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Entanglement entropy of linearized gravitons in a sphere
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We compute the entanglement entropy of a massless spin 2 field in a sphere in flat Minkowski space. We
describe the theory with a linearized metric perturbation field /,,, and decompose the field into independent
modes using tensor spherical harmonics. We fix the gauge such that (a) the two dynamical modes for each
angular momentum decouple and have the dynamics of scalar spherical modes, and (b) the gauge-fixed
field degrees of freedom inside the sphere represent gauge invariant operators of the theory localized in the
same region. In this way the entanglement entropy turns out to be equivalent to the one of a pair of free
massless scalars where the contributions of the / = 0 and / = 1 modes have been subtracted. The result for
the coefficient of the universal logarithmic term is —61/45 and coincides with that computed using a

regularization based on the mutual information.
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I. INTRODUCTION

The entanglement entropy (EE) of vacuum fluctuations
across a boundary in space has shown to be an interesting
theoretical quantity in quantum field theory (QFT). The
study of EE was originally motivated by the quest to
understand black hole entropy and entropy in gravity, but it
turned out to have a more clear and natural formulation in
QFT. Entropy in quantum mechanics is by definition a
quantity associated with a state in an algebra of operators,
and ordinary QFT naturally comes with a built-in corre-
spondence of algebras with regions of the space.

The situation in gravity is less clear precisely because it
is not completely understood how “regions” in quantum
gravity might be defined in terms of the operator content of
the theory (see for example [1,2]). Holographic theories
give a simple, but perhaps only partial, answer, to this
question. By restricting the region to a boundary region, the
associated algebra is given by one of the dual QFTs in the
boundary. Holographic EE [3,4] has shown there is a
correspondence, at least at the semiclassical level, of this
QFT entropy to an entropy in a gravity theory in the so-
called entanglement wedge [5-7].

As a first step in trying to understand the contributions of
gravitons to the entropy, in this paper, we compute the EE
of free gravitons in flat space. We treat the theory as a
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quantum field theory of helicity 2 particles. In this sense,
the problem is conceptually simpler because we do not
have to deal with the localization issues of a full quantum
gravity theory. Indeed, one of the motivations of this paper
is to show there are no conceptual problems for these
helicity 2 free fields per se as QFT.

In the study of EE, it is important to establish a
correspondence of the different terms on the entropy with
known physical quantities in the model. One such signature
that allows us to distinguish models from their EE is given
by the coefficient of the logarithmic term. For the gravitons,
we treat the case of a sphere, computing the universal
logarithmic term. For a general CFT, the logarithmic term is
proportional to the A-anomaly [8,9]. This is the quantity
decreasing along the renormalization group in dimension
d = 4. For the graviton, the usual definition of the A-
anomaly is not valid since there is no stress tensor.
However, we show the logarithmic term in the entropy
is perfectly well defined, and compute its universal coef-
ficient. We expect this type of contribution to be part of the
full graviton entropy in the semiclassical limit.

As in the case of the Maxwell field, it is important in
computing the EE to understand correctly what is the entropy
one is computing, that is, what is the algebra and the state, as
well as the meaning of the result in terms of the continuum
theory. A natural way to do this is by interpreting the
universal coefficients in terms of mutual information. This
is transparent in the real-time formulation that we use in this
paper where we have the quantum degrees of freedom (d.o.f.)
always in sight. Computations using the replica trick may
actually hide the nature of the entropy one is computing in the
precise definition of the replica partition functions [10].

In this sense, there are in the literature several calculations
of logarithmic corrections to the black hole entropy formula
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due to the EE of quantum fields in the semiclassical back-
ground, including gravitons (for a review see [11,12]). The
graviton contribution may be of relevance to distinguish the
gravity theory [12]. Nevertheless, logarithmic terms are subtle
too. An example of the problems involved is in the case of a
Maxwell field. The logarithmic term for a free Maxwell field
does not coincide with the expected trace anomaly [13-15].
However, the presence of electric or magnetic charges can
change this result, no matter the mass of the charged particles
[10,16]. This issue has been also discussed in the literature
using the effective constructions of edge modes or extended
Hilbert space (see for example [17,18]).

To compute the entanglement entropy, we should con-
sider the vacuum state in the algebra of gauge invariant
operators. This later is generated by the curvature tensor
which is gauge invariant at the linearized level. The vacuum
is a Gaussian state in this algebra and we could apply EE
formulas for Gaussian states in terms of the correlation
functions and commutators of the Gaussian variables.
However, due to the algebraic complexity of dealing with
the four index curvature tensor and its commutators, we will
follow a different route that is physically equivalent and
will allow us to simplify the computations considerably. We
will use the metric perturbation tensor £, as a generator of
the algebra. This is not a physical variable and we need to fix
the gauge. This is done by taking into account the spherical
symmetry of the problem by choosing a gauge that allows us
to decouple the two radial modes for each angular momen-
tum. However, as explained in [19], while fixing the gauge
converts a gauge field into a physical variable, the locali-
zation properties of these variables are very much gauge
dependent. Hence we need to fix the gauge such that the
gauge fixed h,, can be recovered from the curvature inside
the region of interest for computing the EE. Otherwise,
selecting the field and momentum variables in a region may
compute the EE of an algebra unrelated to geometry.

Since this gauge fixing procedure adapted to the region of
interest has not been explicitly carried out in the literature
before, we find it instructive to see how this works in the
simpler case of a Maxwell field first. We will treat the case of
a Maxwell field between parallel planes in the next section
and in a sphere in Sec. III. The results agree with [13] where
the algebra was defined directly in terms of the electric and
magnetic fields instead of the gauge fixed vector potential
A,. In Sec. IV we describe the theory of the linearized
graviton and compute the EE between parallel planes. The
case of a sphere is treated in Sec. V where we compute the
logarithmic coefficient. We end with a discussion in Sec. VI,
where we briefly compare with other results in the literature.

II. ENTANGLEMENT ENTROPY OF A MAXWELL
FIELD BETWEEN PARALLEL PLANES

Before studying the problem of linearized gravitons, we
consider the simpler case of a free Maxwell field. In (3 + 1)
dimensions, the corresponding Lagrangian reads

1
L=- / dBxF,, F*

— %/ d3x[(2(3c') + VAO()'{))2 _ (V % A’(}))z] (2'1)

In this section, we aim to obtain the EE associated with
the region V between two parallel planes separated by
a distance L (Fig. 1). In a Cartesian coordinate system

¥=(x',x?,x%), the region V is given by V=

{x=(x",x*,x%),0 < x' < L}. For this purpose, it is
particularly useful to write the field A, on a plane wave
basis using the Fourier sum over the directions parallel to
the plates. Assuming that the directions x*> and x3 are
compactified to large sizes R, and R; with periodic

boundary conditions, we can obtain

A, (x X X% ) = ZNeiE"?AM(xO,xl,k), (2.2)
k

where it is valid that A (x, x', k) = A,(x°, x', —k) and N
takes the value [\/27R,R3]~". Moreover, the vector k can be
expressed for n>, n® =0,+1,£2, ..., £00 as

> 2an® 2zn?

k= (02 22 (2.3)
R, " R

The problem then decomposes into independent (1 + 1)-

dimensional fields, labeled by 1? in the directions x°, and
x'. To study a fixed mode, we can use a coordinate system

adapted to k, where 32 =k and % = &' x k. In these

L

1
X X

FIG. 1. Two parallel planes with a separation of distance L in
the x! direction.
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coordinates, the expressions that govern each mode take the
form

Ne*2A, (xq, 1. k). (2.4)

The gauge freedom of the Maxwell field is given by
A’y = A, +0,x. So, we also decompose y in the plane

wave basis. The mode corresponding to k reads

x(x0, %1, %2, x3) = Ne®2y(xo, x;, k). (2.5)

Then, a gauge transformation of a fixed mode yields

A (X0, %1, X2, X3) = Ne™2[(Ag(xo, x1, k) + i (0, x1, k) %o
+ (A4 (x0, x1, k) + Oy (x0. X1, k) %)
+ (Aa(xo, X1, k) + iky (xo, x1. k)52
+ As(xg, X1, k)%3). (2.6)

Now, it is clear that we can fix y in such a way that the
field components parallel to each k vanish. Using this
choice of gauge, we can express A, as a local function of
the tensor F w in the coordinates x°, and x!

F,, = 0,A,—0,A, = ikA,. (2.7)
This allows us to identify the algebra of gauge invariant
operators F,, in between the parallel planes with the one of
the quantized gauge fixed operators A,,.

We aim to compute the Hamiltonian. To proceed, we
must rewrite the Lagrangian (2.1) by using the expansion

(2.4) under the proposed gauge condition. By doing so, we
obtain for each mode the Lagrangian

Ek = 1/2[14'[141 +A;A3 - szIAl - sz;A:; - 81A§81A3
—KPA[Ag — 0,A[0,A) — AJ01A| — D1ATA).  (2.8)

The canonical momenta of the fields AI,A‘I",A3,A§ are
given by

Al 9,4 Al
mza—ékz—l M, ﬂaza—él{:iv (29)
0A, 2 2 0A; 2

oLy Ay DA oL, A
+ k 1 1410 i k 3
=k 0 . om=—s== (210
T oAl 2 2 AL 2 2.10)

The Hamiltonian of the mode is then given by the Legendre
transform

Hk = ﬂlAl —|— ﬂTAT + 7[3A3 + ﬂ;A; - Ek
k2 2
—ATAl +E

= 271'7;711 + 271;713 + 5

. 1
AlAs + E81A§81A3
k2
_AZ)AO + Ag@lﬂ + A0817z’1

2

(2.11)

with the corresponding equal time commutation relations

(A} (x0, x1, k), 7y (x0, X1, k)] = i6(x; = x'y),

[A3(x0, X1, k), 3(x0, X'y, k)] = i6(x) — x'y). (2.12)
It is clear from (2.11) that the field A, does not possess its
own dynamic and thus it can be treated as a Lagrange
multiplier. Differentiating, in order to obtain its equations
of motion, we obtain the constraints

k.

; K
8177.'1 = —EAO, 817[1— = —EAO (213)
Replacement of (2.13) in (2.11) gives
N i K . K.
Hk = 271'{71'1 + 271';77,'3 + ?AJAI + ?A%A_g-f—
1 2
+§8,A§81A3 J?a,nlalﬂ}. (2.14)
Making the identifications
2 k|A
w2 g A )
k] V2
¢ _A Py=1V2zx (2.16)
3 \/Ev 3 3, .

where ¢, P; and ¢, P; are pairs of canonically conjugate
variables, the Hamiltonian reads

Hy = PIP1 + P§P3 + a1(15151(151 + 81¢§81¢3

+ iy + Kb (2.17)
This is exactly the Hamiltonian of the modes associated
with two independent scalar fields that have been dimen-
sionally reduced (see for example [13]). As a result, the
algebra of gauge invariant operators of the gauge field
inside the parallel planes is identical to the one corre-
sponding to two massless scalar fields inside the same
region. The same argument is valid for vacuum expect-
ation values.

To sum up, we conclude that the EE of the Maxwell field
associated with a region V enclosed by two parallel planes
is equivalent to one of two independent scalar fields. In this
way, we recover the known result obtained in [13] by
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working with the gauge invariant electric and magnetic
fields directly. The entropy turns out to be [20]

A A

S=c5=2%k 5. (2.18)

where A = R,R; is the area of the planes, € is a short
distance cutoff, ¢ is a nonuniversal constant, and k; is the
universal coefficient corresponding to a scalar in this same
geometry. The later can be computed with high precision
from the knowledge of the one dimensional scalar entropy
function [21]. This calculation gives the result

kg = 0.0055351599.... (2.19)
As we will now see, this exact identification of entropies

between scalars and gauge fields does not hold for other
regions.

III. ENTANGLEMENT ENTROPY FOR A
MAXWELL FIELD IN THE SPHERE

We consider now the problem of a Maxwell field on a
sphere, which also can be easily dimensionally reduced.
Due to the spherical symmetry presented in this case, we
expand the field in question using scalar spherical har-
monics for the Ay component and vector spherical har-

monics for A = (A}, A,, Az). That is

Ag=> A0 (t.71)Y},(0.¢), 1=0.1,....00, —=I<m<l,
Im

(3.1)
A=Y A, (L0}, (0.4). 1=0.1.....c0, —[<m<lL,
slm
s=r,e,m, (3.2)
where Y3 are the vector spherical harmonics defined by
V,0.0) =Y, (0.0)7, 120, —I<m<Il  (33)
S VY, (0,
Y7m(8’ (ﬂ) = ’"lm—(§”)’ [ > 07 -1 <mZ< l, (34)
VIL+1)
S Fx VY, (0,
Y} (6.9) =m, 1>0, -I<m<l. (3.5)

I(1+1)

Considering the gauge transformations, it is useful to
expand the function y using scalar spherical harmonics as

X = Dlm(t’ r)Yln1(9’¢)' (36)
Im

This gives the transformation law

e = Xim\ 5 3,
A’:Z<Afm+ammmm+( on )Y?ﬁ%%

Im r

(3.7)

We see that it is possible to fix y;,, completely in such a
way that the “electric” coefficient A}, is identically zero for
each angular momentum. This particular choice of gauge is
convenient because of other reasons too. For each mode, it
allows us to write

Fo, = (€"0,)A, + (0,€")A, (3.8)

where ¢# is the unit vector in the direction of ¥, , and #9,
is the derivative in such direction. The expression (3.8)
shows that, in this gauge, we can recover A, on the sphere
by the knowledge of the components F,, of the gauge
invariant field tensor on the same region. The relation
between the gauge fixed A, and F,, is nonlocal in the
angular directions. However, it allows the mapping of the
variables A, at fixed r to physical variables with the same
radius. This is because the derivatives involved in (3.8) are
tangential to the surface of the sphere. This is a particular
case of the general situation studied in [19] where it was
shown that a gauge fixing that respects the localization of
d.o.f. in a region can be chosen in such a way that A,
vanishes on the boundary of the region in a direction
parallel to the boundary itself. In the present example, this
direction is the one of the electric vector harmonics.

From this point, we proceed in the same way as in the
case of parallel planes. In particular, a useful writing of the
Lagrangian can be obtained by means of replacing (3.1)
and (3.2) in (2.1). Then, by taking into consideration the
orthonormality property of vector spherical harmonics,
we get

(3.9)

L= Z/oo drﬁlm.
im 70

The Lagrangian £;,, for [ > 1 follows from direct compu-
tation using the properties of vector harmonics listed in
Appendix A,

Elm = 1/2[r2A;,mA{,—n1 + rZA’lilmA;r.l—m -

11+ 1A, Af_,
— (1 + 1A A

Im
rAT, — AT, 4 10, AT 12
+r?0,A7,0,A0_, + 1(1+1)A), A)_
- rzAg{ma,A,i_m - rzAg_ma,Alr,m + 2rA?,nAf__m
+2rAY_, AL (3.10)

The Lagrangian density is independent of m. So, to
simplify the notation in the following calculation we
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eliminate the index for m in the variables and consider the
real m = 0 mode only. However, we should keep in mind
that we will have (2 + 1) identical contributions to the EE
for each angular momentum. The canonical conjugate
momenta are defined by

oL,
DAT

i _

P2(Af40,A%), rr=——L=p2A"  (3.11
(A] 1) "= par I (3.11)

r__
T, =

which can be substituted in the Legendre transform

H; = ﬂerlr + ﬂ';”A'ln - L, (3.12)
in order to obtain the Hamiltonian
oy altall
Hy=" 3+ 5+ I+ DAJAT + (I + 1)Ap Ay
(l1+1
g+ o2 -moa) =" gy

The modes with different angular momentum are indepen-
dent of each other and their operators commute. For a fixed
[, the nontrivial canonical commutation relations are given
by the following expression:
[A](t,r),z)(t,r)])=[A](t,r),z) (t.7)]|=i8(r—r). (3.14)

Again, A? is a Lagrange multiplier, allowing the deri-
vation of the constraint

8,7 = I(1+ 1)AY, (3.15)

which can be replaced in (3.13) yielding

1 |ajx}
HZ__|:I 1

0,770,7
: adl rﬂl+l(l+1)A,’A,’}

r? I(I1+1)

M .1
1 |:7T, b

3 + 2(A" + r0,AM? + 1(1 + 1)A;"A;"] .

72

(3.16)

Lastly, the field and momentum variables can be rewrit-
ten as

.
i

r—— T o p =i+ DA, (317

¢ T 1 ( )A] (3.17)

m—ra;,  pr="L (3.18)
r

and by applying (3.17) and (3.18) in (3.16) we reduce the
Hamiltonian to the one of two identical radial modes
given by

I(14+1)
’,,2

1
Hy== {P{P,’ +0,¢70,.¢7 +

: wﬂ

1(1+1)
2

r

1
w5 |rrrrsomron + il gray | o)

with the standard commutation relations

[#7(2,r), P (2, 7)] = (@' (2, r), P'(2, 7')]

= i5(r— 7). (3.20)

Each of these two identical modes has the same
Hamiltonian as the one that results from the spherical
reduction of a free massless scalar field [13,22].

Equation (3.10) does not apply to the zero angular
momentum mode. This is simply because the electric
(3.4) and magnetic (3.5) spherical harmonics do not exist
for [ = 0. For [ = 0 we get the simpler expression

Il
_ "%
2r?

Ho

+ AJO,x,, (3.21)

where by replacing the constraint 0,7]_, = 0, obtained
from the equations of motion of AJ, we get

-
_ 77y

= 22
HO 2}’2 (3 )

This means that the zero angular momentum mode does not
have dynamics and thus generates no contributions to the
entropy.

Therefore, the EE of the Maxwell field on the sphere is
equivalent to the one of two scalar fields where the [ = 0
mode has been subtracted. This result coincides with the
one given in [13]. The entanglement entropy of a scalar in a
sphere has a universal logarithmic term —1/901og(R/¢)
[8,9,14,23,24]. The mode [ = 0 for the scalar [see the
Hamiltonian (3.19) for [ = 0] corresponds to a massless
d = 2 field in the r > 0 half-line with Dirichlet boundary
condition at the origin, and its universal logarithmic
entropy is 1/6log(R/e) [13,25]. The entropy of the
Maxwell field in the sphere is then given by [13,14]

A 16 R
S=c———_log|—|.
EEIVT 0g<€)

where the coefficient of the logarithmic term follows from
16/45=2x1/90+2 x 1/6.

Again, we recover this result by working with the gauge
variant field A, instead of using directly the electric and
magnetic gauge invariant fields as in [13]. It is important to
remark that another gauge choice that does not respect the

(3.23)
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locality on the sphere would have given a completely
different and incorrect result for the sphere EE.

IV.ENTANGLEMENT ENTROPY OF LINEARIZED
GRAVITONS BETWEEN PARALLEL PLANES

The free theory of a massless helicity 2 particle can be
described by a field 4,,. This field can be thought of as
describing metric perturbations g,, =n,, +h,, with respect
to the Minkowski metric 7,,. The field h,, obeys the
linearized Einstein equations and the Lagrangian that gives
these equations in absence of sources reads [26]

1
£ = =0, O, + 5y 0, + 9,10, he,

1
=5 0l O I, (4.1)

The theory has a gauge invariance given by the trans-
formation law
hy, = hyy + 0,8, + 0,6, (4.2)
for an arbitrary vector field &£,. This corresponds to the
diffeomorphism invariance of the Einstein theory of gravity
at the linearized level.
The curvature is not gauge invariant in the nonlinear

gravity theory. However, a gauge invariant operator corre-
sponds to the linearized curvature tensor [27]

1
Ryps = 2 [0,0,h,,—0,0,h,,+0,09h,,—0,0,h,,]. (4.3)

It is a simple exercise to show that it is indeed invariant
under the transformations (4.2).1 Therefore, in contrast to
what is expected in full quantum gravity, the theory of a
helicity 2 field in Minkowski space contains gauge invari-
ant local operators. In consequence, the EE is well defined,
except for the usual issues about divergent terms. As a first
exercise, let us study the case of a region bounded by two
parallel planes.

A. Plane wave decomposition and gauge fixing

For the wall between parallel planes, we resort to a plane
wave decomposition of the fields analogous to (2.4). We
write the field of a mode with k = kX, as

Py (X0, X1, X2, x3) = Ne™2hy, (xg, x1, k). (4.4)

The arbitrary gauge function £ can also be decomposed in
modes. The mode associated with a vector k reads
&, (x0. X1, X2, x3) = Ne™2 &, (x, x1, k). (4.5)

Therefore, it can be easily observed that linearized diffeo-
morphisms give the following transformation law:

hoo + 2£, ho +& + 018 ho+& +iké  ho + &
i, = h01+§1+81§o hyy +20,&, hiy + 0,18 +iké,  hys + 018 (4.6)
hoy + & + ikEy  hip + 016 + ikéy hayy + 2iké, has + k&
hos + & hyiz + 0183 has + k& hs;

Now, it is clear that the components Ay, b, b5, b5, h,,
Iy, and h%, can be fixed to zero if we use up all the
available gauge freedom. All the components of h;/w that
have nonzero contractions in the direction of k are set to
zero. For each mode, this allows us to write the R,,,
component of the Riemann tensor as

2R2;421/ = hu21;42 +h2;4 2v _hvu 922 _h225;w = _hpy 22 = kzhuu'
(4.7)

"This corresponds to the fact that the curvature transforms
linearly under changes of coordinates and it is already of linear
order in h,,. Then further factors of the infinitesimal coordinate
transformation must be second order.

[
That is, under this particular choice of gauge, it is
possible to write the field 4,, in terms of the Riemann
tensor in a local way in the x, and x; coordinates. This
means that the algebra of the gauge fixed d.o.f. of &, is the
same as the algebra of the curvature tensor in between the
planes.

B. Lagrangian for each momentum

The Lagrangian decomposes into independent modes
for the different plane waves. For this purpose, we use
the expansion (4.4) and the gauge condition presented
in the previous section. The Lagrangian density for the
(1 +1) dimensional theory of each mode k can be
expressed as
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o 1. ..
Lk:h13h}3—E(h”h;+h33h11)—k2h13h1;

k2 k2
+3(h11h33T+h33h11T)—ihoo(hnT‘FhBT)

k2 . .
—E(hn +h33)h$0 —h0151h;3 —81h33h(I)1 +h0331h{3
+ 013y + K2 hoshdy + Khoyhdy + 01 ho30, hiy

1 1
—551h3331hg)0—Ealhooalh;z' (4.8)

This Lagrangian contains two sets of independent fields.
Then, the problem can be split into two modes that will be
treated separately. The first one contains the field 4,3 and
the Lagrange multiplier A

Ly = hyshiy = Rhyzhis" = 8y hoshly — 30 his

+ Khoshiy 4 01 ho30y his, (4.9)

and the second one contains the fields /;; and /35 and the
multipliers hy; and Ay

1 . . .. k2
Ly = ) (hnh; + h33h:1) =+ 5 (hyyhss™ + hashyy™)
. . + k2 N .
+ 01ho hsy + h3301hy, — Ehoo(hu‘ + hy3')
K ST ;
—E(hu + hs3)hoy + k2 hohg, —531h3381h00
1 .
- 5811100(3'1};;3. (4.10)
Therefore, the total Lagrangian is given by sum over modes

L_Zk:[) dx1(£1+£11).

(4.11)

C. Hamiltonian of the mode I

The momenta 73, ﬂ% corresponding to the Lagrangian
(4.9) are

L _ i+ 1
T3 = —— = hyy; — 01 hy;,
13 Dhs 13 1103
oL .
+ 1
3 = —— = hyj3 — 01 hg;, 4.12
13 (')hh 13 11103 ( )
and the corresponding Hamiltonian is
H[ = 7[13}'113 +ﬂ'T hT - L
3 13713 1
= mp3mly + Khyshys" = hoy0y 73 — higOy
— Khosh,. (4.13)

A constraint equation can be derived by computing the
equation of motion of /s

8175{3 T 0173
h03 - k2 N h03 — k2 N (414)
which can be replaced in (4.13) to obtain
. . OO
H; = mamys + Khish' + IR (4.15)

k2

In order to rewrite the Hamiltonian (4.15) as the one

associated with a complex scalar (for each pair k, —k), it is
convenient to define

b= =k @16)
i
BT Pk @)
In this way, (4.15) gets rewritten as
H; = PPl + K¢y + 01010,]. (4.18)

Moreover, by canonical quantization of the field 4,3 in
(4.13), it is clear that the replacements (4.16) and (4.17)
give P and ¢, as canonically conjugate variables.

D. Hamiltonian of the mode II

Analyzing the dynamics of the fields Aq, and hgo in the
Lagrangian (4.11), it is evident that both play the role
of Lagrange multipliers. These allow us to derive the
constraints

0101hyz = K (hyy + hs3),

0101hly = K (hyyt + has?). (4.19)

If we replace (4.19) in (4.11) it is possible to eliminate the
field A, from the Lagrangian, obtaining

Oy h30, s

k2
- 81h3381h331- - h()lalil; - 8112133}181
+ K2hg b,

Ly = h33h§3 — k?hyzhsy" +

(4.20)

The substitution produced a higher derivative term
k=20, h3301h3;'. However, this problem disappears when
we use the constraint equation related to the Lagrange
multipliers A, and hgl. Indeed, we obtain

he— 01 hss 81%3
01 — k2 ’ .

hg] = k2

(4.21)
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By replacing (4.21) in (4.20) the Lagrangian gets reduced to

Ly = hashiy = Rhyshy’ = 01h330ihs. (4.22)
Then, the canonical momenta associated to the complex

field variables K35 and hsy;" are

a 0Ly

N33 = =+ — h;3, 71'33 8hT il';3, (423)
33

and the corresponding Hamiltonian gets the same form as
(4.18),

Hy = P11P;1 + K2pudu’ + 31451131(15;1’ (4.24)

where we have introduced the trivial notation change

b1 = hss, Py =3, (4-25)

45;1 = hy3, P;I = ”§3- (4.26)

These variables also obey canonical commutation relations.

E. Entanglement Entropy

The Hamiltonians for the two modes (4.18) and (4.24)
are equivalent to the ones of a dimensionally reduced scalar
field. We are allowed to conclude that the EE of linearized
gravitons for the region enclosed between two parallel
planes is equivalent to the one of two scalar fields or one
Maxwell field. The universal coefficients will be the same
in the three cases. We get again

(4.27)

with k, given by (2.19) and [20].

V. ENTANGLEMENT ENTROPY OF
LINEARIZED GRAVITONS IN A SPHERE

In this section, we treat the case of gravitons inside a
sphere. We first introduce the tensor spherical harmonics
that we use to decompose £, in spherical coordinates. We
also decompose the gauge transformations and choose a
generic gauge adapted to the spherical symmetry that
depends on three arbitrary constants. Then, we expand
the Lagrangian in terms of the gauge fixed field to get two
independent radial modes for each angular momentum. The
gauge choice is further refined to allow the simplification of
the mode Hamiltonians. In this context, we ensure the
locality in the radial direction in the relation between the
gauge fixed field and the curvature tensor. We get a system
of modes that are equivalent to the scalar spherical modes

except that the / =0, 1 modes are absent. Finally, we
compute the entanglement entropy.

A. Tensor spherical harmonics

The tensor spherical harmonics are a further generali-
zation of the concept of scalar and vector spherical
harmonics. They can be used as a basis for the space of
symmetric tensors (of dimension six). An arbitrary sym-
metric tensor field X can be expanded in polar coordinates
as follows:

X= X{s(T{0.¢). 1=0.1.....c0,
Jslm
m=0,£1,....,+l, Js=0.10t1e,1m,2e,2m, (5.1)

where the tensor spherical harmonics 77°
for example [28,29])

7 are given by (see

1
m nm» m \/z m:»
le _ -, VY S
Im l(l~|—1)r[r® Zm] s
Im _

I = S
Tlm - l<l+1){r®VXVYlm] ’

e (l 2) 2 T
TH =\ 2 Yl
Tom — 2((§+§))‘[rV(rXVY ST (5.2)

The spherical harmonics of spin J =0 are defined for
[ > 0, the ones related to spin J = 1 for [ > 1, and the in the
case of spin J = 2 for / > 2. In the notation of Eq. (5.2), the
symbol 6 means the identity tensor &;;. Additionally,
the superscript S means taking the symmetric part, and
TT the traceless part transverse to 7. For an arbitrary tensor
X;; this later is given by the following expression:

XTI = (6 = 1i74)(6;
(5.3)
It will be useful to have a relation between tensor and

vector spherical harmonics. This relation can be expressed
as

045004-8



ENTANGLEMENT ENTROPY OF LINEARIZED GRAVITONS IN A ...

PHYS. REV. D 101, 045004 (2020)

1
TOl [r®ylm] ’ T?rtn:—

/2
Tie=V2[r@Ys, 5, Tin=V2[F®¥; ]S,

(6Y 1= ®Y],).

2 1 I(1+1)
TZe er Tle TOt
Im ™ (l _ 1) (l +2) {[r lm] \/z Im + 2 lm}’

m __ 2 yvm 1 1m
T = m{[rvylm]s—’_ﬁTlm }

Further properties of the tensor spherical harmonics are
listed in Appendix B.

(5.4)

B. Decomposition of the spin 2 field
in spherical harmonics

To make the process of computing the EE easier, it will
be useful to decompose the field 4, and the gauge arbitrary
function &, on a basis adapted to spherical symmetry. For
this purpose, we introduce the notation

h’ll h12 h13 hOl
hT = h’21 h22 h23 ’ hV = h02 ) hS - h’OO?
_h31 h32 h33 h03
[ &)
Ev=1& ., &s = &o. (5-5)
| &3
i = 308+ 20,8575 + (1 + 224,
Im

2000+ 1 2
n (h}; VAR oy g £€7m) Tie 4
r r
2(0-1)(1+2
( r)( + ) lm> T2e (hlZ’ZI +

+ <h%,f, +

This particular case differs from the ones studied earlier
because there are many possible reasonable choices of
gauge fixing for the spherical waves. Not all of them will
allow us to calculate the EE that corresponds to the
spherical boundary or allow us to decouple the two
dynamical modes for each /m. More specifically, the
following can be seen:
(1) Fixing ¢, allows us to cancel the components that are
parallel to 79 or T} or to a linear combination
of them.

See [28,30] for a different but somewhat analogous treatment
of gravitons in spherical coordinates.

Firstly, we will expand % in tensor spherical harmonics
and &y in vector spherical harmonics. Then, we will study
the remaining gauge freedom by using vector spherical
harmonics for Ay and scalar spherical harmonics for &g
and h 5.2

C. Gauge fixing for spacelike components

As we just mentioned, 47 and &, will be expanded using
tensor and vector spherical harmonics respectively. We get
the following expressions:

hT—Zh (t,r)T75 (0, ), fV:Z§?m(t,r)Y7m(9,(p)_

Jslm slm

(5.6)

On the other hand, the gauge freedom of linear gravity can
be expressed in this notation as

Wy = hy + Véy + [VE]T = hy 4+ 2[VE]S. (5.7)
The combination of (5.6) and (5.7) gives
p=D T +2) 6, VY, + 15, ®0,6,/%. (5.8)
Jslm slm
By computing & VY5 +7Y5 ®0,& 7 using the

properties of vector and tensor sphencal harmonics
(Appendixes A and B), for s = r, e, m separately, and
then adding up these contributions we get

2
(h};;’ Vg - L )T},:;’

2(0-1)(1+2

(5.9)

(2) Fixing &, allows us to cancel the components that are
parallel to 7% or T7¢ or to a linear combination
of them.

(3) Fixing &,, allows us to cancel the components that
are parallel to T3

For now, we will use the freedom related to &,, to cancel

the “electric-magnetic” components, meaning that we take
h;,z,;" = 0 for all / and m. Understanding the gauge fixing of
£, and £, that is the correct one for our purposes is not
simple at this stage. Because of that, we choose to set to
zero just some arbitrary linear combination of Tlm, T},fl,
and T%;jl to be further determined in what follows. There is
only one resulting d.o.f. that we call A} that is associated
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with a linear combination of these tensors with some
undetermined coefficients. More formally, we fix the gauge
such that

te aTOt +ﬂT —|—}’T )+hlanlm

Im Im>

be = YT+

(5.10)
where a, f# and y are constants.

D. Gauge fixing for the timelike components

In order to fix the remaining gauge freedom, we will
write the vector /1y, and the scalar &g as

hy =Y W (£.7)75,,(0.9),

slm

Es =Y &,(1,1)Y1(0.9).
Im

For each component of iy, we have I ; = hy; + 0, + 0;&
or more conveniently %'y = hy + &, + V& By replacing

with (5.11) we get
. 0
(h?rfz 4 éfm Im) Ye

(5.12)

Wy=> (W +E,+0,8,)7r,

Im
+ (W + &R Y.

Thus, in analogy with the case of the Maxwell field, we can
fix &, in such way that 1'% V¢ js zero for each Im, obtaining
the expansion

hy =) WY, + W

Im

(5.13)

E. Lagrangian for each angular momentum

The starting point is the Lagrangian (4.1). Using the
decomposition of the field &, given in (5.5) in terms of

(5.11) spatial and temporal components we obtain
|
1 . . . . 1
L= ) (hr -~ hy = Tr(hy)Tr(hr)) + ) (V2hy -+~ hy + VTr(hy) - VTr(hr))
+ (V- hr) - (V- hy) = VTr(hr)] + Vhs[(V - hy) = VTr(hr)]
—2hy - [(V - hy) = VTr(hy)] = (V- hy) - (V- hy) = V2hy - hy. (5.14)

In this matricial notation a single dot means the contrac-
tion of a one index for each tensor and two dots the
contraction of the two sets of indices of the two symmetric
tensors involved in the product. The full Lagrangian is

given by
3 oo
—/ d35c£—/ drrz(/dQ£>. (5.15)
R 0

Replacing the expressions (5.10) and (5.13) in (5.15)
while considering the properties of spherical harmonics
(Appendixes A and B), it turns out that we can rewrite
the Lagrangian as a sum of independent modes for each

[ and m
/ dr( ﬁ’ ) (5.16)

Im

|

where the £/ contains the variables A} and h0", and LI,
involves the fields A% and h!¢ together with the Lagrange
multipliers 49" and hY°.

The Lagrangians for the modes are independent of m.
Again, it is clear that we will have (2] + 1) equal con-
tributions for each [. Accordingly, we will suppress
the index m. After a long but straightforward calculation
using the properties listed in Appendixes A and B, the
Lagrangian corresponding to the mode I (and [ > 2)
reads

P, (=1 (142
o ="l _¥

1A 1) RY" R + /20" (rh™ = 20, h0™),

R 4 P20, h)" 9, h0

(5.17)

and the one associated with mode II is
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[\S]

. . 2
Li' = %(/32 =@ + )R b = V2 + = (@ = )0, O, b
VIE+1 V=11 +2
+ V2arhi¢d,h% 4+ h9'nd" + ( 2 _ VI + )aﬂ VA 2)< + )ﬂ7’> hi¢ hie
I— (142
+f< —VI(I+1 ﬂ+\/( 2 Di+2) >h?lh;e+l(l+1)h?'h?r
+ W [4rh) = 2v2ar?0,hlf = V2(2a + \/1(1 + 1)) rh)]
+ h% [-2;@,}%}1 — (I + 1)+ 2)RY +V2ar28,0,h¢ +V2(3a + \/I(1 + 1)B)rd, hie
1
+ NG (=(I=1D)(+2)a+4/I(1+ D) =+/(I=DI(+ 1)+ 2)y)hf} . (5.18)
I
In the same way, as for the case of parallel planes, we will ;| (I+1) n,‘ '"ﬂ}m 1 8rn}”’8rﬂ}’"
study the modes I and II separately trying to reduce them to M= 22 (I-1)(1+2) 2(-1D)(I+2)
scalar fields for / > 2. Then, we will present the particular 1
cases [ =0 and [ = 1. +§(l —1)(I +2)h}mh}™, (5.23)
F. Hamiltonian of mode I for / > 2 and by redefining the variables as
From Eq. (5.17) it can be seen clearly that 4™ has no 1m
dynamics. Then, we get the following constraint: (M: i , p{:_q /(1—- 1)(l+2)hllm’ (5.24)

—2120,0,h0" — 4r0, K™ + 21(1 + 1)K0™

V2P0, b 4 3 2rih)" = (5.19)
In an analogy with the case of the parallel planes in
Eq. (5.19), this expression cannot be solved algebraically.
But, the constraint can be implemented by first computing
the Hamiltonian. The momenta are given by

am = o = r2hy" + V2(rh" — r20,h)™).  (5.20)
From Egs. (5.17) and (5.20) we compute
lm Im 1= 1)(1 2
i = i — g =T U2 DUED)

2r2 2
1m
= 1)+ 2B RO — /R <8r7rllm L )
r
(5.21)

Now, by working with h?m as a Lagrange multiplier in
(5.21), the following constraint appears:

1m
=2(1=1)(1 +2)h0m — fz(a,n}m - ”IT> =0. (5.22)

Replacing (5.22) in (5.21) gives, for [ > 2, the one dimen-
sional Hamiltonian density

(I-1)(1+2)

we reduce (5.23) to the Hamiltonian of a free scalar on the
sphere

1 I(1+1
=3 (et + otoay + " att). s2s)

Additionally, the canonical commutation relation

[Pl(t.r), pi(2,F)] = i5(r—r). (5.26)
follows from the validity of
[m}m(z,r), A} (1, 1)] = is(r = 1'). (5.27)

G. Hamiltonian of mode II for [ > 2

For mode II, we have the Lagrangian (5.18). Working out
the equations of motion of the Lagrange multiplier h%°
yields the constraint

270, W% — (I(1+ 1) +2)h +V2(B3a+\/I(I+1)B)rd, h¢
+farzaahfe+7< (I=1)(I+2)a+4/I(I+1)p
—/(I=-1)1

(I+1)(I+2)y)hy* =
Taking into account that (5.28) gives rise to nonlocal terms
(that cannot be eliminated by the same means used for

(5.28)
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mode I), we are led to propose a particular gauge fixing
such that

W' = ahle + bro,ht, (5.29)

where a and b are constants that will be fixed to satisfy
(5.28). Indeed, by replacing (5.29) in (5.28), we get

V2(a = V2b)r20,0,h¢ + (3v2a + /2U(1 + 1)p

—(l(I+1)+4)b - 2a)r8rh;e% (=(I= DI +2)a
+ 411+ 1) = /(1= DI+ 1)(I+2)y
—aV2(I(1 + 1) +2))hi¢ = 0.

(5.30)

It is possible to solve for a, b and « in terms of f and y in
such a way that all the terms vanish separately. We obtain

2 (- 1) +2)
“:\/1(z+1)"’7_\/ 2A(1+1) (5:31)
2 2
= \/z<z+ iyt %z— S A
2 2
Y LR T LA (5:33)

It is fundamental to remark that Eq. (5.33) selects a
particular gauge choice for achieving this simplification.

Replacing (5.29), (5.31), (5.32), and (5.33) in (5.18) and
working with 4" as a Lagrange multiplier allows us to
obtain the following simple Lagrangian:

2
= T ihie — 0, hie0,hie — 11+ 1)hee)

5 (5.34)

Lig= Lo+ L,

The corresponding Hamiltonian is

I _ _tejte _ pIl

1 n.?eﬂ;e 2.2 te te 2 te pte
=272 +rr*0,hif0,hif + 7L+ Dhithye |,

(5.35)

with the canonical commutation relations
[Zle(t,r), hic (¢, 1)) = i6(r = 1'). (5.36)

Finally, by making the identifications

7[[6
il =yrhte,  PII="L, (5.37)

ry

the Hamiltonian of the scalar field modes is recovered in
the form

1 I(1+1)
il =5 | PP+ 010, + =

: o). 539

associated with the commutation relations

[P (t,r), gl (2.7)] = is(r— 7). (5.39)

H. Analysis of the mode /=0

For the case [ = 0, the tensor spherical harmonics of spin
J =1 and J =2 are not defined. Then, the Lagrangian
(5.15) reduces to

2 . . . . 2 . . .
= —%azh(’fhff — V2r2ahg hif + %oﬁa,hg;a,hg + V2arhif0,hY + hY'hS' + 2320 [V2rh — ar?0,h — arhi)

+ V21 [=V2r0, k001 — V21! + ar?d,0,hi¢ + 3ard, bl + ahl?).

The equation of motion of hgo produces the constraint

—V2rd,hY = V210 + ar?d,0,hi¢ + 3ard,hi¢ + ahl¢ = 0.
(5.41)

By proposing the equivalent of (5.29) and replacing
(5.41), we get that the constants ¢ and » mustbe a = b =

a/+/2 without the need of fixing a. We obtain

(5.40)

V2

On the other hand, taking hg’ as a Lagrange multiplier gives

hY = ——(hi¢ + ro,h¥) V a. (5.42)

V2rhd — artd, b — arhlf = 0. (5.43)

Equations (5.42) and (5.43) are consistent with each other.
Replacing both of them in (5.40) yields £;_, = 0, allowing

045004-12



ENTANGLEMENT ENTROPY OF LINEARIZED GRAVITONS IN A ...

PHYS. REV. D 101, 045004 (2020)

us to conclude that the / = 0 mode makes no contribution
to the EE for any choice of gauge.

I. Analysis of the mode /=1

For the case [ = 1, the tensor spherical harmonics of spin
J=0 and J =1 are well defined. However, the ones
corresponding to J = 2 do not exist. Hence the Lagrangian
for the mode I now reads

2 . .
cl, = %h{’”h}’” + 128, h9", 0" 4 2hY" R
+ V2R (RO = 128,h0m). (5.44)

In an analogous way to the case / > 2, we obtain z}" =
P2y 4+ \2(rh™ = r20,h9™). Now, the Hamiltonian can
be expressed as

Im_1m Im
H_, = % — V20 <8,n}m + ”17> (5.45)
Working with A% as a Lagrange multiplier gives
Im __1m
HI_, = ”127;1 . " =rd.mlm. (5.46)
r

This implies that mode I will not contribute to the EE
for I = 1.

Moreover, the Lagrangian of mode II can be given, for
[ =1, from (5.18) as

ap
V2

2 . . . . 2
= %(/}2 — A)hi R = V2r2ah b + %azﬁrh’farh’f +V2arhi¢0,hY + h)'h! + <ﬁ2 - —> hie hte

+ (V2a = 28)h0 hie + 200 9 + 2197 [2rhY — \2ar20, 0 — (V2a + B)ri'e]

+ h90[=2r0, 8 — 41" +V2ar?0,0,h' + (3V2a + 2)rd, bl + 4BhY].

So, A yields the constraint

— 27,1 — 41 + V2ar?d,0,h¢

+ (3V2a +2B)rd, b + 4phie = 0. (5.48)

In this calculation, we also propose the locality relation
(5.29). By replacing it in (5.48), we obtain that (for every
choice of gauge) it is valid that

a

V2

WO = Z_hte 4+ rBO,he Y a.p. (5.49)

Finally, using (5.49) in (5.47) produces £’ = 0. Thus,
there is no contribution of mode II for [ = 1.

J. Analysis of the gauge fixing

We have already restricted the gauge freedom with
relation (5.33). This particular choice allows us to write
the dynamics of the two modes in the same fashion as the
one of the scalar modes. Now, we analyze if the field &, or,
more conveniently, the resulting d.o.f. 2}™ and hi¢ can be
written in terms of gauge invariant operators inside the
sphere. For this purpose, we appeal to the expression (4.3)
of the gauge invariant curvature tensor.

Using a computer-based algebraic manipulation, we
obtain that the mode I field given by ™ can be rewritten
in terms of the “electric-radial-electric-magnetic” contrac-
tion of the Riemann tensor as

(5.47)

[

/’llm(l ’,.)
I} _ 1 _ 1 ’
Re’?em - eﬂryepmo—RﬂTpn - Flm (9’ (p) r2 ’

(5.50)

where F,, (6, ¢) is a function of the angles 6 and ¢ for each
[ and m. Specifically, for m = 0 it is valid that

5
21/ T+ D)
Fiy(0) =
0(®) 16I2(1 4 2)
x (4P2(cos @) cot§ + P3(cos @),

PY(cos 0)[P}(cos 0))
(5.51)

where PJ'(cos @) are the associated Legendre polynomials.
The important point in this expression is that the relation
between h l"”( t, r) and the curvature does not involve radial
derivatives. That would make the algebra generated by this
field nonlocal with respect to one of gauge invariant
operators in the sphere.

For mode II, under the partial gauge choice (5.33), we
can further set = 0 or equivalently

B B
(I-D(1+2)

(5.52)
This allows us to obtain locality with respect to the
curvature tensor. With this choice (5.29) reduces to an
algebraic relation (without any derivatives) between the
fields hY’ and hi¢ given by

ol = Wﬂh?. (5.53)
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From this relation, it follows that the remaining field A
can be computed from the ‘“electric-magnetic-electric-
magnetic”’ contraction of the Riemann tensor in a local
way in t, r as

h,(t,r
Rérfnem = eﬂmye/)mﬁR;llrzr/lpa =Gy (9, (P) 165_2 ) s

(5.54)

where G,,,(0, @) is another function of the angles 6, ¢ for
each / and m. For m = 0 it reads

wpy/1(L +2)0(7)
16(1+ 1)2/T(I + 3)
X (41(1+ 1)PY(cos 0)
+2(I(1+ 1) +2)P}(cos §) cotd
+ (I(I+ 1) +2)P?(cos ).

Gp(0) = [P}(cos 0)]*

(5.55)

Therefore, by taking (5.33) and (5.52), the gauge fixed
field h,, inside the sphere generates the same algebra as the
gauge invariant operators. This algebra is equivalent to one
of the modes of two scalar fields except for the / =0, 1
modes which are absent for the helicity 2 theory.

K. Entanglement entropy and
logarithmic coefficient

To sum up, the EE associated with linearized gravitons in
a sphere of radius R is equivalent to the one corresponding
to two scalar fields without contributions of the / = 0 and

=1 angular momentum modes (or a Maxwell field
without the / = 1 modes).

As we recall in Sec. IIl, the entanglement entropy
of a scalar in a sphere has a universal logarithmic term
—1/901og(R/¢). Also, the mode /=0 of the scalar
corresponds to a massless d = 2 scalar field in the r > 0
half-line with entropy given by 1/61log(R/¢).

To obtain the universal logarithmic term for gravitons we
just need the logarithmic contribution of the / = 1 mode for
the scalar. This mode is a d = 2 field in the half-line r > 0
with Hamiltonian

1

H=3 P2+ (8,9)* +%¢2 . (5.56)

This model is scale invariant. But, in contrast with the [ = 0
mode, it contains a potential term 2/r’¢?. We have to
compute the entanglement entropy in an interval r € (0, R).
The ultraviolet divergent piece of the EE comes from
entanglement in high energy fluctuations around the
boundary r = R. For these high energy fluctuations, the
effect of the potential can be neglected. Then, we must have
a divergent piece that is the same as for the usual scalar
field S ~ —1/61og(e). As the model does not contain any
dimensionful scales, by dimensional reasons, we obtain

1 R
S= glog (2> + cons. (5.57)

We have checked this numerically in the lattice to an
excellent (five digits) precision.

Hence, as for the [ = 0 mode, we get a 1/6 coefficient
for the logarithmic term of the / = 1 modes. Consequently,
we get a logarithmic coefficient for the graviton in the
sphere given by twice the coefficient of the scalar sub-
tracting two times the / = 0 mode and 2(2/ + 1) = 6 times
the / = 1 mode, obtaining

1 1 1 61
P 3X— | =——.

x ( 90 6 " 6) 45
As it seems to be the rule, the value of the logarithmic
coefficient increases with spin. It is higher for the helicity 2

field than for Maxwell and scalar fields. The entropy on the
sphere then writes

(5.58)

(5.59)

VI. DISCUSSION

We have computed the EE for free gravitons in flat space
for a region between parallel planes and the sphere. For the
wall, we find a universal coefficient that coincides with one
of two scalar fields. For the sphere, the logarithmic term is
given by —61/45, which is equivalent to two scalar fields
where the / = 0 and [ = 1 modes are missing. These results
refer to clear physical quantities. First, our real-time
approach allows us to clarify that these are entropies of
gauge invariant operator algebras of the theory inside the
regions. Second, the meaning of these universal terms for
the continuum model follows from the fact that they
coincide with the ones obtained using mutual information.
We can write a regularized entropy as [31]

S.(A)==1.(A,,A). (6.1)

N —

In this formula, one computes the mutual information
between two regions A, and A_ covering most of the
inside and outside parts of the boundary of A, respectively,
but symmetrically separated from the boundary by a
distance ¢/2. This can be thought as a form of point
splitting the regularization of the entropy. The mutual
information for disjoint regions is completely unambiguous
in QFT and thus is S,.(A). In particular, mutual information
is unaffected by details of the algebra definition such as
center terms (or edge modes). In the present case, our
results for the entropy are indeed equivalent to S,.(A). This
is the case of the full scalar field EE [13] and this
identification also holds for the / =0, 1 modes. These
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later one dimensional fields have mutual information that
diverges as —1/31og(e) as the boundaries of A, and A_
approach each other. This holds for the free scalar and this
UV result cannot change due to the potential or the
boundary condition at the origin.3

There are other results in the literature concerning the
logarithmic coefficient due to gravitons, especially in black
hole backgrounds (see for example [11,12,33,34]; see also
[35] and references therein for gravitons in de Sitter space).
There is a general expectation that the logarithmic coef-
ficient for the sphere should be proportional to the A
anomaly4 [8.,9].

The free graviton does not have a symmetric gauge
invariant stress tensor due to the Weinberg Witten theorem
[36]. Then, the definition of the A anomaly is uncertain.’
For a Maxwell field, there is a mismatch of the logarithmic
term in the entanglement entropy and the A anomaly which
is solved by coupling the theory to (heavy) charges [16]. In
the present case, a clarification of what is the right
coefficient for interacting gravity seems to be further away
since any interactions would take us away from the QFT
setting, thus rising the problems of operator algebra
localization. Eternal black holes seem to be a more natural
setup in gravity than the sphere since they are related to a
partition of the asymptotic space in two. In this same sense,
there are also indications that in full quantum gravity a
boundary separating localized d.o.f. should be an extremal
surface [1,37]. This is, of course, the case of the entangle-
ment wedge in holographic EE but not the sphere in
Minkowski space.

A natural conjecture which presents itself from our
results for the Maxwell field and the graviton is that, on
the sphere, the EE of higher helicity # > 2 fields should be
equivalent to the one of two scalar fields where the [ =
0,...,h—1 modes are subtracted. By the same reasons
discussed in the previous section, these modes have an EE
given by

S = élog <R> +£(1),

€

(6.2)

where f(/) is a function of the angular momentum. Hence,
we would have a logarithmic coefficient’

3There is, however, a subleading —1/2log(log(R/¢)) term in
the mutual information for the / = 0 mode that is not present in
the entropy (with the usual lattice regularization) [13]. This
comes from superselection sectors for the d = 2 scalar [10,32].

*For black hole backgrounds another contribution is expec-
ted proportional to the ¢ anomaly coefficient.

>We thank Sergey Solodukhin for communication regarding
anomalies for the graviton.

®After this paper appeared in the arXiv database Dowker noted
this same result would follow from thermodynamics in de Sitter
space [38]. He also obtains the result for fermion fields of
different helicity.

1 1 1+ 1542
2<90+61§6‘(21+1)) = - (63
Another interesting problem is how to fix the gauge for
the graviton so that #** inside a region of arbitrary shape
can be given in terms of the gauge invariant operators
localized in the same region. We hope to come back to these
problems in the future.
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APPENDIX A: PROPERTIES OF VECTOR
SPERICAL HARMONICS

In this Appendix, we list some useful properties of
vector spherical harmonics, some of them may also be
found in [13,28,29]. The vector spherical harmonics are
defined by (3.3), (3.4), (3.5). They satisfy the orthogonality
relations

/ Y;m ?;r,; aQ = 5ss’511’ 5mm’7 (Al)

where Y3* is the complex conjugate of Y3 . that is also
given by

i = (=)7L, (A2)

The vector spherical harmonics can be used to expand an
arbitrary three component vector V' as

0 1
V=)0 v(n1s,(0.9)

=0 m=—1s=r.e.m

(A3)

where the functions V3, (r) are fixed by the Fourier
coefficient expression

Vi) = [ 7-pd0 (a9

The vector spherical harmonics possess the following
directional properties:

FeYr, =Y, Foye =0, FeYm =0 (A5)
and their divergences are given by
V. Y?m = ; Ylm’ (A6)
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_ {1+ 1
vy, = -YUEDy (A7)
r
V. Y;fn =0 (A8)
The curls can be written as
_ (l+1) -
vy, = - D (A9)
r
_ 1_
Vx e =-1m, (A10)
r
_ (l+1) - 1.
Vxin =— U+ )Y;m S N
r r
Finally, the Laplancians can be computed to be
_ I(1+1 2 211+ 1) -
szlrm == ( + 2) + erm + (2+ )Y?)m’ (A12)
r r
_ 2411+ 1) - (l+1) -
vepe —2VIUED g 4D g, (A13)
r r
_ [(l+1) -
vepp — - D g (A14)
r

APPENDIX B: PROPERTIES OF TENSOR
SPHERICAL HARMONICS

In this Appendix, we list some properties of tensor
spherical harmonics, some of them may also be found in
[28,29]. They are given by Eqs. (5.2) or alternatively by the
expressions (5.4). Their most useful characteristic is that
they can be used as a basis for the space of symmetric
tensors fields at a fixed radius. The tensor spherical
harmonics satisfy the orthogonality relation

/Tr(TZJST*J/SU)dQ = 077855011 S

m* I'm'

(B1)

where 7*/5 is the complex conjugate of 745 given by

T*ljzi = (_l)anljfnz’ (BZ)

The traces of the tensor spherical harmonics are

Te(T9) = Yiu.  Te(T3) = V2V,

Tr(T7) =0, Js = le, 1lm,2e,2m. (B3)
They further satisfy
2 0l _ yr 2 le_l_e - 2e
7Ty = Yo r'sz—jiyzm’ 7T =0,

1 -

PeTY =0,  F-Tn =75 PoTI=0.  (B4)

The divergences of tensor spherical harmonics can be
written as

2
VTl =27, (B3)
V2. 1 i+,
V-T‘,),;:—TYler; 5 Yiw  (BO)
I JIl(l+1) 13 .
V.The =—— v -1 B7
Im r 2 Im 2 im> ( )
13 _
V-T},’}j—;—z " (B3)
I JI=-1)(1+2)
V.T% = —— Ys,. B9
Im r 2 Im ( )
1 /(I=-1)(1+2)_
vorgy =L g (gg)
r 2
and the Laplacians are the following:
I(1+1) 44 2V2
VY, = T T
2,211+ 1
r
verg, = 22y M2 2D,
r r
(B12)
vaple - 2V2AUHD o 2VII+T)
Im r2 Im r2 Im
1)+4 2/ (I-1)(1+2
L
r
(B13)
1)+4 2\/(I-1)(1+2
VZT};ZI :_l(l+ 2)+ Tllrzn"' ( 2)( * )len'fv
r r
(B14)
va?’i:z ("12)(’+2>T;;-“‘1)2”2)%
r r
(B15)
va?’Zl:z (l_12)(l+2)T},’,’f—<l_l)gl+2)T12,’jj.
r r
(B16)
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