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We present the most general ghostfree classical Lagrangian containing first-order derivatives and
describing interacting real Abelian spin-one fields on Minkowski spacetime. We study both massive Proca
and massless Maxwell fields and allow for a nonlinear realization of mass, in the form of derivative self-
interactions. Within this context, our construction notoriously extends the existing literature, which is
limited to the case of a single Proca field and to multiple interacting Proca fields in the presence of a global
rotational symmetry. In the limit of a single Proca field, we reproduce the known healthy interaction terms.
We provide the necessary and sufficient conditions to ensure ghost-freedom in any multifield setup.
We observe that, in general, the said conditions are not satisfied by the rotationally symmetric multi-Proca
interactions suggested so far, which implies that they propagate ghosts. Our theory admits a plethora of
applications in a wide range of subjects. For illustrative purposes, we provide concrete proposals in
holographic condensed matter and black hole physics.
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I. INTRODUCTION

The investigation of four-dimensional consistent theories
of fields of any spin has been a subject of great interest
over many decades and continues to be zealously pursued.
This research line started in [1] where, based on Lorentz
invariance and positivity of energy, the Fierz-Pauli equa-
tions describing the dynamics of free massive fields of
arbitrary spin were obtained. It was not until much later
that a proper Lagrangian formulation of these equations
was established [2]. The case of free massless fields was
formalized in [3], where both the Fronsdal equations of
motion and the corresponding action principle were
derived. In spite of noteworthy and ongoing progress,
the extension of these setups to the case of interacting
fields remains evasive. One of the reasons is that, generi-
cally, the addition of interaction terms to a Lagrangian
introduces further unphysical degrees of freedom (d.o.f.).
Throughout this paper, we refer to these as ghosts.
Generalizations that include interactions are particularly

challenging when the spin of at least one field is greater
than two—which collectively are known as higher-spin

theories. Indeed, consistent classical theories for interacting
fields exist only for spin s ≤ 2. This is because, in the
presence of one or more such fields, the spectrum of the
corresponding theory is necessarily infinite, i.e., it contains
fields of all spins. Although generic nonlinear equations of
motion capturing higher-spin interactions do exist [4], so
far no complete action has been constructed to describe
their dynamics. Nonetheless, effective field theories for a
single massive higher-spin particle are possible, e.g., [5].
(For enlightening reviews on higher-spin theories, see [6]
and references therein.)
The case of spin-two fields has met with more success

owing to the fact that, when restricting to Einstein-Hilbert
kinetic terms, the corresponding Lagrangian admits a finite
closed form. The linear theory of a single massless spin-two
field in a flat background propagating the correct number of
physical d.o.f. [1,2] admits a most celebrated nonlinear
completion: general relativity. Its massive counterpart was
first proposed in [7] and shortly after proven to be ghostfree
[8]. Powerful theorems forbid the existence of consistent
theories of interacting massless spin-two fields [9].
Consequently, the next advancement in this context involved
formulating theories of multiple interacting spin-two fields,
where at most only one such field is allowed to be massless
[10]. These theories are still being developed [11].
Turning attention to spin-zero fields, one observes that

(multi-)Galileon theories have been extensively studied, see
e.g., [12]. In brief, these are consistent theories of interacting
scalar fields on Minkowski spacetime whose Lagrangian is
invariant under a shift symmetry and leads to second-order
equations of motion. Galileons have also been studied over
curved spacetimes [13], where they match the well-known
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Horndeski theories [14] and have inspired the more modern
beyond-Horndeski theories [15]. The latter include inter-
actions that lead to higher-order equations of motion.
Compared to their spin-two and spin-zero analogues,

healthy classical theories of spin-one fields are still poorly
understood, even when one focuses solely on real Abelian
fields Xμ. In this spin-one case, we focus on first-order
theories only. By first-order we mean that the Lagrangian
contains exclusively first-order derivatives and powers of
them but no higher derivatives, up to integration by parts:
L ¼ LðXμ; ∂μXνÞ. What broadly is referred to as nonlinear
electrodynamics [16] accounts for the completion of
Maxwell’s theory of a single massless Abelian spin-one
field. This includes the famous Born-Infeld Lagrangian
[17], but also more recent proposals such as exponential
[18] and logarithmic [19] electrodynamics. On the massive
side, the Proca action [20] started to be supplemented with
derivative self-interaction terms not long ago [21]. Little is
known when it comes to multiple fields. Purely massless
interactions are possible at the spin-one level because the
no-go theorems in [9] no longer apply, but we were not able
to find any reference dedicated to their study. Purely
massive interactions have only been studied in [22], to
our knowledge. However, a very stringent global symmetry
on the field space was there imposed, yielding a theory
much more restricted than the general case.
A. Summary of results. In this work, we fill the void and

introduce the complete consistent classical theory of
interacting real Abelian spin-one fields on Minkowski
spacetime. We allow for both massless and massive fields
and introduce the most general first-order Lagrangian that
contains (self-)interaction terms among all fields. Notably,
when multiple massive fields are considered, the interaction
terms we put forward must satisfy certain differential
relations in order to ensure ghost-freedom. These relations
guarantee the existence of the secondary second class
constraint inherent to every massive field. We point out
that the subset of purely massive interactions in [22] does
not always fulfil the said relations and so it generically
propagates ghosts. The Lagrangian we propose contains
the most general theory of a single Proca field as a subcase.
In this limit, we replicate previous proposals in the literature.
B. Conventions. We work on Minkowski spacetime. We

choose Cartesian coordinates with the mostly positive
signature ημν ¼ diagð−1; 1; 1; 1Þ. We use the convention
that Greek alphabets ðμ; ν;…Þ denote spacetime indices and
are raised/lowered by ημν and its inverse ημν. The soon to be
introduced labels ðAi; α; ᾱÞ enumerate fields. Raising and
lowering these labels is trivial, since we do not impose any
symmetry on the field space. As usual, sum over repeated
indices and labels should be understood at all times.

II. MAIN FEATURES

Real Abelian spin-one fields can be either massless or
massive. These are widely known as Maxwell and Proca

fields, respectively. At a rigorous algebraic level, a Maxwell
field is characterized by two first class constraints while a
Proca field is associated with two second class constraints:
one primary and one secondary. Interestingly, the latter
algebraic definition is oblivious to the precise realization
of the second class constraints: as an explicit mass term in the
Lagrangian [20] and/or as derivative self-interaction terms
[21]. The latter case is also known as generalized Proca or
vector-Galileon. Subsequently,we adopt the algebraic under-
standing for both Maxwell and Proca fields.
We consider N number of Maxwell fields andM number

of Proca fields on Minkowski spacetime R ×R3. We allow
all N þM fields to self-interact as well as couple to each
other in the most general manner that avoids ghostlike
d.o.f. We restrict attention to first-order (self-)interactions.
Of course, these lead to at most second-order equations of
motion, a feature which ensures that the Ostrogradsky
instability [23] is avoided. We refer to our result as the
Maxwell-Proca theory.
Explicitly, we take all Maxwell fAμg and Proca fBμg

fields to be real. Their field strengths are

AðᾱÞ
μν ¼ ∂μA

ðᾱÞ
ν − ∂νA

ðᾱÞ
μ ; BðαÞ

μν ¼ ∂μB
ðαÞ
ν − ∂νB

ðαÞ
μ ; ð1Þ

for all ᾱ ¼ 1;…; N and α ¼ 1;…;M. We write the action
for the Maxwell-Proca theory as

S ¼
Z
R×R3

d4xLMP; LMP ¼ Lkin þ Lint; ð2Þ

where the kinetic piece of the Lagrangian is canonically
normalized,

Lkin ¼ −
1

4
AðᾱÞ
μν A

μν
ðᾱÞ −

1

4
BðαÞ
μν B

μν
ðαÞ; ð3Þ

andwe split the interaction piece into three parts: interactions
among the Maxwell fields LðAAÞ, between the Maxwell and
Proca fields LðABÞ and among the Proca fields LðBBÞ;

Lint ¼ LðAAÞ þ LðABÞ þ LðBBÞ: ð4Þ

The Maxwell-Proca action depends on the Maxwell fields
exclusively through their field strengths and so it has a
manifest Uð1ÞN gauge symmetry. The dependence on the
Proca fields is less restricted and consists of nonlinear
functions of the fields themselves, powers of their first-order
derivatives, field strengths and combinations thereof.
Consequently, no gauge symmetry is associated with the
Proca fields. Rather, it is explicitly broken.
In more detail, LðAAÞ encodes the (straightforward)

extension to multiple fields of the already mentioned
nonlinear electrodynamics [16–19]. We can succinctly
write these interactions as an arbitrary smooth real function
of the Maxwell field strengths:
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LðAAÞ ¼ fðAðᾱÞ
μν Þ: ð5Þ

On the other hand, LðABÞ and LðBBÞ present a rich novel
structure. This is best understood by means of the sub-
division

LðABÞ ¼
X4
n¼0

LðABÞ
ðnÞ ; LðBBÞ ¼

X4
n¼0

LðBBÞ
ðnÞ : ð6Þ

Let X stand for either a Maxwell or a Proca field:

fXðAiÞg ¼ fAðᾱÞg ∪ fBðαÞg; ð7Þ

where the field labels Ai range from 1 to N þM. Then,

LðXBÞ
ð0Þ in (6) denotes all interaction terms that depend on

derivatives of the fields exclusively through their field
strengths:

LðABÞ
ð0Þ ¼ gðBðαÞ

μ ;AðᾱÞ
μν ;B

ðαÞ
μν Þ; LðBBÞ

ð0Þ ¼ hðBðαÞ
μ ;BðαÞ

μν Þ; ð8Þ

with (g; h) arbitrary smooth real functions. In LðXBÞ
ðn>0Þ, the

integer n counts the number of derivatives. These inter-
actions are of the form

LðXXÞ
ðn>0Þ ¼ T ν1…νnρ1…ρn

A1…An
∂ν1X

ðA1Þ
ρ1 …∂νnX

ðAnÞ
ρn : ð9Þ

Here, T ν1…νnρ1…ρn
A1…An

—T for short—is a smooth real object
constructed out of the spacetime metric ημν, the four-
dimensional Levi-Civita tensor ϵμνρσ and the Proca fields

BðαÞ
μ . Notably, T is such that the derivatives ∂νiX

ðAiÞ
ρi are

antisymmetrized so that, when a time derivative acts on a

temporal component ∂0X
ðAiÞ
0 , no other time derivatives

appear. This is the necessary and sufficient condition to
avoid the propagation of ghosts at the primary level of the
constraint algebra. As already pointed out, when a Maxwell
field appears in (9), it does so through its field strength.
A couple of remarks are due. First, if one restricts

attention to four-dimensional first-order theories, the two

series in (6) stop at n ¼ 4 [24]. Second, note that LðABÞ
ð1Þ ⊆

LðABÞ
ð0Þ [28]. In the same spirit, the generic form of the LðXXÞ

ðn>0Þ
interactions in (9) contains terms that belong in LðXXÞ

ð0Þ by

definition. Although no term is missed, there is a clear
overcounting in this schematic presentation of the proposed
interactions. Such redundancies are further discussed and
altogether removed by a close inspection of the T ’s
elsewhere [27].
Crucially, all T ’s in (9) must satisfy certain differential

relations so that the Maxwell-Proca theory does not
propagate ghosts. The said relations are the necessary
and sufficient condition for ensuring ghost-freedom at
the secondary level of the constraint algebra. To illustrate

this point, consider two Proca fields interacting with each
other via

Lint ¼ fð1Þ∂ · Bð1Þ þ fð2Þ∂ · Bð2Þ ∈ LðBBÞ
ð1Þ ; ð10Þ

with fð1Þ and fð2Þ smooth real functions of Bð1Þ and Bð2Þ.
The above interactions propagate a ghostlike d.o.f. unless
the relation

∂fð1Þ
∂Bð2Þ

0

−
∂fð2Þ
∂Bð1Þ

0

¼ 0 ð11Þ

holds true. Obviously, setting both fð1Þ and fð2Þ to constants
satisfies (11), but this choice renders (10) irrelevant: it
reduces to a boundary term. A more involved example of
functions fulfilling (11) is given by

(
fð1Þ ¼ Bð1Þ · Bð2Þ þ 1

2
Bð2Þ · Bð2Þ;

fð2Þ ¼ Bð1Þ · Bð2Þ þ 1
2
Bð1Þ · Bð1Þ:

ð12Þ

The secondary constraint enforcing relations such as (11)
are an intrinsically multi-Proca result, arising whenM ≥ 2.
For any number of Maxwell fields, they are trivially
satisfied when a single Proca field is considered and also
when Proca fields do not interact with each other. At the
constraint algebra level, they ensure that the secondary
second class constraint inherent to every Proca field exists.
In full generality, they read

∂2LðXBÞ
ðnÞ

∂ _BðαÞ
0 ∂BðβÞ

0

−
∂2LðXBÞ

ðnÞ
∂ _BðβÞ

0 ∂BðαÞ
0

¼ 0 ∀ n; α; β; ð13Þ

where once again X spans all the Maxwell and Proca fields,
as in (7). To our mind, this is our strongest result, because
all literature so far is implicitly limited to the study of the
primary level of the constraint algebra. As it turns out, with
no thorough exploration of the secondary level, it is simply
impossible to guarantee ghost-freedom in any multifield
setup involving at least two Proca fields. In particular, when
N ¼ 0 and M Proca fields interact in a globally symmetric
manner, ghosts are generically propagated unless (13) is
enforced. Therefore, the general interactions proposed in
[22] must be supplemented by (13) before the resulting
theory can be claimed healthy. Specific interactions shown
there are incompatible with these relations and hence
propagate ghosts. This is discussed and exemplified else-
where [27]. In all cases, once (13) is satisfied, the constraint
algebra automatically closes at the tertiary level.
On the whole, the defining property of the Maxwell-

Proca theory is its constraint algebra structure: N times that
of a Maxwell field, plus M times that of a Proca. Namely,
the infinitely many interaction terms (4) we propose do not
spoil the additivity and associativity of the constituent
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constraint algebras: those of a single Maxwell and Proca
field. As a consequence, our theory propagates 2N þ 3M
d.o.f. and ghosts are unequivocally avoided.
The single Proca limit. When a single Proca field Bμ is

considered (N ¼ 0 and M ¼ 1), the Maxwell-Proca theory
reduces to the Lagrangian reported in [26,29,30]. Our
construction thus reproduces the complete theory for a
single Proca field [31].

III. CONCRETE APPLICATIONS

It is natural to regard the Maxwell-Proca theory here
presented as a multifield extension of classical electrody-
namics that includes nonlinear (self-)interactions among
the fields. The usual Maxwell Lagrangian is given by the
N ¼ 1 and M ¼ 0 limit of the Maxwell-Proca theory, with
no interaction terms at all: Lint ¼ 0. Since classical electro-
dynamics is one of the cornerstones of theoretical physics
and since most physical phenomena are nonlinear in nature,
it is not surprising that the Maxwell-Proca theory offers
lush possibilities in diverse contexts. In the following, we
outline two definite applications that rely on the multifield
feature: one in holographic condensed matter and one in
black hole physics.
A. Coupling to gravity Besides being an intrinsically

interesting addition to the set of consistent classical field
theories, the Maxwell-Proca theory serves as a building
block for the construction of more general healthy theories
as well. Indeed, efforts are made not only to derive
ghostfree interaction terms among particles of the same
spin, but also between particles of different spins. In this
respect, the consistent coupling of the Maxwell-Proca
theory to gravity stands out as a challenging yet fruitful
scenario to investigate. Challenging because such a cou-
pling requires a rigorous Hamiltonian analysis to unam-
biguously avoid ghosts. In fact, this analysis has already
been initiated and in [33] the single Proca case was studied,
but without aiming for exhaustiveness. Fruitful because, if
successful—even for simple subcases of the Maxwell-
Proca theory—the subsequent applications emerge.
B. Holographic condensed matter The so-called AdS=

CFT correspondence [34] establishes a duality between
certain quantum systems and classical theories of gravity
in one more dimension. Since the correspondence relates
the strongly coupled regime of one theory to the weakly
coupled regime of its dual, it is often employed as a tool in
the resolution of otherwise untackable problems. The basic
idea is to address a question within strongly correlated
quantum systems using perturbative techniques in gravity.
Accordingly, holographic condensed matter refers to the
study ofmicroscopic properties of (often idealized) materials
in terms of the dual gravitational theory.
Presently, we are interested in any consistent theory of real

Abelian spin-one fields propagating over four-dimensional
anti-de Sitter spacetime AdS4 and supporting a black hole.
The reason is that such theories canprovide a holographically

dual description of a superconductor in (1þ 2) dimensions,
as shown in [35]. This is a pertinent duality, since several
unconventional superconductors are layered and much of
their physics is three-dimensional—cuprates and organics,
for instance. The same holds true for the much better
understood thin-film superconductors. Working in the probe
limit, where fluctuations of the background and backreaction
effects are ignored, toymodels realizing the duality of [35] for
doped superconductors were proposed in [36]. We point out
that these models are multifield subcases of the Maxwell-
Proca theory, requiring N;M ≥ 1.
For concreteness, consider the following example, directly

drawn from [36]: a Maxwell field Aμ and a Proca field Bμ

with interactions

Lex1 ¼ B2ðm2=2þ cϵμνρσAμνBρσÞ; ð14Þ

where m is the mass of the Proca field and c is the coupling
constant specifying the interaction strength between the
Maxwell and Proca fields. Here, indices are raised/lowered
with an asymptotically AdS4 black hole metric. Notice that,
in the flat spacetime limit, (14) is contained in (8). The
corresponding action represents a doped superconductor,
under the duality relations

Aμ ↔ ψ̄γμ̃ψ ; Bμ ↔ ψ̄ imγ
μ̃γ5ψ im: ð15Þ

Namely, the Maxwell field is dual to the usual conducting
fermions ψ , while the Proca field is dual to the (spin-type)
impurity fermionsψ im. Here, γμ̃ are the Gammamatrices that
generate the Clifford algebra in the three-dimensional
spacetime supporting the superconductor, and so μ̃¼0, 1, 2.
As usual, ψ̄ ðimÞ ¼ ψ†

ðimÞγ
0 and γ5 ≔ iγ0γ1γ2.

We put forward the idea that an extension of the models
in [36] to the full Maxwell-Proca theory (or to any M ≥ 2
subcase of it, where our main result (13) applies) is worthy
of attention. This is because the corresponding action
allows for the holographic modeling of a superconductor
in the presence of multiple impurities, all of which are
distributed over the entire sample and interact with each
other. It would be interesting to investigate the competition/
enhancement effects produced by the interaction of the
various impurities for observables such as the spin sus-
ceptibility. This seems feasible, as enhancing effects in a
closely related setup have already been reported [37].
C. Black hole physics Black holes are an innate pre-

diction of general relativity. As such, they are gravitational
entities, regions of spacetime. However, when quantum
effects are taken into account, black holes are ascribed
temperature and entropy, thereby resembling thermody-
namical entities. Attempts to find agreement between the
gravitational and quantum field theoretical descriptions of
the rich phenomenology of black holes invariably lead to
conflict. Therefore, black holes are intrinsically interesting
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objects to study, often used as a guide to formulate a theory
of quantum gravity.
The appearance of an explicit mass term m2B2=2 for a

Proca field on a dynamical background gμν hugely limits
the existence of regular black hole solutions, as proven in
[38]. However, we already noted that a Proca field can be
realized exclusively through derivative self-interaction
terms. This leaves open a possibility [39] to elude the no-
goes of [38], which was exploited for instance in [42].
Moreover, a multifield scenario is capable of generating
hairy solutions. Consider the case of the Kerr black hole
with a complex Proca hair in [41]. This is a noninteracting
M ¼ 2 subcase of our theory. The arguments in [41]
suggest that our proposed LðBBÞ sector is a fertile ground
for avoiding the no-goes of [38].
Specifically, [42] focuses on the theory

Lex2 ¼
ffiffiffiffiffiffi
−g

p ðM2
PlR=2 − Λ − BμνBμν=4þ LcovÞ; ð16Þ

with g ≔ detðgμνÞ, R the Ricci scalar,MPl the Planck mass,
Λ the cosmological constant and Lcov given by

Lcov ¼ d1½ð∇ · BÞ2 −∇μBν∇νBμ − B2R=2�: ð17Þ

Here, d1 ∈ R is a coupling constant and ∇μ denotes the
covariant derivative. Observe that Lcov is a covariantization

of certain interactions LðBBÞ
ð2Þ in (6). In the decoupling limit

Bμ → ∇μπ, this Lagrangian is a particular example of a
beyond-Horndeski theory [15] and therefore admits hairy
black holes similar to those in [43]. We propose to
supplement the above action with terms inspired by the
Maxwell-Proca theory. Although ghost-freedom of the
following proposal remains unchecked, an appealing addi-
tion to the above Lagrangian would be

ffiffiffiffiffiffi
−g

p ð−AμνAμν=4þ d2ϵμ1…μ4Bμ1B
ρ∇μ2Bρ∇μ3Aμ4Þ; ð18Þ

with d2 ∈ R another coupling constant. It accounts for the

minimal covariant version of a term in LðABÞ
ð2Þ . The appeal

resides in both the Uð1Þ-invariance introduced by the
Maxwell field Aμ and the Maxwell-Proca interaction.
The theory resulting from adding (16) and (18) again
evades the axioms of [38]—due to the presence of addi-
tional global charges—and is likely to admit new so-called
charged-Proca configurations. In this case, both charged-
Proca stars as reported in [44] and charged-Galileon black
holes [45] would be natural limits of such unprecedented
spacetimes.

IV. FINAL REMARKS

The Maxwell-Proca theory is a nontrivial generalization
to multiple fields of the single Proca theory first proposed
in [21]. It is the result of the formalization of the notion of a
Proca field and its constraint algebra underlying [21]. The
implementation of the (previously unexplored) secondary
level of the algebra on a Lagrangian yields the differential
relations in (13). Any multi-Proca theory must satisfy these
relations to avoid ghosts. Then, the algebra closes auto-
matically at tertiary level.
The completeness claim relies on the following axioms:

we work on Minkowski spacetime, we consider first-order
Lagrangians and we focus on real Abelian spin-one fields.
While it is possible to circumvent our axioms and generate
beyond-Maxwell-Proca theories, this is not straightfor-
ward. We comment on the extensions of our axiomatization
elsewhere [27].
The given two applications in no way exhaust the

potential of the Maxwell-Proca theory. Other implications
can also be entertained, for instance in the context of
cosmology, hydrodynamics and nonlinear optics. Observe
that the above described (nontrivial) coupling to gravity is
required for applications in gravity and cosmology. In
holographic condensed matter, this coupling is used when
working beyond the probe limit. For all these disciplines,
the Maxwell-Proca theory constitutes an essential first step.
In the proposed applications, the multifield feature is a

cornerstone. At least one Maxwell and one Proca are
required to holographically model a doped (unconven-
tional) superconductor. If various Procas are considered,
enhancement/competition effects of dopants can be thus
studied. In the black holes case, the Maxwell-Proca theory
encloses at least three proven ways to evade no-hair
theorems. Further, its vast interaction terms should con-
stitute a fruitful source of novel hairy solutions.
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