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Weyl fermions with nonlinear dispersion have appeared in real-world systems, such as in the Weyl
semimetals and topological insulators. We consider the most general form of Dirac operators and study its
topological properties embedded in the chiral anomaly, in the index theorem, and in the odd-dimensional
partition function, by employing the heat kernel. We find that all of these topological quantities are
enhanced by a winding number defined by the Dirac operator in the momentum space, regardless of the
spacetime dimensions. The chiral anomaly in d ¼ 3þ 1, in particular, is also confirmed via the
conventional Feynman diagram. These interconnected results allow us to clarify the relationship between
the chiral anomaly and the Chern number of the Berry connection, under dispute in some recent literature,
and also lead to a compact proof of the Nielsen-Ninomiya theorem.
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I. INTRODUCTION

In quantum field theories with fermions, we often
encounter topological properties, with the chiral anomaly
being perhaps the best-known such effect. Although
initially derived from Feynman diagrams [1,2], its topo-
logical nature became quickly apparent via Fujikawa’s
alternative explanation [3] as the failure of the measure to
be invariant under chiral rotations, which in turn translates
to the Atiyah-Singer index density of the Dirac operator.
In recent years, chiral anomalies and other topological

aspects emerged as relevant and useful concepts in con-
densed matter systems as well, notably in Weyl semimetals
and topological insulators [4–6]. In the study of such
systems, one encounters fermion systems of a more general
kind than those familiar to high-energy physics. Instead of
the usual Dirac operator, linear in the spacetime derivatives,
a modified Hamiltonian of type

H ∼ σþð−iDþÞn þ σ−ð−iD−Þn þ σ3ð−iD3Þ ð1:1Þ

on a flat spatial R3 has appeared in the context of the Weyl
semimetal. A chiral two-component fermion with such a
generalized Dirac operator as the Hamiltonian is expected
to suffer n times the usual chiral anomaly. This was initially
motivated by the merging of a pair of chiral Dirac cones in

the Brillouin zone, while more direct demonstrations via
the Fujikawa method were recently given for n ¼ 2 and
n ¼ 3 [7,8]. Although this Hamiltonian is natural from the
coalescence of several Weyl cones in the Brillouin zone, its
topological equivalence to multiple Weyl fermions, as
manifest in the anomaly, is hardly immediate from the
usual continuum field theory viewpoint.
This begs for general inquiries into the anomaly and

other topological aspects for fermions whose spacetime
Dirac operator takes the most general form

γμPμð−iDÞ; ð1:2Þ

where −iDμ is the covariant momentum operator and Pμ

denotes polynomials, or even arbitrary smooth functions
thereof. In the end, we will compute the index density, the
anomaly, and also the anomalous phase of the partition
function in odd spacetime dimensions, and find that all of
these are minimally modified by the winding number of the
map Kμ → PμðKÞ. Apart from this overall factor, the
structure of the anomaly and the phase of the partition
function remain intact. The same computation can be
manipulated to show that this winding number is alter-
natively computed by counting the critical points K�,
defined by PðK�Þ ¼ 0, weighted by parities.
The latter should be reminiscent of the Morse theory [9]

for those who are familiar with index theorems, but at
the same time, this alternative picture shows how the
winding number information of the generalized Dirac
operator is connected to the Dirac/Weyl cones in the
momentum space, in a way that has been fruitfully used
in the condensed matter literature. In particular, the two
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alternative interpretations via the winding number and
the Morse counting represent, respectively, the ultraviolet
and the infrared viewpoints of one and the same quantity.
The former viewpoint will connect to topological
objects known in the momentum space as the Berry
monopole, whose quantized flux can be also related to
the d ¼ 2þ 1 topological insulator in the condensed matter
literature [10–16].
Extending the discussion to odd spacetime dimensions,

one finds a similar modification of the anomalous phase
of the partition function. Given an odd-dimensional Dirac
operator, this phase is computed by the eta invariant, which
in turn is related to the Chern-Simons action. We will also
see how this Chern-Simons effective action is also multi-
plicatively enhanced by the same kind of winding number
as in even dimensions. If we consider this odd-dimensional
spacetime as a flat boundary of an even-dimensional half-
spacetime, an Atiyah-Patodi-Singer index theorem holds,
again with the new overall multiplicative factor by the same
winding number. This also means that the connection
via the APS index theorem [17] between the d ¼ 2þ 1
boundary fermions and a bulk d ¼ 3þ 1 topological field
theory carries over verbatim: much as in even-dimensional
anomalies, the odd-dimensional anomalous phase does not
distinguish between N ordinary Dirac fermions and a
generalized Dirac fermion with the winding number N.
It is our aim to derive these general results, and to

explore their physical consequences. The starting point of
this investigation is the chiral anomaly for such generalized
Weyl fermions, which is one of the most robust handles
we have on all quantum fermions with continuous classical
symmetries. The chiral anomaly, many decades after its
initial discovery, can be still mysterious. On the one hand, it
is an infrared phenomenon of anomalous particle creation
and annihilation at zero energy (level crossing point), in
background field configurations where both parity and
time-reversal symmetries are broken. On the other hand, its
topological nature makes it computable also in ultraviolet
scales, leading to its expression in terms of the local
topological density of background fields. This infrared-
ultraviolet connection is a profound characteristic of the
chiral anomaly, which, when formulated in Euclidean
space, leads to its deep connection to the index theorems
in mathematics.
The infrared-ultraviolet connection of the chiral anomaly

may also manifest itself in momentum space. In the infrared
viewpoint, the anomaly should be given by contributions
from local level-crossing points, where in- and outflows of
particle numbers happen. Since the particle number is
conserved away from these points due to the Liouville
theorem [18], the same anomaly may also be seen in the
ultraviolet region of large momenta, captured by some
topology of the theory in consideration.
Can we prove the existence of such an infrared-

ultraviolet connection in momentum space? If yes, what

topology of the fermion theory in large momenta contains
the information of the infrared chiral anomaly? One of our
main results in this work is to provide a rigorous answer
to this question. We show the existence of an infrared-
ultraviolet connection of the chiral anomaly in momentum
space for a general class of theories, where the Dirac
operator is an arbitrary polynomial of covariant derivatives.
In particular, we prove in Sec. III A that the topology of the
Berry curvature of a projected chiral spinor in the asymp-
totically large momentum region carries precisely the same
information of chiral anomaly in the infrared.
The Berry curvature of chiral spinors is an essential

ingredient of the kinetic description of chiral particles in
phase space, the chiral kinetic theory [19–23], where
semiclassical approximation is justified at large momenta.
It is responsible for many novel transport phenomena in the
real-time dynamics of (pseudo)chiral fermion systems, in
both the condensed matter physics of Dirac/Weyl semi-
metals [19,24–29] and the physics of quark-gluon plasma
in relativistic heavy-ion collisions [30,31]. This includes
most notably the chiral magnetic effect [32–34], the chiral
vortical effect [35,36], and the anomalous Hall effect
[37–40].1 Within the kinetic theory description, it has been
argued that the chiral anomaly may also be explained by
the same Berry curvature [19,20,46].
The kinetic theory description as well as the concept of

the Berry phase breaks down for some states—e.g., those
near level-crossing points—while the anomaly should be
universal regardless of particular states or approximations
[47–49]. As such, the exact nature of these relations needs
further clarification. Nevertheless, the appearance of the
common topological quantity—namely, the winding num-
ber of the Dirac operator to be defined in Sec. II—in all of
these phenomena is suggestive. We hope that the resulting
infrared-ultraviolet connection we find in this work will fill
missing logical gaps in related discussions.
For the most part in this paper, we will employ the heat

kernel method [50], as it is universally applicable to all
spacetime dimensions and is very effective for extracting
topological information. In Sec. IV, however, we will also
resort to the usual triangular Feynman diagram for the
d ¼ 4 chiral anomaly, where the modification of the
current operators, on top of the higher inverse power of
the propagator, plays a crucial role.

II. GENERALIZED SPINORS AND
DIRAC OPERATORS

We would like to consider a Dirac index problem with
the operator generalized as

1See Refs. [41–43] for the experimental observation of the
chiral magnetic effect in Weyl semimetals, and see Refs. [44,45]
for the recent status of the experimental search of the chiral
magnetic effect in relativistic heavy-ion experiments.
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Q ¼ γμPμð−iDÞ ð2:1Þ

with smooth functions Pμ. Let us take the Dirac matrices in
the chiral basis,

γa ¼
�

0 σa

σa 0

�
; γ4 ¼

�
0 −i
i 0

�
; ð2:2Þ

and we use the covariant derivative

Dμ ¼ ∂μ þ Aμ; ð2:3Þ

with the anti-Hermitian gauge field Aμ. The Dirac operator
has the form

Q ¼
�

0 D

D† 0

�
ð2:4Þ

with

D ¼ ðσaPa − iP4Þ; D† ¼ ðσaPa þ iP4Þ: ð2:5Þ

We are interested in the index theorem of Q, and the chiral
anomaly associated with a Weyl fermion with the kinetic
operator D.

A. Index density and chiral anomaly

As is well known from the Fujikawa method [3], the
failure of the chiral rotation of the path integral for the
relevant two-component Weyl fermion,

Z
½Dψ̄Dψ �e

R
ψ̄Dψ ; ð2:6Þ

is measured by the index density, which can be written
formally as

TrðΓÞ≡ lim
s→0

TrðΓe−sQ2Þ; ð2:7Þ

with Γ ¼ −γ1γ2γ3γ4. Note that the trace here is over the
four-component Dirac spinors even though the physical
system is that of a Weyl spinor. One can understand this
from the well-known fact that, in the Euclidean signature, ψ̄
has to be treated as independent and transforms oppositely
to ψ under the chiral rotation. In practice, ψ and ψ̄ together
define a Dirac spinor, for which the formal index problem
follows. For a most comprehensive study of anomaly and
the connection to the index theorem, we refer readers
to Ref. [51].
Here, we proceed to compute this quantity by modifying

the usual heat kernel method, or

lim
s→0

TrðΓe−sQ2Þ ¼ lim
s→0

Z
d4x trðΓGsðx; xÞÞ; ð2:8Þ

where Gsðy; xÞ≡ hyje−sQ2 jxi obeys

−∂sGsðy; xÞ ¼ Q2Gsðy; xÞ; lim
s→0

Gsðy; xÞ ¼ δð4Þðy − xÞ:
ð2:9Þ

So, the problem boils down to how one computes Gsðx; xÞ.
For this, we start with

Q2 ¼ PμPμ þ
1

4
½γμγν�½Pμ;Pν�; ð2:10Þ

which we further split as

Q2 ¼ Q2
0 þ δQ2; Q2

0 ≡ Pμð−i∂ÞPμð−i∂Þ: ð2:11Þ

With the latter, we can perform the usual heat kernel
expansion

Gsðy; xÞ ¼
X
l¼0

GðlÞ
s ðy; xÞ;

Gðlþ1Þ
s ðy; xÞ ¼ −

Z
s

0

dt
Z

d4zGð0Þ
s−tðy; zÞδQ2GðlÞ

t ðz; xÞ;

ð2:12Þ

where the free heat kernel

Gð0Þ
s ðz; xÞ ¼ hzje−sQ2

0 jxi; ð2:13Þ

which is easily found,

Gð0Þ
s ðxþ X; xÞ ¼

Z
d4K
ð2πÞ4 e

iK·Xe−sPðKÞ2 ; ð2:14Þ

in the momentum space R̃4 of Kμ.
For the index density, the crucial step is the power-

counting of small s in Eq. (2.12). Each iteration brings
down a factor of s given the s integral, but further fractional
factors of s arise from the z integral combined with
operators in δQ2. Note, in particular, that each derivative
in δQ2 will cost some inverse fractional power of s.
One key identity will be

1ffiffiffi
π

p
4

Z
d4K det

�∂Pμ

∂Kα

�
e−sPðKÞ2 ¼ s−2NP ; ð2:15Þ

where NP is the asymptotic winding number of the map,
K → PðKÞ. In other words, NP measures the multiplicity
of the map over the targetR4 with the orientation taken into
account. With Eqs. (2.10) and (2.11), and with the insertion
of Γ in Eq. (2.7), it is clear that the first nontrivial
expression out of Eq. (2.12) will occur at the second
iteration, where we expect to find something like Eq. (2.15)
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times s2, leading us to NP in the end. Let us now track how
this occurs.
The relevant contribution can be found from the further

expansion of the squared Dirac operator

1

4
½γμ; γν�½Pμ;Pν� ¼

1

2
γμγνFαβ

∂PμðKÞ
∂Kα

∂PνðKÞ
∂Kβ

þ � � � ;

ð2:16Þ

where the ellipsis denotes terms that come with fewer free-
standing derivatives—i.e., fewer factors of K, or more A’s.
These cost lower powers of s−1 and effectively disappear as
the s → 0 limit is taken in the end. Because of the Γ
insertion in Eq. (2.7), the first nontrivial term arises in the
second order of the iteration of Eq. (2.12), when one pulls
down γγF in Eq. (2.16). This will be accompanied
effectively by a factor of s2=2, due to the two s integrals,
producing a term like Eq. (2.15). This shows how all the

subsequent terms in Eq. (2.16) become irrelevant for the
purpose of computing the index density. In fact, all
interaction pieces in Pð−iDÞ2 belong to the latter category,
so for the purpose of computing the index density, all that
matters is the first term on the right-hand side of Eq. (2.16)
in the place of δQ2.
Let us trace this process more explicitly. Since an explicit

factor of x’s in δQ2, such as in the Taylor expansion of F,
costs positive factors of s, relative to the one in Eq. (2.16),
we only need to worry about how the free-standing
derivatives in δQ2 works in the heat kernel expansion. With

ΠðK;FÞ≡ 1

2
γμγνFαβ

∂PμðKÞ
∂Kα

∂PνðKÞ
∂Kβ

;

Π̂ð−i∂;FÞ≡ ΠðK;FÞjK→−i∂ ; ð2:17Þ

one finds2

Gð1Þ
s ðxþ X; xÞ ¼

Z
s

0

dt
Z

d4YGð0Þ
s−tðxþ X; xþ YÞΠ̂ð−i∂;FÞGð0Þ

t ðxþ Y; xÞ þ � � �

¼
Z

s

0

dt
Z

d4Y
Z

d4K
ð2πÞ4 e

iK·ðX−YÞe−ðs−tÞPðKÞ2 × ΠðW;FÞ
Z

d4W
ð2πÞ4 e

iW·Ye−tPðWÞ2 þ � � �

¼ s
Z

d4K
ð2πÞ4 e

iK·Xe−sPðKÞ2 × ΠðK;FðxÞÞ þ � � � : ð2:19Þ

The above is from an expansion of the operatorQ2 around a
generic point x, and the momentum K is conjugate to the
“small” displacement X.
It is clear that the momentum factors pile up

through the iteration, and since the position dependence
of FμνðxÞ does not enter in the small-s limit, the iteration
can be performed in the momentum space straightfor-
wardly. Repeating one more time, the same computation
gives

Gð2Þ
s ðxþ X; xÞ ¼ s2

2

Z
d4K
ð2πÞ4 e

iK·Xe−sPðKÞ2

× ðΠðK;FðxÞÞÞ2 þ � � � : ð2:20Þ

Now we are ready to compute the index density:

lim
s→0

TrðΓe−sQ2Þ ¼ lim
s→0

Z
d4xtrðΓGsðx; xÞÞ

¼ lim
s→0

s2

2

Z
d4xtr

�
1

4
Γγμγνγμ0γν0

�
FαβFα0β0

×
Z

d4K
ð2πÞ4

∂PμðKÞ
∂Kα

∂PνðKÞ
∂Kβ

×
∂Pμ0 ðKÞ
∂Kα0

∂Pν0 ðKÞ
∂Kβ0

e−sPðKÞ2 : ð2:21Þ

With Γ ¼ −γ1γ2γ3γ4 inserted, we need to collect four
distinct γ’s to ensure a nonzero result, and then the
fermionic trace above gives −4ϵμνμ0ν0 . Then, we may invoke
Eq. (2.15) and find

lim
s→0

TrðΓe−sQ2Þ ¼ −
NP

32π2

Z
d4xϵαβα

0β0FαβFα0β0

¼ NP ·

�
−

1

8π2

Z
F ∧ F

�
; ð2:22Þ

which shows the usual index density, and hence the
chiral anomaly is enhanced by a factor of NP , the winding
number associated with the map K → PðKÞ.

2Here we use

Z
d4YeiðW−KÞ·Y ¼ ð2πÞ4δð4ÞðW − KÞ: ð2:18Þ
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Although we have computed the index density in four
dimensions, the generalization to arbitrary even dimen-
sions, d, is immediate, and gives

lim
s→0

TrðΓe−sQ2Þ ¼ NP ·

�
1

ðd=2Þ!ð2πiÞd=2
Z

F ∧ � � � ∧ F

�
;

ð2:23Þ

with a d=2 number of the field strength 2-form
F ¼ Fμνdxμ ∧ dxν=2, anti-Hermitian as before. The wind-
ing number of the map K → PðKÞ enters this formula via3

NP ≡ 1ffiffiffi
π

p d

Z
Rd

ddK det ð∂̃αPμÞe−PðKÞ2 : ð2:24Þ

Each oriented copy of R̂d in the image gives 1 times the
sign of the Jacobian, so this measures how many times the
map PðKÞ covers the target R̂d. If the map is such that
PðKÞ2 diverges wherever K2 diverges, this number NP is
an integer.
A simple class of illuminating examples can be found for

d ¼ 2. The winding number NP would be the net multi-
plicity of the map P∶ R̃2 → R̂2, or equivalently, the net
winding number of the asymptotic circle in R̃2. For
instance, consider the special case of P ¼ ∂̃W and W ¼
ðf þ f�Þ for some holomorphic polynomial f ¼ fðK1 þ
iK2Þ of the maximal degree nþ 1. The winding number
can be extracted easily by considering

P1 þ iP2 ¼ ð∂̃1 þ i∂̃2Þðf þ f�Þ ¼ 2∂K1−iK2
f� ð2:25Þ

along the asymptotic circle; it is proportional to ðK1 −
iK2Þn asymptotically, so we learn NP ¼ −n regardless of
the details of f. If we generalize ðf þ f�Þ to an arbitrary
real polynomialWðK1;2Þ, again of the highest degree nþ 1,
as the next logical step, we already lose such a universal
statement. The same mathematical object NP¼∂̃W has been
recently studied in an entirely different context [52]. There,
the authors found NP¼∂̃W ¼ −n;−nþ 2;−nþ 4;…, etc.,
provided that the leading power of W is nondegenerate,
with codimension-1 walls dividing the parameter space of
W into domains with locally constant NP¼∂̃W . In other
words, despite the “topological” nature, NP can experience
“wall crossing” generically. We refer the readers to Sec. 2
of Ref. [52] for a full range of subtleties, present even for
this simple class of examples, such as (non)integrality
criteria and wall crossings thereof.

B. Infrared interpretation

Note that this integral produces an integer, as long as P2

is asymptotically unbounded, since

NP ¼ 1ffiffiffi
π

p d

Z
ddPe−P

2

; ð2:26Þ

where NP is now entirely encoded in the integration
domain. The integral on the right-hand side gives 1 for
each integration domain of R̂d, but this is multiplied by NP,
since the map K → P is an NP-fold covering of R̂d. This
topological characterization may be considered an ultra-
violet description, since the winding number is defined via
the asymptotic behavior of the map PðKÞ.
On the other hand, the index and the anomaly are

fundamentally infrared phenomena, so they should be
equally visible in the small-jPj limit. For this, note that
the expression is invariant under P → C · P for any
positive real number C, which we already used to scale
away s above to reach Eq. (2.24). Going back to the
K-space integral and taking a limit of C → ∞, however,
we see that Eq. (2.24) localizes at the critical points, P ¼ 0,
and the winding number has an alternative form, as a sum
over the critical points, weighted by �1, depending on the
sign of the determinant there:

X
fK�jPðK�Þ¼0g

1 · sgn½detð∂̃αPμÞ�jK¼K� ; ð2:27Þ

provided that all the critical points are nondegenerate—i.e.,
provided that the determinants there do not vanish. In fact,
it is easy to see how this generalizes to a case with
degenerate critical points,

X
fK�jPðK�Þ¼0g

NPðK�Þ; ð2:28Þ

where NPðK�Þ is the local winding number near such
(degenerate) critical points. This is a Morse theory counting
if Pμ ¼ ∂̃μWðKÞ for some Morse function WðKÞ [9],
although we do not really need the latter here.
Again, let us consider the minimal example we saw in

the previous subsection, with W ¼ f þ f� for a holomor-
phic polynomial fðK1 þ iK2Þ of the highest degree nþ 1
in d ¼ 2. The critical points K� are found by solving
f0 ¼ 0, which is a degree-n algebraic equation on C, with
n solutions. Near a simple zero—say, K�—f can always
be approximated by a quadratic term f − fðK�Þ≃
CðΔK1 þ iΔK2Þ2, so that W −WðK�Þ ≃ j2CjððΔK1Þ2 −
ðΔK2Þ2Þ modulo a local rotation of ΔK ≡ K − K�. The
sign of the Hessian is always negative at K�, so we again
findNP ¼ −n, the same as above from the winding number
interpretation. With W elevated to an arbitrary real poly-
nomial, the number of zeros becomes more flexible, with

3We introduce ∂̃ to emphasize that it is a partial derivative in
the momentum space.
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both signs of the Hessian allowed. In the end, one finds
agreement [52] between this fixed-point counting and the
winding number counting of the previous subsection.
Although we started with the expression (2.24) that has a

natural interpretation as a winding number, measured at the
asymptotic region of K space, this alternative description
counts the critical points, P ¼ 0, where the Dirac operator
Q may be approximated by a linear form,

Q ≃ ∂̃αPμðK�Þð−iγμDαÞ:

One merely counts how many approximate Dirac cones
appear in the infrared end of the dynamics, whose chir-
alities are dictated by the matrix ∂̃αPμðK�Þ. If the latter has
a negative determinant, this can be translated to a chirality
flip, relative to others with a positive determinant.

III. NONRELATIVISTIC ISOSPINOR

For condensed matter systems, one sometimes encoun-
ters generalized Weyl fermions where the two components
actually refer to flavors or “isospin” rather than the real spin
associated with the angular momentum. In recent years, the
chiral anomaly in this isospin context has surfaced as an
important issue, so let us apply what we have developed in
the previous section to these real systems.
Since these are all nonrelativistic fermions, the direction

4 plays a special role as the genuine (Euclidean) time
direction, and as such, we will be content with the single
derivative there. As such, we may specialize to the case

P4 ¼ −iD4 þ Δð−iD⃗Þ; Pa ¼ Pað−iD⃗Þ; ð3:1Þ
where we split the 4-vector into the Euclidean time compo-
nent and a 3-vector distinguished by the arrow. This will
correspond, in Lorentzian time, to a two-component Weyl
Hamiltonian of type

H ¼ σaPa − Δ: ð3:2Þ

The necessary Wick rotation prescription will become
clearer when we compute the anomaly by a Feynman
diagram in the next section, but for now we will stick to
this Euclidean viewpoint.
We could simply rely on the results of the previous

section, whereby the anomaly can be seen to not be affected
by the presence of Δ at all. Still, let us retrace part of these
steps for an illustration, with a simplifying assumption of
Δ ¼ 0. In other words, let us consider

D ¼ σaPað−iD⃗Þ −D4; D† ¼ σaPað−iD⃗Þ þD4; ð3:3Þ

for some smooth functions Pa of −iDa¼1;2;3. In addition,

we will assume that jP⃗ðk⃗Þj2 grows indefinitely at large k⃗;
this would be the case, for example, if P’s are generic
polynomials. Our experience above suggests that the

anomaly must be again dictated by a topology of the
map ka → Paðk⃗Þ.
The zeroth-order heat kernel is

Gð0Þ
s ðxþX;xÞ¼ 1ffiffiffiffiffiffiffiffi

4πs
p e−X

2
4
=4s×

Z
d3k
ð2πÞ3e

ik⃗·X⃗e−sP⃗
2

; ð3:4Þ

where we now separate out the 3-vector X⃗ from the 4-vector
X, etc. The pieces in Q2 that can contribute to the index
density are, as before,

1

4
½γμ; γν�½Pμ;Pν� ¼

X3
a¼1

γ4γaF4h∂̃hPaðk⃗Þ þ � � �

þ
X
b>c

γbγcFfg∂̃fPbðk⃗Þ∂̃gPcðk⃗Þ þ � � � ;

ð3:5Þ

expressed in the momentum space, and F is considered to
be slowly varying. The structure of the index density we
have seen implies that the integrand will contain the
multiplicative factor

1

6
ϵabcϵhfgð∂̃hPaÞð∂̃fPbÞð∂̃gPcÞ ¼ det

�∂Paðk⃗Þ
∂kh

�
; ð3:6Þ

and we can deduce the expression that plays the role of NP
in Eq. (2.22):

NP⃗ ≡ s3=2ffiffiffi
π

p
3

Z
d3k det

�∂Paðk⃗Þ
∂kh

�
e−sP⃗

2 ¼ 1ffiffiffi
π

p
3

Z
d3Pe−P⃗

2

;

ð3:7Þ

where the factor s on the left-hand side is scaled away
without affecting the result by the change of the integration
variable s1=2P⃗ → P⃗ on the right-hand side.
Again, the map k⃗ → P⃗ðk⃗Þ is in general a multiple cover

of the target R̂3, which translates to the domain of the
integral on the right-hand side being several copies of R̂3:
The integral measures precisely this multiplicity.
Alternatively, this can be viewed as the winding number
of the map k⃗=jk⃗j → P⃗ðk⃗Þ=jPðk⃗Þj, from S̃2 to Ŝ2, in the
large-jk⃗j limit. We conclude that, for the most general
nonrelativistic Weyl fermion in 3þ 1 dimensions, Eq. (3.7)
is the right coefficient to the chiral anomaly.

A. The Berry monopoles in the momentum space

We saw that the chiral anomaly of a general two-
component isospinor is given by the winding number of
the map k⃗ → P⃗ðk⃗Þ in momentum space. We will show that
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the same topology underlies the Berry connection of the
projected chiral spinor in momentum space.4 For this, one
considers a two-level problem with the Hamiltonian

σaPaðk⃗Þ; ð3:8Þ

whose two eigenvalues are �jP⃗ðk⃗Þj. Denoting the two
respective eigenvectors by j�i, the Berry connection is

A� ¼ −h�j ∂
∂ka j�idka: ð3:9Þ

A well-known result is that, when Pa ¼ ka, the Berry
connection carries the unit magnetic flux. Let us recapitu-
late this simpler case first. In the spherical coordinates,

σaka ¼ jk⃗j
�

cos θ sin θe−iϕ

sin θeiϕ − cos θ

�
; ð3:10Þ

the two eigenvectors are

jþiσaka ¼
�
cosðθ=2Þe−iϕ=2
sinðθ=2Þeiϕ=2

�
;

j−iσaka ¼
�
− sinðθ=2Þe−iϕ=2
cosðθ=2Þeiϕ=2

�
: ð3:11Þ

Therefore, the two Berry connections are common up to
a sign,

A�jσaka ¼ � i
2
cos θdϕ; ð3:12Þ

which carries a unit 2π magnetic flux over S̃2, or the unit
Chern number. As usual, this is up to Uð1Þ gauge trans-
formations under the innocuous phase rotations,

j�i → eiΛ�ðk⃗Þj�i: ð3:13Þ

Coming back to H ¼ σaPa is merely a matter of
replacing k⃗ with P⃗ðk⃗Þ, so we can express

A�jσaPa
¼ � i

2
cosΘdΦ ð3:14Þ

with the spherical angles Θ and Φ of P⃗, which needs to
be pulled back to k⃗ space. In other words, denoting the
standard 2π Wu-Yang monopole field [53] in P⃗ space by A

and its field strength by F, the Berry connection and the
field strength thereof in the momentum space are

A� ¼ �Aa
∂Pa

∂kf dkf;

F� ¼ � 1

2
Fab

∂Pa

∂kf
∂Pb

∂kg dkf ∧ dkg: ð3:15Þ

Although Eq. (3.14) seemingly gives a unit 2π flux, this is
not generally the case, because the map k⃗ → P⃗ can be a
multicover of the target R̂3.
The actual integral that computes the Chern number is,

with P� being the pullback of the map P⃗ðk⃗Þ,
1

2πi

Z
S2

F� ¼ � 1

2π

Z
S2

P�ðFÞ ¼ � 1

2π

Z
B3

P�ðdFÞ; ð3:16Þ

where S2 ¼ ∂B3 is an arbitrary 2-surface in the k⃗ space. In
particular, if one takes B3 ¼ R̃3, the entire momentum
space, then

1

2πi

Z
R̃3

P�ðdFÞ ¼ 1

2πi

I
S̃2
∞

P�ðFÞ ¼ NP⃗; ð3:17Þ

since at the asymptotic two-sphere S̃2
∞, the total flux is

multiplied by the net winding number NP⃗.
On the other hand, dF ¼ 0 everywhere except at the

origin P⃗ ¼ 0, so we may rewrite this integral as

1

2π

X
fk⃗�jP⃗ðk⃗�Þ¼0g

Z
B3
ϵðk⃗�Þ

P�ðdFÞ; ð3:18Þ

where B3
ϵðk⃗�Þ is an infinitesimal 3-ball centered at k⃗�.

This in turn becomes

1

2πi

X
fk⃗�jP⃗ðk⃗�Þ¼0g

Z
∂B3

ϵðk⃗�Þ
P�ðFÞ; ð3:19Þ

and, since F is a unit monopole in P⃗ space, we find

X
fk⃗�jP⃗ðk⃗�Þ¼0g

NP⃗ðk⃗�Þ ¼ NP⃗; ð3:20Þ

where NP⃗ðk⃗�Þ is the winding number of P⃗, measured by

the infinitesimal neighborhood around k⃗�, which of course
sums up to NP⃗.
The total flux is computed by taking S2 equal to the

asymptotic S̃2 of k⃗ space, R̃3, which maps to NP⃗ times

the asymptotic Ŝ2 of the target R̂3 if the map P⃗ covers the
target R̂3 NP⃗ times. As such, this Berry connection carries
precisely 2πNP⃗ total flux, where NP⃗ may be also computed

4What we outline here is a well-known computation in the
context of d ¼ 2þ 1 topological insulators generally. See, for
example, Ref. [16]. One way to realize the latter is by imagining
a two-dimensional Brillouin zone as a slice in a d ¼ 3þ 1
Brillouin zone of Weyl semimetal, between a pair of chiral Weyl
and antichiral Weyl points.
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as in Eq. (3.7), provided that P⃗2 is divergent everywhere
asymptotically. This shows that the chiral anomaly is
precisely given by the same winding number NP⃗, offering
a rigorous logical link between the chiral anomaly and the
Berry connection in momentum space. As should be clear
from how we arrive at this connection via our generalized
index theorem, we emphasize that this is a nontrivial,
yet understandable manifestation of the infrared-ultraviolet
connection, which is a fundamental characteristic of the
chiral anomaly.

B. Infrared view and real material

As we have already seen in Sec. II, one can compute the
same winding number alternatively by rescaling Pa →
C · Pa, and going back to a d3k integral. This localizes
to small neighborhoods around k⃗ ¼ k⃗� where P⃗ðk⃗�Þ ¼ 0,
and as such really counts inverse images of P⃗ ¼ 0 with
weights �1,

X
fk⃗�jP⃗ðk⃗�Þ¼0g

1 · sgn½detð∂̃hPaÞ�jk⃗¼k⃗�
: ð3:21Þ

This alternative form is viable when the critical points are
isolated and nondegenerate, where one is counting Weyl
cones with P⃗ locally linear k⃗. If the sign happens to be
negative, it has the same effect as flipping the signs of an
odd number of γa ’s, resulting in anti-Weyl fermions instead
of Weyl fermions. When we allow degenerate critical
points, we find

X
fk⃗�jP⃗ðk⃗�Þ¼0g

NP⃗ðk⃗�Þ; ð3:22Þ

the same as Eq. (3.20).
In real material, the momentum k⃗ lives in a compact

Brillouin zone, R̃3=Λ, where Λ is the dual lattice to the
crystalline lattice of the material. On the flip side, P⃗ does
not extend indefinitely into R̂3 either. Instead, P⃗ðk⃗Þ ¼
P⃗ðΛk⃗Þ. One immediate question is how the story so far is
affected by such a compact Brillouin zone. Consider a pair
of energy bands that meets at one or more Bloch momen-
tum k⃗ ¼ k⃗�, which for our purpose means a continuous map
from k⃗ in the Brillouin zone R̃3=Λ to a 2 × 2 Hamiltonian
Hðk⃗Þ, such that

Hðk⃗Þ ¼ σ⃗ · P⃗ðk⃗Þ − Δðk⃗Þ; P⃗ðk⃗�Þ ¼ 0: ð3:23Þ

The appearance of Δ is of course necessary for real
material, but its connection to the same symbol in the
above Euclidean computation might look a bit unclear,
since the naive Wick rotation would renderΔ in Eq. (3.1) to
become purely imaginary. The answer to this is that one

really starts with a Lorentzian signature and rotates the
contour of k0 such that one reaches Eq. (3.1) in the end.
More on this will be elaborated in the next section.
In both the Euclidean anomaly computation and the

Berry phase computation, we have seen that only the
winding number associated with P⃗ðk⃗Þ matters for these
topological characterizations. In the target, one starts with a
monopole of the Berry connection near P⃗ ¼ 0, which we
must pull back to the Brillouin zone R̃3=Λ. One puzzling
aspect is that now P⃗2 must be bounded, as it is defined on a
compact Brillouin zone to begin with, and in real material
the energy eigenvalues −Δ� jP⃗j must be bounded above
and below: the integral formulas such as Eq. (3.7) appear
to have no reason to produce an integer. This quandary
is saved by the observation that under such circumstances,
(3.7) always produces zero, as we see below.
Let us replace R̃3 with R̃3=Λ and consider a surface

S2 ¼ ∂B3 that encloses all the critical points Pðk⃗�Þ ¼ 0,
whereby we have

NP⃗ ¼ 1

2πi

Z
B3

dP�ðFÞ ¼ 1

2πi

Z
S2

P�ðFÞ: ð3:24Þ

On the other hand, since R̃3=Λ is closed, −S2 is also a
boundary to the complement Bc

3. Given that no magnetic
monopole exists in Bc

3, we have

NP⃗ ¼ −
1

2πi

Z
−S2

P�ðFÞ ¼ −
1

2πi

Z
Bc
3

dP�ðFÞ ¼ 0; ð3:25Þ

and further may as well shrink Bc
3 to nothing, so that

B3 ¼ R̃3=Λ, and find

NP⃗ ¼ 1

2π

Z
R̃3=Λ

dðP�ðFÞÞ ¼ 0: ð3:26Þ

In view of our infrared alternative, the same can be
expressed as

X
fk⃗�jP⃗ðk⃗�Þ¼0g

NP⃗ðk⃗�Þ ¼ 0; ð3:27Þ

or

X
fk⃗�jP⃗ðk⃗�Þ¼0g

1 · sgn½detð∂̃hPaÞ�jk⃗¼k⃗�
¼ 0; ð3:28Þ

if all the critical points are nondegenerate.
In the end, the number of Weyl points and the number of

anti-Weyl points are always equal, for any system on a real
space lattice, provided that P⃗ is smooth enough in such a
compact Brillouin zone. This is, of course, nothing but the
Nielsen-Ninomiya theorem [54].
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C. Multiple and degenerate Weyl semimetal

Problems of this kind have been dealt with in recent
literature for a simple powerlike P⃗. The main prototype is

D ¼ ðσþð−iDþÞ2 þ σ−ð−iD−Þ2 þ σ3ð−iD3Þ −D4Þ;
ð3:29Þ

where D� ¼ D1 ∓ iD2 and σ� ¼ ðσ1 � iσ2Þ=2. This has
been motivated by a merging of a pair of Dirac cones,
initially separated in the Brillouin zone. A slight generali-
zation of this can be achieved by elevating the power to an
arbitrary positive n, and also replacing −iD3 with

P3 ¼ Clð−iD3Þl þ � � � ; ð3:30Þ

where the ellipsis denotes lower-order monomials of −iD3.
As is clear from the general formalism, these subleading
pieces are irrelevant for the problems at hand, so we may as
well consider

D ¼ ðσþð−iDþÞn þ σ−ð−iD−Þn þ σ3Clð−iD3Þl −D4Þ;
ð3:31Þ

whose associated Dirac operator is

Q ¼
�

0 D

D† 0

�
¼ ðγþð−iDþÞn þ γ−ð−iD−Þn

þ γ3Clð−iD3Þl þ γ4ð−iD4ÞÞ ð3:32Þ

with γ� ¼ ðγ1 � iγ2Þ=2. The anomaly computation for
n ¼ 2, 3 and l ¼ 1 with C1 ¼ 1 has been performed in
recent literature [7,8]. Although this class of examples
clearly falls under the general formalism above, we repeat
the exercise in part as an concrete example of our general
formulation, but also to show explicitly how the additional
power l enters the story.
The zeroth-order part of the squared Dirac operator is

−Q2
0 ¼ ðð∂1Þ2 þ ð∂2Þ2Þn þ C2

l ð∂3Þ2l þ ð∂4Þ2; ð3:33Þ

so that, now with X ¼ ðZ;U;VÞ and K ¼ ðp; q; q̃Þ,

Gð0Þ
s ðxþ X; xÞ ¼ 1ffiffiffiffiffiffiffiffi

4πs
p e−V

2=4s

×
Z

d2pdq
ð2πÞ3 eiðp·ZþqUÞe−sðp

2
1
þp2

2
Þn−sC2

l q
2l
:

ð3:34Þ

Again, the key quantity to compute is the second piece in

Q2 ¼ PμPμ þ
1

4
½γμ; γν�½Pμ;Pν�; ð3:35Þ

and the relevant terms in δQ2 are

1

4
½γμ; γν�½Pμ;Pν� ¼ γ1γ2ðn2F12Þðpþp−Þn−1 þ � � �
þ γ�γ3ð−nlðF13 ∓ iF23ÞÞClql−1ðpþÞn−1 þ � � �
þ γ�γ4ð−nðF14 ∓ iF24ÞÞðpþÞn−1 þ � � �
þ γ3γ4F34lClql−1 þ � � � : ð3:36Þ

As before, the momentum accumulates through each
iteration, and the relevant part of the heat kernel can be
found at the second order of iteration,

GsðxþX;xÞ

¼ � � �−Γ
s3=2ffiffiffiffiffiffi
4π

p ðl×fðFðxÞÞe−V2=4s

×
Z

d2pdq
ð2πÞ3 ðpþp−Þn−1ql−1eip·ZþiqUe−sððp

2ÞnþC2
l ðq2ÞlÞ þ � � �

ð3:37Þ

with

fðFÞ ¼ n2ðF12F34 þ F31F24 þ F23F14Þ: ð3:38Þ

For even l, the q integral vanishes, since the integrand is
odd under q → −q. For odd l, on the other hand, the
momentum integral gives in the coincident limit

Z
d2p
ð2πÞ2 ðp

2Þn−1e−sðp2Þn ×
Z

dq
2π

Clql−1e
−sC2

l ðq2Þl

¼ 1

4πs
1

n
×

1ffiffiffiffiffiffiffiffi
4πs

p sgnðClÞ
l

: ð3:39Þ

This brings us to

NP⃗ ¼
�
sgnðClÞ · n for odd l

0 for even l
; ð3:40Þ

where l does not add to the winding number but rather turns
it on or off, depending on its value modulo 2.

IV. DIAGRAMMATIC COMPUTATION
OF THE ANOMALY

One of the points that remains unresolved in the above
anomaly computation via the Fujikawa viewpoint was
the nature of the Wick rotation. Although the computation
stands well defined as a generalized index problem for a
spinor valued in a vector bundle over Rd, its relation to
quantum theories in the real world with the Lorentzian
signature needs to be clarified further when the spatial
momentum mixes in with the frequency. The usual Wick
rotation −it → τ no longer works, because of such a mix,
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so it is necessary to readdress the issue from a Lorentzian
viewpoint by computing the usual Feynman diagram
and seeing how its result is connected to those above. In
particular, this will give us a clearer picture of exactly what
Wick rotation we have effectively performed, and also
clarify why the general form of the anomaly remains intact,
modulo a multiplicative constant, despite the higher inverse
power of the momentum in the propagators.
For this, we consider the generalized fermion action

S ¼ R
x L, where

L ¼ −ψ̄γμPμð−iDÞψ þ iMψ̄ψ : ð4:1Þ

It is a massive fermion of mass M, and the true object we
need is a subtraction between an M ¼ 0 fermion and the
Pauli-Villars fermion of M in the M → ∞ limit. Once we
have this subtraction, the loop integral is finite, and we are
free to perform a shift or change of the loop variables.
When we perform such operations in the following, it is
understood that we do the same simultaneously for both the
M ¼ 0 fermion and the Pauli-Villars fermion contributions
in the regularized integrand, so that it is justified.
We assume that Pμð−iDÞ is expandable in power series,

and we show details for a particular order-n term explicitly,
and wherever we can replace the order-n expression with
the generalPμðkÞ, we will do so. The action with an order-n
term is

− ψ̄γμPμð−iDÞψ þ iMψ̄ψ

¼ −Cα1α2���αn
μ ψ̄γμð−iDÞα1ð−iDÞα2 � � � ð−iDÞαnψ þ iMψ̄ψ :

ð4:2Þ

Either by the Noether method or by introducing the
auxiliary chiral gauge field A5 in D ¼ ∂ þ Aþ A5γ

5 and
differentiating the action with respect to A5, the chiral
current is obtained as

jμA ¼
Xn
s¼1

Cα1���αs−1μαsþ1���αn
ν ððiDÞαs−1 � � �

× ðiDÞα1 ψ̄Þγνγ5ð−iDÞαsþ1
� � � ð−iDÞαnψ : ð4:3Þ

Note that Dψ ¼ ð∂ þ AÞψ and Dψ̄ ¼ ð∂ − AÞψ̄ . Although
we do not use the conserved vector current jμ, it has the
same form as the above except for γ5. Using the classical
equation of motion, it is easily seen that

∂μj
μ
A ¼ 2Mψ̄γ5ψ : ð4:4Þ

If there were no UV divergence in the correlation
functions involving jμA, Eq. (4.4) would imply a Ward
identity for the correlation functions,

∂μhjμA � � �i ¼ 2Mhψ̄γ5ψ � � �i; ð4:5Þ

which could be seen diagrammatically order by order in the
loop expansion. We have checked this explicitly at one loop
up to second order in the background gauge fields, which is
relevant to the chiral anomaly. In showing this, one needs to
shift or change the loop momenta, which is valid only when
the integrand is UV finite. For a divergent diagram, such as
the one we need to compute for the chiral anomaly, these
operations are allowed only after subtracting the regulari-
zation contribution to make it finite—in our case, the Pauli-
Villars fermion. The regularized chiral current is therefore

jμA;reg ¼ jμA;M¼0 − jμA;M; ð4:6Þ

which has now the valid Ward identity

∂μhjμA;reg � � �i ¼ −2Mhψ̄Mγ
5ψM � � �i; ð4:7Þ

where ψM is the Pauli-Villars fermion. The right-hand side
of the above will be seen to be finite in the one-loop order
that is sufficient to derive our chiral anomaly,5 and the
chiral anomaly, whatever it is, is obtained by

A ¼ lim
M→∞

− 2Mhψ̄Mγ
5ψMi: ð4:8Þ

There is another viewpoint that leads to the same formula
for the chiral anomaly. Consider a physical massive
fermion of mass M. Its chiral current has the Ward identity

∂μj
μ
A ¼ 2Mψ̄γ5ψ þA: ð4:9Þ

As M → ∞, the fermion should decouple from the low-
energy regime, and the symmetry current and its Ward
identity should be provided and saturated by other low-
energy degrees of freedom in theM → ∞ limit. This means
that the right-hand side of the above must vanish in the
M → ∞ limit.
In the diagrammatic evaluation of Eq. (4.8) up to second

order in the background gauge fields, there are three
diagrams to compute, as shown in Fig. 1. Since a non-
vanishing γ5 trace requires at least four γ matrices, and each
vertex and propagator contains at most one γ matrix, the
diagrams in Figs. 1(b) and 1(c) vanish trivially, and we only
consider the triangle diagram in Fig. 1(a). The propagator
in momentum space as a spinor matrix is6

5If the right-hand side remains divergent, although the degree
of divergence should be reduced, one needs to introduce the
second pair of Pauli-Villars fields to subtract such divergence.
One continues to introduce the necessary Pauli-Villars fields until
it becomes finite.

6We denote the 4-momentum in the Lorentzian signature by k,
to be distinguished from the Euclidean 4-momentum K or from
the spatial 3-momentum k⃗. The precise relation between the
Euclidean K we used in Sec. II and the Lorentzian k is more
subtle than for the usual Dirac fermions. See the last part of this
section.
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hψðkÞψ̄ðk0Þi ¼ ð2πÞ4δð4Þðkþ k0Þ ð−iÞ
γμPμðkÞ − iM

: ð4:10Þ

We need the interaction vertex only up to first order in the
gauge field:

iS ∼ −
Xn
s¼1

Cα1���αn
μ ðði∂Þαs−1 � � � ði∂Þα1 ψ̄Þγμ

× Aαsð−i∂Þαsþ1
� � � ð−i∂Þαnψ : ð4:11Þ

The Feynman rule for this vertex, as shown in Fig. 2, is
given by

−
Xn
s¼1

Cα1���αn
μ kα1 � � � kαs−1ðk − qÞαsþ1

� � � ðk − qÞαnγμAαsðqÞ

≡ Γðk; qÞ · AðqÞ; ð4:12Þ

where ψ carries a momentum k − q, ψ̄ carries a momentum
−k, and the momentum of the gauge field A is q. Note that

Γðk; 0Þ · AðqÞ ¼ −γμ
∂PμðkÞ
∂kν AνðqÞ; ð4:13Þ

which will be used later.
It is easy to write the expression −2Mhψ̄Mγ

5ψMi of
momentum p as (where ψ carries a momentum k and ψ̄
carries a momentum p − k)

2M
Z
q

Z
k
Tr

�
γ5

ð−iÞ
γ · PðkÞ − iM

Γðk; qÞ

· AðqÞ ð−iÞ
γ · Pðk − qÞ − iM

× Γðk − q; p − qÞ

· Aðp − qÞ ð−iÞ
γ · Pðk − pÞ − iM

�
; ð4:14Þ

where
R
k ¼

R
d4k
ð2πÞ4 is the loop integration. This is equal to

2iM
Z
q

Z
k

TrðIÞ
ðPðkÞ2 þM2 − iϵÞðPðk − qÞ2 þM2 − iϵÞðPðk − pÞ2 þM2 − iϵÞ ; ð4:15Þ

where P2 ¼ PμPμ, and

TrðIÞ ¼ Trðγ5ðγ · PðkÞ þ iMÞΓðk; qÞ · AðqÞðγ · Pðk − qÞ þ iMÞ × Γðk − q; p − qÞ · Aðp − qÞðγ · Pðk − pÞ þ iMÞÞ:
ð4:16Þ

Note that we introduce −iϵ for the time-ordered correlation functions.
The nonzero γ5 trace in the above requires precisely four γ matrices, and

TrðIÞ ¼ iMðTrðI1Þ þ TrðI2Þ þ TrðI3ÞÞ; ð4:17Þ
where

TrðI1Þ ¼ Trðγ5ðΓðk; qÞ · AðqÞÞðγ · Pðk − qÞÞðΓðk − q; p − qÞ · Aðp − qÞÞðγ · Pðk − pÞÞÞ;
TrðI2Þ ¼ Trðγ5ðγ · PðkÞÞðΓðk; qÞ · AðqÞÞðΓðk − q; p − qÞ · Aðp − qÞÞðγ · Pðk − pÞÞÞ;
TrðI3Þ ¼ Trðγ5ðγ · PðkÞÞðΓðk; qÞ · AðqÞÞðγ · Pðk − qÞÞðΓðk − q; p − qÞ · Aðp − qÞÞÞ: ð4:18Þ

Since the γ5 trace is totally antisymmetric with respect to four γ matrices in each I1;2;3, we can shuffle the four factors inside
each I1;2;3 up to sign changes. For the same reason, we can add any multiple of one factor to the other factor without
changing the result. Adding TrðI2Þ and TrðI3Þ, we have

(a) (b) (c)

FIG. 1. The Feynman diagrams for −2Mhψ̄Mγ
5ψMi.

FIG. 2. The Feynman diagram for the interaction vertex.
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TrðI2Þ þ TrðI3Þ
¼ Trðγ5ðγ · PðkÞÞðΓðk; qÞ · AðqÞÞ
× ðΓðk − q; p − qÞ · Aðp − qÞÞ
× ðγ · Pðk − pÞ − γ · Pðk − qÞÞÞ: ð4:19Þ

Subtracting the second factor from the last factor in TrðI1Þ,

TrðI1Þ ¼ Trðγ5ðΓðk; qÞ · AðqÞÞðγ · Pðk − qÞÞ
× ðΓðk − q; p − qÞ · Aðp − qÞÞ
× ðγ · Pðk − pÞ − γ · Pðk − qÞÞÞ: ð4:20Þ

Adding these, we have

TrðI1Þ þ TrðI2Þ þ TrðI3Þ
¼ Trðγ5ðγ · PðkÞ − γ · Pðk − qÞÞ
× ðγ · Pðk − pÞ − γ · Pðk − qÞÞ
× ðΓðk; qÞ · AðqÞÞðΓðk − q; p − qÞ · Aðp − qÞÞÞ:

ð4:21Þ

The first factor vanishes linearly in the small-q limit,

γ · PðkÞ − γ · Pðk − qÞ ≈ γμ
∂PμðkÞ
∂kν qν þ � � � ; ð4:22Þ

which, together with AðqÞ, gives a first-order derivative of
A in coordinate space. The same is true for the second
factor,

γ · Pðk − pÞ − γ · Pðk − qÞ ≈ −γμ
∂PμðkÞ
∂kν ðp − qÞν þ � � � ;

ð4:23Þ

which combines with Aðp − qÞ to give another derivative
of A in coordinate space. If we truncate higher-order
derivatives of A in coordinate space, we need to set q
and (p − q) in the other factors to zero.7 Then, the third and
fourth factors become

Γðk; qÞ · AðqÞ → Γðk; 0Þ · AðqÞ ¼ −γμ
∂PμðkÞ
∂kν AνðqÞ;

ð4:24Þ

and

Γðk − q; p − qÞ · Aðp − qÞ → −γμ
∂PμðkÞ
∂kν Aνðp − qÞ:

ð4:25Þ

Computing the trace, we obtain

TrðIÞ ¼ 4M det

�∂Pμ

∂kν
�
ϵαβα

0β0 ðiqαÞ

× AβðqÞðiðp − qÞα0 ÞAβ0 ðp − qÞ; ð4:26Þ

and in the remaining loop integral of Eq. (4.15) in the
M → ∞ limit, we can neglect q and p in the denominator,
since it is dominated by k ∼M ≫ p, q region, and we
arrive at the result for the chiral anomaly,

8iM2

Z
q
ϵαβα

0β0 ðiqαÞAβðqÞðiðp − qÞα0 ÞAβ0 ðp − qÞ

×
Z
k
det

�∂PμðkÞ
∂kν

�
1

ðPðkÞ2 þM2 − iϵÞ3 ; ð4:27Þ

which is in coordinate space,

A ¼ ϵαβα
0β0FαβFα0β0

Z
k
det

�∂PμðkÞ
∂kν

�
2iM2

ðPðkÞ2 þM2 − iϵÞ3 :

ð4:28Þ

The above k integration can be performed in P space up to
the winding number NP explained before:

Z
k
det

�∂PμðkÞ
∂kν

�
2iM2

ðPðkÞ2 þM2 − iϵÞ3

¼ NP

Z
d4P
ð2πÞ4

2iM2

ðP2 þM2 − iϵÞ3 ; ð4:29Þ

and the Wick rotation P0 → iP0
E gives

Z
d4P
ð2πÞ4

2iM2

ðP2 þM2 − iϵÞ3 ¼ −
Z

d4PE

ð2πÞ4
2M2

ðP2
E þM2Þ3

¼ −
1

16π2
; ð4:30Þ

which finally gives the chiral anomaly

A ¼ −NP
1

16π2
ϵαβα

0β0FαβFα0β0 : ð4:31Þ

This result is the same as Eq. (2.22) except for an overall
factor of 2, which has a well-known origin: Here we are
computing the anomaly of a single four-component Dirac-
like fermion, while in Secs. II and III we computed for two-
component chiral fermions. Note that, again, the winding
numberNP factors out cleanly; the final form of the integral

7We can make it less ad hoc by the observation that the
expansion parameter is either q=k or ðp − qÞ=k. In the M → ∞
limit, our final result of the chiral anomaly, which is finite, is
dominated by the integration region of k ∼M, and the higher-
derivative terms are suppressed by additional powers of ∂=M,
which vanish in M → ∞.
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is expressed in terms of P in the place of K, such that the
only surviving information about P is how many times P
covers the momentum space R4.
Specializing to the case of a nonrelativistic Weyl

semimetal, where

P0ðkÞ ¼ k0 þ Δðk⃗Þ; PaðkÞ ¼ Paðk⃗Þ; a ¼ 1; 2; 3;

ð4:32Þ

we have

Z
k
det

�∂PμðkÞ
∂kν

�
2iM2

ðPðkÞ2 þM2 − iϵÞ3

¼
Z

d3k⃗
ð2πÞ3 det

�∂Paðk⃗Þ
∂kb

�

×
Z

dk0

ð2πÞ
2iM2

ð−ðk0 − Δðk⃗ÞÞ2 þ P⃗ðk⃗Þ2 þM2 − iϵÞ3
:

ð4:33Þ

Note that Δðk⃗Þ can be simply removed by a shift of k0

integration, and the chiral anomaly is not affected by Δðk⃗Þ.
Since Δðk⃗Þ determines the shape of the Fermi surface by
jP⃗ðk⃗Þj ¼ −Δðk⃗Þ,8 the chiral anomaly is independent of the
occupation number of states, but is determined only by the
topology of the level crossing point.
Performing the Wick rotation of k0 after shifting to

remove Δðk⃗Þ, the k0E integration is easily done to give

−
3

8
M2

Z
d3k⃗
ð2πÞ3 det

�∂Paðk⃗Þ
∂kb

�
1

ðP⃗ðk⃗Þ2 þM2Þ5=2
: ð4:34Þ

Again, up to the winding number NP⃗ of the map k⃗ → P⃗ðk⃗Þ,
the above integral can be performed in P⃗ space:

−NP⃗

3

8
M2

Z
d3P⃗
ð2πÞ3

1

ðP⃗2 þM2Þ5=2 ¼ −Np⃗
1

16π2
; ð4:35Þ

which reproduces the previous result by the index theorem.
One important point of this computation is the Wick

rotation, P0 → iP0
E, which is not the same as the Wick

rotation of the Lorentzian time to the Euclidean time. In the
presence of Δðk⃗Þ, the latter cannot be justified, as the
rotation of the contour k0 → ik4 can encounter a pole along
the way. On the other hand, as far as the diagrammatic
computation goes, the Wick rotation is merely a trick that
allows efficient computation. Therefore, a different contour
choice in the complex plane of k0 such that P0 → iP0

E

occurs is perfectly acceptable, as long as it is consistent
with the idea of the Feynman propagator.

V. GENERALIZED SPINORS
IN ODD DIMENSIONS

In odd spacetime dimensions, neither the usual Z-valued
index nor the chiral anomaly exists. Instead, one finds
discrete anomalies, which have been the focus of active
investigations recently in the context of the topological
insulators. In all such investigations, the main physical
quantity of interest is the phase of the partition function.
When the fermion is massless, the reality of the action
naively implies that the partition function is real, yet the
actual path integral generically produces a phase factor.
And, much as in the anomaly computation in even
dimensions, this becomes apparent under the inevitable
regularization of the path integral.
This phase has been computed in Ref. [55] and shown to

be proportional to the eta invariant,

η≡ lim
s→0

X
sgnðλÞjλj−s; ð5:1Þ

with the sum over the eigenvalues of the Dirac operator,
which measures some notion of the asymmetry of the
eigenvalues of the Dirac operators under a sign flip. In the
physics community, this is sometimes misrepresented by its
cousin, namely the Chern-Simons action:

π

2
η

����
−iσað∂aþAaÞ

¼ 1

2
SCSðAÞ þ � � � : ð5:2Þ

The ellipsis denotes certain nonlocal terms, which makes
the entire expression gauge invariant even if the Chern-
Simons coefficient is not properly quantized: this has to be,
since the eigenvalues that define the eta invariant are always
gauge invariant no matter what [55].
In this section, we will extend our investigation using the

modified heat kernel to Dirac fermions in odd spacetime
dimensions, with high-derivative Dirac operators as before.
We will explicitly work out a d ¼ 3 Dirac fermion with the
higher-derivative action

S3 ¼ −
Z

d3xψ̄Q3ψ ; ð5:3Þ

for which the relevant Dirac operator is

Q3 ¼ σaPað−iD⃗Þ; ð5:4Þ

again with an arbitrary smooth function Pa.
We are interested in the purely imaginary piece of

WðAÞ ¼ − log

�Z
½Dψ̄Dψ �e−S3

�
; ð5:5Þ8The Hamiltonian for the right-handed Weyl component is

P⃗ðk⃗Þ · σ⃗ þ Δðk⃗Þ.
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which we will denote as Wodd. We will find that this phase,
or equivalently, the eta invariant of this modified Dirac
operator, is such that

Wodd ¼ �i
π

2
η

����
σaPa

¼ NP⃗ ·

�
� i
2
SCSðAÞ þ � � �

�
; ð5:6Þ

with the same winding number NP⃗ of the map Pa, as in
Eq. (3.7). The same notation Pa as in Sec. III is used here,
because eventually we will connect to the d ¼ 4 system,
with the fourth direction treated as the normal to a d ¼ 3
boundary. For Majorana fermions, the discussions below
carry over straightforwardly by multiplying the effective
action by 1=2.

A. Eta invariant for generalized spinors

As has been studied thoroughly for P⃗ ¼ −iD⃗ in
Ref. [55], and also reviewed more recently in the context
of topological insulators in Ref. [17], the path integral of
such a fermion would lead to an effective action whose
imaginary part is particularly simple to compute. We start
with the Pauli-Villars regularized partition function

Y λ

λþ iM
; ð5:7Þ

with eigenvalues λ and the regulator mass M → �∞.
The phases of individual pieces are −iðπ=2ÞsgnðMÞðλÞ,
leading to [55]

WðAÞodd ¼ �i
π

2
ηðAÞ; ð5:8Þ

with Eq. (5.1).
Exactly the same reasoning applies even if we replace the

usual first-order Dirac operator with Q3 ¼ σaPað−iD⃗Þ:

WðAðRÞÞodd
P⃗

¼ �i
π

2
ηP⃗ðAðRÞÞ; ð5:9Þ

where we use the subscript P⃗ to remember that the Dirac
operator is replaced by Q3. The eta invariant has the usual
definition,

ηP⃗ðAðRÞÞ ¼ lim
s→0

X
sgnðλQ3

ÞjλQ3
j−s; ð5:10Þ

where the sum is now over all eigenvalues of the operator
Q3. We labeled the gauge field by the representation R of ψ
explicitly for the purpose of clarifying the normalization.
As noted already, the local part of this effective action for

the usual Pa ¼ −iDa, on the other hand, is the well-known
Chern-Simons action,

π

2
ηP⃗¼−iD⃗ðAðRÞÞ ¼ t2ðRÞ ·

1

2
SCSðAÞ þ � � � ; ð5:11Þ

where SCSðAÞ is the properly quantized Chern-Simons
action, such that its half appears when we integrate out

the complex unit charge ψ under Uð1Þ or ψ in the
fundamental representation in SUðNÞ, for example.
t2ðRÞ is the quadratic invariant that keeps track of the
gauge representation R. When R is the adjoint representa-
tion, for example, it happens to be equal to twice the dual
Coxeter number, t2ðR ¼ adjointÞ ¼ 2h∨.
Here, we wish to show that, with general P⃗, the above

relations are modified simply as

π

2
ηP⃗ð−iD⃗Þ ¼ NP⃗ · t2ðRÞ ·

1

2
SCSðAÞ þ � � � ; ð5:12Þ

with the same winding number NP⃗ that appears in the
d ¼ 4 chiral anomaly. Upon introducing a Pauli-Villars
regulator with M, again, we write the imaginary part of the
effective action as

WðAðRÞÞodd
P⃗

¼ 1

2

X
½logðλQ3

þ iMÞ − logðλQ3
− iMÞ�

���finite
M→�∞

:

ð5:13Þ
The relation as in Eq. (5.11) comes from how this effective
action varies as we vary the gauge field:

δWðAðRÞÞodd
P⃗

¼ 1

2

X�
δλQ3

λQ3
þ iM

−
δλQ3

λQ3
− iM

�����
M→�∞

¼ −iM · Tr

�
δQ3

ðQ3Þ2 þM2

�����
M→�∞

¼ −iM ·
Z

∞

0

dsTr½δQ3e−sððQ3Þ2þM2Þ�
���
M→�∞

:

ð5:14Þ
Although the scaling of s looks different from those
we used in the anomaly computation, the content is no
different because of the e−sM

2

term in the integrand. The
large-M limit confines the s integral effectively to a region
of s < 1=M2, so again the small-s expansion of the heat
kernel becomes sufficient. And the computation again boils
down to a heat kernel one in the coincident limit.
As such, in d ¼ 3, the first iteration suffices:

Gð1Þ
s ðy; xÞ ¼

Z
s

0

dt
Z

d3zGð0Þ
s−tðy; zÞ

× ððQ3Þ2 − P⃗ð−i∂⃗Þ2ÞGð0Þ
t ðz; xÞ; ð5:15Þ

with

Gð0Þ
s ðxþ X; xÞ≡ hxþ Xje−sP⃗ð−i∂⃗Þ2 jxi

¼
Z

d3k
ð2πÞ3 e

ik⃗·X⃗e−sP⃗ðk⃗Þ2 ; ð5:16Þ

as we can see explicitly below.
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With nontrivial P⃗, we find again in the momentum space
an expansion around a generic point x:

δQ3 ¼ σa∂̃bPaðk⃗ÞδAbðxÞ þ � � � ;
ðQ3Þ2 ¼ P⃗ðk⃗Þ2 þ iϵabcσaFfgðxÞ∂̃fPbðk⃗Þ∂̃gPcðk⃗Þ þ � � � ;

ð5:17Þ

where the ellipsis denotes again those terms that are
suppressed by small-s, or equivalently large-M, scaling.
Since δQ3 carries a single σa, the trace over the spinor
requires another σa, which can be supplied by the field
strength term in Q2

3 shown above.
The trace over the two-component spinor indices leaves

behind

δAðxÞWðAðRÞÞodd
P⃗

¼ iM ·
Z

∞

0

dsse−sM
2

Z
d3k
ð2πÞ3 e

−sP⃗ðk⃗Þ2 det
�∂Pfðk⃗Þ

∂kg
�
trRðϵabcδAaðxÞFbcðxÞÞ

���
M→�∞

¼ NP⃗ ·

�
iM ·

Z
∞

0

dsse−sM
2

Z
d3P
ð2πÞ3 e

−sP⃗2

· trRðϵabcδAaðxÞFbcðxÞÞ
���
M→�∞

�
ð5:18Þ

at a generic point x, with k⃗ integrals and an s integral, and
NP⃗ is the same winding number we encountered in Sec. III.
Let us count the factor ofM to ensure one ends up with a

finite quantity: the three P integrations will generate s−3=2,
so the final s integral will be of the form

M ·
Z

∞

0

dss−1=2e−sM
2 ¼ sgnðMÞ ·

Z
∞

0

ds̃ s̃−1=2e−s̃

¼ sgnðMÞ · ffiffiffi
π

p
: ð5:19Þ

M is scaled out, leaving behind only its sign, and as in the
previous anomaly computation, other terms in ðQ3Þ2 can at
most contribute pieces that scale inversely with the largeM.
This way, the quantity inside the large parentheses

remains finite in the limit and produces the variation of
the imaginary part of the effective action due to a single
two-component spinor with P⃗ ¼ −iD⃗. For P⃗ ¼ −iD⃗, in
fact, this is precisely how one shows the relation (5.11),
by starting with the above and integrating over δA⃗ðxÞ back
to the Chern-Simons action. Therefore, we obtain at the end
of the computation

WðAðRÞÞodd
P⃗

¼ NP⃗ ·

�
�it2ðRÞ ·

1

2
SCSðAÞ þ � � �

�
ð5:20Þ

or

WðAðRÞÞodd
P⃗

¼ NP⃗ ·

�
�i

π

2
ηP⃗¼−iD⃗ðAðRÞÞ

�

¼ NP⃗ ·WðAðRÞÞodd
P⃗¼−iD⃗

; ð5:21Þ

given the general relation between the Chern-Simons action
and the eta invariant in Eq. (5.11), and also from how the
effective action has to be gauge invariant.
Generalization to the higher dimension d ¼ 2n − 1

is also straightforward. It is clear that the variation of

the effective action (5.18) can be easily extended to
d ¼ ð2n − 1Þ and produce

δAðxÞWodd
Q2n−1

∼ NP⃗ · trðδA ∧ Fn−1Þ; ð5:22Þ

now expressed as the d form, for the generalized Dirac
operator

Q2n−1 ¼ γaPað−D⃗Þ; ð5:23Þ

with (2n − 1)-dimensional Dirac matrices γa. On the other
hand, the Chern-Simons density is defined via

dSCS ¼
1

n!ð2πiÞn
Z

trFn; ð5:24Þ

so its variation is such that

d½δAðxÞSCS�¼
1

ðn−1Þ!ð2πiÞn · trððdðδAÞþAδAþδAAÞFn−1Þ

¼d

�
1

ðn−1Þ!ð2πiÞn · trððδAðxÞ∧Fn−1ðxÞÞ
�
;

ð5:25Þ

which brings us back to

WðAðRÞÞodd
P⃗

¼ NP⃗ ·

�
� i
2
SCSðAðRÞÞ þ � � �

�

¼ NP⃗ ·

�
�i

π

2
ηP⃗¼−iD⃗ðAðRÞÞ

�
; ð5:26Þ

following the same pattern we saw for d ¼ 3.
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B. Boundary fermions and the APS-like
index theorem

When a d-dimensional manifold Md has a boundary
Σd−1, an Atiyah-Patodi-Singer (APS) index problem on
Md can be formulated via the extension of the manifold
by attaching a semi-infinite cylinder with the cross section
Σd−1. Imposing the square normalizability condition for the
ground states, one finds

IAPS
Md

¼ Ibulk
Md

−
ηΣd−1

2
; ð5:27Þ

where ηΣd−1
is the usual eta invariant of Σd−1.

Is there a way to extend this result to the generalized
Dirac problem of our kind? Extending the covariant
derivative to include the spin connection—say, ∇μ—is
no big deal. However, one also needs a covariantly constant
tensor Cμ1���μl

a such that operators such as

γaCμ1���μl
a ∇μ1 � � �∇μl ð5:28Þ

can be used in place of the ordinary γaeμa∇μ with the
vielbein eμa. Such a tensor C implies reduced holonomy,
yet the latter is classified completely and known to be
rather sparse. As such, a general higher-derivative Dirac
operator with the curved geometry is generally difficult to
construct.
When both Md and Σd−1 are flat, one other hand, our

discussions so far do imply an APS-like index theorem.
The easiest isMd ¼ Td−1 ×Rþ with the boundary Σd−1 ¼
Td−1 at the origin of Rþ. With the generalized Dirac
operator as in Eq. (3.1),

Qd−1 −Dd ¼ γaPað−iD⃗Þ −Dd; ð5:29Þ

and thus

Qd ¼ γaPað−iD⃗Þ þ γdð−iDdÞ

¼
�

0 Qd−1 −Dd

Qd−1 þDd 0

�
; ð5:30Þ

as in Eq. (3.3), with the direction d considered as the
normal to Σd−1. We have already seen that the bulk part of
the index is

Ibulk
Qd

¼ NP · Ibulk; ð5:31Þ

while the eta invariant is similarly enhanced as

ηQd−1

2
¼ NP ·

η

2
: ð5:32Þ

With these, we can easily retrace the steps found in the
Appendix of Ref. [55] with the modified heat kernel we
have discussed so far, and arrive at a generalized APS index
theorem:

IQd
¼ NP⃗ ·

�
1

n!ð2πiÞn
Z
T2n−1×Rþ

trðFðRÞ ∧ � � �

∧ FðRÞÞ − ηT
2n−1ðAðRÞÞ

2

�
; ð5:33Þ

for any even dimensions d ¼ 2n.
This form of the APS-like index theorem would suffice

for understanding interfaces between topological insulators
and ordinary insulators, by considering physics very near
the boundary. As before, the factor NP⃗ can be realized
either as NP⃗ many flavors of ordinary boundary fermions,
or a single fermion with a higher-order Dirac operator with
the winding number NP⃗.
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