Γðnþ d− 2Þ
Γðnþ 2Þ

×
Γðnþ 3Þ

Γðnþ d− 3Þ
ΓðnÞ

Γðnþ dÞ
Γðnþ dþ 1Þ
Γðn− 1Þ

Γðnþ d− 4Þ
Γðnþ 4Þ :

ð4:25Þ

Then

λð1Þn

λð0Þn

¼ ðnþ dÞðn − 1Þ
ðnþ d − 4Þðnþ 3Þ : ð4:26Þ

Note that while λð0Þn is positive for all n, λð1Þn is negative for
n ¼ 0, it vanishes for n ¼ 0, and it is positive for all n > 0.
The negative mode at n ¼ 0 (note that the degeneracy is
D0 ¼ 1 in this case) will give an imaginary part to the
sphere free energy and other observables. The fact that
when n ¼ 1 we have D1 ¼ dþ 1 zero modes is a conse-
quence of the existence of a whole manifold of instanton
saddles (3.9) parametrized by the dþ 1 parameters a⃗ and λ.
The zero modes represent infinitesimal motions along this
manifold starting at the a⃗ ¼ 0 and λ ¼ 1 saddle. Because
these saddles are related by conformal transformations,
the spectrum of quadratic fluctuations in δσ must be
independent of the instanton moduli a⃗ and λ.
If not for the presence of zero modes, the instanton

correction to the sphere free energy denoted by
VolðHdþ1ÞA1ðdÞ=A0ðdÞ in (4.1) would simply equalQ

nðλð0Þn =λð1Þn ÞDn=2. Due to the presence of the zero modes,
however, the factor λD1=2

1 is replaced by an integral over
the instanton moduli space. In addition, the divergent
integral over the negative mode requires careful treat-
ment [69,70]. Thus, when computing the instanton cor-
rection, let us split up the n ¼ 0 and n ¼ 1 modes from
the rest, and write

VolðHdþ1ÞA1ðdÞ
A0ðdÞ

¼ c0

ffiffiffiffiffiffiffiffiffiffiffi				 λ
ð0Þ
0

λð1Þ0

				
vuut ðλð0Þ1 Þdþ1

2 μzero modesðdÞRd;

Rd ≡
Y∞
n¼2

�
λð1Þn

λð0Þn

�−Dn=2

; ð4:27Þ

where c0 is a factor arising from the analytically continued
integral over the negative mode (to be discussed below),
and the zero mode measure μzero modesðdÞ will be computed
in the next subsection. The factor Rd is the contribution
from all the modes with n ≥ 2, and we may compute it
explicitly as follows:

logRd ¼ −
1

2

X∞
n¼2

DnðdÞ log
ðnþ dÞðn − 1Þ

ðnþ d − 4Þðnþ 3Þ : ð4:28Þ

In d ¼ 5, we obtain (see Appendix B)

logR5 ¼ −
ζð3Þ
π2

þ log
9

ffiffiffiffiffi
15

p

29π3
: ð4:29Þ

We will calculate μzero modesðdÞ in the next section.
Let us now discuss the factor c0 introduced in (4.27). The

negative mode arises from the integration over the constant
part of σ, so this is essentially a problem of analytically
continuing an ordinary integral. Let us consider a concrete
example [43] which is qualitatively similar to our situation,
namely an Airy-like integral of the form

IC ¼
Z
C

dzffiffiffiffiffiffi
2π

p e−Nðz2
2
þz3

3
Þ; ð4:30Þ

where C is a choice of contour, and we are interested in the
behavior of the integral for large N. The function in the
exponent has essentially the same form as the classical
potential (2.11) for σ in the cubic theory near six dimen-
sions. There are three choices of C for which the integral
converges for real and positive N: a contour Cþ starting at
e2iπ=3 ·∞ and ending at þ∞; a contour C− starting at
e−2iπ=3 ·∞ and ending at þ∞, and a contour C3 starting
and ending at e∓2iπ=3 ·∞ (the sum Cþ − C− þ C3 is a
closed contour). The function in the exponent in IC has
saddle points at z ¼ 0 (the analog of the perturbative
vacuum) and z ¼ −1 (the analog of the instanton). The
contourC3 can be deformed to just pass through the z ¼ −1
saddle; then IC3

is dominated by the instanton contribution
alone and it is purely imaginary. On the other hand, the
contours C� receive contributions from both saddle points
and hence either one is a suitable contour for our physical
application, where we want the perturbative vacuum to give
the dominant contribution. Note that Cþ and C− can be
deformed so that they run along the real axis passing
through z ¼ 0, reaching the z ¼ −1 saddle point, and then
moving into the complex plane along a direction of steepest
descent (either along positive or negative imaginary parts,
corresponding to Cþ and C− respectively). Hence, the
imaginary part of the integral at large N receives contri-
bution from the semi-infinite arc of such contours starting
at z ¼ −1. In the saddle-point approximation this gives half
of a Gaussian integral, so that

ImðIC�Þ ≈∓ i
2

e−N=6ffiffiffiffi
N

p : ð4:31Þ

The potential for σ in the large N theory is a more
complicated function, but it is qualitatively similar. See
Fig. 4. So we expect a similar analysis to go through in this
case as well (see [70] for a general discussion). In particular
we expect the appropriate contour to run along the real axis
passing through σ ¼ 0 and reaching σ ¼ −2, and then to
move into the complex plane into either positive or negative
directions of the imaginary axis. Therefore, for the purpose
of extracting the imaginary parts of physical quantities due
to the instanton, we should set in (4.27)
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c0 ¼ � i
2
: ð4:32Þ

The choice of sign, corresponding to the ambiguity in the
choice of contour, gives two distinct “complex CFTs” that
are related to each other by complex conjugation.

D. Measure on the instanton moduli space

First, let us work around ρ ¼ 0 (λ ¼ 1) in the instanton
moduli space. For small fluctuations, we can expand the
fluctuation δσ in terms of modes ψa

δσ ¼
X
a

caψa ð4:33Þ

that we can unit normalizeZ
S5
d5x

ffiffiffi
g

p
ψ�
aψb ¼ δab: ð4:34Þ

Then, the path integral measure is

Y
a

dcaffiffiffiffiffiffi
2π

p : ð4:35Þ

We separate these modes into zero modes indexed by
A ¼ 1;…; dþ 1 and nonzero modes indexed by i: ca ¼
ðcA; ciÞ. If the coordinates vA parametrize the instanton
moduli space, then

ψA ¼ 1ffiffiffiffiffiffiffi
NA

p dσ
dvA

; ð4:36Þ

where NA is the norm of dσ=dvA. From ψAdcA ¼
ðdσ=dvAÞdvA, we then conclude that dcA ¼ ffiffiffiffiffiffiffi

NA
p

dvA,
and so the zero mode measure is

Y
A

dcAffiffiffiffiffiffi
2π

p ¼
Y
A

dvA

ffiffiffiffiffiffiffi
NA

2π

r
: ð4:37Þ

Let us now compute NA. Close to ρ ¼ 0, the instanton
profile is approximately σ ≈ −2 − 4p̂ · ðn̂ρÞ þ � � �. We can
thus take vA ¼ ρnA close to ρ ¼ 0, so

dσ
dvA

¼ 4p̂A ⇒ NA ¼ 16VolðSdÞ
dþ 1

: ð4:38Þ

So the zero mode measure close to ρ ¼ 0 is

�
16VolðSdÞ
2πðdþ 1Þ

�dþ1
2 Y

A

dvA ¼
�
16VolðSdÞ
2πðdþ 1Þ

�dþ1
2

ρddρvolSd :

ð4:39Þ

The quantity ρddρvolSd is the small ρ approximation to the
volume of hyperbolic space of unit radius. Thus, the full
zero mode measure is

μzero modes
d ¼ VolðHdþ1Þ

�
16VolðSdÞ
2πðdþ 1Þ

�dþ1
2

: ð4:40Þ

For d ¼ 5, we have VolðS5Þ ¼ π3, so we obtain

μzero modes
5 ¼ VolðH6Þ

�
4π2

3

�
3

: ð4:41Þ

E. Sphere free energy in d = 5

Let us finally compute the instanton contribution
VolðH6ÞA1=A0e−Nðf1−f0Þ to the sphere free energy in
d ¼ 5. We have the contribution of the n ¼ 0 modes:

−
1

2
log

				 λ
ð1Þ
0

λð0Þ0

				 ¼ 1

2
log

3

5
; ð4:42Þ

the contribution of the n ¼ 1 modes:

log μzero modes
d þ dþ 1

2
log λð0Þ1 ¼ log

N3π3VolðH6Þ
215

;

ð4:43Þ

and, lastly, we have the contribution of the modes with
n ≥ 2 in (4.29):

logR5 ¼ −
ζð3Þ
π2

þ log
9

ffiffiffiffiffi
15

p

29π3
: ð4:44Þ

Adding these expressions together, exponentiating, and
multiplying by e−Nðf1−f0Þ we find

A1

A0

e−Nðf1−f0Þ ¼ c0

�
3N
256

�
3

× exp

�
−N

�
1

8
log 2 −

3ζð3Þ
16π2

�
−
ζð3Þ
π2

�
:

ð4:45Þ

The expression that appears in the instanton contribution
to the S5 free energy in (4.1) also includes a factor of the
volume of the unit radius hyperbolic space, VolðH6Þ. For
general d, one can regularize such a factor using a
regulator preserving spherical symmetry. The regularized
value is

VolðHdþ1Þ ¼ πd=2Γ
�
−
d
2

�
: ð4:46Þ

Thus, the regularized value of VolðH6Þ in (4.1) should be
taken to be VolðH6Þ ¼ −8π3=15. Putting everything
together, the imaginary part of the S5 free energy is
then approximately given by
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ImðFS5Þ ≈ −VolðH6ÞA1

A0

e−Nðf1−f0Þ ¼ � 1

30

�
3πN
128

�
3

× exp

�
−N

�
1

8
log 2 −

3ζð3Þ
16π2

�
−
ζð3Þ
π2

�
; ð4:47Þ

where we have used c0 ¼ �i=2 as explained in
Sec. IV C.
Note that while an overall factor of VolðH6Þ arises in the

instanton contribution to the sphere free energy, such a
factor will be absent in the computations of other CFT
observables presented below (which, in particular, are
independent of whether we choose spherical or planar
slicing for the hyperbolic space metric).

V. IMAGINARY PARTS OF
SCALING DIMENSIONS

A key property of complex CFTs is the presence of some
operators whose scaling dimensions are complex. This
behavior has been found in a variety of models, including
[35–42]. We will now explore how the instanton effects
contribute small imaginary parts to the operator scaling
dimensions. While in a number of large N theories the
complex scaling dimensions have been found to lie on the
principal series d=2þ iα, we find that the instanton effects
produce complex dimensions of a more general form, with
real parts not necessarily equal to d=2.

A. Anomalous dimension of ϕi

For the perturbative saddle, at leading order in 1=N, the
two point function of ϕi is

hϕiðx⃗1Þϕjðx⃗2Þi0 ¼ δij
Γðd

2
− 1Þ

4π
d
2

1

sðx⃗1; x⃗2Þd−2

¼ δij
1

8π2
1

sðx⃗1; x⃗2Þ3
; ð5:1Þ

where, as before, sðx⃗1; x⃗2Þ is either jx⃗1 − x⃗2j on R5 or the
chordal distance on S5. The exponent in the denominator
shows that the scaling dimension of ϕi equals 3=2 at large
N. The expression (5.1) receives both perturbative and
nonperturbative corrections in 1=N. While the perturbative
corrections are real, the first contribution to the imaginary
part comes from the instanton saddles discussed in the
previous section.
Let us denote the scaling dimension of ϕi by Δϕ ¼

3=2þ δϕ. Since the instanton contribution to δϕ, which we
denote by δinstϕ , is small, its effect is to modify the expo-
nent in (5.1) only slightly. Expanding 1=sðx⃗1; x⃗2Þ3þ2δ ≈
ð1 − 2δ log½sðx⃗1; x⃗2Þ=ϵ�Þ=sðx⃗1; x⃗2Þ3, where ϵ is the UV
cutoff, we find that the instanton contribution to the ϕi
two-point function must take the form

hϕiðx⃗1Þϕjðx⃗2Þiinst ¼ −δij
1

4π2
log½sðx⃗1; x⃗2Þ=ϵ�

sðx⃗1; x⃗2Þ3
δinstϕ : ð5:2Þ

To obtain (5.2), note that when computing the two-point
function hϕiðx⃗1Þϕjðx⃗2Þi we should perform the path
integral with a ϕiðx⃗1Þϕjðx⃗2Þ insertion by summing over
all saddle points, and then divide the answer by the partition
function. Thus

hϕiðx⃗1Þϕjðx⃗2Þi

¼ δij
A0e−Nf0G0ðx⃗1; x⃗2Þ þA1e−Nf1

R
H6 dXGðx⃗1; x⃗2Þ þ � � �

A0e−Nf0 þVolðH6ÞA1e−Nf1 þ � � � ;

ð5:3Þ

where for each saddle point we only included the con-
tribution from the ϕi and σ determinants. Expanding (5.3)
to first order in A1, Eq. (5.3) equals

δijG0ðx⃗1; x⃗2Þ þ δij
A1

A0

e−Nðf1−f0Þ

×

�
−VolðH6ÞG0ðx⃗1; x⃗2Þ þ

Z
H6

dXGðx⃗1; dÞ
�
þ � � � :

ð5:4Þ

Using (5.1) and (4.21), we then identify

hϕiðx⃗1Þϕjðx⃗2Þiinst ¼
δij
8π2

A1

A0

e−Nðf1−f0Þ Iϕðx⃗1; x⃗2Þ
sðx⃗1; x⃗2Þ3

;

Iϕðx⃗1; x⃗2Þ≡
Z
H6

dX
−2P1 · P2

ðX · P1ÞðX · P2Þ
: ð5:5Þ

Comparing this expression with (5.2), we conclude

δinstϕ ¼ 1

2

A1

A0

e−Nðf1−f0Þ dIϕðx⃗1; x⃗2Þ
d log ϵ

: ð5:6Þ

To calculate δinstϕ , all that remains to do is to calculate the
logarithmic derivative of Iϕ with respect to ϵ. Note that
Iϕðx⃗1; x⃗2Þ is Weyl invariant, so it is independent on whether
the theory is placed on R5 or on S5.

1. Hard cutoff regularization

Since the logarithmic derivative should not depend on
the points x⃗1 and x⃗2, let us set x⃗1 ¼ 0 and jx⃗2j → ∞. On S5

these two points correspond to the north and south poles
of S5, respectively. In embedding space, the north pole
corresponds to PN ¼ ð0⃗; 1; 1Þ and the south pole corre-
sponds to PS ¼ ð0⃗;−1; 1Þ, so the chordal distance between
them is sðN; SÞ ¼ 2. Then, taking X ¼ ðn̂4 sin θ sinh ρ;
cos θ sinh ρ; cosh ρÞ, where n̂4 is a unit vector on S4,
we have
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IϕðN; SÞ ¼
Z
H6

dX
sðN; SÞ2

ðX · PNÞðX · PSÞ
¼ VolðS4Þ

×
Z

dρdθsinh5ρsin4θ
4

1þ sinh2ρsin2θ
: ð5:7Þ

[Here, we used the SOð5Þ rotational symmetry of this
configuration to pull out a volume factor of S4.] Both
integrals in (5.7) can be done analytically, but for the ρ
integral we impose an upper cutoff:

IϕðN; SÞ ¼ 2πVolðS4Þ
Z

ρm

0

dρsinh5ρ
cosh ρþ 2

cosh ρðcosh ρþ 1Þ2

¼ 2π3e3ρm

9
−
22π3eρm

3
þ 32π3

3
ρm þ � � � ; ð5:8Þ

where we used VolðS4Þ ¼ 8π2=3. Taking eρm ¼ 1=ϵ (if we
were to reinstate the radius R of S5 we would have
eρm ¼ R=ϵ), we then find

IϕðN; SÞ ¼ ðpower-law divergenceÞ − 32π3

3
log ϵþ � � � :

ð5:9Þ

From this expression we can extract the logarithmic
derivative

dIϕðx⃗1; x⃗2Þ
d log ϵ

¼ −
32π3

3
; ð5:10Þ

where we used the fact that the logarithmic derivative
should be independent of the choice of points.

2. Analytic regulator in Poincaré coordinates

Let us now obtain the same result using a different
regulator. We could also write Iϕðx⃗1; x⃗2Þ in Poincaré
coordinates:

Iϕðx⃗1; x⃗2Þ ¼ 4jx⃗1 − x⃗2j2

×
Z

dzd5a⃗
z6

z2

½z2 þ ðx⃗1 − a⃗Þ2�½z2 þ ðx⃗2 − a⃗Þ2� :

ð5:11Þ

If we regularize this integral by multiplying the integrand
by ðz=ϵÞs, we can use the formulas from [71] to evaluate
(5.11) to

Iϕðx⃗1; x⃗2Þ ¼
32π3

3s
−
32π3

3
logðϵ=jx⃗1 − x⃗2jÞ þ � � � : ð5:12Þ

The logarithmic derivative of this expression with respect to
ϵ reproduces (5.10).

B. Anomalous dimension of σ

We can perform a similar calculation to determine the
leading contribution to the imaginary part of the scaling
dimension of σ. The leading two-point function of σ can
be found from the perturbative saddle by inverting the
kernel −NG0ðx⃗1; x⃗2Þ2 multiplying the σ fluctuations.
This is easily done after performing the spherical har-
monic decomposition as in (4.23), whereby this kernel
becomes −NC2

0knðd − 2Þ, with C0 being the constant
defined in (4.16). Because the inverse of this kernel gives
−1=ðNC2

0knðd − 2ÞÞ ¼ Cσknð2Þ, with

Cσ ¼ −
1

NC2
0knð2Þknðd − 2Þ

¼ 8ðd − 4ÞΓðd − 2Þ sin πd
2

NπΓðd
2
− 1Þ2 ¼ 64

π2N
; ð5:13Þ

one finds that the leading order two-point function of σ is

hσðx⃗1Þσðx⃗2Þi0 ¼
Cσ

sðx⃗1; x⃗2Þ4
: ð5:14Þ

As in the case of ϕ, the dimension of σ is Δσ ¼ 2þ δσ , so
the contribution of the instanton saddle to the two-point
function must take the form

hσðx⃗1Þσðx⃗2Þiinst ¼ −2Cσ
log½sðx⃗1; x⃗2Þ=ϵ�

sðx⃗1; x⃗2Þ4
δinstσ ; ð5:15Þ

where ϵ is the UV cutoff.
To leading order in N, the contribution from the

instanton saddle can be found by simply replacing σ by
its classical value σ ¼ −8=ð−2X · PÞ2 and computing the
functional integral over σ in the presence of the insertion
σ2. This integral yields the same answer as without the
insertion for the nonzero modes. The integration over the
instanton moduli space now replaces VolðH6Þ in μzero modes

d

with the integral of σ2 over H6. Thus,

hσðx⃗1Þσðx⃗2Þi ¼
A0e−Nf0hσðx⃗1Þσðx⃗2Þi0 þ A1e−Nf1

R
H6 dX −8

ð−2X·P1Þ2
−8

ð−2X·P2Þ2 þ � � �
A0e−Nf0 þ VolðH6ÞA1e−Nf1 þ � � � ; ð5:16Þ

where we included only the leading contributions from the two saddles. Expanding at small A1, we identify the instanton
contribution to the σ two-point function to be
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hσðx⃗1Þσðx⃗2Þiinst ¼
A1

A0

e−Nðf1−f0Þ
Z
H6

dX
4

ðX · P1Þ2ðX · P2Þ2
:

ð5:17Þ

Note that the expansion of the denominator in (5.16)
generates a term proportional to hσðx⃗1Þσðx⃗2Þi0 that is
proportional to A1=A0, but this term is suppressed by
one power of 1=N relative to the term written in (5.17).
Comparing this expression with (5.15), we extract

δinstσ ¼ 2

Cσ

A1

A0

e−Nðf1−f0Þ dIσðx⃗1; x⃗2Þ
d log ϵ

;

Iσðx⃗1; x⃗2Þ≡
Z
H6

dX
ð−2P1 · P2Þ2

ðX · P1Þ2ðX · P2Þ2
: ð5:18Þ

Like Iϕðx⃗1; x⃗2Þ, the quantity Iσðx⃗1; x⃗2Þ is also Weyl-
invariant, so it is independent on whether the theory is
placed on R5 or on S5.

1. Hard cutoff regularization

Let us now compute the logarithmic derivative of
Iσðx⃗1; x⃗2Þ with respect to the UV cutoff ϵ by using a hard
cutoff. Taking x⃗1 ¼ N and x⃗2 ¼ S, we have

IσðN;SÞ ¼
Z
H6

dX
sðN;SÞ4

ðX ·PNÞ2ðX ·PSÞ2

¼VolðS4Þ
Z

dρdθsinh5ρsin4θ
16

ð1þ sinh2ρsin2θÞ2 :

ð5:19Þ

We can again do both integrals:

IσðN; SÞ ¼ 8πVolðS4Þ
Z

ρm

0

dρsinh5ρ
2 cosh ρþ 1

cosh3ρðcosh ρþ 1Þ2

¼ 64π3eρm

3
− 64π3ρm þ � � � : ð5:20Þ

Using eρm ¼ 1=ϵ, we obtain

IσðN; SÞ ¼ ðpower-law divergenceÞ þ 64π3 log ϵþ � � � :
ð5:21Þ

Making use of the fact that the logarithmic derivative of Iσ
is independent of the choice of points, we conclude that

dIσðx⃗1; x⃗2Þ
log ϵ

¼ 64π3: ð5:22Þ

2. Analytic regulator in Poincaré coordinates

We can also obtain the same result using an analytic
regulator. In Poincaré coordinates, we have

Iσðx⃗1; x⃗2Þ ¼ 16jx⃗1 − x⃗2j4
Z

dzd5a⃗
z6

×
z4

½z2 þ ðx⃗1 − a⃗Þ2�2½z2 þ ðx⃗2 − a⃗Þ2�2 : ð5:23Þ

Let us again regularize the integral by multiplying the
integrand by ðz=ϵÞs:

Iσðx⃗1; x⃗2Þ ¼ −
64π3

s
þ 64π3 logðϵ=jx⃗1 − x⃗2jÞ þ � � � :

ð5:24Þ

A derivative of (5.24) with respect to log ϵ then reprodu-
ces (5.22).

C. Numerical values

Since the leading imaginary part of the scaling dimen-
sions comes from the instanton contribution, we have

ImΔϕ ≈∓ 16π3

3

				A1

A0

e−Nðf1−f0Þ
				;

ImΔσ ≈�2π5N

				A1

A0

e−Nðf1−f0Þ
				; ð5:25Þ

where the quantity A1

A0
e−Nðf1−f0Þ is given explicitly in (4.45),

and the overall sign choice corresponds to c0 ¼ �i=2 as
in (4.32).
In d ¼ 5, if we require jImΔϕj < 10−2 or 10−3, then we

find N > 172 or N > 220, respectively. If we require
jImΔσj < 10−2 or 10−3, we find N > 310 or N > 355,
respectively. These constraints are roughly commensurate
with the smallest values of N where the “islands” in the
bootstrap for the d ¼ 5 OðNÞ model were observed [15].14

VI. INSTANTON CONTRIBUTION TO
OTHER QUANTITIES

A. OðNÞ current two-point function coefficient cJ
The scaling dimensions are not the only quantities that

acquire imaginary contributions from the instanton back-
ground. Another quantity is the coefficient cJ that appears
in the two-point function of the canonically normalized
OðNÞ current jμij. In flat space, the position dependence of
this two-point function is fixed by the conformal symmetry,
and the overall normalization defines cJ:

14While the values of N explored in [15] extended up to 500, it
would be desirable to explore even higher values (for example,
around 1000), both because the imaginary parts of scaling
dimensions are much smaller there, and because the 1=N
expansion is more reliable.
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hjμijðx⃗1Þjνklðx⃗2Þi ¼ cJ
2C2

0ðd − 2Þ
jx⃗1 − x⃗2j2d−2

Iμνðδikδjl − δilδjkÞ;

Iμν ≡ δμν − 2
ðx⃗1 − x⃗2Þμðx⃗1 − x⃗2Þν

jx⃗1 − x⃗2j2
; ð6:1Þ

where C0 is the constant defined in (4.16). This definition
of cJ is such that a free theory of N massless scalar fields,
which has an OðNÞ global symmetry under which the
scalar fields transform as a vector, has cJ ¼ 1.
For us (or for a theory of N free massless scalars ϕi), the

canonically normalized OðNÞ current is

jμij ¼ ϕi∂μϕj − ϕj∂μϕi: ð6:2Þ

Canonical normalization means that the leading term in the
OPE between jμij and an operator Oi transforming in the
vector representation of OðNÞ takes the form

jμijðx⃗ÞOkð0Þ¼−
1

ðd−2ÞVolðSd−1Þ
xμ

jx⃗jd
× ðδikOjð0Þ−δjkOið0ÞÞþ less singular terms;

ð6:3Þ

as jx⃗j → 0. This equation is such that if we construct the
charge operator QΣ

ij ¼
R
Σ j

μ
ijnμ associated with a closed

surface Σwith outward pointing normal nμ surrounding the
origin, then QΣ

ij acts on Okð0Þ as a generator of the OðNÞ
symmetry:

QΣ
ijOkð0Þ ¼ δikOjð0Þ − δjkOið0Þ: ð6:4Þ

Equation (6.4) is true provided that Σ does not enclose any
other OðNÞ-noninvariant operator other than Okð0Þ. By
settingOk ¼ ϕk, we can immediately check that the current
defined in (6.2) obeys (6.3) at leading order in large N for
both the perturbative saddle and the instanton saddles.
This property follows from the fact that the short distance
singularity of the Green’s function is precisely the same for
both saddles.
Working around either the perturbative saddle or one of

the instanton saddles, we can write

hjμijðx⃗1Þjνklðx⃗2Þi ¼ 2½G∂ð1Þ
μ ∂ð2Þ

ν G − ∂ð1Þ
μ G∂ð2Þ

ν G�
× ðδikδjl − δilδjkÞ: ð6:5Þ

It is straightforward to check that with G ¼ G0 given in
(4.16), one reproduces (6.1) with cJ ¼ 1. After using (4.19)
or (4.20) around a given instanton saddle specified by the
moduli ðλ; a⃗Þ and integrating over these moduli, Eq. (6.5)
becomes

hjμijðx⃗1Þjνklðx⃗2Þiinstðλ; a⃗Þ

¼ C2
0ðδikδjl − δilδjkÞ

�
Iμν

jx⃗1 − x⃗2j2d−2
�
2ðd − 2Þ

þ 16ðd − 2Þ
d − 4

Qþ 32

d − 4
Q2

�

þ 8

d − 4

1

jx⃗1 − x⃗2j2d−4
∂ð1Þ
μ ∂ð2Þ

ν Q

�
; ð6:6Þ

with the quantity Q defined as

Q≡ λ2jx⃗1 − x⃗2j2
ð1þ λ2ðx⃗1 − a⃗Þ2Þð1þ λ2ðx⃗2 − a⃗Þ2Þ

¼ −P1 · P2

2ðP1 · XÞðP2 · XÞ
: ð6:7Þ

From (6.6) one can obtain the full instanton contribution
(up to one-loop order) after performing an integral over the
instanton moduli space:

hjμijðx⃗1Þjνklðx⃗2Þiinst
¼ A1

A0

e−Nðf1−f0Þ
�Z

Hdþ1

dXhjμijðx⃗1Þjνklðx⃗2Þiinstðλ; a⃗Þ

− VolðHdþ1Þhjμijðx⃗1Þjνklðx⃗2Þi0
�
; ð6:8Þ

where the term in the second line arises precisely in the
same way that the G0 term in the square bracket of (5.4).
Let us now work in d ¼ 5, where

hjμijðx⃗1Þjνklðx⃗2Þiinst
¼ A1

A0

e−Nðf1−f0ÞC2
0ðδikδjl − δilδjkÞ

×
Z
H6

dX

�
Iμνð48Qþ 32Q2Þ

jx⃗1 − x⃗2j8
þ 8

jx⃗1 − x⃗2j6
∂ð1Þ
μ ∂ð2Þ

ν Q

�
:

ð6:9Þ

The integral over X can be performed as in the previous
section. After regularization, we have

Z
H6

dXð48Qþ 32Q2Þ ¼ 320π3

3
; ð6:10Þ

and this integral is independent of weather we use the
rotationally invariant cutoff regulator or the analytic one.
From (5.12), we also have

1

jx⃗1 − x⃗2j6
∂ð1Þ
μ ∂ð2Þ

ν

Z
H6

dX8Q ¼ −
64π3

3

Iμν
jx⃗1 − x⃗2j8

; ð6:11Þ

which again is independent of which regulator we use.
Plugging (6.10) and (6.11) into (6.9) and comparing with
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the definition of cJ in (6.1), we find that the leading
approximation for the imaginary part of cJ is

ImcJ ≈ jcJ;instj ≈� 128π3

9

				A1

A0

e−Nðf1−f0Þ
				; ð6:12Þ

with A1

A0
e−Nðf1−f0Þ given in (4.45).

B. Three-point function coefficients

Another example of a quantity that acquires an imagi-
nary part due to the instanton contribution is the three-point
function hσσσi. Conformal invariance implies

hσðx⃗1Þσðx⃗2Þσðx⃗3Þi ¼
Cσσσ

jx⃗1 − x⃗2jΔσ jx⃗1 − x⃗3jΔσ jx⃗2 − x⃗3jΔσ
;

ð6:13Þ

for some numerical coefficient Cσσσ. The perturbative
contribution to Cσσσ is Oð1=N2Þ, and since it is real, we
are not concerned with it here. The contribution from the
instanton saddle gives the leading imaginary part of Cσσσ,
and can be evaluated simply by plugging in the classical
value of σ and integrating over the instanton moduli space.
By analogy with the expression (5.17) for the two-point
function, we have

hσðx⃗1Þσðx⃗2Þσðx⃗3Þiinst
¼ A1

A0

e−Nðf1−f0Þ
Z
H6

dX
−8

ðX · P1Þ2ðX · P2Þ2ðX · P3Þ2
:

ð6:14Þ

This integral is convergent and was evaluated in [71]:Z
H6

dX
1

ð−2X · P1Þ2ð−2X · P2Þ2ð−2X · P3Þ2

¼ π3

2

1

jx⃗1 − x⃗2j2jx⃗1 − x⃗3j2jx⃗2 − x⃗3j2
: ð6:15Þ

It follows that the leading imaginary contribution to Cσσσ is

ImCσσσ ≈∓jCσσσ;instj ≈∓256π3
				A1

A0

e−Nðf1−f0Þ
				; ð6:16Þ

with A1

A0
e−Nðf1−f0Þ given in (4.45).

While the three-point function hσσσi and consequently
Cσσσ depends on the normalization of the operator σ, one
can define the normalization-independent ratio

r ¼ Cσσσ

hσðêÞσð0Þi3=2 ; ð6:17Þ

where ê is a unit vector. The leading order imaginary part of
r is then

Imr ≈
ℑCσσσ

C3=2
σ

≈ ∓ π6

2
N3=2

				A1

A0

e−Nðf1−f0Þ
				: ð6:18Þ

VII. SADDLE POINTS WITH k > 1

As shown in Sec. III, the large N theory on Sd admits a
sequence of saddle points with constant σ ¼ −kðkþ 1Þ and
k a positive integer. We have identified the k ¼ 1 saddle
point as the source of leading nonperturbative effects in
the large N limit of the OðNÞ model with 4 < d < 6. The
corresponding instanton solutions are well known in the
limits where d approaches 4 and 6 so that the theory
becomes weakly coupled [43–45], as reviewed in Sec. II. In
this section, we collect for completeness a number of
results about the k > 1 solutions, including their “classical
actions” and the spectrum of fluctuations around them. In
particular, we present new (as far as we know) classical
solutions on S4 and S6 where the fields ϕi are not constant,
but are rather proportional to any spherical harmonic.

A. Saddle points in the large N theory

The value of the effective action evaluated on the large N
saddle point is given by

Sσ¼−kðkþ1Þ ¼
N
2

X∞
n¼0

DnðdÞ log
�
nðnþ d − 1Þ

þ 1

4
dðd − 2Þ − kðkþ 1Þ

�
¼ NfkðdÞ; ð7:1Þ

where fkðdÞ may be given the integral representation in
(B5) or (B6), for α ¼ k. Using the recursion relation for
degeneracies

DnðdÞ ¼ Dn−1ðdÞ þDnðd − 1Þ; ð7:2Þ

it is not hard to show that

fkðdÞ − fk−1ðdÞ ¼
Xk−1
m¼0

fmðd − 2Þ: ð7:3Þ

From this relation we find

fkðdÞ ¼ f0ðdÞ þ
Xk−1
m¼0

ðk −mÞfmðd − 2Þ; ð7:4Þ

and finally we obtain

Sσ¼−kðkþ1Þ − Sσ¼0 ¼ NðfkðdÞ − f0ðdÞÞ

¼ N
Xk
m¼1

kþm
2m

Ffree scalar
Sd−2m ; ð7:5Þ
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where we used the fact that f0ðdÞ ¼ Ffree scalar
Sd

, with an
explicit expression for general d given in (4.9). For
example, for the k ¼ 2 saddle, we find that at large N,
the effective action evaluated on the saddle point is

Sσ¼−6 − Sσ¼0 ¼ ð3Ffree scalar
Sd−2

þ Ffree scalar
Sd−4

ÞN: ð7:6Þ

Let us now consider the spectrum of fluctuations of σ
around these saddles. For this we need to diagonalize the
“kinetic” operator −NG2

kðx⃗1; x⃗2Þ, where Gkðx⃗1; x⃗2Þ is the
ϕ’s Green’s function around the σ ¼ −kðkþ 1Þ solution.
Using Eq. (4.14) and hypergeometric function relations
we find

Gkðx⃗1; x⃗2Þ ¼
Γðd

2
− 1Þ

4πd=2
1

sd−2 2F1

×

�
−k; kþ 1; 2 −

d
2
;
s2ðx⃗1; x⃗2Þ

4

�
; ð7:7Þ

where we fixed the constant C as before by noting that
Gkðx⃗1; x⃗2Þ must have the same short-distance singularity as
the propagator of a conformally coupled scalar. As for the
k ¼ 1 saddle, the Green’s function can be expanded in

spherical harmonics Yn;m⃗ðxÞ with eigenvalues λðkÞn

−NG2
kðx⃗1; x⃗2Þ ¼

X
n;m⃗

λðkÞn Y�
n;m⃗ðx⃗1ÞYn;m⃗ðx⃗2Þ: ð7:8Þ

Using that

1

sðx⃗1; x⃗2Þ2Δ
¼

X∞
n¼0

knðΔÞY�
n;m⃗ðx⃗1ÞYn;m⃗ðx⃗2Þ;

knðΔÞ ¼ π
d
22d−2Δ

Γðd
2
− ΔÞΓðnþ ΔÞ

ΓðΔÞ;Γðdþ n − ΔÞ ð7:9Þ

we find for general k that

λðkÞn

λð0Þn

¼
Yk
m¼1

ðdþ nþ 2m − 2Þðn − 2mþ 1Þ
ðdþ n − 2m − 2Þðnþ 2mþ 1Þ ;

λð0Þn ¼ N

2dð4πÞd−32 sinðπd
2
ÞΓðd−1

2
Þ
Γðdþ n − 2Þ
Γðnþ 2Þ : ð7:10Þ

Note that λð0Þn is positive for all n, whereas λðkÞn are negative
for n ¼ 0; 2; 4;…; 2k − 2 and zero for n ¼ 1; 3; 5;…; 2k −
1 with degeneracies DnðdÞ. In the case of k ¼ 1, i.e., the
physical instanton which was the focus of the paper, we
get a single negative mode and dþ 1 zero modes. For
k > 1 there are several negative modes as well as additional
zero modes, making the physical interpretation of these
solutions unclear. For instance, for k ¼ 2, one finds
ðdþ 1Þðdþ 2Þ=2 negative modes and ðdþ 1Þðdþ 2Þ ×
ðdþ 3Þ=6 zero modes.

B. Expansion around 6 and 4 dimensions

Let us now discuss how these saddles behave close to
d ¼ 6 and d ¼ 4. First note that if we take d ¼ 6 − ϵ in
Eq. (7.5), and expand to leading order in ϵ, then only a
finite number of terms contribute to the sum, because the
general formula (4.9) for the Sd free energy implies to
leading order in ϵ

Ffree scalar
S6−ϵ−2m

¼

8>>>>><
>>>>>:

1
90ϵ ; m ¼ 1

− 1
3ϵ ; m ¼ 2

− 2
ϵ ; m ¼ 3

0; m ≥ 4:

ð7:11Þ

Thus we find that, in the large N theory, the value
of the action evaluated on the σ ¼ −kðkþ 1Þ saddle
point is

Sσ¼−kðkþ1Þ − Sσ¼0jd¼6−ϵ ¼ −N
k2ðkþ 1Þ2ðk2 þ k − 3Þ

360ϵ

ð7:12Þ

in d ¼ 6 − ϵ dimensions. Performing a similar computation
in d ¼ 4þ ϵ dimensions, we find

Sσ¼−kðkþ1Þ − Sσ¼0jd¼4þϵ ¼ N
k2ðkþ 1Þ2

12ϵ
: ð7:13Þ

The fact that these expressions are proportional to 1=ϵ
suggests that we should be able to find all the k-saddles in
perturbation theory in ϵ. Indeed, in the following we find
analogous classical solutions in the theories (1.1) and
(2.14) in d ¼ 6 − ϵ and d ¼ 4þ ϵ, respectively, at values
of N that are not necessarily large.

C. Instantons close to d = 6

Let us start with the cubic theory (1.1) in d ¼ 6 at
arbitrary couplings g1 and g2, conformally mapped to S6 as
in (2.9). Due to conformal symmetry at the classical level,
any solution to the classical equations of motion for the S6

theory (2.9),

∇2ϕi ¼ ð6þ g1σ̄Þϕi;

∇2σ̄ ¼ g1
2
ϕiϕi þ g2

2
σ̄2 þ 6σ̄ ð7:14Þ

can be mapped to a solution to the classical equations of
motion (2.1) of the R6 theory (1.1), and vice versa. In
(7.14), we relabeled σ → σ̄ when we derived the equations
of motion from (2.9) in order not to confuse σ̄, which
appears in the 6d theory with the σ field from the large N
theory. The two fields differ by an overall normalization
factor.

OðNÞ MODEL IN 4 < D < 6: INSTANTONS AND COMPLEX … PHYS. REV. D 101, 045013 (2020)

045013-17



The feature of the solutions we want to find is that σ̄ is
constant on S6,15 so we may ask whether (7.14) admit such
solutions. It is easy to see that the first equation in (7.14)
then takes the form of an eigenvalue equation for the
operator ∇2 − 6, with g1σ̄ being the eigenvalue. Apart from
the trivial solutions with ϕi ¼ 0, nontrivial solutions exist
only when 6þ g1σ̄ ¼ −nðnþ 5Þ for some n ¼ 0; 1; 2;….
They are the S6 spherical harmonics Yn;m⃗. Thus

σ̄ ¼ −
nðnþ 5Þ þ 6

g1
¼ −

ðnþ 2Þðnþ 3Þ
g1

: ð7:15Þ

Comparing the coefficients of σϕiϕi in the S6 action (7.14)
and the large N action (3.2), we see that σ ¼ g1σ̄.
Therefore, the solution (7.15) precisely matches σ ¼
−kðkþ 1Þ upon the identification k ¼ nþ 2. The second
equation in (7.14) is solved provided that ϕiϕi is a constant
equal to16

ϕiϕi ¼ −
g2σ̄2 þ 12σ̄

g1
: ð7:16Þ

It is not hard to arrange for the ϕi to be proportional to the
spherical harmonics with index n and at the same time for
ϕiϕi to be constant. Indeed, if Dn is the number of linearly
independent such spherical harmonics, and fYn;pg, with
p ¼ 1;…; Dn is an orthonormal basis of real spherical
harmonics, then take

ϕiðx⃗Þ ¼
(
α

ffiffiffiffiffiffiffiffiffiffiffi
VolðS6Þ

Dn

q
Yn;iðx⃗Þ; i ¼ 1;…; Dn;

0; i ¼ Dn þ 1;…; N;
ð7:17Þ

where α is a constant. Then ϕiϕi ¼ α2 is indeed a constant
on S6. The choice (7.17) is not unique because one can
perform OðNÞ rotations on the N scalars.17 For example,
when n ¼ 0, we have ϕi ¼ αð1; 0; 0;…Þ, up to OðNÞ

rotations. For n ¼ 1, also up to OðNÞ rotations, we have
ϕi ¼ αðx̂1; x̂2;…; x̂7; 0; 0;…), where x̂i are the compo-
nents of the unit vector x̂ in R7 parametrizing S6. Note that
for constructing such solutions, we require N ≥ Dn.
The on-shell action of these solutions can be obtained

by simply plugging (7.15) and (7.16) in the action (2.9) and
using −∇2ϕi ¼ nðnþ 5Þϕi. This calculation gives

Sn ¼
8π3ðnþ 2Þ2ðnþ 3Þ2½18g1 − ðnþ 2Þðnþ 3Þg2�

45g31
:

ð7:18Þ

The above analysis holds for the classical theory (2.9)
for any values of the couplings g1 and g2. The same analysis
can also be applied to the critical theory in 6 − ϵ dimen-
sions, by simply plugging into (7.18) the critical values
of the coupling given in Eq. (2.5). After doing so, one
obtains

Sn ¼ −
ðnþ 2Þ2ðnþ 3Þ2ðn2 þ 5nþ 3Þ

360ϵ
N

−
ðnþ 2Þ2ðnþ 3Þ2ð8n2 þ 40nþ 59Þ

30ϵ
þOð1=NÞ:

ð7:19Þ

(An exact expression in N can also be obtained if one uses
the exact formulas for g�1 and g

�
2 from [31].) We see that this

expression precisely matches (7.12) after we identify
k ¼ nþ 2, as explained right below (7.15).

D. Instantons close to d = 4

One can similarly find additional classical instantons in
d ¼ 4 in the quartic scalar model (2.19). The solutions to
the classical equations of motion for the S4 and R4 theories
are in one-to-one correspondence, and we choose to work
on S4. Instead of using the quartic action (2.19), it is
convenient to write the theory on S4 with the help of the
auxiliary Hubbard-Stratonovich field σ:

S ¼
Z

d4x
ffiffiffi
g

p �
1

2
∂μϕi∂μϕ

i þ 1

2
ϕiϕið2þ σÞ − σ2

4g

�
:

ð7:20Þ

Performing the path integral over σ [or, at the classical
level, solving for σ from its equation of motion and
plugging the solution back into (7.20)], one recovers the
quartic model in (2.19), so the theories (2.19) and (7.20) are
indeed equivalent. The equations of motion following from
(7.20) are

σ ¼ gϕiϕi;

∇2ϕi ¼ ð2þ σÞϕi: ð7:21Þ

15There should also be solutions where σ̄ is not a constant.
Some of them can be obtained by performing a conformal
transformation to flat space, followed by a translation and
dilation, followed by a conformal transformation back to the
sphere. We leave to future work an investigation as to whether this
is a full set of solutions of (7.14).

16Since the right-hand side is negative, these solutions involve
imaginary ϕi. This is similar to the instanton solutions in the
OðNÞ model in 4 − ϵ dimensions, which are also imaginary
(see [44], Sec. II B, and the following section).

17Because OðN −DnÞ transformations acting on the last N −
Dn scalars leave the solution (7.17) invariant, the moduli of the
more general solution obtained by acting with OðNÞ rotations on
(7.17) parametrize the coset space OðNÞ=OðN −DnÞ. Explicitly,
we can parametrize OðNÞ=OðN −DnÞ with Dn orthonormal
N-component vectors uip, with p ¼ 1;…; Dn and i ¼ 1;…N,
obeying uipuiq ¼ δpq. Then, the general solution obtained by
acting with an OðNÞ rotation on (7.17) can be written as

ϕiðx⃗Þ ¼ α
ffiffiffiffiffiffiffiffiffiffiffi
VolðS6Þ

Dn

q
uipYn;pðx⃗Þ.
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As in 6-d, we should look for solutions for which σ is a
constant on S4.18 The equation (7.21) then takes the form of
an eigenvalue problem for the operator ∇2 − 2, with σ
being the eigenvalue. The solutions are the S4 spherical
harmonics, which have eigenvalues of the Laplacian equal
to −nðnþ 3Þ, with n ¼ 0; 1; 2;…. This implies

σ ¼ −nðnþ 3Þ − 2 ¼ −ðnþ 1Þðnþ 2Þ: ð7:22Þ

This expression precisely matches the solutions σ ¼
−kðkþ 1Þ in the large N theory upon the identification
k ¼ nþ 1. As in 6-d, we can write explicit solutions for ϕi

obeying both the constraint ϕiϕi ¼ 1=g and solving (7.21).
If, for a given n, we consider a real orthonormal basis
fYn;pg, p ¼ 1;…; Dn, for the spherical harmonics with
Laplacian eigenvalue −nðnþ 3Þ whose degeneracy is Dn,
then we can take

ϕiðx⃗Þ ¼
( ffiffiffiffiffiffiffiffiffiffiffiffiffi

σVolðS4Þ
gDn

q
Yn;iðx⃗Þ; i ¼ 1;…; Dn;

0; i ¼ Dn þ 1;…; N;
ð7:23Þ

up to OðNÞ rotations.19 In fact, the solution with n ¼ 0 is
precisely the solution (2.20) considered in Sec. II B.
The classical action evaluated on the instanton solution

presented above can be obtained by simply plugging (7.22)
into the action (7.20) and noticing that after using the ϕi

equation of motion, only the last term in (7.20) survives.
Thus, one obtains

Sn ¼ −
2π2ðnþ 1Þ2ðnþ 2Þ2

3g
: ð7:24Þ

The analysis above was in the classical theory (7.20) [or
equivalently (2.19)] for any values of g. To study the critical
theory in 4þ ϵ dimensions, we can simply plug the value of
the critical coupling (2.16) into (7.24), obtaining

Sn ¼
ðnþ 1Þ2ðnþ 2Þ2ðN þ 8Þ

12ϵ
: ð7:25Þ

At leading order in large N, this expression matches (7.13),
provided that we identify k ¼ nþ 1, as required to match
(7.22) with σ ¼ −kðkþ 1Þ.
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APPENDIX A: COMPUTATION ON Sd − 1 ×R

On S4 ×R we write the partition function as

ZSd−1×R ¼ Ã0ðdÞe−Nf̃0ðdÞ
�
1þ Ã1ðdÞ

Ã0ðdÞ
e−Nðf̃1ðdÞ−f̃0ðdÞÞ þ � � �

�
;

ðA1Þ

where we put tildes on all quantities so we do not confuse
them with the analogous quantities in the Sd computation.
To place the theory on Sd−1 ×R we proceed as follows.

We use coordinates ðt; p̂Þ for parametrizing this space, and
ðτ; ρ; n̂Þ for parametrizing the moduli space. Then take

P ¼ ð sinh t; p̂; cosh t Þ;
X ¼ ð cosh ρ sinh τ; n̂ sinh ρ; cosh ρ cosh τ Þ: ðA2Þ

In these coordinates, the instanton profile is

σ ¼ −
2

ðcosh ρ coshðτ − tÞ − sinh ρp̂ · n̂Þ2 : ðA3Þ

The most symmetric configuration is at ρ ¼ τ ¼ 0, where

σ ¼ −
2

cosh2 t
: ðA4Þ

We will do the computations at this point in the instanton
moduli space.

1. ϕ determinant

The operator whose eigenvalues we should compute is

−∂2
t −

2

cosh2 t
−∇2

Sd−1 þ
ðd − 2Þ2

4
: ðA5Þ

To evaluate it, we can use the formula that the regularized
determinant of the operator

OðkÞ ¼ −∂2
t −

kðkþ 1Þ
cosh2 t

þ a2; ðA6Þ

18Same comment as in footnote 15.
19As in footnote, we can write the general solution obtained

after acting with OðNÞ transformations on (7.23) using a set of
Dn orthonormal N-component vectors uip, with p¼1;…;Dn and

i ¼ 1;…; N. The general solution is ϕiðx⃗Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
σVolðS4Þ

gDn

q
uipYn;pðx⃗Þ.
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which is

detOðkÞ ¼ Γðaþ 1ÞΓðaÞ
Γðaþ kþ 1ÞΓða − kÞ : ðA7Þ

For the case of interest to us, k ¼ 1, this gives

detOð1Þ ¼ a − 1

aþ 1
: ðA8Þ

For us, we have modes with a2 ¼ nðnþ d − 2Þ þ
ðd−2Þ2

4
¼ ðnþ d−2

2
Þ2, so a ¼ nþ d−2

2
with degeneracy

Dn−1ðd − 1Þ. Then we find

f̃1ðdÞ − f̃0ðdÞ ¼
1

2

X∞
n¼0

Dnðd − 1Þ log nþ d−2
2
− 1

nþ d−2
2
þ 1

: ðA9Þ

This can be rewritten as

f̃1ðdÞ − f̃0ðdÞ ¼
1

2

X∞
n¼0

½Dnðd − 1Þ −Dn−2ðd − 1Þ�

× log

�
nþ d − 2

2
− 1

�
: ðA10Þ

Quite nicely, Dnðd − 1Þ −Dn−2ðd − 1Þ ¼ Dnðd − 2Þ þ
Dn−1ðd − 2Þ so this expression is identical to (4.6). Thus

f̃1ðdÞ − f̃0ðdÞ ¼ Ffree scalar
Sd−2

: ðA11Þ

APPENDIX B: COMPUTATION OF
ONE-LOOP DETERMINANTS

In order to compute various one-loop determinants it is
useful to define a general function fαðdÞ as

fαðdÞ ¼
1

2

X∞
n¼0

DnðdÞ log
��

nþ d
2
þ α

��
nþ d

2
− α− 1

��
;

ðB1Þ

where the degeneracies DnðdÞ are given by DnðdÞ ¼
ð2nþd−1ÞΓðnþd−1Þ

n!ΓðdÞ . For integer α ¼ k the function fαðdÞ coin-
cides with the “classical action” of the σk¼−kðkþ1Þ
saddle point in the large N theory. For k ¼ 1 we have the
instanton discussed in the main text of the paper, and k ¼ 0
just corresponds to the perturbative vacuum, so that fα¼0 is
free energy of a free conformal scalar. To compute this
function, we can differentiate it by α to obtain

∂fαðdÞ
∂α ¼ −

ðαþ 1
2
Þ

ΓðdÞ
X∞
n¼0

Γðnþ d − 1Þ
n!

�
1

nþ d
2
þ α

þ 1

nþ d
2
− α − 1

�
: ðB2Þ

Then using the formula

X∞
n¼0

Γðnþ aÞ
n!

1

nþ b
¼ π

sin πa
ΓðbÞ

Γð1 − aþ bÞ ðB3Þ

we finally get

∂fαðdÞ
∂α ¼ πðαþ 1

2
Þ

ΓðdÞ sin πd
�

Γðd
2
þ αÞ

Γðαþ 2 − d
2
Þ þ

Γðd
2
− α − 1Þ

Γð1 − d
2
− αÞ

�
: ðB4Þ

Therefore integrating over α we find

fαðdÞ ¼ f0ðdÞ þ
Z

α

0

dx
πðxþ 1

2
Þ

ΓðdÞ sin πd
�

Γðd
2
þ xÞ

Γðxþ 2 − d
2
Þ þ

Γðd
2
− x − 1Þ

Γð1 − d
2
− xÞ

�
: ðB5Þ

After using the identity ΓðxÞΓð1 − xÞ ¼ π= sinðπxÞ, this may be also rewritten as

fαðdÞ ¼ f0ðdÞ þ
1

sinðπd
2
ÞΓðd − 1Þ

Z
α

0

dxx sinðπxÞΓ
�
d − 2

2
þ x

�
Γ
�
d − 2

2
− x

�

−
1

sinðπd
2
ÞΓðdÞ

Z
α−1=2

−1=2
dxx cosðπxÞΓ

�
d − 1

2
þ x

�
Γ
�
d − 1

2
− x

�
: ðB6Þ

Applying this formula to the case α ¼ 1, corresponding to the σ ¼ −2 instanton, we see that the second integral in the
formula above vanishes, and the first integral reproduces the free energy of a free conformal scalar (4.9) on Sd−2, so that
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f1ðdÞ ¼ f0ðdÞ þ f0ðd − 2Þ; ðB7Þ

in agreement with (4.7).
It is also useful to define another function

f̃αðdÞ ¼
1

2

X∞
n¼2

DnðdÞ log
��

nþ d
2
þ α

��
nþ d

2
− α− 1

��
;

ðB8Þ

where the sum goes over n from 2 to þ∞ (i.e., in the case
of the instanton solution, it excludes the negative and zero
modes). The computation of f̃αðdÞ is similar to the for-
mulas above, we just have to exclude in (B3) the n ¼ 0 and
n ¼ 1 terms. We obtain

f̃αðdÞ ¼ f̃0ðdÞ þ
Z

α

0

dx

�
xþ 1

2

�

×

�
π

ΓðdÞ sin πd
�

Γðd
2
þ xÞ

Γðxþ 2 − d
2
Þ þ

Γðd
2
− x − 1Þ

Γð1 − d
2
− xÞ

�

þ dþ 1

ðd
2
− xÞðd

2
þ xþ 1Þ þ

1

ðd
2
þ xÞðd

2
− x − 1Þ

�
:

ðB9Þ

The integral over x may have some divergencies, which
should be regularized by taking the principal value of the
integral. Note that the ratio of determinants logRd, defined
in Sec. IV C, can be written as

logRd ¼ f̃d
2
−4ðdÞ − f̃d=2ðdÞ: ðB10Þ

So, using the integral (B9) for d ¼ 5 one finds

logRd¼5 ¼ −
ζð3Þ
π2

þ log
9

ffiffiffiffiffi
15

p

29π3
ðB11Þ

which is the result given in Sec. IV C.

1. Fluctuation determinants in d = 6 − ϵ
We can now apply the above formulas to the calculation

of determinants of fluctuations around the classical solution
(2.3) in the cubic theory in d ¼ 6 − ϵ. The analogous
calculation for the case of a single scalar field with cubic
potential was carried out in [43]. To support the interpre-
tation of the solution (2.3) as the instanton responsible for
tunneling from the metastable ground state, it is important
to check that even in the presence of the additional N fields
ϕi, there is still a single negative mode (as well as dþ 1
zero modes) as we now show.
Following the discussion in Sec. II A, we know that for

the cubic theory, the instanton solution is constant when
mapped to Sd. Thus, the fluctuation around the classical

solutions requires calculating the determinants of the
following operators:

Mσ ¼ −∇2
Sd
þ dðd− 2Þ

4
− g2σc ¼ −∇2

Sd
þ dðd− 2Þ

4
− 12;

Mϕ ¼ −∇2
Sd
þ dðd− 2Þ

4
− g1σc ¼ −∇2

Sd
þ dðd− 2Þ

4
− 12z;

ðB12Þ

where σc ¼ −12=g2, as discussed in the Sec. II A,
and z ¼ g1=g2.
Let us first examine the presence of negative eigenval-

ues. For the σ fluctuations, the calculation is identical to the
one in [43], and for σ ¼ 6 − ϵ, we find a single negative
mode for n ¼ 0. Let us check that there are no additional
negative modes coming from the ϕ fluctuations. The
eigenvalues of Mϕ at d ¼ 6 − ϵ are

λn ¼
ðnþ 5=2 − ϵ=2þ ζÞðnþ 5=2 − ϵ=2 − ζÞ

ðnþ 2 − ϵ=2Þðnþ 3 − ϵ=2Þ ;

n ¼ 0; 1; 2;… ðB13Þ

where we defined ζ ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 48z

p
. We see that in order for

all eigenvalues to be positive, we must require:

ζ < 5=2 − ϵ=2: ðB14Þ

Or, equivalently,

z ¼ g1
g2

< 1=2þOðϵÞ: ðB15Þ

However, the analysis of perturbative fixed points in the
cubicOðNÞ theory [31,33] shows that the ratio g1=g2 varies
from 1=6 at N ¼ ∞ to about 1=8.9 at N ¼ Ncrit. Therefore,
Mϕ does not contribute additional negative modes.
The determinants of the fluctuation operators may be

evaluated explicitly using the functions defined in the
previous section. Excluding the n ¼ 0 and n ¼ 1 modes
which may be treated separately, we can compute the ratio
of determinants:

1

2
log

�
det0Mð1Þ

σ

det0Mð0Þ
σ

�
¼ 1

2

X∞
n¼2

DnðdÞ log
ðnþ d

2
− 4Þðnþ d

2
þ 3Þ

ðnþ d
2
− 1Þðnþ d

2
Þ

¼ f̃3ðdÞ− f̃0ðdÞ;
1

2
log

�
det0Mð1Þ

ϕ

det0Mð0Þ
ϕ

�
¼ 1

2

X∞
n¼2

DnðdÞ

× log
ðnþ d

2
− 1

2
þ ζÞðnþ d

2
− 1

2
− ζÞ

ðnþ d
2
− 1Þðnþ d

2
Þ

¼ f̃ζ−1=2ðdÞ− f̃0ðdÞ; ðB16Þ
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where the superscripts “(1)” and “(0)” refer to the instanton and perturbative saddles, respectively, and det0 means we are

excluding n ¼ 0, 1. We can first calculate logðdet
0Mð1Þ

ϕ

det0Mð0Þ
ϕ

Þ, and then setting ζ ¼ 7=2 will give us the corresponding result for the

σ determinant. The explicit computation using the integral in Eq. (B9) gives at d ¼ 6 − ϵ:

log

�
det0Mð1Þ

ϕ

det0Mð0Þ
ϕ

�
¼ −

ð1 − 4ζ2Þ2ð4ζ2 − 13Þ
23040ϵ

−
1

1382400
ð2ζ − 1Þð4384ζ5 − 2416ζ4 − 23408ζ3

− 32824ζ2 − 138614ζ − 898747Þ

−
1

2
logð2ζ þ 5Þ − 7

2
logð2ζ þ 7Þ þ 11 log 2þ 1

2
log 3

þ 1

240

Z
ζ−1

2

0

dαðα − 1Þαðαþ 1Þðαþ 2Þð2αþ 1ÞðH3−α þHαÞ; ðB17Þ

where Hα is the Harmonic number. It is possible to take
explicitly the last integral, but the expression is very cum-
bersome, so we keep it as an integral. Setting ζ ¼ 7=2, we
find (in agreement with [43])

log

�
det0Mð1Þ

σ

det0Mð0Þ
σ

�
¼ −

18

5ϵ
− 2ζ0ð−3Þ − 11ζ0ð−1Þ

−
109

240
þ 18γ

5
þ 7

2
log

12

7

≈ −
18

5ϵ
þ 5.3192: ðB18Þ

Here, the 1=ϵ pole is a UV divergence that comes from the
summation over large n (in particular, the n ¼ 0, 1 modes
clearly do not affect this UV pole). We can also extract
analytically the coefficient of the 1=ϵ pole in the ϕ
determinant. We find, in terms of z ¼ g1=g2

1

2
log

�
detMð1Þ

ϕ

detMð0Þ
ϕ

�
jpole ¼

6

5ϵ
ðz2 − 4z3Þ: ðB19Þ

Since the theory is renormalizable, we expect this diver-
gence to be canceled by the perturbative renormalization of
the coupling constants. Let us check this explicitly as a
further test of our results. The classical action on the
instanton background is

Sclass ¼
768π3

5g22
ðB20Þ

where g2 should be viewed as the bare coupling. The
renormalized coupling is related to the beta function by

μϵ

ðg22Þbare
¼ 1

g22
−
2β2;6dðg1; g2Þ

g32

1

ϵ
ðB21Þ

where μ is a renormalization scale, and β2;6d is the beta
function for g2 in d ¼ 6. Using the explicit result for the
perturbative beta function found in [31], we get

μϵ

ðg22Þbare
¼ 1

g22
þ 1

2ð4πÞ3
�
3

ϵ
þ N

ϵ

�
4
g31
g32

−
g21
g22

��

¼ 1

g22
þ 1

2ð4πÞ3
�
3

ϵ
þ N

ϵ
ð4z3 − z2Þ

�
: ðB22Þ

We can then see that the 1=ϵ pole precisely cancels the one
coming from the fluctuation determinants

1

2
log

�
detMð1Þ

σ

detMð0Þ
σ

�				
pole

þ N
2
log

�
detMð1Þ

ϕ

detMð0Þ
ϕ

�				
pole

¼ −
18

5ϵ
þ N

6

5ϵ
ðz2 − 4z3Þ; ðB23Þ

as expected from renormalizability.

APPENDIX C: THERMAL MASS ON S1 ×Rd − 1

In this section we briefly discuss the calculation of the
free energy for the large N critical theory on S1 ×Rd−1,
where S1 is the thermal circle of circumference β ¼ 1=T.
We will use a formal dimensional regularization so that all
powerlike divergences are automatically subtracted away.
Starting from the Lagrangian of the critical theory (3.1) and
integrating out the ϕi fields, we get a path-integral over σ
with action

Sσ ¼
N
2
log detð−∂2 þ σÞ ¼ NF ðσÞ: ðC1Þ

At large N, we can evaluate the free energy by extremizing
with respect to σ, assuming the saddle point occurs for
constant σ. Evaluating the ϕ one-loop determinant one
finds

F ðσÞ ¼ 1

2
Vd−1

X∞
n¼−∞

Z
dd−1p
ð2πÞd−1 log

��
2πn
β

�
2

þ p2 þ σ

�
;

ðC2Þ
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where Vd−1 is the (infinite) volume of the plane Rd−1. To recover the result for the free theory, one should set σ ¼ 0 in this
expression, which gives, using dimensional regularization throughout,

F free ¼
1

2
Vd−1

X∞
n¼−∞

Z
dd−1p
ð2πÞd−1 log

��
2πn
β

�
2

þ p2

�
¼ −

1

2
Vd−1

X∞
n¼−∞

Z
∞

0

dt
t

Z
dd−1p
ð2πÞd−1 e

−tðð2πnβ Þ2þp2Þ

¼ −
1

2
Vd−1Td−1 1

ð4πÞd−12 Γ
�
1 − d
2

� X∞
n¼−∞

½4π2n2�d−12 ¼ −πd−1
2 Vd−1Td−1Γ

�
1 − d
2

�
ζð1 − dÞ

¼ −Vd−1Td−1 Γðd2ÞζðdÞ
π

d
2

; ðC3Þ

which is the well-known result. To obtain the free energy for the interacting fixed point, we need to extremize (C2) with
respect to σ. We can compute the σ derivative as

dF
dσ

¼ 1

2
Vd−1

X∞
n¼−∞

Z
dd−1p
ð2πÞd−1

1

ð2πnβ Þ2 þ p2 þ σ
¼ 1

4
Vd−1β

Z
dd−1p
ð2πÞd−1

coth β
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ σ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ σ

p : ðC4Þ

Writing coth x
2
¼ 1þ 2

ex−1, we have

dF
dσ

¼ 1

4
Vd−1β

�Z
dd−1p
ð2πÞd−1

2

ðeβ
ffiffiffiffiffiffiffiffi
p2þσ

p
− 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ σ

p þ
Z

dd−1p
ð2πÞd−1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ σ

p �
: ðC5Þ

The first integral is convergent for any d, and the second one can be computed by dimensional regularization. After a change
of variables in the first integral, we obtain

dF
dσ

¼ 1

4
Vd−1β

�
4β2−d

ð4πÞd−12 Γðd−1
2
Þ

Z
∞

β
ffiffi
σ

p dy
ðy2 − β2σÞd−32

ey − 1
−

d

ð4πÞd2 σ
d
2
−1Γ

�
−
d
2

��
: ðC6Þ

Let us check this result in the case d ¼ 3. Using the integralZ
∞

β
ffiffi
σ

p
dy

ey − 1
¼ β

ffiffiffi
σ

p
2

− log

�
2 sinh

β
ffiffiffi
σ

p
2

�
ðC7Þ

we get

dF
dσ

¼ −
V2

4π
log

�
2 sinh

β
ffiffiffi
σ

p
2

�
: ðC8Þ

So we find that the value of σ extremizing F is

ffiffiffiffiffi
σ�

p
¼ 2

β
log

�
1þ ffiffiffi

5
p

2

�
ðC9Þ

and, integrating (C8) in σ, we obtain the free energy of the
3d critical theory

F crit ¼ F free −
V2

4π

Z
σ�

0

dσ log

�
2 sinh

β
ffiffiffi
σ

p
2

�

¼ −V2T2
ζð3Þ
2π

þ V2T2
1

5

ζð3Þ
2π

¼ −V2T2
4

5

ζð3Þ
2π

¼ 4

5
F free; ðC10Þ

which is in agreement with the result of [72].

Let us now consider the critical theory in d ¼ 5. Starting
from (C6), we need to evaluate the integral

Z
∞

β
ffiffi
σ

p dy
y2 − β2σ

ey − 1
¼ 2Li3ðe−β

ffiffi
σ

p Þ þ 2β
ffiffiffi
σ

p
Li2ðe−β

ffiffi
σ

p Þ:

ðC11Þ

So we get

dF
dσ

¼ V4

8π2β2

�
Li3ðe−β

ffiffi
σ

p Þ þ β
ffiffiffi
σ

p
Li2ðe−β

ffiffi
σ

p Þ þ β3σ
3
2

6

�
:

ðC12Þ

Hence the saddle points σ� are the solutions of the equation

Li3ðe−xÞ þ xLi2ðe−xÞ þ
x3

6
¼ 0; x ¼ β

ffiffiffiffiffi
σ�

p
; ðC13Þ

in agreement with the result of [46] obtained by different
methods. This equation does not have any real or purely
imaginary solutions, but one finds the pair of complex
conjugate solutions
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x�� ¼ 1.17431� 1.19808i: ðC14Þ

If we assume that the integration contour can be taken so
that it passes through both saddle points, then integrating

(C12) in σ one may get a real free energy. It would be
interesting to study the thermal theory further, and clarify
the relation to the nonperturbative instability on Sd or R ×
Sd−1 that we discussed in this paper.
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