
 

Entanglement entropy of linearized gravitons in a sphere
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We compute the entanglement entropy of a massless spin 2 field in a sphere in flat Minkowski space. We
describe the theory with a linearized metric perturbation field hμν and decompose the field into independent
modes using tensor spherical harmonics. We fix the gauge such that (a) the two dynamical modes for each
angular momentum decouple and have the dynamics of scalar spherical modes, and (b) the gauge-fixed
field degrees of freedom inside the sphere represent gauge invariant operators of the theory localized in the
same region. In this way the entanglement entropy turns out to be equivalent to the one of a pair of free
massless scalars where the contributions of the l ¼ 0 and l ¼ 1 modes have been subtracted. The result for
the coefficient of the universal logarithmic term is −61=45 and coincides with that computed using a
regularization based on the mutual information.
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I. INTRODUCTION

The entanglement entropy (EE) of vacuum fluctuations
across a boundary in space has shown to be an interesting
theoretical quantity in quantum field theory (QFT). The
study of EE was originally motivated by the quest to
understand black hole entropy and entropy in gravity, but it
turned out to have a more clear and natural formulation in
QFT. Entropy in quantum mechanics is by definition a
quantity associated with a state in an algebra of operators,
and ordinary QFT naturally comes with a built-in corre-
spondence of algebras with regions of the space.
The situation in gravity is less clear precisely because it

is not completely understood how “regions” in quantum
gravity might be defined in terms of the operator content of
the theory (see for example [1,2]). Holographic theories
give a simple, but perhaps only partial, answer, to this
question. By restricting the region to a boundary region, the
associated algebra is given by one of the dual QFTs in the
boundary. Holographic EE [3,4] has shown there is a
correspondence, at least at the semiclassical level, of this
QFT entropy to an entropy in a gravity theory in the so-
called entanglement wedge [5–7].
As a first step in trying to understand the contributions of

gravitons to the entropy, in this paper, we compute the EE
of free gravitons in flat space. We treat the theory as a

quantum field theory of helicity 2 particles. In this sense,
the problem is conceptually simpler because we do not
have to deal with the localization issues of a full quantum
gravity theory. Indeed, one of the motivations of this paper
is to show there are no conceptual problems for these
helicity 2 free fields per se as QFT.
In the study of EE, it is important to establish a

correspondence of the different terms on the entropy with
known physical quantities in the model. One such signature
that allows us to distinguish models from their EE is given
by the coefficient of the logarithmic term. For the gravitons,
we treat the case of a sphere, computing the universal
logarithmic term. For a general CFT, the logarithmic term is
proportional to the A-anomaly [8,9]. This is the quantity
decreasing along the renormalization group in dimension
d ¼ 4. For the graviton, the usual definition of the A-
anomaly is not valid since there is no stress tensor.
However, we show the logarithmic term in the entropy
is perfectly well defined, and compute its universal coef-
ficient. We expect this type of contribution to be part of the
full graviton entropy in the semiclassical limit.
As in the case of the Maxwell field, it is important in

computing theEE to understand correctlywhat is the entropy
one is computing, that is, what is the algebra and the state, as
well as the meaning of the result in terms of the continuum
theory. A natural way to do this is by interpreting the
universal coefficients in terms of mutual information. This
is transparent in the real-time formulation that we use in this
paperwherewe have the quantumdegrees of freedom (d.o.f.)
always in sight. Computations using the replica trick may
actually hide the nature of the entropy one is computing in the
precise definition of the replica partition functions [10].
In this sense, there are in the literature several calculations

of logarithmic corrections to the black hole entropy formula
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due to the EE of quantum fields in the semiclassical back-
ground, including gravitons (for a review see [11,12]). The
graviton contribution may be of relevance to distinguish the
gravity theory [12].Nevertheless, logarithmic terms are subtle
too. An example of the problems involved is in the case of a
Maxwell field. The logarithmic term for a free Maxwell field
does not coincide with the expected trace anomaly [13–15].
However, the presence of electric or magnetic charges can
change this result, no matter the mass of the charged particles
[10,16]. This issue has been also discussed in the literature
using the effective constructions of edge modes or extended
Hilbert space (see for example [17,18]).
To compute the entanglement entropy, we should con-

sider the vacuum state in the algebra of gauge invariant
operators. This later is generated by the curvature tensor
which is gauge invariant at the linearized level. The vacuum
is a Gaussian state in this algebra and we could apply EE
formulas for Gaussian states in terms of the correlation
functions and commutators of the Gaussian variables.
However, due to the algebraic complexity of dealing with
the four index curvature tensor and its commutators, wewill
follow a different route that is physically equivalent and
will allow us to simplify the computations considerably. We
will use the metric perturbation tensor hμν as a generator of
the algebra. This is not a physical variable andwe need to fix
the gauge. This is done by taking into account the spherical
symmetry of the problem by choosing a gauge that allows us
to decouple the two radial modes for each angular momen-
tum. However, as explained in [19], while fixing the gauge
converts a gauge field into a physical variable, the locali-
zation properties of these variables are very much gauge
dependent. Hence we need to fix the gauge such that the
gauge fixed hμν can be recovered from the curvature inside
the region of interest for computing the EE. Otherwise,
selecting the field and momentum variables in a region may
compute the EE of an algebra unrelated to geometry.
Since this gauge fixing procedure adapted to the region of

interest has not been explicitly carried out in the literature
before, we find it instructive to see how this works in the
simpler case of aMaxwell field first.Wewill treat the case of
a Maxwell field between parallel planes in the next section
and in a sphere in Sec. III. The results agree with [13] where
the algebra was defined directly in terms of the electric and
magnetic fields instead of the gauge fixed vector potential
Aμ. In Sec. IV we describe the theory of the linearized
graviton and compute the EE between parallel planes. The
case of a sphere is treated in Sec. V where we compute the
logarithmic coefficient.We endwith a discussion in Sec. VI,
wherewe briefly comparewith other results in the literature.

II. ENTANGLEMENT ENTROPY OF A MAXWELL
FIELD BETWEEN PARALLEL PLANES

Before studying the problem of linearized gravitons, we
consider the simpler case of a free Maxwell field. In (3þ 1)
dimensions, the corresponding Lagrangian reads

L ¼ −
1

4

Z
d3xFμνFμν

¼ 1

2

Z
d3x½ð _A⃗ðx⃗Þ þ∇A0ðx⃗ÞÞ2 − ð∇ × A⃗ðx⃗ÞÞ2�: ð2:1Þ

In this section, we aim to obtain the EE associated with
the region V between two parallel planes separated by
a distance L (Fig. 1). In a Cartesian coordinate system
x⃗ ¼ ðx1; x2; x3Þ, the region V is given by V ¼
fx ¼ ðx1; x2; x3Þ; 0 < x1 < Lg. For this purpose, it is
particularly useful to write the field Aμ on a plane wave
basis using the Fourier sum over the directions parallel to
the plates. Assuming that the directions x2 and x3 are
compactified to large sizes R2 and R3 with periodic
boundary conditions, we can obtain

Aμðx0; x1; x2; x3Þ ¼
X
k⃗

Neik⃗·x⃗Aμðx0; x1; kÞ; ð2:2Þ

where it is valid that A†
μðx0; x1; kÞ ¼ Aμðx0; x1;−kÞ and N

takes the value ½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πR2R3

p �−1. Moreover, the vector k⃗ can be
expressed for n2; n3 ¼ 0;�1;�2;…;�∞ as

k⃗ ¼
�
0;
2πn2

R2

;
2πn3

R3

�
: ð2:3Þ

The problem then decomposes into independent (1þ 1)-
dimensional fields, labeled by k⃗, in the directions x0, and
x1. To study a fixed mode, we can use a coordinate system
adapted to k⃗, where x̂2 ¼ k̂ and x̂3 ¼ x̂1 × k̂. In these

FIG. 1. Two parallel planes with a separation of distance L in
the x1 direction.
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coordinates, the expressions that govern each mode take the
form

Neikx2Aμðx0; x1; kÞ: ð2:4Þ

The gauge freedom of the Maxwell field is given by
A0

μ → Aμ þ ∂μχ. So, we also decompose χ in the plane

wave basis. The mode corresponding to k⃗ reads

χðx0; x1; x2; x3Þ ¼ Neikx2χðx0; x1; kÞ: ð2:5Þ

Then, a gauge transformation of a fixed mode yields

A0
μðx0; x1; x2; x3Þ ¼ Neikx2 ½ðA0ðx0; x1; kÞ þ _χðx0; x1; kÞÞx̂0

þ ðA1ðx0; x1; kÞ þ ∂1χðx0; x1; kÞÞx̂1
þ ðA2ðx0; x1; kÞ þ ikχðx0; x1; kÞÞx̂2
þ A3ðx0; x1; kÞx̂3�: ð2:6Þ

Now, it is clear that we can fix χ in such a way that the
field components parallel to each k̂ vanish. Using this
choice of gauge, we can express Aμ as a local function of
the tensor Fμν in the coordinates x0, and x1

F2ν ¼ ∂2Aν − ∂νA2 ¼ ikAν: ð2:7Þ

This allows us to identify the algebra of gauge invariant
operators Fμν in between the parallel planes with the one of
the quantized gauge fixed operators Aμ.
We aim to compute the Hamiltonian. To proceed, we

must rewrite the Lagrangian (2.1) by using the expansion
(2.4) under the proposed gauge condition. By doing so, we
obtain for each mode the Lagrangian

Lk ¼ 1=2½ _A†
1
_A1 þ _A†

3
_A3 − k2A†

1A1 − k2A†
3A3 − ∂1A

†
3∂1A3

− k2A†
0A0 − ∂1A

†
0∂1A0 − A†

0∂1
_A1 − ∂1

_A†
1A0�: ð2:8Þ

The canonical momenta of the fields A1; A
†
1; A3; A

†
3 are

given by

π1 ¼
∂Lk

∂ _A1

¼
_A†
1

2
þ ∂1A

†
0

2
; π3 ¼

∂Lk

∂ _A3

¼
_A†
3

2
; ð2:9Þ

π†1 ¼
∂Lk

∂ _A†
1

¼
_A1

2
þ ∂1A0

2
; π†3 ¼

∂Lk

∂ _A†
3

¼
_A3

2
: ð2:10Þ

The Hamiltonian of the mode is then given by the Legendre
transform

Hk ¼ π1 _A1 þ π†1 _A
†
1 þ π3 _A3 þ π†3 _A

†
3 − Lk

¼ 2π†1π1 þ 2π†3π3 þ
k2

2
A†
1A1 þ

k2

2
A†
3A3 þ

1

2
∂1A

†
3∂1A3

þ k2

2
A†
0A0 þ A†

0∂1π
†
1 þ A0∂1π1 ð2:11Þ

with the corresponding equal time commutation relations

½A1ðx0; x1; kÞ; π1ðx0; x01; kÞ� ¼ iδðx1 − x01Þ;
½A3ðx0; x1; kÞ; π3ðx0; x01; kÞ� ¼ iδðx1 − x01Þ: ð2:12Þ

It is clear from (2.11) that the field A0 does not possess its
own dynamic and thus it can be treated as a Lagrange
multiplier. Differentiating, in order to obtain its equations
of motion, we obtain the constraints

∂1π1 ¼ −
k2

2
A†
0; ∂1π

†
1 ¼ −

k2

2
A0: ð2:13Þ

Replacement of (2.13) in (2.11) gives

Hk ¼ 2π†1π1 þ 2π†3π3 þ
k2

2
A†
1A1 þ

k2

2
A†
3A3þ

þ 1

2
∂1A

†
3∂1A3 þ

2

k2
∂1π1∂1π

†
1: ð2:14Þ

Making the identifications

ϕ1 ¼
ffiffiffi
2

p
π1

jkj ; P1 ¼ −
jkjA1ffiffiffi

2
p ; ð2:15Þ

ϕ3 ¼
A3ffiffiffi
2

p ; P3 ¼
ffiffiffi
2

p
π3; ð2:16Þ

where ϕ1; P1 and ϕ3; P3 are pairs of canonically conjugate
variables, the Hamiltonian reads

Hk ¼ P†
1P1 þ P†

3P3 þ ∂1ϕ
†
1∂1ϕ1 þ ∂1ϕ

†
3∂1ϕ3

þ k2ϕ†
1ϕ1 þ k2ϕ†

3ϕ3: ð2:17Þ

This is exactly the Hamiltonian of the modes associated
with two independent scalar fields that have been dimen-
sionally reduced (see for example [13]). As a result, the
algebra of gauge invariant operators of the gauge field
inside the parallel planes is identical to the one corre-
sponding to two massless scalar fields inside the same
region. The same argument is valid for vacuum expect-
ation values.
To sum up, we conclude that the EE of the Maxwell field

associated with a region V enclosed by two parallel planes
is equivalent to one of two independent scalar fields. In this
way, we recover the known result obtained in [13] by
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working with the gauge invariant electric and magnetic
fields directly. The entropy turns out to be [20]

S ¼ c
A
ϵ2

− 2ks
A
L2

; ð2:18Þ

where A ¼ R2R3 is the area of the planes, ϵ is a short
distance cutoff, c is a nonuniversal constant, and ks is the
universal coefficient corresponding to a scalar in this same
geometry. The later can be computed with high precision
from the knowledge of the one dimensional scalar entropy
function [21]. This calculation gives the result

ks ¼ 0.0055351599…: ð2:19Þ

As we will now see, this exact identification of entropies
between scalars and gauge fields does not hold for other
regions.

III. ENTANGLEMENT ENTROPY FOR A
MAXWELL FIELD IN THE SPHERE

We consider now the problem of a Maxwell field on a
sphere, which also can be easily dimensionally reduced.
Due to the spherical symmetry presented in this case, we
expand the field in question using scalar spherical har-
monics for the A0 component and vector spherical har-
monics for A⃗ ¼ ðA1; A2; A3Þ. That is

A0 ¼
X
lm

A0
lmðt; rÞYlmðθ;ϕÞ; l¼ 0;1;…;∞; −l ≤m ≤ l;

ð3:1Þ

A⃗ ¼
X
slm

As
lmðt; rÞȲs

lmðθ;ϕÞ; l ¼ 0;1;…;∞; −l ≤m ≤ l;

s ¼ r; e;m; ð3:2Þ

where Ȳs
lm are the vector spherical harmonics defined by

Ȳr
lmðθ;φÞ ¼ Ylmðθ;φÞr̂; l ≥ 0; −l ≤ m ≤ l; ð3:3Þ

Ȳe
lmðθ;φÞ ¼

r∇Ylmðθ;φÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp ; l > 0; −l ≤ m ≤ l; ð3:4Þ

Ȳm
lmðθ;φÞ ¼

r⃗×∇Ylmðθ;φÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp ; l > 0; −l ≤m ≤ l: ð3:5Þ

Considering the gauge transformations, it is useful to
expand the function χ using scalar spherical harmonics as

χ ¼
X
lm

χlmðt; rÞYlmðθ;ϕÞ: ð3:6Þ

This gives the transformation law

A⃗0 ¼
X
lm

ðAr
lm þ ∂rχlmÞȲr

lm þ
�
Ae
lm þ χlm

r

�
Ȳe
lm þ Am

lmȲ
m
lm:

ð3:7Þ

We see that it is possible to fix χlm completely in such a
way that the “electric” coefficient A0e

lm is identically zero for
each angular momentum. This particular choice of gauge is
convenient because of other reasons too. For each mode, it
allows us to write

Feμ ¼ ðeν∂νÞAμ þ ð∂μeνÞAν ð3:8Þ

where eμ is the unit vector in the direction of Ȳe
lm, and e

μ∂μ

is the derivative in such direction. The expression (3.8)
shows that, in this gauge, we can recover Aμ on the sphere
by the knowledge of the components Feμ of the gauge
invariant field tensor on the same region. The relation
between the gauge fixed Aμ and Fμν is nonlocal in the
angular directions. However, it allows the mapping of the
variables Aμ at fixed r to physical variables with the same
radius. This is because the derivatives involved in (3.8) are
tangential to the surface of the sphere. This is a particular
case of the general situation studied in [19] where it was
shown that a gauge fixing that respects the localization of
d.o.f. in a region can be chosen in such a way that Aμ

vanishes on the boundary of the region in a direction
parallel to the boundary itself. In the present example, this
direction is the one of the electric vector harmonics.
From this point, we proceed in the same way as in the

case of parallel planes. In particular, a useful writing of the
Lagrangian can be obtained by means of replacing (3.1)
and (3.2) in (2.1). Then, by taking into consideration the
orthonormality property of vector spherical harmonics,
we get

L ¼
X
lm

Z
∞

0

drLlm: ð3:9Þ

The Lagrangian Llm for l ≥ 1 follows from direct compu-
tation using the properties of vector harmonics listed in
Appendix A,

Llm ¼ 1=2½r2 _Ar
l;m

_Ar
l;−m þ r2 _Am

l;m
_Am
l;−m − lðlþ 1ÞAr

l;mA
r
l;−m

− lðlþ 1ÞAm
l;mA

m
l;−m − jAm

l;m þ r∂rAm
l;mj2

þ r2∂rA0
l;m∂rA0

l;−m þ lðlþ 1ÞA0
l;mA

0
l;−m

− r2A0
l;m∂r

_Ar
l;−m − r2A0

l;−m∂r
_Ar
l;m þ 2rA0

l;m
_Ar
l;−m

þ 2rA0
l;−m

_Ar
l;m�: ð3:10Þ

The Lagrangian density is independent of m. So, to
simplify the notation in the following calculation we
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eliminate the index for m in the variables and consider the
real m ¼ 0 mode only. However, we should keep in mind
that we will have (2lþ 1) identical contributions to the EE
for each angular momentum. The canonical conjugate
momenta are defined by

πrl ¼
∂Ll

∂ _Ar
l

¼ r2ð _Ar
l þ∂rA0

l Þ; πml ¼ ∂Ll

∂ _Am
l

¼ r2 _Am
l : ð3:11Þ

which can be substituted in the Legendre transform

Hl ¼ πrl _A
r
l þ πml _Am

l − Ll; ð3:12Þ

in order to obtain the Hamiltonian

Hl¼
πrlπ

r
l

2r2
þπml π

m
l

2r2
þ lðlþ1ÞAr

lA
r
l þ lðlþ1ÞAm

l A
m
l

þðAm
l þ r∂rAm

l Þ2−πrl∂rA0
l −

lðlþ1Þ
2

A0
l A

0
l : ð3:13Þ

The modes with different angular momentum are indepen-
dent of each other and their operators commute. For a fixed
l, the nontrivial canonical commutation relations are given
by the following expression:

½Ar
l ðt;rÞ;πrl ðt;r0Þ�¼½Am

l ðt;rÞ;πml ðt;r0Þ�¼ iδðr−r0Þ: ð3:14Þ

Again, A0
l is a Lagrange multiplier, allowing the deri-

vation of the constraint

∂rπ
r
l ¼ lðlþ 1ÞA0

l ; ð3:15Þ

which can be replaced in (3.13) yielding

Hl ¼
1

2

�
πrlπ

r
l

r2
þ ∂rπ

r
l∂rπ

r
l

lðlþ 1Þ þ lðlþ 1ÞAr
lA

r
l

�

þ 1

2

�
πml π

m
l

r2
þ 2ðAm

l þ r∂rAm
l Þ2 þ lðlþ 1ÞAm

l A
m
l

�
:

ð3:16Þ

Lastly, the field and momentum variables can be rewrit-
ten as

ϕr
l ¼

πrlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp ; Pr

l ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

p
Ar
l ; ð3:17Þ

ϕm
l ¼ rAr

l ; Pm
l ¼ πml

r
; ð3:18Þ

and by applying (3.17) and (3.18) in (3.16) we reduce the
Hamiltonian to the one of two identical radial modes
given by

Hl¼
1

2

�
Pr
lP

r
l þ∂rϕ

r
l∂rϕ

r
l þ

lðlþ1Þ
r2

ϕr
lϕ

r
l

�

þ1

2

�
Pm
l P

m
l þ∂rϕ

m
l ∂rϕ

m
l þ lðlþ1Þ

r2
ϕm
l ϕ

m
l

�
; ð3:19Þ

with the standard commutation relations

½ϕr
l ðt; rÞ; Pr

l ðt; r0Þ� ¼ ½ϕm
l ðt; rÞ; Pm

l ðt; r0Þ�
¼ iδðr − r0Þ: ð3:20Þ

Each of these two identical modes has the same
Hamiltonian as the one that results from the spherical
reduction of a free massless scalar field [13,22].
Equation (3.10) does not apply to the zero angular

momentum mode. This is simply because the electric
(3.4) and magnetic (3.5) spherical harmonics do not exist
for l ¼ 0. For l ¼ 0 we get the simpler expression

H0 ¼
πr0π

r
0

2r2
þ A0

0∂rπ
r
0; ð3:21Þ

where by replacing the constraint ∂rπ
r
l¼0 ¼ 0, obtained

from the equations of motion of A0
0, we get

H0 ¼
πr0π

r
0

2r2
: ð3:22Þ

This means that the zero angular momentum mode does not
have dynamics and thus generates no contributions to the
entropy.
Therefore, the EE of the Maxwell field on the sphere is

equivalent to the one of two scalar fields where the l ¼ 0
mode has been subtracted. This result coincides with the
one given in [13]. The entanglement entropy of a scalar in a
sphere has a universal logarithmic term −1=90 logðR=ϵÞ
[8,9,14,23,24]. The mode l ¼ 0 for the scalar [see the
Hamiltonian (3.19) for l ¼ 0] corresponds to a massless
d ¼ 2 field in the r > 0 half-line with Dirichlet boundary
condition at the origin, and its universal logarithmic
entropy is 1=6 logðR=ϵÞ [13,25]. The entropy of the
Maxwell field in the sphere is then given by [13,14]

S ¼ c
A
ϵ2

−
16

45
log

�
R
ϵ

�
; ð3:23Þ

where the coefficient of the logarithmic term follows from
16=45 ¼ 2 × 1=90þ 2 × 1=6.
Again, we recover this result by working with the gauge

variant field Aμ instead of using directly the electric and
magnetic gauge invariant fields as in [13]. It is important to
remark that another gauge choice that does not respect the
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locality on the sphere would have given a completely
different and incorrect result for the sphere EE.

IV. ENTANGLEMENT ENTROPYOF LINEARIZED
GRAVITONS BETWEEN PARALLEL PLANES

The free theory of a massless helicity 2 particle can be
described by a field hμν. This field can be thought of as
describing metric perturbations gμν¼ημνþhμν with respect
to the Minkowski metric ημν. The field hμν obeys the
linearized Einstein equations and the Lagrangian that gives
these equations in absence of sources reads [26]

L ¼ −∂μhμν∂αhαν þ
1

2
∂αhμν∂αhμν þ ∂μhμν∂νhαα

−
1

2
∂αhμμ∂αhνν: ð4:1Þ

The theory has a gauge invariance given by the trans-
formation law

h0μν ¼ hμν þ ∂νξμ þ ∂μξν; ð4:2Þ

for an arbitrary vector field ξμ. This corresponds to the
diffeomorphism invariance of the Einstein theory of gravity
at the linearized level.
The curvature is not gauge invariant in the nonlinear

gravity theory. However, a gauge invariant operator corre-
sponds to the linearized curvature tensor [27]

Rμνρσ ¼
1

2
½∂ν∂ρhμσ −∂μ∂ρhνσþ∂μ∂θhνρ−∂ν∂σhμρ�: ð4:3Þ

It is a simple exercise to show that it is indeed invariant
under the transformations (4.2).1 Therefore, in contrast to
what is expected in full quantum gravity, the theory of a
helicity 2 field in Minkowski space contains gauge invari-
ant local operators. In consequence, the EE is well defined,
except for the usual issues about divergent terms. As a first
exercise, let us study the case of a region bounded by two
parallel planes.

A. Plane wave decomposition and gauge fixing

For the wall between parallel planes, we resort to a plane
wave decomposition of the fields analogous to (2.4). We
write the field of a mode with k⃗ ¼ kx̂2 as

hμνðx0; x1; x2; x3Þ ¼ Neikx2hμνðx0; x1; kÞ: ð4:4Þ

The arbitrary gauge function ξ can also be decomposed in
modes. The mode associated with a vector k⃗ reads

ξμðx0; x1; x2; x3Þ ¼ Neikx2ξμðx0; x1; kÞ: ð4:5Þ

Therefore, it can be easily observed that linearized diffeo-
morphisms give the following transformation law:

h0μν ¼

2
666664

h00 þ 2 _ξ0 h01 þ _ξ1 þ ∂1ξ0 h02 þ _ξ2 þ ikξ0 h03 þ _ξ3

h01 þ _ξ1 þ ∂1ξ0 h11 þ 2∂1ξ1 h12 þ ∂1ξ2 þ ikξ2 h13 þ ∂1ξ3

h02 þ _ξ2 þ ikξ0 h12 þ ∂1ξ2 þ ikξ2 h22 þ 2ikξ2 h23 þ ikξ3

h03 þ _ξ3 h13 þ ∂1ξ3 h23 þ ikξ3 h33

3
777775: ð4:6Þ

Now, it is clear that the components h002, h
0
20, h

0
12, h

0
21, h

0
22,

h023, and h032 can be fixed to zero if we use up all the
available gauge freedom. All the components of h0μν that
have nonzero contractions in the direction of k̂ are set to
zero. For each mode, this allows us to write the R2μ2ν

component of the Riemann tensor as

2R2μ2ν ¼ hν2;μ2þh2μ;2ν−hνμ;22−h22;μν¼−hνμ;22¼ k2hνμ:

ð4:7Þ

That is, under this particular choice of gauge, it is
possible to write the field hνμ in terms of the Riemann
tensor in a local way in the x0 and x1 coordinates. This
means that the algebra of the gauge fixed d.o.f. of hνμ is the
same as the algebra of the curvature tensor in between the
planes.

B. Lagrangian for each momentum

The Lagrangian decomposes into independent modes
for the different plane waves. For this purpose, we use
the expansion (4.4) and the gauge condition presented
in the previous section. The Lagrangian density for the
(1þ 1) dimensional theory of each mode k⃗ can be
expressed as

1This corresponds to the fact that the curvature transforms
linearly under changes of coordinates and it is already of linear
order in hμν. Then further factors of the infinitesimal coordinate
transformation must be second order.
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Lk ¼ _h13 _h
†
13−

1

2
ð _h11 _h†33þ _h33 _h

†
11Þ− k2h13h13†

þ k2

2
ðh11h33†þh33h11†Þ−

k2

2
h00ðh11†þh33†Þ

−
k2

2
ðh11þh33Þh†00−h01∂1

_h†33− ∂1
_h33h

†
01þh03∂1

_h†13

þ ∂1
_h13h

†
03þ k2h03h

†
03þ k2h01h

†
01þ ∂1h03∂1h

†
03

−
1

2
∂1h33∂1h

†
00−

1

2
∂1h00∂1h

†
33: ð4:8Þ

This Lagrangian contains two sets of independent fields.
Then, the problem can be split into two modes that will be
treated separately. The first one contains the field h13 and
the Lagrange multiplier h03

LI ¼ _h13 _h
†
13 − k2h13h13† − ∂1h03 _h

†
13 − _h13∂1h

†
03

þ k2h03h
†
03 þ ∂1h03∂1h

†
03; ð4:9Þ

and the second one contains the fields h11 and h33 and the
multipliers h01 and h00

LII ¼ −
1

2
ð _h11 _h†33 þ _h33 _h

†
11Þ þ

k2

2
ðh11h33† þ h33h11†Þ

þ ∂1h01 _h
†
33 þ _h33∂1h

†
01 −

k2

2
h00ðh11† þ h33†Þ

−
k2

2
ðh11 þ h33Þh†00 þ k2h01h

†
01 −

1

2
∂1h33∂1h

†
00

−
1

2
∂1h00∂1h

†
33: ð4:10Þ

Therefore, the total Lagrangian is given by sum over modes

L ¼
X
k

Z
∞

0

dx1ðLI þ LIIÞ: ð4:11Þ

C. Hamiltonian of the mode I

The momenta π13, π
†
13 corresponding to the Lagrangian

(4.9) are

π13 ¼
∂LI

∂ _h13
¼ _h†13 − ∂1h

†
03;

π†13 ¼
∂LI

∂ _h†13
¼ _h13 − ∂1h03; ð4:12Þ

and the corresponding Hamiltonian is

HI ¼ π13 _h13 þ π†13 _h
†
13 − LI

¼ π13π
†
13 þ k2h13h13† − h03∂1π13 − h†03∂1π

†
13

− k2h03h
†
03: ð4:13Þ

A constraint equation can be derived by computing the
equation of motion of h03

h03 ¼
∂1π

†
13

k2
; h†03 ¼

∂1π13
k2

; ð4:14Þ

which can be replaced in (4.13) to obtain

HI ¼ π13π
†
13 þ k2h13h13† þ

∂1π13∂1π
†
13

k2
: ð4:15Þ

In order to rewrite the Hamiltonian (4.15) as the one
associated with a complex scalar (for each pair k⃗;−k⃗), it is
convenient to define

ϕI ¼
π13
jkj ; PI ¼ −jkjh13; ð4:16Þ

ϕ†
I ¼

π†13
jkj ; P†

I ¼ −jkjh†13: ð4:17Þ

In this way, (4.15) gets rewritten as

HI ¼ P1P
†
1 þ k2ϕ1ϕ1

† þ ∂1ϕ1∂1ϕ
†
1: ð4:18Þ

Moreover, by canonical quantization of the field h13 in
(4.13), it is clear that the replacements (4.16) and (4.17)
give P1 and ϕ1 as canonically conjugate variables.

D. Hamiltonian of the mode II

Analyzing the dynamics of the fields h00 and h†00 in the
Lagrangian (4.11), it is evident that both play the role
of Lagrange multipliers. These allow us to derive the
constraints

∂1∂1h33 ¼ k2ðh11 þ h33Þ;
∂1∂1h

†
33 ¼ k2ðh11† þ h33†Þ: ð4:19Þ

If we replace (4.19) in (4.11) it is possible to eliminate the
field h11 from the Lagrangian, obtaining

LII ¼ _h33 _h
†
33 − k2h33h33† þ

∂1
_h33∂1

_h†33
k2

− ∂1h33∂1h33† − h01∂1
_h†33 − ∂1

_h33h
†
01

þ k2h01h
†
01: ð4:20Þ

The substitution produced a higher derivative term
k−2∂1

_h33∂1
_h33

†. However, this problem disappears when
we use the constraint equation related to the Lagrange
multipliers h01 and h†01. Indeed, we obtain

h01 ¼
∂1

_h33
k2

; h†01 ¼
∂1

_h†33
k2

: ð4:21Þ
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By replacing (4.21) in (4.20) the Lagrangian gets reduced to

LII ¼ _h33 _h
†
33 − k2h33h33† − ∂1h33∂1h33†: ð4:22Þ

Then, the canonical momenta associated to the complex
field variables h33 and h33† are

π33 ¼
∂LII

∂ _h33
¼ _h†33; π†33 ¼

∂LII

∂ _h†33
¼ _h33; ð4:23Þ

and the corresponding Hamiltonian gets the same form as
(4.18),

HII ¼ PIIP
†
II þ k2ϕIIϕII

† þ ∂1ϕII∂1ϕ
†
II; ð4:24Þ

where we have introduced the trivial notation change

ϕII ¼ h33; PII ¼ π13; ð4:25Þ

ϕ†
II ¼ h33†; P†

II ¼ π†13: ð4:26Þ

These variables also obey canonical commutation relations.

E. Entanglement Entropy

The Hamiltonians for the two modes (4.18) and (4.24)
are equivalent to the ones of a dimensionally reduced scalar
field. We are allowed to conclude that the EE of linearized
gravitons for the region enclosed between two parallel
planes is equivalent to the one of two scalar fields or one
Maxwell field. The universal coefficients will be the same
in the three cases. We get again

S ¼ c
A
ϵ2

− 2ks
A
L2

; ð4:27Þ

with ks given by (2.19) and [20].

V. ENTANGLEMENT ENTROPY OF
LINEARIZED GRAVITONS IN A SPHERE

In this section, we treat the case of gravitons inside a
sphere. We first introduce the tensor spherical harmonics
that we use to decompose hμν in spherical coordinates. We
also decompose the gauge transformations and choose a
generic gauge adapted to the spherical symmetry that
depends on three arbitrary constants. Then, we expand
the Lagrangian in terms of the gauge fixed field to get two
independent radial modes for each angular momentum. The
gauge choice is further refined to allow the simplification of
the mode Hamiltonians. In this context, we ensure the
locality in the radial direction in the relation between the
gauge fixed field and the curvature tensor. We get a system
of modes that are equivalent to the scalar spherical modes

except that the l ¼ 0, 1 modes are absent. Finally, we
compute the entanglement entropy.

A. Tensor spherical harmonics

The tensor spherical harmonics are a further generali-
zation of the concept of scalar and vector spherical
harmonics. They can be used as a basis for the space of
symmetric tensors (of dimension six). An arbitrary sym-
metric tensor field X can be expanded in polar coordinates
as follows:

X¼
X
Jslm

XJs
lmðrÞTJs

lmðθ;ϕÞ; l¼ 0;1;…;∞;

m¼ 0;�1;…;�l; Js¼ 0l;0t;1e;1m;2e;2m; ð5:1Þ

where the tensor spherical harmonics TJs
lm are given by (see

for example [28,29])

T0l
lm ¼ r̂ ⊗ r̂Ylm; T0t

lm ¼ 1ffiffiffi
2

p ðδ − r̂ ⊗ r̂ÞYlm;

T1e
lm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

lðlþ 1Þ

s
r½r̂ ⊗ ∇Ylm�S;

T1m
lm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

lðlþ 1Þ

s
½r̂ ⊗ r̄ × ∇Ylm�S;

T2e
lm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
ðl − 2Þ!
ðlþ 2Þ!

s
½r2∇∇Ylm�STT;

T2m
lm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
ðl − 2Þ!
ðlþ 2Þ!

s
½r∇ðr̄ × ∇YlmÞ�STT: ð5:2Þ

The spherical harmonics of spin J ¼ 0 are defined for
l ≥ 0, the ones related to spin J ¼ 1 for l ≥ 1, and the in the
case of spin J ¼ 2 for l ≥ 2. In the notation of Eq. (5.2), the
symbol δ means the identity tensor δij. Additionally,
the superscript S means taking the symmetric part, and
TT the traceless part transverse to r̂. For an arbitrary tensor
Xij this later is given by the following expression:

XTT
ij ¼ ðδik − r̂ir̂kÞðδjn − r̂jr̂nÞXkn

−
1

2
ðδij − r̂ir̂jÞ½ðδkn − r̂kr̂nÞXnk�: ð5:3Þ

It will be useful to have a relation between tensor and
vector spherical harmonics. This relation can be expressed
as
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T0l
lm¼½r̂⊗ Ȳr

lm�S; T0t
lm¼

1ffiffiffi
2

p ðδYlm− r̂⊗ Ȳr
lmÞ;

T1e
lm¼

ffiffiffi
2

p
½r̂⊗ Ȳe

lm�S; T1m
lm ¼

ffiffiffi
2

p
½r̂⊗ Ȳm

lm�S;

T2e
lm¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ðl−1Þðlþ2Þ

s �
½r∇Ȳe

lm�Sþ
1ffiffiffi
2

p T1e
lmþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ1Þ

2

r
T0t
lm

�
;

T2m
lm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ðl−1Þðlþ2Þ

s �
½r∇Ȳm

lm�Sþ
1ffiffiffi
2

p T1m
lm

�
: ð5:4Þ

Further properties of the tensor spherical harmonics are
listed in Appendix B.

B. Decomposition of the spin 2 field
in spherical harmonics

To make the process of computing the EE easier, it will
be useful to decompose the field hμν and the gauge arbitrary
function ξμ on a basis adapted to spherical symmetry. For
this purpose, we introduce the notation

hT ¼

2
64
h11 h12 h13
h21 h22 h23
h31 h32 h33

3
75; hV ¼

2
64
h01
h02
h03

3
75; hS ¼ h00;

ξV ¼

2
64
ξ1

ξ2

ξ3

3
75; ξS ¼ ξ0: ð5:5Þ

Firstly, we will expand hT in tensor spherical harmonics
and ξV in vector spherical harmonics. Then, we will study
the remaining gauge freedom by using vector spherical
harmonics for hV and scalar spherical harmonics for ξS
and hS.

2

C. Gauge fixing for spacelike components

As we just mentioned, hT and ξV will be expanded using
tensor and vector spherical harmonics respectively. We get
the following expressions:

hT ¼
X
Jslm

hJslmðt;rÞTJs
lmðθ;φÞ; ξV ¼

X
slm

ξslmðt;rÞȲs
lmðθ;φÞ:

ð5:6Þ

On the other hand, the gauge freedom of linear gravity can
be expressed in this notation as

h0T ¼ hT þ∇ξV þ ½∇ξV �T ¼ hT þ 2½∇ξV �S: ð5:7Þ

The combination of (5.6) and (5.7) gives

h0T ¼
X
Jslm

hJslmT
Js
lmþ2

X
slm

½ξslm∇Ȳs
lmþ Ȳs

lm ⊗ ∂rξ
s
lmr̂�S: ð5:8Þ

By computing ξslm∇Ȳs
lm þ Ȳs

lm ⊗ ∂rξ
s
lmr̂ using the

properties of vector and tensor spherical harmonics
(Appendixes A and B), for s ¼ r, e, m separately, and
then adding up these contributions we get

h0T ¼
X
lm

ðh0llm þ 2∂rξ
r
lmÞT0l

lm þ
�
h0tlm þ 2

ffiffiffi
2

p

r
ξrlm −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lðlþ 1Þp

r
ξelm

�
T0t
lm

þ
�
h1elm þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lðlþ 1Þp

r
ξrlm þ

ffiffiffi
2

p ∂rξ
e
lm −

ffiffiffi
2

p

r
ξelm

�
T1e
lm þ

�
h1mlm þ

ffiffiffi
2

p ∂rξ
m
lm −

ffiffiffi
2

p

r
ξmlm

�
T1m
lm

þ
�
h2elm þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðl − 1Þðlþ 2Þp

r
ξelm

�
T2e
lm þ

�
h2mlm þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðl − 1Þðlþ 2Þp

r
ξmlm

�
T2m
lm : ð5:9Þ

This particular case differs from the ones studied earlier
because there are many possible reasonable choices of
gauge fixing for the spherical waves. Not all of them will
allow us to calculate the EE that corresponds to the
spherical boundary or allow us to decouple the two
dynamical modes for each lm. More specifically, the
following can be seen:
(1) Fixing ξr allows us to cancel the components that are

parallel to T0t
lm or T1e

lm or to a linear combination
of them.

(2) Fixing ξe allows us to cancel the components that are
parallel to T0t

lm or T2e
lm or to a linear combination

of them.
(3) Fixing ξm allows us to cancel the components that

are parallel to T2m
lm .

For now, we will use the freedom related to ξm to cancel
the “electric-magnetic” components, meaning that we take
h02mlm ¼ 0 for all l and m. Understanding the gauge fixing of
ξr and ξe that is the correct one for our purposes is not
simple at this stage. Because of that, we choose to set to
zero just some arbitrary linear combination of T0t

lm, T
1e
lm,

and T2e
lm to be further determined in what follows. There is

only one resulting d.o.f. that we call htel that is associated
2See [28,30] for a different but somewhat analogous treatment

of gravitons in spherical coordinates.
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with a linear combination of these tensors with some
undetermined coefficients. More formally, we fix the gauge
such that

hT ¼
X
lm

h0llmT
0l
lm þ htelmðαT0t

lm þ βT1e
lm þ γT2e

lmÞ þ h1mlm T
1m
lm ;

ð5:10Þ

where α, β and γ are constants.

D. Gauge fixing for the timelike components

In order to fix the remaining gauge freedom, we will
write the vector hV and the scalar ξS as

hV ¼
X
slm

h0slmðt; rÞȲs
lmðθ;φÞ; ξS ¼

X
lm

ξ0lmðt; rÞYlmðθ;φÞ:

ð5:11Þ

For each component of hV we have h00i¼h0iþ∂0ξiþ∂iξ0
or more conveniently h0V ¼ hV þ _ξV þ∇ξS. By replacing
with (5.11) we get

h0V ¼
X
lm

ðh0rlm þ _ξrlm þ ∂rξ
0
lmÞȲr

lm þ
�
h0elm þ _ξelm þ ξ0lm

r

�
Ȳe
lm

þ ðh0mlm þ _ξmlmÞȲm
lm: ð5:12Þ

Thus, in analogy with the case of the Maxwell field, we can
fix ξ0 in such way that h00elm is zero for each lm, obtaining
the expansion

hV ¼
X
lm

h0rlmȲ
r
lm þ h0mlm Ȳ

m
lm: ð5:13Þ

E. Lagrangian for each angular momentum

The starting point is the Lagrangian (4.1). Using the
decomposition of the field hμν given in (5.5) in terms of
spatial and temporal components we obtain

L ¼ 1

2
ð _hT � � � _hT − Trð _hTÞTrð _hTÞÞ þ

1

2
ð∇2hT � � � hT þ∇TrðhTÞ ·∇TrðhTÞÞ

þ ð∇ · hTÞ · ½ð∇ · hTÞ −∇TrðhTÞ� þ∇hS½ð∇ · hTÞ −∇TrðhTÞ�
− 2_hV · ½ð∇ · hTÞ −∇TrðhTÞ� − ð∇ · hVÞ · ð∇ · hVÞ −∇2hV · hV: ð5:14Þ

In this matricial notation a single dot means the contrac-
tion of a one index for each tensor and two dots the
contraction of the two sets of indices of the two symmetric
tensors involved in the product. The full Lagrangian is
given by

L ¼
Z

3

R
d3x̄L ¼

Z
∞

0

drr2
�Z

dΩL
�
: ð5:15Þ

Replacing the expressions (5.10) and (5.13) in (5.15)
while considering the properties of spherical harmonics
(Appendixes A and B), it turns out that we can rewrite
the Lagrangian as a sum of independent modes for each
l and m

L ¼
X
lm

Z
∞

0

drðLI
lm þ LII

lmÞ; ð5:16Þ

where the LI
lm contains the variables h1ml and h0ml , and LII

lm

involves the fields h0ll and htel together with the Lagrange
multipliers h0rl and h00l .
The Lagrangians for the modes are independent of m.

Again, it is clear that we will have (2lþ 1) equal con-
tributions for each l. Accordingly, we will suppress
the index m. After a long but straightforward calculation
using the properties listed in Appendixes A and B, the
Lagrangian corresponding to the mode I (and l ≥ 2)
reads

LI
l ¼

r2

2
_h1ml _h1ml −

ðl−1Þðlþ2Þ
2

h1ml h1ml þ r2∂rh0ml ∂rh0ml

þ lðlþ1Þh0ml h0ml þ
ffiffiffi
2

p
_h1ml ðrh0ml − r2∂rh0ml Þ; ð5:17Þ

and the one associated with mode II is
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LII
l ¼ r2

2
ðβ2 − α2 þ γ2Þ _htel _htel −

ffiffiffi
2

p
r2α _h0ll _htel þ r2

2
ðα2 − γ2Þ∂rhtel ∂rhtel

þ
ffiffiffi
2

p
αrhtel ∂rh0ll þ h0ll h

0l
l þ

�
β2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp
2

αβ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðl − 1Þðlþ 2Þp

2
βγ

�
htel h

te
l

þ
ffiffiffi
2

p �
lðlþ 1Þ

2
α −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

p
β þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðl − 1Þlðlþ 1Þðlþ 2Þp
2

γ

�
h0ll h

te
l þ lðlþ 1Þh0rl h0rl

þ h0rl ½4r _h0ll − 2
ffiffiffi
2

p
αr2∂r

_htel −
ffiffiffi
2

p
ð2αþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

p
βÞr _htel �

þ h00l

�
−2r∂rh0ll − ðlðlþ 1Þ þ 2Þh0ll þ

ffiffiffi
2

p
αr2∂r∂rhtel þ

ffiffiffi
2

p
ð3αþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

p
βÞr∂rhtel

þ 1ffiffiffi
2

p ð−ðl − 1Þðlþ 2Þαþ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

p
β −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − 1Þlðlþ 1Þðlþ 2Þ

p
γÞhtel

�
: ð5:18Þ

In the same way, as for the case of parallel planes, we will
study the modes I and II separately trying to reduce them to
scalar fields for l ≥ 2. Then, we will present the particular
cases l ¼ 0 and l ¼ 1.

F. Hamiltonian of mode I for l ≥ 2

From Eq. (5.17) it can be seen clearly that h0ml has no
dynamics. Then, we get the following constraint:

− 2r2∂r∂rh0ml − 4r∂rh0ml þ 2lðlþ 1Þh0ml
þ

ffiffiffi
2

p
r2 _∂rh1ml þ 3

ffiffiffi
2

p
r _h1ml ¼ 0: ð5:19Þ

In an analogy with the case of the parallel planes in
Eq. (5.19), this expression cannot be solved algebraically.
But, the constraint can be implemented by first computing
the Hamiltonian. The momenta are given by

π1ml ¼ ∂LI
l

∂ _h1ml
¼ r2 _h1ml þ

ffiffiffi
2

p
ðrh0ml − r2∂rh0ml Þ: ð5:20Þ

From Eqs. (5.17) and (5.20) we compute

HI
l ¼ π1ml _h1ml − LI

l ¼
π1ml π1ml
2r2

þ ðl − 1Þðlþ 2Þ
2

h1ml h1ml

− ðl − 1Þðlþ 2Þh0ml h0ml −
ffiffiffi
2

p
h0ml

�
∂rπ

1m
l þ π1ml

r

�
:

ð5:21Þ

Now, by working with h0ml as a Lagrange multiplier in
(5.21), the following constraint appears:

−2ðl − 1Þðlþ 2Þh0ml −
ffiffiffi
2

p �
∂rπ

1m
l þ π1ml

r

�
¼ 0: ð5:22Þ

Replacing (5.22) in (5.21) gives, for l ≥ 2, the one dimen-
sional Hamiltonian density

HI
l ¼

lðlþ 1Þ
2r2

π1ml π1ml
ðl − 1Þðlþ 2Þ þ

1

2

∂rπ
1m
l ∂rπ

1m
l

ðl − 1Þðlþ 2Þ
þ 1

2
ðl − 1Þðlþ 2Þh1ml h1ml ; ð5:23Þ

and by redefining the variables as

ϕI
l ¼

π1mlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðl−1Þðlþ2Þp ; PI
l ¼−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl−1Þðlþ2Þ

p
h1ml ; ð5:24Þ

we reduce (5.23) to the Hamiltonian of a free scalar on the
sphere

HI
l ¼

1

2

�
PI
lP

I
l þ ∂rϕ

I
l∂rϕ

I
l þ

lðlþ 1Þ
r2

ϕI
lϕ

I
l

�
: ð5:25Þ

Additionally, the canonical commutation relation

½PI
lðt; rÞ;ϕI

lðt; r0Þ� ¼ iδðr − r0Þ; ð5:26Þ

follows from the validity of

½π1ml ðt; rÞ; h1ml ðt; r0Þ� ¼ iδðr − r0Þ: ð5:27Þ

G. Hamiltonian of mode II for l ≥ 2

For mode II, we have the Lagrangian (5.18). Working out
the equations of motion of the Lagrange multiplier h00l
yields the constraint

−2r∂rh0ll − ðlðlþ1Þþ2Þh0ll þ
ffiffiffi
2

p
ð3αþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ1Þ

p
βÞr∂rhtel

þ
ffiffiffi
2

p
αr2∂r∂rhtel þ 1ffiffiffi

2
p ð−ðl−1Þðlþ2Þαþ4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ1Þ

p
β

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl−1Þlðlþ1Þðlþ2Þ

p
γÞhtel ¼ 0: ð5:28Þ

Taking into account that (5.28) gives rise to nonlocal terms
(that cannot be eliminated by the same means used for
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mode I), we are led to propose a particular gauge fixing
such that

h0ll ¼ ahtel þ br∂rhtel ; ð5:29Þ

where a and b are constants that will be fixed to satisfy
(5.28). Indeed, by replacing (5.29) in (5.28), we get

ffiffiffi
2

p
ðα −

ffiffiffi
2

p
bÞr2∂r∂rhtel þ ð3

ffiffiffi
2

p
αþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lðlþ 1Þ

p
β

− ðlðlþ 1Þ þ 4Þb − 2aÞr∂rhtel
1ffiffiffi
2

p ð−ðl − 1Þðlþ 2Þα

þ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

p
β −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − 1Þlðlþ 1Þðlþ 2Þ

p
γ

− a
ffiffiffi
2

p
ðlðlþ 1Þ þ 2ÞÞhtel ¼ 0: ð5:30Þ

It is possible to solve for a, b and α in terms of β and γ in
such a way that all the terms vanish separately. We obtain

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

lðlþ 1Þ

s
β −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − 1Þðlþ 2Þ
2lðlþ 1Þ

s
γ; ð5:31Þ

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

lðlþ 1Þ

s
β þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ðl − 1Þlðlþ 1Þðlþ 2Þ

s
γ; ð5:32Þ

α ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp β þ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðl − 1Þlðlþ 1Þðlþ 2Þp γ: ð5:33Þ

It is fundamental to remark that Eq. (5.33) selects a
particular gauge choice for achieving this simplification.
Replacing (5.29), (5.31), (5.32), and (5.33) in (5.18) and

working with h0rl as a Lagrange multiplier allows us to
obtain the following simple Lagrangian:

LII
l ¼ γ2

2
½ _htel _htel − ∂rhtel ∂rhtel − lðlþ 1Þhtel htel �: ð5:34Þ

The corresponding Hamiltonian is

HII
l ¼ πtel _htel − LII

l

¼ 1

2

�
πtel π

te
l

γ2r2
þ γ2r2∂rhtel ∂rhtel þ γ2lðlþ 1Þhtel htel

�
;

ð5:35Þ

with the canonical commutation relations

½πtel ðt; rÞ; htel ðt; r0Þ� ¼ iδðr − r0Þ: ð5:36Þ

Finally, by making the identifications

ϕII
l ¼ γrhtel ; PII

l ¼ πtel
rγ

; ð5:37Þ

the Hamiltonian of the scalar field modes is recovered in
the form

HII
l ¼ 1

2

�
PII
l P

II
l þ ∂rϕ

II
l ∂rϕ

II
l þ lðlþ 1Þ

r2
ϕII
l ϕ

II
l

�
; ð5:38Þ

associated with the commutation relations

½PII
l ðt; rÞ;ϕII

l ðt; r0Þ� ¼ iδðr − r0Þ: ð5:39Þ

H. Analysis of the mode l = 0

For the case l ¼ 0, the tensor spherical harmonics of spin
J ¼ 1 and J ¼ 2 are not defined. Then, the Lagrangian
(5.15) reduces to

Ll¼0 ¼ LI
l¼0 þ LII

l¼0

¼ −
r2

2
α2 _hte0 _hte0 −

ffiffiffi
2

p
r2α _h0l0 _hte0 þ r2

2
α2∂rhte0 ∂rhte0 þ

ffiffiffi
2

p
αrhte0 ∂rh0l0 þ h0l0 h

0l
0 þ 2

ffiffiffi
2

p
h0r0 ½

ffiffiffi
2

p
r _h0l0 − αr2∂r

_hte0 − αr _hte0 �
þ

ffiffiffi
2

p
h000 ½−

ffiffiffi
2

p
r∂rh0l 0l −

ffiffiffi
2

p
h0l0 þ αr2∂r∂rhte0 þ 3αr∂rhte0 þ αhte0 �: ð5:40Þ

The equation of motion of h000 produces the constraint

−
ffiffiffi
2

p
r∂rh0l0 −

ffiffiffi
2

p
h0l0 þ αr2∂r∂rhte0 þ 3αr∂rhte0 þ αhte0 ¼ 0:

ð5:41Þ

By proposing the equivalent of (5.29) and replacing
(5.41), we get that the constants a and b must be a ¼ b ¼
α=

ffiffiffi
2

p
without the need of fixing α. We obtain

h0l0 ¼ αffiffiffi
2

p ðhte0 þ r∂rhte0 Þ ∀ α: ð5:42Þ

On the other hand, taking h0r0 as a Lagrange multiplier gives

ffiffiffi
2

p
r _h0l0 − αr2∂r

_hte0 − αr _hte0 ¼ 0: ð5:43Þ

Equations (5.42) and (5.43) are consistent with each other.
Replacing both of them in (5.40) yields Ll¼0 ¼ 0, allowing
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us to conclude that the l ¼ 0 mode makes no contribution
to the EE for any choice of gauge.

I. Analysis of the mode l = 1

For the case l ¼ 1, the tensor spherical harmonics of spin
J ¼ 0 and J ¼ 1 are well defined. However, the ones
corresponding to J ¼ 2 do not exist. Hence the Lagrangian
for the mode I now reads

LI
l¼1 ¼

r2

2
_h1m1 _h1m1 þ r2∂rh0m1 ∂rh0m1 þ 2h0m1 h0m1

þ
ffiffiffi
2

p
_h1m1 ðrh0m1 − r2∂rh0m1 Þ: ð5:44Þ

In an analogous way to the case l ≥ 2, we obtain π1m1 ¼
r2 _h1m1 þ ffiffiffi

2
p ðrh0m1 − r2∂rh0m1 Þ. Now, the Hamiltonian can

be expressed as

HI
l¼1 ¼

π1m1 π1m1
2r2

−
ffiffiffi
2

p
h0m1

�
∂rπ

1m
1 þ π1m1

r

�
: ð5:45Þ

Working with h0m1 as a Lagrange multiplier gives

HI
l¼1 ¼

π1m1 π1m1
2r2

; π1m1 ¼ r∂rπ
1m
1 : ð5:46Þ

This implies that mode I will not contribute to the EE
for l ¼ 1.
Moreover, the Lagrangian of mode II can be given, for

l ¼ 1, from (5.18) as

LII
l¼1 ¼

r2

2
ðβ2 − α2Þ _hte1 _hte1 −

ffiffiffi
2

p
r2α _h0l1 _hte1 þ r2

2
α2∂rhte1 ∂rhte1 þ

ffiffiffi
2

p
αrhte1 ∂rh0l1 þ h0l1 h

0l
1 þ

�
β2 −

αβffiffiffi
2

p
�
hte1 h

te
1

þ ð
ffiffiffi
2

p
α − 2βÞh0l1 hte1 þ 2h0r1 h

0r
1 þ 2h0r1 ½2r _h0l1 −

ffiffiffi
2

p
αr2∂r

_hte1 − ð
ffiffiffi
2

p
αþ βÞr _hte1 �

þ h001 ½−2r∂rh0l1 − 4h0l1 þ
ffiffiffi
2

p
αr2∂r∂rhte1 þ ð3

ffiffiffi
2

p
αþ 2βÞr∂rhte1 þ 4βhte1 �: ð5:47Þ

So, h001 yields the constraint

− 2r∂rh0l1 − 4h0l1 þ
ffiffiffi
2

p
αr2∂r∂rhte1

þ ð3
ffiffiffi
2

p
αþ 2βÞr∂rhte1 þ 4βhte1 ¼ 0: ð5:48Þ

In this calculation, we also propose the locality relation
(5.29). By replacing it in (5.48), we obtain that (for every
choice of gauge) it is valid that

h0l1 ¼ αffiffiffi
2

p hte1 þ rβ∂rhte1 ∀ α; β: ð5:49Þ

Finally, using (5.49) in (5.47) produces LII
l¼1 ¼ 0. Thus,

there is no contribution of mode II for l ¼ 1.

J. Analysis of the gauge fixing

We have already restricted the gauge freedom with
relation (5.33). This particular choice allows us to write
the dynamics of the two modes in the same fashion as the
one of the scalar modes. Now, we analyze if the field hμν or,
more conveniently, the resulting d.o.f. h1ml and htel can be
written in terms of gauge invariant operators inside the
sphere. For this purpose, we appeal to the expression (4.3)
of the gauge invariant curvature tensor.
Using a computer-based algebraic manipulation, we

obtain that the mode I field given by h1ml can be rewritten
in terms of the “electric-radial-electric-magnetic” contrac-
tion of the Riemann tensor as

Rlm
erem ¼ eμrνeρmσRlm

μνρσ ¼ Flmðθ;φÞ
h1ml ðt; rÞ

r2
; ð5:50Þ

where Flmðθ;φÞ is a function of the angles θ and φ for each
l and m. Specifically, for m ¼ 0 it is valid that

Fl0ðθÞ ¼
π

5
2l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ3ðlþ 1ÞΓðlÞ

p
16Γ2ðlþ 2Þ P0

l ðcos θÞ½P1
l ðcos θÞ�3

× ð4P2
l ðcos θÞ cot θ þ P3

l ðcos θÞÞ; ð5:51Þ

where Pm
l ðcos θÞ are the associated Legendre polynomials.

The important point in this expression is that the relation
between h1ml ðt; rÞ and the curvature does not involve radial
derivatives. That would make the algebra generated by this
field nonlocal with respect to one of gauge invariant
operators in the sphere.
For mode II, under the partial gauge choice (5.33), we

can further set α ¼ 0 or equivalently

γ ¼ −
βffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðl − 1Þðlþ 2Þp : ð5:52Þ

This allows us to obtain locality with respect to the
curvature tensor. With this choice (5.29) reduces to an
algebraic relation (without any derivatives) between the
fields h0ll and htel given by

h0ll ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − 1Þðlþ 2Þ

2

r
βhtel : ð5:53Þ
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From this relation, it follows that the remaining field htel
can be computed from the “electric-magnetic-electric-
magnetic” contraction of the Riemann tensor in a local
way in t, r as

Rlm
emem ¼ eμmνeρmσRlm

μνρσ ¼ Glmðθ;φÞ
hteðt; rÞ

r2
; ð5:54Þ

where Glmðθ;φÞ is another function of the angles θ, φ for
each l and m. For m ¼ 0 it reads

Gl0ðθÞ ¼
π

5
2β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 2ÞΓðlÞp

16ðlþ 1Þ2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γðlþ 3Þp ½P1

l ðcos θÞ�4

× ð4lðlþ 1ÞP0
l ðcos θÞ

þ 2ðlðlþ 1Þ þ 2ÞP1
l ðcos θÞ cot θ

þ ðlðlþ 1Þ þ 2ÞP2
l ðcos θÞÞ: ð5:55Þ

Therefore, by taking (5.33) and (5.52), the gauge fixed
field hμν inside the sphere generates the same algebra as the
gauge invariant operators. This algebra is equivalent to one
of the modes of two scalar fields except for the l ¼ 0, 1
modes which are absent for the helicity 2 theory.

K. Entanglement entropy and
logarithmic coefficient

To sum up, the EE associated with linearized gravitons in
a sphere of radius R is equivalent to the one corresponding
to two scalar fields without contributions of the l ¼ 0 and
l ¼ 1 angular momentum modes (or a Maxwell field
without the l ¼ 1 modes).
As we recall in Sec. III, the entanglement entropy

of a scalar in a sphere has a universal logarithmic term
−1=90 logðR=ϵÞ. Also, the mode l ¼ 0 of the scalar
corresponds to a massless d ¼ 2 scalar field in the r > 0
half-line with entropy given by 1=6 logðR=ϵÞ.
To obtain the universal logarithmic term for gravitons we

just need the logarithmic contribution of the l ¼ 1mode for
the scalar. This mode is a d ¼ 2 field in the half-line r > 0
with Hamiltonian

H ¼ 1

2

�
P2 þ ð∂rϕÞ2 þ

2

r2
ϕ2

�
: ð5:56Þ

This model is scale invariant. But, in contrast with the l ¼ 0

mode, it contains a potential term 2=r2ϕ2. We have to
compute the entanglement entropy in an interval r ∈ ð0; RÞ.
The ultraviolet divergent piece of the EE comes from
entanglement in high energy fluctuations around the
boundary r ¼ R. For these high energy fluctuations, the
effect of the potential can be neglected. Then, we must have
a divergent piece that is the same as for the usual scalar
field S ∼ −1=6 logðϵÞ. As the model does not contain any
dimensionful scales, by dimensional reasons, we obtain

S ¼ 1

6
log

�
R
ϵ

�
þ cons: ð5:57Þ

We have checked this numerically in the lattice to an
excellent (five digits) precision.
Hence, as for the l ¼ 0 mode, we get a 1=6 coefficient

for the logarithmic term of the l ¼ 1 modes. Consequently,
we get a logarithmic coefficient for the graviton in the
sphere given by twice the coefficient of the scalar sub-
tracting two times the l ¼ 0 mode and 2ð2lþ 1Þ ¼ 6 times
the l ¼ 1 mode, obtaining

2 ×

�
−

1

90
−
1

6
− 3 ×

1

6

�
¼ −

61

45
: ð5:58Þ

As it seems to be the rule, the value of the logarithmic
coefficient increases with spin. It is higher for the helicity 2
field than for Maxwell and scalar fields. The entropy on the
sphere then writes

S ¼ c
A
ϵ2

−
61

45
log

�
R
ϵ

�
: ð5:59Þ

VI. DISCUSSION

We have computed the EE for free gravitons in flat space
for a region between parallel planes and the sphere. For the
wall, we find a universal coefficient that coincides with one
of two scalar fields. For the sphere, the logarithmic term is
given by −61=45, which is equivalent to two scalar fields
where the l ¼ 0 and l ¼ 1modes are missing. These results
refer to clear physical quantities. First, our real-time
approach allows us to clarify that these are entropies of
gauge invariant operator algebras of the theory inside the
regions. Second, the meaning of these universal terms for
the continuum model follows from the fact that they
coincide with the ones obtained using mutual information.
We can write a regularized entropy as [31]

SϵðAÞ≡ 1

2
IϵðAþ; A−Þ: ð6:1Þ

In this formula, one computes the mutual information
between two regions Aþ and A− covering most of the
inside and outside parts of the boundary of A, respectively,
but symmetrically separated from the boundary by a
distance ϵ=2. This can be thought as a form of point
splitting the regularization of the entropy. The mutual
information for disjoint regions is completely unambiguous
in QFT and thus is SϵðAÞ. In particular, mutual information
is unaffected by details of the algebra definition such as
center terms (or edge modes). In the present case, our
results for the entropy are indeed equivalent to SϵðAÞ. This
is the case of the full scalar field EE [13] and this
identification also holds for the l ¼ 0, 1 modes. These

VALENTIN BENEDETTI and HORACIO CASINI PHYS. REV. D 101, 045004 (2020)

045004-14



later one dimensional fields have mutual information that
diverges as −1=3 logðϵÞ as the boundaries of Aþ and A−
approach each other. This holds for the free scalar and this
UV result cannot change due to the potential or the
boundary condition at the origin.3

There are other results in the literature concerning the
logarithmic coefficient due to gravitons, especially in black
hole backgrounds (see for example [11,12,33,34]; see also
[35] and references therein for gravitons in de Sitter space).
There is a general expectation that the logarithmic coef-
ficient for the sphere should be proportional to the A
anomaly4 [8,9].
The free graviton does not have a symmetric gauge

invariant stress tensor due to the Weinberg Witten theorem
[36]. Then, the definition of the A anomaly is uncertain.5

For a Maxwell field, there is a mismatch of the logarithmic
term in the entanglement entropy and the A anomaly which
is solved by coupling the theory to (heavy) charges [16]. In
the present case, a clarification of what is the right
coefficient for interacting gravity seems to be further away
since any interactions would take us away from the QFT
setting, thus rising the problems of operator algebra
localization. Eternal black holes seem to be a more natural
setup in gravity than the sphere since they are related to a
partition of the asymptotic space in two. In this same sense,
there are also indications that in full quantum gravity a
boundary separating localized d.o.f. should be an extremal
surface [1,37]. This is, of course, the case of the entangle-
ment wedge in holographic EE but not the sphere in
Minkowski space.
A natural conjecture which presents itself from our

results for the Maxwell field and the graviton is that, on
the sphere, the EE of higher helicity h > 2 fields should be
equivalent to the one of two scalar fields where the l ¼
0;…; h − 1 modes are subtracted. By the same reasons
discussed in the previous section, these modes have an EE
given by

S ¼ 1

6
log

�
R
ϵ

�
þ fðlÞ; ð6:2Þ

where fðlÞ is a function of the angular momentum. Hence,
we would have a logarithmic coefficient6

−2
�
1

90
þ 1

6

Xh−1
l¼0

ð2lþ 1Þ
�

¼ −
1þ 15h2

45
: ð6:3Þ

Another interesting problem is how to fix the gauge for
the graviton so that hμν inside a region of arbitrary shape
can be given in terms of the gauge invariant operators
localized in the same region. We hope to come back to these
problems in the future.
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APPENDIX A: PROPERTIES OF VECTOR
SPERICAL HARMONICS

In this Appendix, we list some useful properties of
vector spherical harmonics, some of them may also be
found in [13,28,29]. The vector spherical harmonics are
defined by (3.3), (3.4), (3.5). They satisfy the orthogonality
relations Z

Ȳs
lmȲ

s0�
lmdΩ ¼ δss0δll0δmm0 ; ðA1Þ

where Ȳs�
lm is the complex conjugate of Ȳs

lm, that is also
given by

Ȳs�
lm ¼ ð−1ÞmȲs

lð−mÞ: ðA2Þ

The vector spherical harmonics can be used to expand an
arbitrary three component vector V̄ as

V̄ ¼
X∞
l¼0

Xl

m¼−l

X
s¼r;e;m

Vs
lmðrÞȲs

lmðθ;φÞ ðA3Þ

where the functions Vs
lmðrÞ are fixed by the Fourier

coefficient expression

Vs
lmðrÞ ¼

Z
V̄ · Ȳs�

lmdΩ: ðA4Þ

The vector spherical harmonics possess the following
directional properties:

r̂ · Ȳr
lm ¼ Ylm; r̂ · Ȳe

lm ¼ 0; r̂ · Ȳm
lm ¼ 0 ðA5Þ

and their divergences are given by

∇ · Ȳr
lm ¼ 2

r
Ylm; ðA6Þ

3There is, however, a subleading −1=2 logðlogðR=ϵÞÞ term in
the mutual information for the l ¼ 0 mode that is not present in
the entropy (with the usual lattice regularization) [13]. This
comes from superselection sectors for the d ¼ 2 scalar [10,32].

4For black hole backgrounds another contribution is expec-
ted proportional to the c anomaly coefficient.

5We thank Sergey Solodukhin for communication regarding
anomalies for the graviton.

6After this paper appeared in the arXiv database Dowker noted
this same result would follow from thermodynamics in de Sitter
space [38]. He also obtains the result for fermion fields of
different helicity.
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∇ · Ȳe
lm ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp
r

Ylm; ðA7Þ

∇ · Ȳm
lm ¼ 0: ðA8Þ

The curls can be written as

∇ × Ȳr
lm ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp
r

Ȳm
lm; ðA9Þ

∇ × Ȳe
lm ¼ 1

r
Ȳm
lm; ðA10Þ

∇ × Ȳm
lm ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp
r

Ȳr
lm −

1

r
Ȳe
lm: ðA11Þ

Finally, the Laplancians can be computed to be

∇2Ȳr
lm ¼ −

lðlþ 1Þ þ 2

r2
Ȳr
lm þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp
r2

Ȳe
lm; ðA12Þ

∇2Ȳe
lm ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp
r2

Ȳr
lm −

lðlþ 1Þ
r2

Ȳe
lm; ðA13Þ

∇2Ȳm
lm ¼ −

lðlþ 1Þ
r2

Ȳm
lm: ðA14Þ

APPENDIX B: PROPERTIES OF TENSOR
SPHERICAL HARMONICS

In this Appendix, we list some properties of tensor
spherical harmonics, some of them may also be found in
[28,29]. They are given by Eqs. (5.2) or alternatively by the
expressions (5.4). Their most useful characteristic is that
they can be used as a basis for the space of symmetric
tensors fields at a fixed radius. The tensor spherical
harmonics satisfy the orthogonality relationZ

TrðTJS
lmT

�J0S00
l0m0 ÞdΩ ¼ δJJ0δss0δll0δmm0 ; ðB1Þ

where T�JS
lm is the complex conjugate of TJS

lm given by

T�JS
lm ¼ ð−1ÞmTJS

l−m: ðB2Þ
The traces of the tensor spherical harmonics are

TrðT0l
lmÞ ¼ Ylm; TrðT0t

lmÞ ¼
ffiffiffi
2

p
Ylm;

TrðTJs
lmÞ ¼ 0; Js ¼ 1e; 1m; 2e; 2m: ðB3Þ

They further satisfy

r̂ · T0l
lm ¼ Ȳr

lm; r̂ · T1e
lm ¼ 1ffiffiffi

2
p Ȳe

lm; r̂ · T2e
lm ¼ 0;

r̂ · T0t
lm ¼ 0; r̂ · T1m

lm ¼ 1ffiffiffi
2

p Ȳm
lm; r̂ · T2m

lm ¼ 0: ðB4Þ

The divergences of tensor spherical harmonics can be
written as

∇ · T0l
lm ¼ 2

r
Ȳr
lm; ðB5Þ

∇ · T0t
lm ¼ −

ffiffiffi
2

p

r
Ȳr
lm þ 1

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

2

r
Ȳe
lm; ðB6Þ

∇ · T1e
lm ¼ −

1

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

2

r
Ȳr
lm þ 1

r
3ffiffiffi
2

p Ȳe
lm; ðB7Þ

∇ · T1m
lm ¼ 1

r
3ffiffiffi
2

p Ȳm
lm; ðB8Þ

∇ · T2e
lm ¼ −

1

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − 1Þðlþ 2Þ

2

r
Ȳe
lm; ðB9Þ

∇ · T2m
lm ¼ −

1

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − 1Þðlþ 2Þ

2

r
Ȳm
lm; ðB10Þ

and the Laplacians are the following:

∇2T0l
lm ¼ −

lðlþ 1Þ þ 4

r2
T0l
lm þ 2

ffiffiffi
2

p

r2
T0t
lm

þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lðlþ 1Þp
r2

T1e
lm; ðB11Þ

∇2T0t
lm ¼ 2

ffiffiffi
2

p

r2
T0l
lm −

lðlþ 1Þ þ 2

r2
T0t
lm −

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp
r2

T1e
lm;

ðB12Þ

∇2T1e
lm ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lðlþ 1Þp
r2

T0l
lm −

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp
r2

T0t
lm

−
lðlþ 1Þ þ 4

r2
T1e
lm þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðl − 1Þðlþ 2Þp
r2

T2e
lm;

ðB13Þ

∇2T1m
lm ¼ −

lðlþ 1Þ þ 4

r2
T1m
lm þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðl − 1Þðlþ 2Þp
r2

T2m
lm ;

ðB14Þ

∇2T2e
lm ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðl − 1Þðlþ 2Þp
r2

T1e
lm −

ðl − 1Þðlþ 2Þ
r2

T2e
lm;

ðB15Þ

∇2T2m
lm ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðl − 1Þðlþ 2Þp
r2

T1m
lm −

ðl − 1Þðlþ 2Þ
r2

T2m
lm :

ðB16Þ
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