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Within the superfield formalism, we study the renormalization group improvement of the effective
superpotential for the N ¼ 2 Chern-Simons-matter theory, explicitly obtain the improved effective
potential and discuss the minima of the effective potential and a problem of mass generation in the theory.
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I. INTRODUCTION

The effective potential is known to be one of the central
objects of quantum field theory allowing one to obtain
information about low-energy effective dynamics of a
theory, spontaneous symmetry breaking, mass generation,
and other related issues [1]. By definition, the effective
potential is an effective Lagrangian evaluated at constant
background fields, which is implied in known difficulties
within its generalization to superfield theories where the
integral of a constant trivially vanishes. For the four-
dimensional superfield theories, the concept of the super-
field effective potential has been formulated in [2],
where it was argued that for a consistent definition of
the effective potential, the background superfield should be
constant in a space-time possessing a nontrivial dependence
on Grassmannian coordinates. Further, this approach has
been successfully applied to the study of the effective
potential in three-dimensional superfield theories [3]. As a
continuation, the one-loop superfield effective potential has
been obtained in many three-dimensional theories (see e.g.,
[4] and references therein). While the interest in the one-
loop result is natural since the one-loop contribution is
finite in all three-dimensional theories except for those with
exotic dynamics, it is clear that the study of any theory
cannot be restricted by the one-loop order; therefore, it is
necessary to have some prescriptions for the higher-loop

contributions. However, already explicit two-loop calcula-
tions in general are rather complicated. Moreover, the
models representing themselves as couplings of Chern-
Simons theory to scalar superfields display divergences in
any loop order higher than the first one, cf. [4]. A powerful
tool allowing one to obtain the effective potential up to
constant multiplier in theories involving divergences is based
on the use of renormalization group equations (RGE).
The use of RGE in order to improve the calculation of the

effective potential has been intensively used in nonsuper-
symmetric theories [5–14], and recently the method has
been extended to superspace formalism [15]. In this
paper, we apply this method to N ¼ 2 Chern-Simons-
matter theory attracting a strong interest since it represents
itself as a simplest 3D extended supersymmetric theory in
which interest has strongly increased in recent years due
to studies of three-dimensional AdS=CFT correspondence,
see e.g., [16,17] and references therein. As a result, we
obtain a generic structure of the one-loop effective potential
in our theory.
The paper is structured as follows. In the Sec. II we

discuss some general features of the effective superpoten-
tial in the three-dimensional superspace. In the Sec. III, we
describe how to use the renormalization group equation to
compute the effective superpotential of a classical super-
conformal theory. In the Sec. IV we apply the method for a
simple example, the Wess-Zumino model. In the Sec. V we
describe the classical action of the N ¼ 2 Chern-Simons-
matter theory written in the N ¼ 1 superspace. In the
Sec. VI, we calculate the complete leading log effective
superpotential of the N ¼ 2 Chern-Simons-matter theory
in terms of a N ¼ 1 background superfield. We also
discuss the vacuum structure of the model, where super-
symmetry is preserved, showing that no mass is induced by
radiative corrections. In Sec. VII, we present a summary
where our results are discussed.
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II. THE EFFECTIVE SUPERPOTENTIAL IN
THE D= 2 + 1 SUPERSPACE

As it is well known, the quantum dynamics of any theory
is described in terms of the effective action. While the
complete description of the general structure of the super-
symmetric effective action in the four-dimensional case is
well discussed in [18], this description requires certain
adaptation for the three-dimensional case.
First, the classical action for superfields defined in a

three-dimensional spacetime can be cast as

S ¼
Z

d3xd2θLðΦ; DαΦ; D2Φ;…Þ; ð1Þ

where L is the Lagrangian density, Φ ¼ Φðx; θÞ ¼ φþ
θαψα − θ2F is a scalar superfield, D2 ¼ 1

2
DαDα, and Dα is

the supercovariant derivative. Dots here and below are for
terms depending on space-time derivatives of superfields.
Throughout this paper, we use the notations and conven-
tions adopted in [19].
In the three-dimensional superspace, the effective

action has a structure that can be presented in a form of
the derivative expansion

Γ½Φ� ¼
Z

d3xd2θVðΦ; DαΦ; D2ΦÞ þ � � � ; ð2Þ

where the VðΦÞ is the effective superpotential which
depends on the superfield Φ and its spinor supercovariant
derivatives but not on its space-time derivatives. In general,
the VðDαΦ; D2ΦÞ can be presented in the form of the
derivative expansion:

VðDαΦ; D2Φ;ΦÞ ¼ V0ðΦÞ þ V2ðΦÞD2Φþ � � � ; ð3Þ

where the V0ðΦÞ is the zero-order contribution to the
effective superpotential, and V2ðΦÞD2Φ is the second-order
contribution to it, with the V2ðΦÞ a function of the superfield
Φ but not of its derivatives. The dots correspond to terms
with four and more supercovariant derivatives acting
over Φ’s. Similarly, for a complex background superfield
case, these potentials can depend both on Φ and Φ̄.
Now, it is necessary to note that the explicit form of the

effective potential, at least its contributions of orders zero
and two in derivatives, can be predicted from symmetry and
dimension reasons. We assume that the couplings in the
theory are dimensionless, just this situation occurs in
extended supersymmetric Chern-Simons models. While
in the one-loop order the zero-order contribution to
the effective superpotential, by dimensional reasons, must
have form cðΦΦ̄Þ2, where c is a constant dependent on
couplings in the theory, in higher-loop orders, after sub-

tracting divergences, results like cðΦΦ̄Þ2logn ðΦΦ̄Þ2
μ2

, with

any n ≤ L − 1, can arise for any L-loop contribution.

In principle, however, the renormalization group imp-
rovement methodology allows for contributions like

cðΦΦ̄Þ2½ðΦΦ̄Þ2
μ2

�α, with α as some number. Similarly, for

the second-order contribution to the effective potential we

can have cΦ̄D2Φ½ðΦΦ̄Þ2
μ2

�αþ H:c: Namely the zero- and

second-order contributions will arise further in this paper.

III. THE RGE IMPROVEMENT IN
THE D= 2 + 1 SUPERSPACE

Let us consider a superconformal field theory in a three-
dimensional spacetime

S ¼
Z

d3xd2θ

�
1

2
ΦD2Φþ λ

4
Φ4

�
; ð4Þ

where Φ ¼ Φðx; θÞ ¼ ðφþ θαψα − θ2FÞ is a scalar super-
field, D2 ¼ 1

2
DαDα, and Dα is the supercovariant

derivative.
In order to compute the effective superpotential, we

dislocate the superfield Φ by a constant classical superfield
ϕ ¼ hφi − θ2hFi as

Φðx; θÞ → Φðx; θÞ þ ϕðθÞ: ð5Þ

Then, the classical superpotential Veff can be written as

Veff ¼ −
1

2
ϕD2ϕ −

λ

4
ϕ4; ð6Þ

where the integration of Veff over the Grassmannian
variables result in the effective potential

Ueff ¼
Z

d2θVeff ¼ −
1

2
F2
cl − λFclφ

3
cl ¼

λ2

2
φ6: ð7Þ

In the last step, we have eliminated the auxiliary field Fcl
using its equation of motion to obtain the physical content
of the classical effective potential.
In what follows, we use the improved superpotental

methodology. Its key idea is as follows: we start with the
beta functions which in three-dimensional theories began to
be contributed at two loops, and solve the corresponding
renormalization group equations taking into account that
they must be satisfied by the complete effective potential
composed by all-loop contributions. The effective potential

is naturally expected to be a function of log ϕ2

μ and
couplings. So, as a result, through analysis of renormaliza-
tion group equations characterized by these arguments,
with the initial condition presented by the lower (two-loop
in our case) contribution (one should remember that the
one-loop effective potential is not zero but does not
depends on μ), we can obtain solutions for the complete
effective potential up to the desired order in our arguments.
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So, effectively this methodology is a some kind of
resummation of the whole effective potential where it is

obtained as an expansion in log ϕ2

μ and couplings rather than
expansion in loops, i.e., our results allow one to sum over
loops in any given order of this new expansion. In other
words, within this methodology we present the alternative
expansion (different from the loop one) of the complete
effective action.
Due to the nontrivial renormalization group functions,

we can obtain the effective potential by imposing that Veff
have to satisfy the RGE

�
μ
∂
∂μþ βλ

∂
∂λ − γϕϕ

∂
∂ϕ

�
Veffðϕ; μ; λÞ ¼ 0; ð8Þ

where μ is a mass scale introduced by the regularization.
On general grounds, the effective superpotential Veff

can be written as

Veff ¼ KðϕÞ þ F ðϕ; D2ϕ; � � �Þ; ð9Þ

where the superpotential KðϕÞ is a function of ϕ but not
of its derivatives D2ϕ, while F ðϕ; D2ϕ; � � �Þ is a function
of ϕ and at least one derivative D2ϕ.
In order to use the RGE to compute the effective

superpotential Veff , we shall use the following ansatz for
KðϕÞ and F ðϕ; D2ϕÞ:

KðϕÞ ¼ −
1

4
ϕ4SkðLÞ; ð10Þ

F ðϕ; D2ϕÞ ¼ −
1

2
ϕD2ϕSfðLÞ; ð11Þ

where

L ¼ log

�
ϕ2

μ

�
; ð12Þ

and

SðLÞ ¼ AðλÞ þ BðλÞLþ CðλÞL2 þDðλÞL3 þ � � � : ð13Þ

The coefficients of L (AðλÞ, BðλÞ, etc...) in the above
equation are taken to be power series of the coupling
constant λ.
It is easy to see that some partial derivatives in the

RGE (8), by the use of (12), can be identified as derivatives
of L, i.e., ∂L ¼ −μ∂μ ¼ 1

2
ϕ∂ϕ. Thus, the RGE (8) can be

written in a convenient form as

1

2
ϕD2ϕ

�
−ð1 − 2γϕÞ

∂
∂Lþ βλ

∂
∂λþ γϕ

�
SfðLÞ

þ ϕ4

4

�
−ð1 − 2γϕÞ

∂
∂Lþ βλ

∂
∂λþ 4γϕ

�
SkðLÞ ¼ 0: ð14Þ

Since each part of the above equation has to vanish
independently, our task is to look for the functions SfðLÞ
and SkðLÞ that satisfy

�
−ð1 − 2γϕÞ

∂
∂Lþ βλ

∂
∂λþ γϕ

�
SfðLÞ ¼ 0; ð15Þ

�
−ð1 − 2γϕÞ

∂
∂Lþ βλ

∂
∂λþ 4γϕ

�
SkðLÞ ¼ 0: ð16Þ

In general, the equations for SðLÞ can be solved order by
order in a series expansion of L and the coupling constants.
To compute the superpotentials F eff and Keff , we insert the
ansatz (13) for SðLÞ into (15), obtaining

− ð1 − 2γΦÞ½BðλÞ þ 2CðλÞLþ � � ��

þ βλ
∂
∂λ ½AðλÞ þ BðλÞLþ � � ��

þ αF;KγΦ½AðλÞ þ BðλÞLþ � � �� ¼ 0; ð17Þ

where αF;K is the constant factor assuming the values 1 or 4,
according to Eqs. (15) or (16), respectively.
The resulting expressions are organized by orders of L,

obtaining a series of equations, that can be solved order
by order in the coupling constant, i.e., the functions AðλÞ,
BðλÞ, etc., are expanded as a power series of λ,

AðλÞ ¼ Að0Þ þ Að1Þλþ Að2Þλ2 þ � � � ;
BðλÞ ¼ Bð0Þ þ Bð1Þλþ Bð2Þλ2 þ � � � ; ð18Þ

and so on.
In the next section, we solve the equations for SðLÞ for

the simple case N ¼ 1 Wess-Zumino model, using the
renormalization group functions found in [20].

IV. N = 1 WESS-ZUMINO MODEL IN THE
THREE-DIMENSIONAL SPACETIME

The N ¼ 1 Wess-Zumino model in the three-
dimensional spacetime, with signature ð−;þ;þÞ, is defined
by the following action:

S ¼
Z

d3xd2θ

�
1

2
ΦD2Φþ λ

4!
Φ4

�
: ð19Þ

The real superfieldΦ is expanded in a Taylor series in the
Grassmannian variable as
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Φðx; θÞ ¼ φðxÞ þ θαψαðxÞ − θ2FðxÞ; ð20Þ

where φ and F are real scalar fields and ψ is a two
component Majorana fermion. Integrating (19) over the
Grassmannian variables, we obtain the action in terms of
the component fields:

S¼
Z

d3x

�
1

2
φ□φþ i

2
ψα∂α

βψβþ
F2

2
þ λ

2
φ2ψ2þ λ

3!
Fφ3

�
:

ð21Þ

The auxiliary field F can be eliminated from the action
by the use of its equation of motion, F ¼ − λ

3!
φ3, revealing

the physical content of the model

S ¼
Z

d3x

�
1

2
φ□φþ i

2
ψα∂α

βψβ þ
λ

2
φ2ψ2 þ λ2

72
φ6

�
:

ð22Þ

We will make use of the RGE to evaluate the effective
superpotential. To do this, let us dislocate the superfield
ΦðzÞ → ΦðzÞ þ ϕðθÞ, where ϕðθÞ ¼ ðφcl − θ2FclÞ is a
constant background superfield. In terms of the background
superfield, the action (19) can be cast as

S ¼
Z

d3xd2θ

�
1

2
Φ
�
D2 þ λϕ2

2

�
Φþ λ

4!
Φ4

þ λ

3!
ϕΦ3 þ 1

2

�
D2ϕþ λϕ3

3

�
Φþ 1

2
ϕD2ϕþ λ

4!
ϕ4

�
:

ð23Þ

The Wess-Zumino model possesses nontrivial beta
function βðλÞ and anomalous dimension γΦ renormaliza-
tion group functions, see e.g., [20]; therefore, the effective
superpotential can be evaluated once Veff have to satisfy the
RGE (8). Since the theory requires renormalization, due to
logarithmic UV divergences, the effective superpotential
will exhibit a dependence on the logarithm of the classical
superfield ϕ, i.e., the effective superpotential should be
dependent on L (12), which we will use to construct our
ansatz.
Let us start to compute the superpotentialKeff by solving

the Eq. (16). We can use power series in λ as the ansatz for
the coefficients of L in (13),

Ak ¼
X∞
n¼1

anλn; Bk ¼
X∞
n¼1

bnλn; Ck ¼
X∞
n¼1

cnλn;

ð24Þ

and so on.
It is important to note that the leading logs contribution

to Keff can be written as

Keff ¼
1

4!
ϕ4

�X∞
n¼0

Cll
nλ

2nþ1Ln þ
X∞
n¼1

CNll
n λ2nþ3Ln þ � � �

�
;

ð25Þ

so, taking into account only the leading logs, presented by
the first term of this expression, while using the power
series (24) in (13) and substituting (13) into (16), we find
the relations between the coefficients of (24) looking as
follows:

b3 ¼
ð4γΦλþ βλÞ

λ3
a1;

c5 ¼
ð4γΦλþ 2βλÞ

λ3
b3 ¼

ð4γΦλþ 2βλÞð4γΦλþ βλÞ
2λ6

a1;

d7 ¼
ð4γΦλþ 3βλÞ

3λ3
c5

¼ ð4γΦλþ 3βλÞð4γΦλþ 2βλÞð4γΦ þ βλÞ
3!λ9

a1; ð26Þ

and so on.
From a direct inspection of the above relations, we can

find that the coefficients of the leading logs series obey the
following recurrence relation:

Cll
n ¼ ðð2n − 1Þβλ þ 4γΦλ

nλ3
Cll
n−1: ð27Þ

Here we fix the coefficient Cll
0 ¼ a1 ¼ 1 to obtain the

classical superpotential KðϕÞ ¼ λ
4!
ϕ4 at lowest order in λ.

Using the renormalization group functions given in the
literature [20], βλ ¼ 5λ3

24π2
and γΦ ¼ λ2

192π2
, substituting (27)

into (25) and performing the sum, we obtain

Keff ¼
λ

4!
ϕ4

�
ϕ2

μ

�11λ2

48π2

: ð28Þ

Following the same steps, the effective superpotential
F eff can be evaluated as

F eff ¼
1

2
ϕD2ϕ

�
ϕ2

μ

� 41λ2

192π2

: ð29Þ

Finally, the complete leading log effective superpotential
can be cast as

Veff ¼ −
1

2

�
ϕD2ϕþ λ

12
ϕ4

�
ϕ2

μ

� λ2

64π2
��

ϕ2

μ

� 41λ2

192π2

: ð30Þ

In order to study the properties of the vacuum, let us
write the effective potential Ueff in terms of the component
fields. It is obtained through integrating of Veff over the
Grassmannian variable like in (7). Thus, we find
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Ueff ¼
Z

d2θVeff

¼ −
F2
cl

2

�
φ2
cl

μ

� 41λ2

192π2
�
1þ 41λ2

96π2

�

−
λ

3!
Fclφ

3
cl

�
φ2
cl

μ

�11λ2

48π2
�
1þ 11λ2

144π2

�
: ð31Þ

The auxiliary field Fcl can be eliminated by the use of its
equation of motion,

Fcl ¼ −
λð144π2 þ λ2Þφ3

cl

9ð96π2 þ 41λ2Þ ; ð32Þ

resulting in the physical effective potential

Ueff ¼
ð144π2λþ λ3Þ2

15552π2ð96π2 þ 41λ2Þφ
6
cl

�
φ2
cl

μ

�11λ2

48π2

: ð33Þ

This effective potential is well defined for all φcl if
λ2 > − 144π2

11
, which is especially interesting since it is well

defined for a real and perturbative coupling constant λ.
The conditions minimizing the effective potential are

dUeff

dφcl

����
φcl¼φ0

¼ ð144π2 þ 11λ2Þð144π2λþ λ3Þ2
373248π4ð96π2 þ 41λ2Þ φ5

0

�
φ2
0

μ

�11λ2

48π2

¼ 0; ð34Þ

d2Ueff

dφ2
cl

����
φcl¼φ0

¼ ð120π2 þ 11λ2Þð144π2 þ 11λ2Þð144π2λþ λ3Þ2
8957952π6ð96π2 þ 41λ2Þ φ4

0

�
φ2
0

μ

�11λ2

48π2

> 0: ð35Þ

Keeping in mind the condition λ2 > −144π2=11, we see
that φcl ¼ φ0 ¼ 0 is the minimum of the effective potential.

Although the second derivative d2Ueff
dφ2

cl
also vanishes at

φ0 ¼ 0, we see that the function dUeff
dφcl

changes its sign
from negative to positive one exactly at φcl ¼ 0, character-
izing this point as a local minimum.
Since the minimum of the effective potential is exactly

φcl ¼ 0, there is no generation of mass in the model. Just as
occurs in the purely scalar model in four dimensional
spacetime [1], the dynamical generation of a mass scale μ
due to radiative corrections does not generate mass for the
bosonic superfield in the present model.
In the next sections, we deal with an extended super-

symmetric gauge theory, the N ¼ 2 Chern-Simons-matter
model, using the renormalization group functions found
earlier in [21].

V. THE N = 2 CHERN-SIMONS-MATTER
MODEL IN N = 1 SUPERSPACE

The classical action for theN ¼ 2 Chern-Simons-matter
model in N ¼ 1 superspace is given by

S¼
Z

d3xd2θ

�
1

2
ΓαWα−

1

2
∇αΦ∇αΦþg2

4
ðΦ̄ΦÞ2

�
; ð36Þ

whereWα ¼ ð1=2ÞDβDαΓβ is the gauge superfield strength
and ∇α ¼ ðDα − igΓαÞ is the gauge supercovariant deriva-
tive. This model exhibits superconformal and gauge invar-
iances at the classical level.
Our aim in this work is to use the RGE to compute

the effective superpotential as discussed in the previous
section. To do this, let us shift the superfields Φ̄ and Φ by
the classical real background superfield ϕðθÞ as

Φ̄ ¼ 1ffiffiffi
2

p ðΦ1 þ ϕ − iΦ2Þ;

Φ ¼ 1ffiffiffi
2

p ðΦ1 þ ϕþ iΦ2Þ; ð37Þ

where Φ1 and Φ2 are real quantum matter superfields.
In terms of the background superfield, the action (36) can

be written as

S ¼
Z

d3xd2θ

�
1

2
ΓαWα −

g2ϕ2

4
ΓαΓα −

gϕ
2
DαΓαΦ2 þ

1

2
Φ1

�
D2 þ 3g2ϕ

4

�
Φ1 þ

1

2
Φ2

�
D2 þ g2

2

�
Φ2

þ 1

2
ϕD2ϕþ g2

16
ϕ4 þ g

2
DαΦ2ΓαΦ1 −

g
2
DαΦ1ΓαΦ2 −

g2

2
ðΦ2

1 þΦ2
2ÞΓ2 − g2ϕΦ1Γ2

þ g2

16
ðΦ2

1 þΦ2
2Þ2 þ

g2

4
ϕΦ1ðΦ2

1 þΦ2
2Þ − dDαϕΦ2Γα þ

�
g2

4
ϕ3 þD2ϕ

�
Φ1

�
: ð38Þ
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The mixing between Γα and Φ2 superfields is eliminated
by using an Rξ gauge fixing, FG ¼ ðDαΓα þ αgϕΦ2=2Þ.
The corresponding gauge fixing and Faddeev-Popov
actions are given by

SGFþFP ¼
Z

d3xd2θ

�
1

2α
ðDαΓα þ α

gϕ
2
Φ2Þ2 þ C̄D2C

þ α

4
g2ϕ2C̄Cþ α

4
g2ϕC̄ΣC

�
: ð39Þ

Notice that the mass terms of the gauge Γα and matterΦ1

superfields are identified as MΓ ¼ g2ϕ2

4
and MΦ1

¼ 3g2ϕ2

4
,

respectively.

VI. RENORMALIZATION GROUP
IMPROVEMENT OF THE EFFECTIVE

SUPERPOTENTIAL

In this section we apply the method described in Sec. III
to compute the effective superpotential of the N ¼ 2
Chern-Simons-matter model. We use the renormalization
group functions found earlier in [21], where the only
nontrivial function is the anomalous dimension of the

matter superfield γΦ ¼ − ðNþ2Þg4
4

¼ − ðNþ2Þη2
4

, with N being
the number of flavors of the matter superfields. For
convenience, we will use η ¼ g2 to count the orders of
coupling constant.
Considering the effective potential given in the Eq. (9),

and the ansatz Eqs. (10) and (11), the RGE for Veff,
Eqs. (15) and (16), are given by

�
−ð1 − 2γΦÞ

∂
∂Lþ γΦ

�
SfðLÞ ¼ 0; ð40Þ

�
−ð1 − 2γΦÞ

∂
∂Lþ 4γΦ

�
SkðLÞ ¼ 0; ð41Þ

where we have used that βðgÞ ¼ βðηÞ ¼ 0.
Now, let us compute the Keff superpotential first.

Inserting the ansatz (13) for SðLÞ into (41), we have

− ð1 − 2γΦÞ½BkðηÞ þ 2CkðηÞLþ � � ��
þ 4γΦ½AkðηÞ þ BkðηÞLþ � � �� ¼ 0: ð42Þ

We can organize the resulting expression by orders of L,
obtaining a series of equations, of which we write down the
first three:

−ð1 − 2γΦÞBkðηÞ þ 4γΦAkðηÞ ¼ 0; ð43Þ

−2ð1 − 2γΦÞCkðηÞ þ 4γΦBkðηÞ ¼ 0; ð44Þ

and

−3ð1 − 2γΦÞDkðηÞ þ 4γΦCkðηÞ ¼ 0: ð45Þ

The functions AðηÞ, BðηÞ, etc. are expanded as a series in
power of η,

AðηÞ ¼ Að0Þ þ Að1Þηþ Að2Þη2 þ � � � ;
BðηÞ ¼ Bð0Þ þ Bð1Þηþ Bð2Þη2 þ � � � ;

and so on.
Organizing the above equations order by order in powers

of η, we find

Bð3Þ ¼ 4γð2ÞΦ Að1Þ; ð46Þ

Cð5Þ ¼ 1

2
4γð2ÞΦ Bð3Þ ¼ 1

2
ð4γð2ÞΦ Þ2Að1Þ; ð47Þ

Dð7Þ ¼ 1

3
4γð2ÞΦ Cð5Þ ¼ 1

3!
ð4γð2ÞΦ Þ3Að1Þ: ð48Þ

Writing the effective superpotential Keff as

Keff ¼ −
ϕ4

16

X∞
n¼0

Cll
nη

2nþ1Ln; ð49Þ

we find from Eqs. (46), (47), and (48) the following
recurrence relation:

Cll
n ¼

�
4γð2ÞΦ
nη2

�
Cll
n−1; ð50Þ

where we identify Cll
0 ¼ Að1Þ ¼ 1, Cll

1 ¼ Bð3Þ, Cll
2 ¼ Cð5Þ,

Cll
3 ¼ Dð7Þ and so on.
Inserting (50) into (49) and performing the sum, we

obtain the following effective superpotential:

Keff ¼ −
η

16
ϕ4

�
ϕ2

μ

�−ðNþ2Þη2
¼ −

g2

16
ϕ4

�
ϕ2

μ

�−ðNþ2Þg4
:

ð51Þ

Following the same steps above, the F eff can be cast as

F eff ¼ −
1

2
ϕD2ϕ

�
ϕ2

μ

�−ðNþ2Þη2=4

¼ −
1

2
ϕD2ϕ

�
ϕ2

μ

�−ðNþ2Þg4=4
: ð52Þ

Therefore, the full effective superpotential is given by

Veff ¼ −
g2

16
ϕ4

�
ϕ2

μ

�−ðNþ2Þg4
−
1

2
ϕD2ϕ

�
ϕ2

μ

�−ðNþ2Þg4=4
:

ð53Þ
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Considering ϕðθÞ ¼ ðφcl − θ2FclÞ as the θ expansion of
the background superfield, the effective potential Ueff is
given by

Ueff ¼
Z

d2θVeff

¼ −
�
1 −

ðN þ 2Þg4
2

��
φ2
cl

μ

�−ðNþ2Þg4=4

×

�
F2
cl

2
þ g2

4
Fclφ

3
cl

�
φ2
cl

μ

�−3ðNþ2Þg4=4�

¼ η2

64
½2 − ðN þ 2Þη2�φ6

cl

�
φ2
cl

μ

�−7
4
ðNþ2Þη2

; ð54Þ

where we have used the equation of motion of the auxiliary

field, Fcl ¼ − 1
4
ηφ3

clðφ
2
cl
μ Þ

−3
4
ðNþ2Þη2

, to eliminate it from the
effective potential.
In order to study a possible spontaneous generation of

mass induced by radiative corrections, let us evaluate the
minimum of the effective potentialUeff . The conditions that
minimize the Ueff are given by

dUeff

dφcl
¼ η2

128
ð−2þ ðN þ 2Þη2Þ

× ð−12þ 7ðN þ 2Þη2Þφ5
cl

�
φ2
cl

μ

�−7
4
ðNþ2Þη2

¼ 0;

ð55Þ

d2Ueff

dφ2
cl

����
φcl¼φ0

> 0: ð56Þ

It is easy to see that the only possible solution to (55)
is to take the limit φcl ¼ 0, if and only if η2 < 10

7ðNþ2Þ,
otherwise the effective potential presents a vertical asymp-
tote at φcl ¼ 0. Such solution preserves the N ¼ 2 super-
symmetry and no mass is dynamically generated by
radiative corrections.
The second derivative, Eq. (56), is also vanishing in the

minimum, but we can see that the function dUeff=dφcl
changes its sign in the critical point, i.e., dUeff=dφcl < 0
for φcl < 0 and dUeff=dφ > 0 for φcl > 0, characterizing

the critical point φ ¼ 0 as a local minimum, since
η2 < 10

7ðNþ2Þ.
Even though in the three-dimensional spacetime the

classical minimum (Fcl ¼ 0) no longer needs be a mini-
mum of the quantum effective potential, in the present
model the supersymmetry is preserved by quantum cor-
rections, at least to the leading logs. This result is similar
to the scenario taking place in the three-dimensional
Wess-Zumino model discussed in [20], where the authors
computed the superpotential up to two-loop order.

VII. SUMMARY

In this work we explicitly demonstrated how to apply the
renormalization group equation for evaluating the effective
superpotential in terms of a N ¼ 1 background superfield
in a three-dimensional spacetime. This method represents
itself as a powerful technique allowing us to compute
higher-order corrections on the basis of the two-loop
renormalization group functions. As an important example,
due to nontrivial anomalous dimension of the matter
superfield, we computed the complete leading log effective
superpotential in the N ¼ 1 Wess-Zumino model and the
N ¼ 2 supersymmetric Chern-Simons-matter theory and
demonstrated that they have an expected form Φ4½Φ2

μ �α
and ΦD2Φ½Φ2

μ �α. We discussed the vacuum properties of
the quantum effective superpotential in such model, and
showed that no mass is generated by radiative corrections,
differently from what happens for theN ¼ 1 version of the
model [15,22–25]. We argued that the supersymmetry is
preserved by quantum corrections.
We expect that this method can be applied to other

superfield models involving the Chern-Simons theory as an
ingredient. These models will be studied in our next papers.
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