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Some magnetic phenomena in correlated electron systems were recently shown to be described in the
continuum limit by a class of sigma models with a target space interpolating between S3 and CP1. In this
paper we study a generalization of such models with a target space given by a fiber bundle with a
Grassmannian base space. The metric of our target space is shown to be left-symmetric which implies that it
is fully parametrized by two constants: the first one—the conventional coupling constant—is responsible
for the overall scale of the target space while the second constant κ parametrizes the size of the fibers. In two
dimensions these sigma models are perturbatively renormalizable. We calculate their β functions to two
loops and find the RG flow of the coupling constants. We calculate the two-point function in the UV limit,
which has a power law dependence with an exponent dependent on the RG trajectory.
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I. INTRODUCTION

Sigma models are used in theoretical physics as effective
descriptions of a large number of phenomena—from
hadronic physics to condensed matter to string theory.
Probably the first physical application dates back to the
1960 work of Gell-Mann and Lévy [1]. Since then, various
aspects of the sigma models, including geometric, have
been thoroughly studied.
Recently, it was rediscovered [2] that some noncollinear

magnetic phenomena in correlated electron systems in the
continuum limit are described by a sigma model on a target
space with a geometry that interpolates between CP1

(equivalent to the two-dimensional sphere S2) and the
three-dimensional sphere S3. The sigma model on CP1 is
known variously as the Oð3Þ, CP1, or classical Heisenberg
model. The sigma model on S3 likewise is known as either
the Oð4Þ model or the SUð2Þ × SUð2Þ principal chiral
model (PCM). These two sigma models are known to be
integrable in two spacetime dimensions and were exactly
solved [3–8].
This interpolating target space is topologically equiv-

alent to S3 but carries a metric that respects the structure of
the Hopf fibration from S3 to CP1. The target space has
both the SUð2Þ symmetry of the CP1 base space, and the
Uð1Þ symmetry of the fibers. It is straightforward to

generalize this to a target space interpolating between
S2N−1 and CPN−1, and this target space likewise has
SUðNÞ × Uð1Þ symmetry. In this paper we will recon-
sider this generalization and derive new results on the
asymptotic form of the 2-point correlation functions, and
we will also go one step further in extending the target
space to fiber bundles that have a more general
Grassmannian base space. Such a sigma model in principle
may appear as an effective field theory for a system
with SUðNÞ ×Uð1Þ symmetry. And as will become clear
it may have some purely theoretical interest as a deforma-
tion of an ordinary Grassmannian sigma model.
In the process of submitting an early version of this

paper, we discovered that these sigma models interpo-
lating between S3 and CP1 and closely related spaces
have been studied much earlier in the context of frustrated
spin systems. See for example the review [9], and some
examples of early papers [10–12]. In particular, a 1995
paper by Azaria, Lecheminant, and Mouhanna [13] has
significant overlap with this paper. They also consider
target spaces interpolating between the S2N−1 and CPN−1

models, and they examine the model in 2þ ϵ spacetime
dimensions, and in the large N limit, which we will not
discuss here.
This paper differs in that we calculate the field renorm-

alization allowing us to calculate the UV limit of the
2-point correlation function. We also extend to fiber
bundles with arbitrary Grassmannian base spaces. Our
methods and presentation are also different, and we focus
on the combination left invariance and gauge invariance
as a principle which restricts the renormalization of the
target space.
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As in [13], the primary method used here to find the
RG equations involves a short calculation based on the
structure coefficients of the group SUðNÞ. We give a self-
contained presentation of this method which we adapted
from a paper by Milnor [14]. As a check of this method we
also use an explicit coordinate system on the Uð1Þ fibered
CPN−1 model in the Appendix B, and the connection
coefficients found here may be of use in studying this
geometry in other contexts. We also give a calculation
directly in terms of loop integrals in the background field
method. This method is naturally extended to find the two-
point correlation function at one loop, and we note power
law behavior in the UV which is quite distinct from that
appearing in the limits of the Oð2NÞ and CPN−1 sigma
models themselves.

A. Basic construction of the model

Here we will give a short introduction to the Lagrangian
of the fibered CP1 model, showing how it reduces to the
PCM and ordinary CP1 models in the appropriate limits.
This Lagrangian will be discussed again from a slightly
different point of view in Sec. II where it will be extended
to all N.
The original motivation for this work was provided by

[2] where it was noted that certain magnetic phenomena
e.g., on the pyrochlore lattice in the continuum limit can be
summarized by the model

H ¼ 1

2λ2

Z
dDx

�� X
a¼1;2;3

JaμJaμ

�
− κJ3μJ3μ

�
ð1Þ

where the current Jμ is defined as

Jμ ¼ −iU†∂μU ≡X
a

2JaμTa; Jaμ ¼ TrðJμTaÞ: ð2Þ

Here U is an arbitrary x-dependent matrix, UðxÞ ∈ SUð2Þ,
the generators are proportional to the Pauli matrices,
Ta ¼ τa=2, and κ is a numerical parameter,

0 ≤ κ ≤ 1: ð3Þ

If κ ¼ 0 this Lagrangian is just that of the SUð2Þ PCM.
But when κ ¼ 1 the term associated to the J3 direction is
canceled and the Lagrangian becomes that of the CP1

model.1

To see why this is indeed the CP1 model, let us start from
a particularly useful formulation of the CPN−1 model [15].
For the moment we will generalize to all N. The corre-
sponding Lagrangian can be written as

L ¼ 1

2λ2
½Dμn̄Dμn�; Dμ ¼ ∂μ − iAμ; ð4Þ

where n is an N-component complex scalar field ni

(i ¼ 1; 2;…; N) in the fundamental representation of the
SUðNÞ group subject to the constraint

n̄n ¼ 1: ð5Þ

Moreover, λ2 is a constant. Depending on the spacetime
dimensionD ¼ 2, 3, 4 it can have dimension of ½m0�, ½m−1�,
and ½m−2�. Note that (4) has no kinetic term for the Aμ field.
Eliminating Aμ by virtue of the equation of motion we
arrive at

L ¼ 1

2λ2
½∂μn̄∂μnþ ðn̄∂μnÞ2�: ð6Þ

Both Lagrangians (4) and (6) are U(1) gauge invariant.
This is the reason why they describe the CPN−1 ¼
SUðNÞ=SUðN − 1Þ × Uð1Þ sigma model.
There is a rather obvious generalization of (4), a “mass”

term for Aμ, which preserves the global symmetry of the
model, namely

L → Lκ ¼
1

2λ2

�
Dμn̄Dμnþ 1 − κ

κ
A2
μ

�
: ð7Þ

Here κ is a dimensionless parameter from the interval (3).
Now,

Aμ ¼ −i
κ

2
ðn̄ ∂μ

↔
nÞ ð8Þ

and, therefore,

Lκ ¼
1

2λ2
½∂μn̄∂μnþ κðn̄∂μnÞ2�: ð9Þ

If κ ¼ 1 we return to (6). If κ ≠ 1 the U(1) gauge symmetry
is obviously lost.
This is the form of the fibered CPN−1 model in which the

connection to the ordinary CPN−1 and also the Oð2NÞ
sigma model is evident. To go back to the form (1) which is
more natural for describing a PCM, let us choose a
“reference” field configuration n0,

ni0 ¼ 0 for i ¼ 1; 2;…; N − 1 and nN ¼ 1: ð10Þ

Then, in the most general case one can write

nðxÞ ¼ UðxÞn0; U ∈ SUðNÞ; N ¼ 2; 3;… ð11Þ

implying that

1Note that in another common convention for the CP1 model,
2=g2 is the factor multiplying the Lagrangian. In this notation
λ2 ¼ g2=4.
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Lκ ¼
1

2λ2
½n̄0ð∂μU†∂μUÞn0þ κðn̄0U†∂μUn0Þðn̄0U†∂μUn0Þ�

¼ 1

2λ2
½−n̄0ðJμJμÞn0þ κðn̄0Jμn0Þðn̄0Jμn0Þ� ð12Þ

where the anti-Hermitian matrix Jμ is defined as in (2). For
low N it is simple enough to use explicit formulas for the
generators and structure coefficients to reduce this further.
The final result for N ¼ 2 is precisely what is shown in (1).
Extending this to the next most complicated case,N ¼ 3,

we obtain

Lκ ¼
1

2λ2

�X7
a¼4

JaμJaμ þ
4

3
ð1 − κÞJ8μJ8μ

�
ð13Þ

where the indices follow the standard convention of Gell-
Mann matrices. The model (13) presents a continuous
interpolation of the four-dimensional target space CP2 to
the five dimensional sphere S5 through intermediate
“squashed” S5 at κ < 1. In what follows in the general
case we will denote these spaces as S2N−1

κ . Needless to say
that topologically S2N−1

κ is equivalent to S2N−1. Note that
CP2 is Kählerian while S5 is not.
We could of course go on to find the Lagrangian for

general N starting from (12), but we will present this in a
slightly different way in Sec. II. Already for the case
N ¼ 3, notice that the currents for a ¼ 1, 2, 3 do not
actually appear in the Lagrangian. This is implying a kind
of gauge invariance which will be relevant to the case of
general N.

B. Outline

The organization of the paper is as follows. In Sec. II
we discuss the fiber bundle over CPN−1 from a more
general point of view. In Sec. II A the transition from the n
representation in (9) to the J representation given for
example by (1) is discussed for general N, introducing
the relevant concepts of left invariance and gauge invari-
ance along the way. The notation introduced in this section
will be used again later when we discuss the case of the
Grassmannian.
In Sec. II B we will derive the one-loop renormalization

equations for the model. This will be done via an explicit
one-loop calculation. The advantage of this calculation is
that we can easily find the anomalous dimension of the field
n, which will allow us to find a new expression for the two-
point correlation function.
In Sec. III, we extend the model to a base space which is

a general Grassmannian. In Sec. III A the renormalization
equations for this model are found up to two loops using a
different approach. This involves finding the Ricci tensor
for the target space, which wewill do using a method which
takes advantage of the left-invariance property and the

structure coefficients of the group SUðNÞ rather than a
direct approach using coordinates.
The mathematical basis for this method is outlined in

Appendix A. SUðNÞ can be described as a fiber bundle
over the target space (which is itself a fiber bundle over the
Grassmannian), and the theory behind using the geometry
of a fiber bundle to calculate properties of the base space
is discussed in Sec. A 1. The concrete formulas used to
calculate the curvature in terms of properties of the Lie
group are derived in Sec. A 2.
The body of the paper finds the one-loop renormaliza-

tion equations in two ways. A diagrammatic way in Sec. II
and an algebraic way in Sec. III and the accompanying
Appendix A. There is a third, geometric way which
involves putting explicit coordinates on the fibered spaces
we are interested in. In Appendix B we introduce a natural
extension of Fubini-study coordinates which can be
used for general N, and find the connection coefficients
and Ricci tensor for the fibered CPN−1 model in these
coordinates.

II. FIBER BUNDLES OVER COMPLEX
PROJECTIVE SPACE

The family of metrics we are considering is defined on
S2N−1. As was mentioned we parametrize this with N
complex coordinates ni, which are constrained to have unit
norm (5). We will suppress the i indices when there is no
danger of confusion.
The metric is defined implicitly through the Lagrangian

(9) of a sigma model with parameters λ, κ. When κ ¼ 1 the
model becomes gauge invariant under transformations
ni → eiϕðxÞni, and it reduces to the sigma model on the
complex projective space CPN−1.
For intermediate κ we have a sigma model on a space

with a less familiar metric. We can find the metric explicitly
by transforming from ni to some unconstrained real
coordinates ϕi, in which case the Lagrangian becomes

L ¼ 1

2
gijðϕÞ∂μϕ

i∂μϕj; ð14Þ

and we can read off the components of the metric gij
straightforwardly. This is the approach we will take in
Appendix B. But for now we will take a more abstract
approach which might nevertheless illuminate why only
two parameters are sufficient for this model. The same
notation used in the following sections will be used in the
slightly more complicated case of a Grassmannian base
space in Sec. III.

A. Lifting to SUðNÞ
1. Tangent vector J

Rather than considering the sigma model to live on the
topological unit sphere, we will lift it to the Lie group
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SUðNÞwhich acts on the unit sphere. Given a reference unit
vector n0, for each unit vector n we can pick an element
U ∈ SUðNÞ which transforms n0 to n,

Un0 ¼ n: ð15Þ

The choice of U for a given n is clearly not unique. The
subgroup of elements V such that Vn0 ¼ n0 is isomorphic
to SUðN − 1Þ. And for any U satisfying (15) the element
UV also transforms n0 to n. This construction is one way of
realizing SUðNÞ as a fiber bundle over the base space S2N−1

with fiber SUðN − 1Þ. We will occasionally refer to this
group SUðN − 1Þ as the vertical subgroup or subalgebra
depending on context.
In the context of the sigma model, nðxÞ is spacetime

dependent field and thus so is UðxÞ. As the individual
coordinates xμ are varied UðxÞ traces out paths in SUðNÞ,
and the tangent vectors to these paths should appear in the
sigma model Lagrangian. So let us consider what form the
tangent vectors will take. Nearby the point x0, the path
UðxÞ can be expressed by

UðxÞ ¼ Uðx0Þ exp ½iðx − x0ÞμτμðxÞ�; ð16Þ
for some set of Hermitian traceless matrices τμðxÞ which
depend on x. The tangent vector at x0 as xμ is varied is just
the left-invariant vector field in the Lie algebra associated to
τμðx0Þ,

τμðx0Þ ¼ −iU†ðx0Þ∂μUðx0Þ:

If we extend this formula to all x (not just x0) it is just the
definition of the current Jμ used earlier (2). The point here
is that for each value of μ, Jμ specifies the tangent vector in
the target space SUðNÞ as xμ is varied. Thus expressing the
Lagrangian in terms of J should tell us something about the
metric in a basis of left-invariant vector fields. Denoting a
standard basis of left-invariant vector fields as τa, we can
find the components Jaμðx0Þ of the tangent vector in this
basis,

Jaτa ¼ −iU†∂U: ð17Þ
Here we are suppressing spacetime indices and coordinates,
and blurring the distinction between left-invariant vector
fields and the Hermitian traceless matrices with which they
are associated.

2. Lagrangian in terms of J

In the following we will choose the reference unit vector
n0 in (15) to be nonzero only in the last component,

nN0 ¼ 1; and ni0 ¼ 0 otherwise: ð18Þ
Considering U concretely as a matrix, the condition (15)

fixes the last column of U to be the vector n. The other

columns may be freely chosen up to the constraint thatU be
a unitary matrix. The other N − 1 column vectors in U are
denoted by eðiÞ,

U ¼ ð eð1Þ eð2Þ … eðN−1Þ n Þ: ð19Þ

Then (17) gives an expression for the components of the
matrix J in terms of n and eðiÞ,

Jij ¼ −i
� e†ðiÞ∂eðjÞ e†ðiÞ∂n

n†∂eðjÞ n†∂n
�
: ð20Þ

Since this must be traceless we have the identityX
i

e†ðiÞ∂eðiÞ ¼ −n†∂n: ð21Þ

Let us now rewrite the Lagrangian (9) in terms of
components of J, which again describe the motion in
the SUðNÞ target space rather than S2N−1.
Note that the columns of a unitary matrix are orthonor-

mal. Hence,

e†ðiÞeðjÞ ¼ δij; e†ðiÞn ¼ 0: ð22Þ

This means that n; in; eðiÞ; ieðiÞ form a complete orthonor-
mal basis of CN considered as a real vector space with
metric hz; wi≡ Reðz†wÞ, which is the ordinary Euclidean
metric if we identify this space with R2N . So we can expand
∂n in terms of this complete basis,

∂n ¼ Reð−in†∂nÞinþ Reðe†ðiÞ∂nÞeðiÞ þ Reð−ie†ðiÞ∂nÞieðiÞ
¼ ðn†∂nÞnþ ðe†ðiÞ∂nÞeðiÞ; ð23Þ

j∂nj2 ¼ jn†∂nj2 þX
i

je†ðiÞ∂nj2: ð24Þ

Thus the Lagrangian (9) becomes

L ¼ 1

2λ2

�
ð1 − κÞjn†∂nj2 þX

i

je†ðiÞ∂nj2
�
: ð25Þ

3. Lie algebra basis

Now the Lagrangian is written in terms of components of
J in (20), but to proceed, let us choose a standard basis on
the Lie algebra. For convenience notating the dimension of
the Lie subgroup SUðN − 1Þ as M,

M≡ ðN − 1Þ2 − 1; ð26Þ

the first M Lie algebra elements τa belong to the vertical
subalgebra that keeps n0 invariant. As matrices, both the
Nth row and column vanish.
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The next 2ðN − 1Þ Lie algebra elements vanish every-
where except on the Nth row and column. Moreover,
τMþ2k−1 has a form similar to the Pauli matrix σ1, with a 1
in the kth position of the last row and column, and τMþ2k

has a form similar to σ2 with an i and −i in those positions
respectively,

ðτMþ2k−1Þij ¼ δiNδjk þ δikδjN;

ðτMþ2kÞij ¼ iδiNδjk − iδikδjN: ð27Þ

Finally the last Lie algebra element is diagonal and
commutes with the SUðN − 1Þ subalgebra,

τN2−1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

NðN − 1Þ

s
diagð1; 1;…; 1;−ðN − 1ÞÞ: ð28Þ

This standard basis is chosen so that the structure coef-
ficients are completely antisymmetric, and so that the basis
matrices satisfy the trace identity

TrðτaτbÞ ¼ 2δab: ð29Þ

For the sake of discussing these Lie algebra elements,
we will refer to the first M elements in the SUðN − 1Þ
subalgebra as vertical elements. The remaining directions
are referred to as horizontal. The horizontal elements may
be further distinguished between those of the form (27)
which we refer to as Kähler elements, and τN2−1 which we
refer to as the phase element. As we shall soon see, when
κ ¼ 1 and the model becomes CPN−1 only these so-called
Kähler elements will appear in the Lagrangian.

4. Left invariance

Now we can find the components of J in this basis
by using the explicit form for J in (20), and taking traces
using (29),

JMþ2k−1 ¼ Imðe†ðkÞ∂nÞ; ð30Þ

JMþ2k ¼ Reðe†ðkÞ∂nÞ; ð31Þ

JN
2−1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N

2ðN − 1Þ

s
in†∂n; ð32Þ

where in (32), the identity (21) was used.
Our Lagrangian (25) now becomes quite simple in this

basis,

L ¼ 1

2λ2

� X2ðN−1Þ

m¼1

ðJMþmÞ2 þ ð1 − κÞ 2ðN − 1Þ
N

ðJN2−1Þ2
�
:

ð33Þ

As in (14), this sigma model Lagrangian is just the metric
on the target space contracted with the tangent vector to the
path traced out by the field. So in this left-invariant basis,
the metric is diagonal and does not depend on position on
the target space. This means that the class of metrics we are
considering itself has the property of left invariance. If we
know the metric at one point on the target space, we can use
left translation to pull back the metric to any other point. In
particular this means the space is homogeneous, and the
Ricci scalar should not depend on position.
Note that since there is no appearance of the components

in the vertical directions this metric is degenerate, i.e., it
vanishes acting on the vectors in the vertical directions.
This will lead to problems in naively applying results from
Riemannian geometry.

5. Gauge invariance

Considered as a metric on SUðNÞ there is one other
important property this metric has, and that is what we will
call gauge invariance in this context. As mentioned
previously, our field UðxÞ in SUðNÞ is not unique, and
we can multiply on the right by an arbitrary space
dependent member of the subgroup VðxÞ ∈ SUðN − 1Þ.
An equivalent way to consider this is that we are allowed to
arbitrarily choose a distinct orthonormal basis eðiÞðxÞ at
each spacetime point, and this choice will change the
components Ja that appear in our Lagrangian.
If we transform U → UV, our J ¼ −iU†∂U vector

transforms to

J → V†JV − iV†∂V: ð34Þ

The inhomogeneous term is a member of the vertical
subalgebra. It will arbitrarily change the vertical compo-
nents Ja≤M. If the Lagrangian is not to depend on choice of
V, these components must not appear in the Lagrangian. In
other words, if a left-invariant metric is to be gauge
invariant, it must be degenerate and vanish when acting
on vectors from the subalgebra.
So the only allowed terms in the Lagrangian are

quadratic in the remaining components Ja>M and they
must be invariant under the adjoint transformation V†JV.
There are only two independent terms which satisfy this.
Since τN2−1 commutes with the subalgebra, JN

2−1 is a scalar
under gauge transformations, and

ðJN2−1Þ2

is one allowed term. This can also be seen from (32), where
there is no dependence on eðiÞ.
If we complexify the Lie algebra, the Kähler elements

break up into two fundamental representations with basis
elements τMþ2k−1 ∓ iτMþ2k, which correspond to those
matrices which are nonzero only in the last row and column
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respectively [similar to raising and lowering matrices in
SUð2Þ]. The quadratic invariant in both these representa-
tions is just the sum over the Kähler directions

X2ðN−1Þ

m¼1

ðJMþmÞ2;

see Eq. (13) as an example for SUð3Þ.
So there are only two independent terms possible for a

sigma model Lagrangian satisfying left invariance and
gauge invariance, and thus as long as these properties
are preserved under renormalization we only need two
parameters, λ and κ. We will show this explicitly to
one loop.

B. One-loop renormalization

Nothing so far has depended on the spacetime dimen-
sion, as we have been primarily focused on the geometry
of the target space. But now we will specialize to two
dimensions, in which it is well known that the one-loop
renormalization of the sigma model is given by the Ricci
flow (see e.g., [16,17]). If μ is the scale at which we define
our parameters in the metric g, and R is the Ricci tensor,

μ
∂
∂μ gαβðκ; λÞ ¼

1

2π
Rαβðκ; λÞ: ð35Þ

So solving the problem of finding the renormalization to
one loop amounts to the purely geometrical task of finding
the Ricci tensor.
One straightforward way of approaching this is to

introduce coordinates on the target space, which allows
us to find the components of the metric via the general form
of the sigma model Lagrangian (14). If we can invert this
metric, we can calculate connection coefficients and the
Ricci tensor by a tedious but straightforward calculation.
One possible set of coordinates involves an overall phase

ϕ given by the first component on the unit sphere

n0 ¼ jn0jeiϕ; ð36Þ

and the remaining real coordinates xi, yi are given by the
real and imaginary parts of the Fubini-study coordinates on
CPðN−1Þ,

xi þ iyi ¼ ni

n0
: ð37Þ

This coordinate system has the advantage that the
coordinate vector ∂ϕ is directly related to what we are
calling the phase element, τN2−1,

∂ϕ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N

2ðN − 1Þ

s
τN2−1; ð38Þ

and when κ ¼ 1 all expressions reduce to those in the well-
known Fubini-study coordinates. Expressions for the met-
ric, inverse metric, and connection coefficients in this
coordinate system are given in Appendix B.
Rather than the straightforward but tedious coordinate

method, we will consider two other means of calculation in
the body of the paper. Later on in the context of the
Grassmannian we will present an algebraic method to
find the Ricci tensor which takes advantage of the left-
invariance property discussed earlier. But for now we will
momentarily forget the general solution (35), and directly
calculate loops in a version of Wilsonian renormalization
adapted from Polyakov [18]. The advantage of this method
is we can also easily use it to find how the field scales under
renormalization.
The bare action is originally defined in terms of a

complex unit vector field n0, which is defined with a hard
momentum cutoff at scale MUV. In order to consider the
action in terms of the field n defined with a lower cutoff μ,
we decompose n0 in terms of n and the orthonormal basis
eðiÞ, which we considered earlier in Sec. II A 2 as column
vectors of UðxÞ.

na0 ¼ eiσ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jϕj2

q
na þ ϕieaðiÞ: ð39Þ

The real field σ and the N − 1 complex component fields ϕi

will be the fields we integrate over to find the action in
terms of the background field n.
As a side note, one might ask why we do not use what

might appear to be a simpler renormalization scheme.
Rather than dealing with a constrained field n0 and a
gauge-dependent basis eðiÞ, instead one might use some set
of unconstrained coordinates on the target space ϕ0 as in
(14), and decompose this linearly into a background field
ϕb and a field we integrate over ϕq,

ϕ0 ¼ ϕb þ ϕq:

If the procedure is valid, one can even choose ϕb to take
a special form to simplify the calculation. This method
has for instance been shown in detail to work for the
Oð3Þ model [19]. But unfortunately this scheme maintains
neither manifest SUðNÞ invariance, nor manifest covari-
ance under diffeomorphisms of the target space, and it does
not give the correct result for any OðNÞ model with N ≠ 3,
at least without further modification. Curiously though, this
ϕ0 background-field method can be shown to be valid for
any Kähler target space manifold.
Returning to the Polyakov-style scheme (39), we can

express the original Lagrangian (9) in terms of n0 in terms
of σ;ϕi and the background fields n; eðiÞ. In doing so we
will encounter elements of the matrix Jij as in (20). We will
give these elements names to emphasize the similarity to
Polyakov’s notation,
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Aji ≡ e†ðjÞ∂eðiÞ; Bi ≡ e†ðiÞ∂n; C≡ n†∂n: ð40Þ

Now expanding the Lagrangian to second order in σ;ϕi,
and ignoring terms which will only lead to irrelevant terms
at one loop, we find,

L¼ 1

2λ20

(
jBj2þð1−κÞjCj2þð1−κÞð∂σÞ2þj∂ϕj2 ð41Þ

−ðjBj2 þ ð1 − 2κÞjCj2Þjϕj2 ð42Þ

þð1 − 2κÞjϕiB†
i j2 þ 2ð1 − κÞi∂σðϕiB†

i þ ϕi†BiÞ ð43Þ

þ
�

1

ðN − 1Þ2 þ
2κ

N − 1

�
jCj2jϕj2

þ C

�
1

N − 1
þ κ

�
ðϕ†∂ϕ − ∂ϕ†ϕÞ

)
: ð44Þ

The first two terms in the first line (41) take the form of the
original Lagrangian (25) in terms of the background fields,
and the second two terms give the propagators for σ and ϕi.
Now we can integrate out σ;ϕi at one loop, leading to the
renormalized Lagrangian,

L ¼ 1

2λ20
ðjBj2 þ ð1 − κÞjCj2Þ

−
1

2π
log

MUV

μ
ððN − 1þ κÞjBj2

þ ðN − 1Þð1 − κÞ2jCj2Þ: ð45Þ

We can easily read off the beta functions for 1=λ2 and
ð1 − κÞ=λ2, which are identical to the one-loop beta
functions for the parameters η1 and η̄2 appearing first
in [13]. Rewriting the beta functions in terms of the
parameters λ2 and κ,

μ
∂
∂μ λ

2 ¼ −
λ4

π
ðN − 1þ κÞ; ð46Þ

μ
∂
∂μ κ ¼

λ2

π
Nκð1 − κÞ: ð47Þ

In particular, we see that for κ ¼ 0 or κ ¼ 1, corresponding
to the Oð2NÞ and CPN−1 sigma models respectively, the
parameter κ does not run. And the renormalization group
equation for λ reduces to the known result for these models.
For 0 < κ < 1, the parameters flow to the stable fixed point
λ ¼ 0, κ ¼ 1 as the renormalization scale μ increases
toward the UV. The behavior of the RG flow for N ¼ 2
is plotted in Fig. 1.
As is usual for asymptotically free theories, the dimen-

sionless bare parameter λ2 will be replaced by a

dimensionful parameter Λ which sets the scale for the
spectrum and correlation lengths. We did not find this
independently and will not make use of this in the
following, but note it was found in [13].
However there is another RG invariant parameter, also first

found by [13]. Note that we can divide the beta functions
to find the slope of an RG trajectory λ2ðκÞ, and then we can
integrate to find a relation between λ2 and κ in terms of a new
constant K that parametrizes the RG trajectories,

K ¼ κ1−
1
N

1 − κ
λ2: ð48Þ

We will show that this parameter K is essentially the
anomalous dimension of the field n about the UV fixed point.
Considering again the renormalization scheme (39), and

integrating out the σ;ϕi fields to one loop in correlation
functions involving n0,

hn0i ¼
	�

1þ iσ −
1

2
σ2 þ…

��
1 −

1

2
jϕj2 þ…

�
n




¼
�
1 −

λ2

4π

�
1

1 − κ
þ 2ðN − 1Þ

�
log

MUV

μ

�
hni: ð49Þ
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FIG. 1. RG flow for the sigma model over a CP1 base space.
The flow is pointing towards the IR. The flow for higher N and
for a Grassmannian base space is qualitatively similar. At κ ¼ 0,
the model is the sigma model on S3 and at κ ¼ 1 it is the sigma
model on CP1 ∼ S2. The vertical axis is the ordinary coupling
constant of these models and high λ2 represents the strong
coupling regime. Trajectories near the left side of the plot that
pass near the asymptotically free fixed point at (0,0) have small
values of the parameter K.
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Of course nonperturbatively hni vanishes, but this field
renormalization factor should also appear in correlation
functions of multiple fields nðxÞ at different spacetime
points, as long as the distances are much larger than the
cutoff scale. As usual this field renormalization can be used
in the Callan-Symanzik equation along with the running
couplings to find improved perturbation theory estimates
for correlation functions.
In particular, due to dimensional analysis, the two-point

function has the form

hn†ðpÞ · nð−pÞi ¼ 1

p2
f

�
p2

Λ2

�
ð50Þ

where f is some scaling function. Using (49), we can write
an RG equation for f similarly to [18],

d log f
d logðp=μÞ ¼

λ2

2π

�
1

1 − κ
þ 2ðN − 1Þ

�
→

K
2π

: ð51Þ

The limit here is taken at large momentum near the λ2 ¼ 0,
1 − κ ¼ 0 critical point. We can use (48) to express the ratio
λ2=ð1 − κÞ in terms of the RG invariant K. So in the UV the
correlation function shows power law behavior with an
exponent that depends on the RG trajectory,

hn†ðpÞ · nð−pÞiUV ∼
1

p2

�
p2

Λ2

�K
4π

: ð52Þ

This behavior of the correlation function is distinct from
both the CPN−1 model (in which this correlation function is
not gauge invariant) and the Oð2NÞ model, and so it is
something intrinsic to the interpolating model. As dis-
cussed in [13], for small K the trajectory passes near the
Oð2NÞ asymptotically free fixed point in the regime in
which perturbation theory is still valid. For these trajecto-
ries there should be a regime in which the perturbative
expression for the two-point function for the Oð2NÞ model
[18] is valid,

hn†ðpÞ · nð−pÞiOð2NÞ ∼
1

p2

�
log

p2

Λ2

�2N−1
2N−2

: ð53Þ

This holds for K small and p much greater than Λ, but not
large enough to leave the vicinity of the Oð2NÞ UV fixed
point. For even larger p there is a cross-over to the new
power law behavior governed by the CPN−1 UV fixed point
(52). This new expression should hold for trajectories with
large K as well, in which case the perturbative expression
for the Oð2NÞ model is not valid for any scale.

III. FIBER BUNDLES OVER A GRASSMANNIAN

Now we will generalize the fibration over complex pro-
jective space to a fibration over a general Grassmannian

manifold. Complex projective space CPN−1 can be thought
of as the space of all one-dimensional complex linear
subspaces of CN . Similarly the Grassmannian GrðM;NÞ is
the space of all M-dimensional linear subspaces of CN .
As is well known, this is equivalent to the dual space
GrðN −M;NÞ. For convenience, the dimension of the dual
subspaces is labeled L≡ N −M,

LþM ¼ N:

The symmetry between L and M will eventually be mani-
fest, but for the moment consider a representation of the
M-dimensional linear subspaces in terms of an orthonormal
basis of M linearly independent N-dimensional column
vectors, niðαÞ. The Latin i index runs from 1 to N and the

Greek α index runs from 1 toM. This can be thought of as a
rectangular matrix with M column vectors,

n ¼ ðnð0Þ;…; nðMÞÞ:

Since a change of basis does not change the linear sub-
space, there should be an equivalence relation under
multiplying n on the right by a unitary matrix VM ∈
UðMÞ. This will be manifested as a gauge symmetry in
the Lagrangian, which is an extension of how the
Lagrangian for the CPN−1 model involved Uð1Þ gauge
symmetry.
The Lagrangian is defined in terms of the auxiliary

UðMÞ gauge field A,

L ¼ 1

2λ2
TrM½ð∂μn† þ iAμn†Þð∂μn − inAμÞ�: ð54Þ

This can be treated similarly to the CPN−1 model by
choosing a matrixU ∈ SUðNÞ that maps a standard n0 to n,

Un0 ¼ n; n0 ≡
�
0L×M

IM

�
:

Here IM is the M ×M identity matrix, and 0L×M are extra
zeros to fill out the full N ×M matrix.
This defining condition on U fixes the lastM columns to

be niðαÞ, but there is still a SUðLÞ gauge freedom in picking

the first L columns eiðαÞ.

U ¼ ðeð0Þ;…; eðLÞ; nð0Þ;…; nðMÞÞ:
Explicitly this is gauge symmetry under multiplying U

on the right by a matrix VL ∈ SUðLÞ that leaves n0
invariant,

U

�
VL 0

0 IM

�
n0 ¼ Un0:

Besides the SUðLÞ gauge invariance in the definition
of U, there is also the original UðMÞ gauge invariance
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appearing in the Lagrangian, which can be split into a
SUðMÞ part,

Un0VM ¼ U

�
IL 0

0 VM

�
n0 ∼Un0;

and a Uð1Þ part, which we again call the phase part,

U

�
expð− i

LϕÞIL 0

0 expð i
MϕÞIM

�
n0 ∼Un0:

Under the substitution n ¼ Un0, the Lagrangian
becomes

L ¼ 1

2λ2
TrMðn†0ðJμ − AμÞ2n0Þ;

where as before Jμ ¼ −iU†∂μU. Integrating out the aux-
iliary gauge field removes the SUðMÞ ×Uð1Þ components
of Jμ,

L ¼ 1

2λ2
X

a;b∉UðMÞ
JaμJbμTrMðn†0τaτbn0Þ;

and the appearance of n0 removes the SUðLÞ components.
The only remaining components are the 2LM off-block-
diagonal components of the Lie algebra, which we again
call the Kähler components.
Thus the general Grassmannian Lagrangian can be

written as

L ¼ 1

2λ2
X

a∈Kähler
ðJaμÞ2: ð55Þ

In this form L and M are treated on a manifestly equal
footing, and we could of course reverse the previous steps
to express the Lagrangian in terms of theN × Lmatrix eiðαÞ,
instead of niðαÞ.
As before, we will generalize this Kähler manifold by

no longer gauging over the Uð1Þ phase subgroup. In the
same way as for the CPN−1 model, it is easy to write the
Lagrangian in terms of the only two left-invariant terms
which are gauge invariant under SUðLÞ × SUðMÞ,

L ¼ 1

2λ2

� X
a∈Kähler

ðJaÞ2 þ 2ðN − 1Þ
N

ð1 − κÞðJphaseÞ2
�
;

ð56Þ

where by definition,

N ≡ LM þ 1: ð57Þ

The unusual factor multiplying Jphase is chosen for later
convenience. Note that indeed N ¼ N when L ¼ 1 and

M ¼ N − 1, and so this normalization agrees with the
fibered CPN−1 model (33) introduced earlier.

A. One-loop renormalization

Now rather than doing explicit loop calculations, we will
make use of the well-known one-loop expression in terms
of the Ricci tensor (35), and use a method of calculating the
Ricci tensor which takes advantage of the left-invariance
property.
The idea is rather than considering the metric g on the

Grassmannian itself, we consider the metric ḡ pulled back
to the Lie group SUðNÞ, which is left-invariant but
degenerate in the vertical SUðLÞ × SUðMÞ subgroup
directions. Concretely, the metric in the left-invariant basis
τa is diagonal,

ḡðτa; τbÞ ¼
1

λ2
Caδab; ð58Þ

where from (56) we have that Ca ¼ 0 for the vertical
directions, Ca ¼ 1 for the Kähler directions, and

Cϕ ¼ ð1 − κÞ 2ðN − 1Þ
N

ð59Þ

for the phase direction.
The curvature of ḡ can then be calculated borrowing an

idea from Milnor [14]. The Lie bracket of the basis τa
considered as left-invariant vector fields is directly related
to the commutator of τa considered as matrices in the Lie
algebra. This will ultimately allow us to determine the
metric-compatible connection on the manifold in terms of
the structure coefficients f of the group, defined by

½τa; τb� ¼ 2i
X
c

fabcτc: ð60Þ

In the present case there are some subtleties in dealing
with the degenerate directions of ḡ and applying the results
to the Grassmannian manifold we are interested in rather
than SUðNÞ. But ultimately we will be able to express the
components of the Riemann tensor only in terms of the
diagonal components C of the metric, and the structure
coefficients of the group.
This is not the first time something similar to this has

been done. In particular a formula for the Riemann tensor in
terms of structure coefficients was also found in [20] and
used for the fibered CPN−1 model in [13]. However both
the derivation and particular formula used in this paper
differs considerably from [20]. Here we focus on the fiber
bundle structure induced for example by the map from
SUðNÞ → GrðM;NÞ, and also the properties of the degen-
erate metric pulled back to SUðNÞ. The mathematical
details are discussed in Appendix A, and here we will
simply present the result. The diagonal components of the
Ricci tensor (no summation is implied over a) are
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Raa ¼
X
b;c

f2abc

�
1þ Cb − Ca

Cc
χc þ 3

Ca − Cc

Cb
χb

−
Cb − Ca

Cc

Ca − Cc

Cb
χbχc

�
; ð61Þ

where χa is just an indicator function that vanishes when
Ca ¼ 0 and is 1 otherwise.
Now simply inserting the structure coefficients for

SUðNÞ and the diagonal metric components (58), (59),
we find the Ricci tensor components for the Kähler
directions,

Raa ¼ 2ðN − 1þ κÞ N
N

; ð62Þ

and the phase direction,

Rϕϕ ¼ N
�
2ðN − 1Þ

N

�
2

ð1 − κÞ2; ð63Þ

where again, N ¼ LM þ 1, which is convenient notation
because N ¼ N in the complex projective case.
Then using the expression for the beta function in terms

of the Ricci tensor (35), and again using the diagonal
components of the metric (58), we find the one-loop RG
equations for λ, κ.

μ
∂
∂μ λ

2 ¼ −
λ4

π
ðN − 1þ κÞ N

N
; ð64Þ

μ
∂
∂μ κ ¼

λ2

π
Nκð1 − κÞ: ð65Þ

Note that these RG equations of course reduce to those
of the fibered CPN−1 model (46) and (47) when N ¼ N,
and they reduce to that of the ordinary Grassmannian
model when κ ¼ 1. When κ ¼ 0, the model reduces to
a new Einstein manifold which is not equivalent to the
Oð2NÞ model.

B. Two-loop renormalization and RG invariants

It might be interesting to see if this κ ¼ 0 Einstein
manifold is a fixed point of the κ flow to all orders. We
will calculate the two-loop correction using the well-
known formula in terms of the Riemann tensor Rα

βγδ

(see e.g., [17]),

μ
∂
∂μ g

ð2Þ
ρσ ðκ; λÞ ¼ 1

8π2
Rραβγðκ; λÞRσ

αβγðκ; λÞ: ð66Þ

The components of the Riemann tensor may be found
similarly to the components of the Ricci tensor above using
the methods of Appendix A [in particular making use of
(A12), (A13)]. Then the two independent parameters in the
metric flow according to the equations,

μ
∂
∂μ

�
1

λ2

�
¼ 1

π
ðN − 1þ κÞ N

N

þ λ2

2π2

�
4N − 6N

N
N

ð1 − κÞ

þ ð3N − 1Þ
�
N
N

�
2

ð1 − κÞ2
�
; ð67Þ

μ
∂
∂μ

�
1 − κ

λ2

�
¼ 1

π
ðN − 1Þ N

N
ð1 − κÞ2

þ λ2

2π2
ðN − 1Þ

�
N
N

�
2

ð1 − κÞ3: ð68Þ

For κ ¼ 1, these equations reduce to the known two-
loop beta function for the Grassmannian model [21]. For
N ¼ N, they reduce to the two-loop beta function for the
fibered CPN−1 model first found in [13]. These two-loop
equations were also checked using coordinate methods for
the special case of L ¼ M ¼ 2.
Note that for general Grassmannians (N ≠ N) the two-

loop term is not the same between the two RG equations if
we set κ ¼ 0. This means that counterintuitively, although
κ ¼ 0 is indeed an Einstein manifold, higher loop correc-
tions cause κ to run.
Finally, for completeness, let us return to the simpler

one-loop case, and generalize the results of [13] on RG
invariants. Apart from the ambiguity of the κ ¼ 0manifold,
the qualitative behavior of the one-loop RG equations is
much the same as for the fibered CPN−1 case treated in
[13]. As before (48), there is an invariant K which is
constant along different RG trajectories,

K ¼ κ1−
1
N

1 − κ
λ2: ð69Þ

Using this to eliminate λ2 from the RG equation for κ (65),
we can integrate to find an implicit equation for κ as a
function of the scale μ in terms of the hypergeometric
function 2F1,

K ln
μ

μ0
¼ AðκðμÞÞ − Aðκðμ0ÞÞ; ð70Þ

AðκÞ≡N
N

π

N − 1
κ1−

1
N
2F1

�
2; 1 −

1

N
; 2 −

1

N
; κ

�
: ð71Þ

If we define the IR scale Λ such that

Aðκðμ0ÞÞ ¼ K ln
μ0
Λ
;

then inserting in (70) we see that

AðκðμÞÞ ¼ K ln
μ

Λ
;

DANIEL SCHUBRING and MIKHAIL SHIFMAN PHYS. REV. D 101, 045003 (2020)

045003-10



so the definition of Λ does not depend on the particular
scale μ,

Λ ¼ μ exp

�
−
AðκðμÞÞ

K

�
: ð72Þ

Since AðκÞ > 0, our one-loop theory is clearly invalid for
μ < Λ, and as usual Λ has the physical interpretation as the
order of magnitude at which nonperturbative effects
become large, and we would expect it to be of the same
order of magnitude as the mass gap.

IV. DISCUSSION AND CONCLUSION

In this paper we studied a continuous class of
sigma models on a space which is a fiber bundle over
Grassmannian spaces with Uð1Þ fibers, and which includes
the special case of complex projective space CPN−1. We
examined these models by pulling the metric back to the
Lie group SUðNÞ in which the left invariance of the metric

became clear. The combined restrictions of left invariance
and gauge invariance limited us to just two parameters, λ
which is the usual coupling constant describing the overall
size of the manifold, and κ which describes the size of the
Uð1Þ fibers. As generically occurs in asymptotically free
theories, after quantization the parameter λ is transmuted to
a dimensionful scale Λ. The parameter κ is also replaced by
an RG invariant K, which we have shown has an inter-
pretation in the fiber bundle over CPN−1 as the anomalous
dimension of the complex unit-vector n field.
One might try to extend the construction in this paper

even further by considering fibers isomorphic to other
subgroups of SUðNÞ besides Uð1Þ. The Grassmannian has
a natural SUðLÞ × SUðMÞ ×Uð1Þ gauge symmetry, and
we can create a fiber bundle by breaking any combination
of these commuting subgroups. That is, we could use a
Lagrangian which is an extension of (56), introducing
parameters kL; kM; kϕ for the SUðLÞ; SUðMÞ; Uð1Þ direc-
tions respectively,

L ¼ 1

2λ2

� X
a∈Kähler

ðJaÞ2 þ kL
X

a∈SUðLÞ
ðJaÞ2 þ kM

X
a∈SUðMÞ

ðJaÞ2 þ kϕðJϕÞ2
�
:

The explicitly broken gauge symmetry no longer constrains
our set of parameters, but one would expect the global
symmetry is sufficient. The RG equations for this model
can be found via a straightforward calculation with the
formula (61). As a simplified example for the sake of
discussion we will present the RG equations for a less
general model which is a SUð2Þ fibered Grð2; 4Þ model,
with kL ¼ kϕ ¼ 0,

μ
∂
∂μ λ

2 ¼ −
λ4

2π

�
8 −

3

2
kM

�
;

μ
∂
∂μ kM ¼ λ2

2π

�
2þ 5

2
k2M − 8kM

�
:

Unlike the Uð1Þ fibered model, there is a problem here.
When we set kM ¼ 0 in the Lagrangian we get the
Lagrangian for the ordinary Grassmannian model. This
is analogous to setting κ ¼ 1 in theUð1Þ fibered model. But
in this case where there are non-Abelian fibers, kM ¼ 0 is
not a fixed point of the kM RG equation. There are indeed
other fixed points for kM which do correspond to Einstein
manifolds, but kM appears to flow away from zero, so it is
not clear in what sense this can be considered an extension
of the Grassmannian model.
The problem is the kM independent term in the

RG equation, which comes from nonvanishing structure

coefficients of the SUðMÞ subgroup. Such a term would be
there even if we were considering a trivial geometry in
which there is no interaction between the SUðMÞ fibers and
the base manifold, and it can be understood as due to the
curvature of the SUðMÞ Lie group itself.
The nontrivial problem with non-Abelian fibers is that as

the parameter kM goes to zero, the curvature of the fibers
themselves diverges, which corresponds to large values of
the associated coupling constant λ2=kM. So we do not
expect that the RG equations found above are valid near
kM ¼ 0. Thus the non-Abelian fibered model in the regime
near the ordinary Grassmannian model cannot be inves-
tigated using the perturbative methods of this paper.
However the Uð1Þ fibered model considered here can be

investigated perturbatively near the κ ¼ 1 regime close to
the Grassmannian. The situation is similar to the difference
between the free Oð2Þ sigma model and the higher OðNÞ
models. In the special case of complex projective space
CPN−1, we are able to use the validity of perturbation
theory in this regime to find an expression for the two-point
correlation function (52).

ACKNOWLEDGMENTS

The authors are grateful to Andrey Losev, Alexander
Voronov, Paul Wiegmann, and Arkady Vainshtein for
useful discussions. This work is supported in part by
DOE Grant No. DE-SC0011842.

SIGMA MODELS ON FIBER BUNDLES WITH A … PHYS. REV. D 101, 045003 (2020)

045003-11



APPENDIX A: GEOMETRY FROM
STRUCTURE COEFFICIENTS

This Appendix will discuss the geometry of manifolds
that can be considered to be the orbit of an action by a Lie
group, such as those considered in this paper. The group
action induces a pullback map that lets us consider the
metric on the Lie group itself. Typically this metric will be
degenerate in the sense that there are directions in the Lie
group space that have vanishing norm. But in the case that
the metric is left-invariant, such as those considered in this
paper, we will be able to use the algebraic properties of the
Lie group to determine the geometry of the manifold we are
interested in.
In Sec. A 1 we will discuss how the curvature of the

degenerate metric on the Lie group determines the curva-
ture on the original manifold. The main result we will
need is Eq. (A7) which states that the components of the
Riemann tensors of the two spaces in the horizontal
directions are equal. This will allow us in Sec. A 2 to
use the left-invariance property of the metric on the group
space to give a much simpler formula for the Ricci tensor,
in an approach similar to that of Milnor [14].

1. Gauge invariant metrics on fiber bundles

For the moment let us abstract slightly. We have a fiber
bundle E ¼ SUðNÞ which maps to the base space
M ¼ S2N−1. The projection map π∶ E → M is given
concretely by (15), which says for a U ∈ E,

πðUÞ ¼ Un0: ðA1Þ

In the other direction, we may choose a section σ∶ M → E,
that maps each element of the base space to a particular
element in the fiber. Of course σ is required to be
compatible with the projection in the sense that the
composition π ∘ σ is just the identity. Concretely σ encodes
our choice of unitary matrix U for each unit vector n,

σðnðxÞÞ ¼ UðxÞ: ðA2Þ

We can use these maps to push forward and pull back
objects living on E andM. In particular, the metrics on the
two spaces are also related by these maps. Given a metric
g onM, we can use π⋆ to pull it back to a degenerate metric
ḡ on E,

ḡ≡ π⋆g: ðA3Þ

This choice of metric is manifestly gauge invariant in the
sense that ḡ nowhere depends on the choice of section σ.
We can also recover g from ḡ by using σ. This follows

since for any curve γ associated with a vector in TM, we
have by definition of the section, π ∘ σ ∘ γ ¼ γ. This implies
π⋆∘ σ⋆ is the identity map iTM on TM,

π⋆ ∘ σ⋆ ¼ iTM: ðA4Þ

Thus, from the definition of ḡ we can recover g by pulling
back with any section σ,

σ⋆ḡ ¼ g: ðA5Þ

So, our approach will be to consider σ as a map locally
embeddingM as a submanifold of E. The intrinsic metric g
is induced naturally as a pullback of ḡ. This intrinsic metric
does not depend on the details of the embedding map σ,
which is another formulation of the gauge invariance
property of ḡ.
Of course the main thing we are interested in here is the

Riemann tensor for g, since this will determine the
renormalization of the associated sigma model. But we
can calculate the Riemann tensor for ḡ fairly easily taking
advantage of the Lie algebra structure of E, as we will show
below. So the question is to what extent does the curvature
on E determine the curvature for the space M we are
interested in?
Since M is locally embedded as a submanifold of E

through the section σ, and indeed the metric g is just a
pullback of the metric ḡ in the usual way for an embedded
submanifold, we might hope to relate the Riemann tensors
on E and M through the usual Gauss equation involving
the second fundamental form. But since the metric ḡ is
degenerate, there are some complications which modify the
standard proof of the Gauss equation.
For one thing, the degeneracy of the metric ḡ means

that there is not a unique choice of Riemannian con-
nection satisfying the usual metric compatibility and
vanishing torsion conditions. This of course means that
the Riemann tensor on E itself is not uniquely determined
by ḡ.
But it can be shown straightforwardly that we can

decompose any choice of Riemannian connection ∇̄ on
E into a part tangent to the submanifold σðMÞ expressed in
terms of the unique Riemannian connection∇ associated to
g, and a vertical component η, with πðηÞ ¼ 0,

∇̄X̄Ȳ ¼ σ⋆∇XY þ η: ðA6Þ

Here X, Y are vector fields onM and X̄, Ȳ are vector fields
on E which are extensions of the pushforwards of X, Y
under the map σ.
Using this relation between the covariant derivatives we

can relate the Riemann tensors on E and M. The result is
very simple. The components of the Riemann tensor R̄ on E
in those directions tangent to the submanifold σðMÞ are
equal to the components of the Riemann tensor R on M
itself,

ˆ̄WðR̄ðX̄; ȲÞZ̄Þ ¼ ŴðRðX; YÞZÞ: ðA7Þ
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Here the vector fields X, Y, Z and X̄, Ȳ, Z̄ are again just

related by the pushforward map. Similarly Ŵ and ¯̂W are
dual vector fields related by the pullback π�. This relation
can be proven in much the same way as the ordinary Gauss
equation (see for instance [22]).
Note finally that we derived this relation by using a map

σ, but the only appearance of σ in (A7) is in the relation
between X, Y, Z and X̄, Ȳ, Z̄. This equality must be true for
any possible σ, and in fact since it only involves vectors in
the same tangent space we may push forward vectors with a
different map σ� at each point. In particular, we may choose
σ to be such that the tangent space σ�ðTpMÞ is just the
space spanned by the horizontal left invariant vector fields
at σðpÞ. So in the following we will consider (A7) to hold
for components of the Riemann tensor R̄ where each index
is horizontal.

2. Calculation of the Ricci tensor

Now that we have shown the curvature of the degenerate
metric ḡ on the fiber bundle directly determines the
curvature of g on the base space, we can use the Lie group
structure of the fiber bundle to simplify the calculation of
the Ricci tensor. The key properties which make this
simplification possible are that the metric ḡ is left-invariant
and that the Lie bracket of the left-invariant vector fields τa
are just isomorphic to the commutator of the Lie algebra
elements that they correspond to

½τa; τb�L ≡∇τaτb −∇τbτa ¼ −2
X
c

fabcτc: ðA8Þ

We must be a little careful in that the matrix commutator is
between the anti-Hermitian matrices which have absorbed
a factor of i. For this reason we use a subscript L to indicate
that this should be considered the Lie derivative of τ as
vector fields, which is almost but not quite the same as the
commutator of τ considered to be the Hermitian matrices
discussed earlier. The normalization of the structure coef-
ficients f is chosen to agree with the standard where the Lie
algebra basis elements involve an extra factor of 1=2
compared to the normalization in (29).
Following Milnor [14], we will use these structure

coefficients of the Lie algebra to determine the connection
coefficients of the manifold.
To begin recall that metric is diagonal in our choice of

basis,

ḡðτa; τbÞ ¼
1

λ2
Caδab: ðA9Þ

In particular, from (33) we have that Ca ¼ 0 for the vertical
directions, Ca ¼ 1 for the Kähler directions, and

CN2−1 ¼ ð1 − κÞ 2ðN − 1Þ
N

ðA10Þ

for the phase direction.

Since the metric is constant in this basis, by metric
compatibility

ḡð∇̄τaτb; τcÞ þ ḡðτb; ∇̄τaτcÞ ¼ 0:

Then by repeatedly using the vanishing torsion condition,
∇̄XY ¼ ½X; Y� þ ∇̄YX, we can derive a relation in terms of
Lie brackets, which we then can write in terms of structure
coefficients (A8) and metric components (A9),

ḡð∇̄τaτb; τcÞ ¼
1

2
½ḡð½τa; τb�L; τcÞ − ḡð½τb; τc�L; τaÞ

þ ḡð½τc; τa�L; τbÞ�

¼ −
1

λ2
fabcðCc − Ca þ CbÞ: ðA11Þ

Note that we used the fact that the structure coefficients are
completely antisymmetric in our choice of Lie algebra
basis. Also no summation convention over repeated Lie
algebra indices is implied in this section.
The connection must respect this equation and also the

torsion-free condition, which implies

∇̄τaτb ¼ −
X
c

fabc

�
1þ Cb − Ca

Cc
χc

�
τc þ ηab: ðA12Þ

Here χc is an indicator function which is 1 on horizontal
indices and 0 on vertical indices. ηab is an arbitrary set
of vectors belonging to the vertical subspace which are
symmetric under permutation of a, b. This is the non-
uniqueness of the connection for degenerate metrics men-
tioned previously. By the theorem on the Riemann tensor
(A7), the choice of η will not affect our calculation of the
Riemann tensor on the base space, and so in the following
we will simply take η ¼ 0.
Now the components of the Riemann tensor are given by

τ̂dðRðτa; τbÞτcÞ ¼ τ̄dð½∇½τa;τb�L −∇τa∇τb þ∇τb∇τa �τcÞ;
ðA13Þ

and then by taking the trace in d and b and using (A8) and
(A12), we can find the diagonal components of the Ricci
tensor,

Raa ¼
X
b;c

f2abc

�
1þ Cb − Ca

Cc
χc þ 3

Ca − Cc

Cb
χb

−
Cb − Ca

Cc

Ca − Cc

Cb
χbχc

�
: ðA14Þ

So this formula only depends on information about the
group through fabc and the constant components of the
metric Ca. There is no explicit dependence on target space
position unlike the coordinate method in Appendix B.
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This formula for the Ricci tensor is sufficient for
calculating the one-loop beta functions, but to calculate
to two loops we will need the somewhat more involved
formula for the Riemann tensor,

Rd
abc ¼

X
e

�
2fabefcde

�
1þCc −Ce

Cd
χd

�

þ facefdbe

�
1þCc −Ca

Ce
χe

��
1þCe −Cb

Cd
χd

�

− fbcefdae

�
1þCc −Cb

Ce
χe

��
1þCe −Ca

Cd
χd

��
:

ðA15Þ
Now the calculation of something like the two-loop beta
functions of the sigma model on Grassmannian base space
(68) has been reduced to finding the general form of the
structure coefficients of group and summing with the aid of
some combinatorics.

APPENDIX B: EXTENSION OF FUBINI-STUDY
COORDINATES

An alternate method to finding the renormalization
group equations is simply to choose an unconstrained
coordinate system and try to calculate the Ricci tensor
directly from connection coefficients.
As mentioned earlier, we will use a simple extension of

the Fubini-study coordinates on CPN−1. The real and
imaginary components of the Fubini-study coordinates
are given by

zi ¼ xi þ iyi ¼ ni

n0
;

where x and y are real.
To these 2ðN − 1Þ coordinates we also add the extra

coordinate ϕ parametrizing the overall phase of n. For
convenience we will also define the quantity

χ ≡ 1þ jzj2: ðB1Þ
Then by transforming the Lagrangian (9) to these coor-
dinates we can read off the components of the metric,

gϕϕ ¼ 1 − κ;

gϕxi ¼ −ð1 − κÞχ−1yi;
gϕyi ¼ þð1 − κÞχ−1xi;
gxixj ¼ χ−1δij − χ−2ðxixj þ κyiyjÞ;
gyiyj ¼ χ−1δij − χ−2ðyiyj þ κxixjÞ;
gxiyj ¼ −χ−2ðxiyj − κyixjÞ: ðB2Þ

If we stare at this long enough we can guess and check the
components of the inverse metric,

gϕϕ ¼ 1þ ð1 − κÞjzj2
1 − κ

;

gϕx
i ¼ χyi;

gϕy
i ¼ −χxi;

gx
iyj ¼ χðxiyj − yixjÞ;

gx
ixj ¼ gy

iyj ¼ χðδij þ xixj þ yiyjÞ: ðB3Þ

Now it is straightforward to calculate the connection
coefficients,

Γϕ
ϕϕ ¼Γxi

ϕϕ¼Γyi
ϕϕ ¼Γxj

ϕxi
¼Γyj

ϕyi
¼ 0;

Γϕ
ϕxi

¼−ð1−κÞxi
χ
; Γϕ

ϕyi
¼−ð1− κÞyi

χ
;

Γyj
ϕxi

¼þð1− κÞδij; Γxj
ϕyi

¼−ð1−κÞδij
Γϕ
xiyj ¼

κ

χ2
ðxixj−yiyjÞ;

Γϕ
xixj ¼−Γϕ

yiyj ¼−
κ

χ2
ðxiyjþyixjÞ;

Γxk
xixj ¼−χ−1ðδikxjþδjkxiÞ; Γyk

xixj ¼ κχ−1ðδikyjþδjkyiÞ;
Γyk
yiyj ¼−χ−1ðδikyjþδjkyiÞ; Γxk

yiyj ¼ κχ−1ðδikxjþδjkxiÞ;
Γxk
xiyj ¼−χ−1ðδikyjþ κδjkyiÞ; Γyk

xiyj ¼−χ−1ðκδikxjþδjkxiÞ:
ðB4Þ

From this point a short route to the RG equations is to
calculate not the full Ricci tensor but only the tensor at
the point z ¼ 0, and only calculate the Rϕϕ and Rx1x1
components. From the general argument that only the
λ and κ parameters should renormalize, this shorter
calculation gives us all the information about the full
Ricci tensor.
At z ¼ 0 the metric becomes diagonal in this coordinate

system,

ðgÞ0 ¼ λ−2diagð1; 1;…; 1; 1 − κÞ; ðB5Þ

where the final component is the one associated to the ϕ
coordinate.
Calculating from the connection coefficients at z ¼ 0,

the Ricci tensor components are

Rx1x1ð0Þ ¼ 2ðN − 1þ κÞ; ðB6Þ

Rϕϕð0Þ ¼ 2ðN − 1Þð1 − κÞ2: ðB7Þ

These are indeed equal to the components in the left-
invariant basis [seen e.g., in the one loop terms of (66)],
keeping in mind the proportionality between τN2−1 and the
ϕ direction in (38). So, using the form of the metric at
z ¼ 0, we of course calculate the same RG equations as
(46) and (47).
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