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We construct the N' = 8 supersymmetric mechanics with a potential term whose configuration space is
the special Kéhler manifold of rigid type and show that it can be viewed as the Kiihler counterpart of N = 4
mechanics related to “curved Witten-Dijkgraaf-Verlinde-Verlinde equations.” Then, we consider the special
case of the supersymmetric mechanics with a nonzero potential term defined on the family of U(1)-
invariant one-(complex)dimensional special Kidhler metrics. The bosonic parts of these systems include
superintegrable deformations of perturbed two-dimensional oscillators and Coulomb systems.
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I. INTRODUCTION

The construction of N-extended supersymmetric mecha-
nics has remained one of the main research goals of the
supersymmetric community since the introduction of
the concept of supersymmetry. Nevertheless, until now
there has been no regular way to find the N >2
supersymmetric extensions of the given mechanical
systems. The traditional way to increase the number
of supersymmetries (without exceeding the number of
fermionic degrees of freedom (d.o.f.)) is to provide the
configuration space with complex structure(s) (with an

|

i,
Hpy =597 (0)(pip; + W X)OW(x)  —

with (p;, x') and (7., z%) being canonically conjugate pairs
and ¢”/(x) and g® being the inverse Riemann and Kihler
metrics, respectively.

Another way to increase the number of supersymmetries
(above N = 2 supersymmetry) is to double the number of
fermionic d.o.f., which introduces additional geometric
objects. For example, to construct the N' = 4 supersym-
metric extension of a free-particle system in generic
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appropriate specification of the potential term), i.e., to
restrict the configuration space to Kihler, hyper-Kéhler,
or quaternionic manifolds. For example, on a generic
N-dimensional Riemann manifold one can always
construct the N =2 supersymmetric mechanics with
(N|2N) (i.e., N bosonic and 2N fermionic) d.o.f;
requiring that the configuration space be a generic
N-(complex)dimensional Kéhler manifold and properly
specifying the potential, we can construct the N =4
supersymmetric mechanics with (N|2N) (complex) d.o.f.
The bosonic part of these Hamiltonians reads

1 -
Hyy =5 ¢ (2,2) (a1, + 0,0(2)0,U(2)),

: (1.1)

|
configuration space, we have to double the number of
fermionic d.o.f. from 2N to 4N and introduce the third-
rank symmetric tensor F);(x)dx'dx/dx*, which satisfies
the curved Witten-Dijkgraaf-Verlinde-Verlinde (WDVV)
equations [1],

Fimji = Fimisjs Fiip 9" Fimg = FitpG"F jmg = Rijim,
(1.2)

where R;j;; are the components of the Riemann tensor of
(M, g;jdx'dx’), and the subscript “;” denotes a covariant
derivative with the Levi-Civita connection.

Similarly, to construct the AV = 8 supersymmetric exten-
sion of a free-particle system on a Kihler manifold we
have to increase the number of (real) fermionic variables
from 4N to 8N and introduce the third-rank holomorphic
symmetric tensor fo,.(z)dzdz’dz¢, which satisfies the
equations [2]
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Ral;ca_l - _facegé/ef‘é’lgz;” (13)

— e e
where fuhc;d - fuhc,d - FdeebL' - defeuc - chfeah’ and
R ,5.q and I'; . are the nonzero components of the Riemann
tensor and Levi-Civita connection, which are defined as

fabc;d = fabd;c’

Flayc = gadgbﬁ,cv Ralsc& = gnl;(FZc),c?' (14)
These manifolds are known as special Kihler manifold of
rigid type [3] and they have been extensively studied since
their introduction within the context of Seiberg-Witten
duality [4]. The similarity between these systems has not
been noticed before.

In this paper we show that this similarity holds for the
supersymmetric mechanics with a potential term as well.
Namely, after reviewing the main properties of N =4
supersymmetric mechanics connected with the solution of
the modified WDVV equations [1,5,6] (Sec. II), we con-
struct on the special Kihler manifold of rigid type the
N =8 supersymmetric mechanics with potential term
(Sec. III). We find that when we double the supersymme-
tries the prepotentials W(x) and U(z) in the bosonic
Hamiltonians (1.1) should satisfy the following equations:

(1.5)
J

Wi;j + F,’jkgkam =0, Uas _fabcgdCUE =0.

Q =dp; A dx' +id(y'g; »Dy?é, - lpi“gile//'Z,) =dp; A dx' + iRijk,z//"”l/}édxk A dx! + Zigile//i“ A szé,

J

Finally, in Sec. IV we present the general solution of the
one-(complex)dimensional U(1)-symmetric special Kihler
manifold and find the admissible set of potentials for
N =8 supersymmetric mechanics. The bosonic parts of
these supersymmetric mechanics include the superintegr-
able perturbations of a deformed two-dimensional oscil-
lator and the Coulomb system suggested in Refs. [7,8].

II. /=4 MECHANICS ON RIEMANN MANIFOLDS

In order to construct the N =4 supersymmetric
mechanics on an N-dimensional Riemannian manifold
(M, g;;(x)dx'dx’) we extend the cotangent bundle (T My,
dp; A dx') by 4N fermionic variables ', 1/7{3 = (y/f )7,
with su(2) indices @, # = 1,2 which are raised and lowered
as follows: A, = €,5A”, A* = €Ay, with €, = €*' = 1.
We then define the following transition maps from one
chart to the other:

o ox _. 00X (x) ;
P — T i la:—. a. 21
pl 8)~Cl pj’ l/j axj ll/ ( )

Then, we equip this supermanifold with a supersymplectic
structure, which is manifestly invariant with respect
to Eq. (2.1):

(2.2)

where Dy = dy'® + T y/*dx", a = 1,2, and T and R;j; are the components of the connection and curvature of the

metric g;;(x)dx'dx/.

The Poisson brackets corresponding to this (super)symplectic structure are defined by the following nonzero

relations:

{pj.x'} = 55 {piy/*} = —Tjw',

Our goal is to construct the supercharges Q* and Q/; and
the Hamiltonian H, which obey the N' = 4, d = 1 Poincaré
superalgebra

{Qa’ Q/j} = {Qm Qﬁ} =0.
(2.4)

= i
{Qa7 Qﬁ} = _55;7—[7 )

To this end, following Ref. [1], we first equip the Riemann
manifold (M, g;;(x)dx'dx’) with the third-rank symmetric
tensor F,;;(x)dx'dx/dx*, which obeys Eq. (1.2).

The first equation in Eq. (1.2) defines the well-known
Codazzi tensor, while the second equation could be viewed
as a generalization of the Witten-Dijkgraaf-Verlinde-
Verlinde equation [9] to Riemann manifolds, and was
referred to the as curved WDVV equation in Refs. [1,5,6].

{Pi,Pj} = ZiR,'jkml//kal[/Z',

o -
vyt ==5897. (23

To construct the supersymmetric mechanics with a
nontrivial potential we can define a closed one-form on
(Mo, g;;dx'dx’, F;j;.(x)dx'dx/dx*) that obeys the following
compatibility condition:

WU =W,(x)dx’, aw) =0, W,;+F;;d"W, =0.

(2.5)

Clearly, it can be locally presented as an exact one-form
W) = dW(x), where the locally defined function W(x) is
called the “prepotential.”

With these objects in hand, we can construct the N = 4
supersymmetric mechanics defined by the following super-
charges and Hamiltonian [5]:
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Q(l — pil//i(l + iWil//m + iFijkl//i/}l//;jlpka,

H=yg"pip;+g"W,W; + 4Wi;j‘//ia’~/7{;l — 4[F i + Rimjk]l//""‘wa”wjﬂlﬁﬁ-

Qn = Pty — W, + iF Py, (2.6)
)2

(2.7)

It follows from Eq. (1.2) that there exists a special coordinate frame where the metrics (and, respectively, Christoffel

symbols and Riemann tensor) takes the form [6]

0*A

B 1 PA(x)
9ii = Dxiox

k= O oxl Oxk

Rijkm = 1—‘impgpqrqjk - 1—‘ikpgpql—‘ (28)

gjm:+

From the last equation it becomes clear that the choice F;j = £I';;; solves the curved WDVV equations (1.2). Then, by

solving Eq. (2.5) we get the two sets of solutions

0A . :
(F[jk:—rijk,W:ZCi%), (Fijk:Fijk,WZZC,-x’>, with C[:COHSt.
i i

(2.9)

The first solution is that obtained in Ref. [10]. The second solution can be transformed to the first one by a Legendre

transformation

In this coordinate frame the system (2.6)—(2.7) coincides
with the N-dimensional N = 4 supersymmetric mechanics
constructed by using the N scalar supermultiplets [10] (the
respective system with a single supermultiplet was inves-
tigated in Ref. [11]).

However, in many cases it is more convenient to solve
Egs. (1.2) and (2.5) in other frames. Below, we will
exemplify this by presenting their solutions on so(N)-
invariant special Riemann manifolds.

A. SO(N)-invariant Riemann manifolds
Let us consider the curved WDVV and potential equa-
tions (1.2) and (2.5) in isotropic [so(N)-invariant] spaces
with the metric represented in a conformally flat form,

N
gijdx'dx’ = Zg(r)dxidxi, where 12 = inxi.
i=1

Let us show that these manifolds always admit nontrivial
solutions.

Indeed, let F g);;x(x) and W) (x) be the solutions of the
WDVYV and potential equations in Euclidian space, which
obey some additional condition

F)iepF ©0)pjm = F(0)jkpF (0) pim»

818,W(0) + F<0)ijk8kW(0) = O, (212)

with

A(x) = A(u) = (upx' = A))|,=9,400)-

(2.10)

N

> ¥ Foi = O

N
> XOW =ap.  (2.13)
i=1 i=1

% and a is some constant. The
variety of pairs (F(), W) that obey these equations
was presented in Ref. [12].

These flat solutions can be lifted to the solutions of the
curved WDVV and potential equations in isotropic spaces
as follows (here we use a slightly different notation than

that in Refs. [1,5]):

where F(())ijk =

Fz|ijk
o) (F(O)ijk T 8;xk + 51:31' + 8! A xi);:xk> |
(2.14)
where
() = %‘“Zf 9 A(r)=2r- ;FJF/T (2.15)

The corresponding solutions of the curved potential equa-
tion and the respective Hamiltonian are given by

r a’r:>
a | 29T
) 14T r

N 2
20 1
=g! § Di+WioiWoi) ——>( 1— .
g (I”) i:l(plpt+ (0)i (O)l) rg(r)( (1—|—F)2>

(2.16)

W=Wq) -
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Note that the ‘“curved” counterpart of the initial
Hamiltonian yields an additional potential term with
coupling constant 3. In the particular case of a sphere
and two-sheet hyperboloid (pseudosphere), when g = (1 +
er?)=% (with e = 1 corresponding to the sphere and € = —1
to the pseudosphere), it coincides with the potential of the
superintegrable (pseudo)spherical generalization of a har-
monic oscillator known as a Higgs oscillator [13].

Thus, with a specific choice of the initial prepotential
W (0)(x) we can construct N’ = 4 supersymmetric super-
integrable deformations of a Higgs oscillator. For example,
the choice W o) = >N | a;logx’, Fig) = 3 >N, (x')? log '
yields superintegrable (pseudo)spherlcal deformations of
an N-dimensional oscillator with extra centrifugal terms
(which is also known as a Rosochatius system) [14], with
an additional restriction on the oscillator frequency [5],

Hpos = (1 +€r?) (Zp, +Z it Z’ ’2))2>.
(2.17)

Taking the solutions of Eq. (2.12) corresponding to the
three-particle rational Calogero model [15], we get the
following (pseudo)spherical Hamiltonian:

|

Q = dr, A dz® + dit; A dZ° —

where the fermionic variables 7%, and 777, related as
(n2)" =q%e. Here a,i=1,2 are su(2) indices which
are raised and lowered as follows: A, = eaﬂAﬂ,
A% = eaﬂAﬂ, A = eijAj, Al = €ijAj, with €, = €?! = 1.

This supersymplectic structure is manifestly invariant
under the coordinate transformation

7"
- 0z¢ b Mia =

074
8 b’/lla’

74 =7%(z), 7,

(3.3)

i.e., n%, transforms as dz“.
The Poisson brackets corresponding to Eq. (3.2) are
defined by the relations

{”a’ Zb} = 521

{ﬂmﬁb_} =

{ma i} = =Thcttfy
{n 1777} = =g 55
(3.4)

: _ _c =dia
lRabcdnia’/l ’

To construct the supersymmetric mechanics with a
nonzero potential we have to equip the Kéhler manifold
with the closed holomorphic one-form

U
U(l) o Ua(Z)dZa, Ua = a (Z) s
0z°

(3.5)

Ru};cc}nzc'laﬁd‘iadza A\ dZ_b + gaf;Dr]?a AN Dﬁb‘i‘)‘7

H 3Calogero

(1 +€r <Z p, + Z (1 3;669;)2).

i>j= 1

(2.18)

This is a particular case of a superintegrable (pseudo)
spherical Calogero-Higgs oscillator [16].

L. N =8 MECHANICS ON SPECIAL
KAHLER MANIFOLDS

In this section we generalize the system presented in
Ref. [2] and construct, on the special Kédhler manifolds of
the rigid type, the (N|4N)-(complex)dimensional mechan-
ics with a potential term, which possesses the N =8
supersymmetry

{Qia’ Q/ﬂ} = {Qiav Qjﬂ} =0, {Qim Qjﬂ} = —ie; €aﬂH

(3.1)
For this purpose we define the (2N|4N)c-dimensional

phase superspace equipped with the supersymplectic
structure

Dr]la = dr]za + Fbcnzadzc’ (32)

I
where U(z) is a locally defined holomorphic function
called the “prepotential.”

With these ingredients in hand we can construct the
N = 8 supersymmetric mechanics with a potential term.
Having in mind the structure of supercharges of the ' = 4
supersymmetric mechanics on a generic Kéhler manifold
[17], and that of the N = 8 supersymmetric mechanics
(without a potential term) on special Kihler manifolds [2],
we choose the following Ansdtze for supercharges:

Q - ”a”];a + U T“rlzﬁ’ +3 fabcrlzﬁrl rlja’

Q_ia = ﬁdﬁfa - UaTL”?y + §fabcngﬁ’7hjﬂ7];a7 (36)
where the matrix Tﬁ collects the parameters that control the
explicit breaking of the su(2) symmetry realized on the
greek indices, and, without loss of generality, is para-

metrized by the two angle-like parameters « and f,

s CoS ay
Ta = =ify qi
e 0 sin ay

We should stress that it is impossible to introduce an
interaction that preserves both su(2) symmetries [realized

eifo sina())' (3.7)

—cos
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on the greek and latin indices from the middle of alphabet
(i, j, k)]. However, the simultaneous breaking of both of
these symmetries results in the appearance of the central
charges in the super Poincaré algebra [18].

Then, by taking their Poisson brackets we find that these
supercharges span the A/ = 8 Poincaré superalgebra (3.1)
if U, and U; obey the equations

_ depr. —

The components of the (anti)holomorphic symmetric Uap = fareg™Ua =0, (3.8)
tensors fup.(z) and f;;:(Z) have to obey the constraints ~ with U,y = U,), =T, U.. In such a case, the
(1.3), and U, and U, were defined in Eq. (3.5). Hamiltonian reads

H = (w5 + UaUs) =5 Uag® Fop Tt = 3 G f e b
1 aip b ,cjy.,d 1 - ulp =CJY 7 1 éer =Cja s =Cjf=di
Efabc;dr] ’7iy’7 ’7],0 —2f ’71]/’7 ’7],; Zfabeg félfd(na nzﬁn ’7] + ’71 nja]/] ’7 ) (39)

Equation (1.3) can be expressed in the distinguished
coordinate frame via a single holomorphic function F(z)
(the “Seiberg-Witten potential”) (see, e.g., Ref. [3]),

Yab = IReaaab]:.(z)’ =0 aba ‘F( ) :fabc =TI

abc abc
(3.10)

In this coordinate frame Eq. (3.8) becomes
0,0,U — (04U + 050)g%,0,0,F = 0. (3.11)

From this equation we immediately get the following
solution:

z) = ZN: (m0,F (z) +in,z*).

a=1

(3.12)

where m“ and n, are real constants.

(Zavﬂa’ ’15’10[) - (Ma, pa’éfa)’

Looking back at the presented model of A" = 8 super-
symmetric mechanics we can observe many similarities
with the N = 4 supersymmetric mechanics described in
the previous section, which prompts us to consider it as a
complex counterpart of the latter. In particular, the notion of
a “special Kihler manifold of rigid type” [Eq. (1.3)] can be
viewed as the complex analog of the curved WDVV
equations (1.2), and the restriction on the prepotential
U(z) can be viewed as he complex counterpart of those
on the real one (1.5). In both cases, there exist special
coordinate frames where the metrics and the respective
third-rank tensors are expressed via a single function, cf.
Egs. (2.8) and (3.10). Further similarities can be noticed by
comparing Egs. (3.12) and (2.9).

04

where u, = 0,F(z),

The bosonic part of the constructed NV = 8 supersym-
metric mechanics respects the “T-duality” transforma-
tion, which is the complex counterpart of the Legendre
transformation (2.10),

Al U, = aafv f(Z) - ],T(u) = (Zuua _f(z))|u“=6u.7:‘
(3.13)
For the potential it reads
N
Uz) =Y m9,F(z) +in,z* — Uu)
a=1
N
Z 4y, +in 0 F (u). (3.14)

The extension of the duality transformation to the whole
phase superspace is as follows:

. O°F

B B PF
P a0 ~

Opia = ——— 0. 3.15
aix azaazbgla ( )

-7y,

However, the requirement of “special Kéhleriality” (1.3)
is more restrictive than Eq. (1.2). For example, a special
Kihler manifold of rigid type necessarily has a negative
curvature, while the “curved WDVYV equations” do not
yield such a restriction; the “curved WDVYV equations”
admit nontrivial solutions on generic so(N)-invariant
Riemann manifolds (including N-dimensional spheres
and hyperboloids). In contrast to this, complex projective
spaces (and their noncompact counterparts) cannot be
equipped with the structure of a special Kéhler manifold.
Moreover, it seems that special Kihler metrics could
possess U(N) isometry only in the simplest case where
N =1, which we consider in the next section.
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IV. TWO-DIMENSIONAL SYSTEMS

In this section we construct the one-(complex)dimen-
sional special Kihler manifolds which are invariant
under the U(1) transformation z — ez, and then find

9(z2)dzdz = (c1(z22)™ + ¢,2(22)™)dzdz,

The corresponding Kahler potential reads

_az)nt! | ezt

K(z,Z) = . 4.2
O e @Y
Then, performing the transformation %z’”“ -z, wWe
can simplify these structures as follows:
ds* = (1 —x*(z2)™)dzdz,
f(z)]dz)? = kmz"'[dz)?, with |z] € [0,x7V/™). (4.3)

The Christoffel symbol and the Riemann curvature are

K.Zmzm—l Zm

1=z

szz(zz—)m—l

rl = _—
H 1 —x2(zz)™

Rinig = (4.4)

For this special case the potential equation (3.8) takes the
form
m—1
- =
1 —«*(zz)™

K.Zmzm—l Zm

1 —x%(z2)"

/

U// _|_

(4.5)
Then, we obtain

dz _d_z

K.mzm—l

a0 () dG;ﬂﬁKm@+@w%0=0 (4.6)

From this equation we immediately get the solution

f(@)[dz]® = /=cica(ny — np) 2" dz]?,

the potentials that admit the N =8 supersymmetric
extension.

Choosing the metric g to be a function of zZ only, i.e.,
setting g = ¢g(zZ)dzdz, one may explicitly solve the second
equation in Eq. (1.3) as

C1Cy < 0. (41)

U'(z) = kaz™ + a, (4.7)
with a being an arbitrary complex constant.

Thus, the one-(complex)dimensional N = 8 supersym-
metric mechanics is defined by the following bosonic
Hamiltonian:

aw+ |kaz" + al?
Hx,m,a = 1 _K'Z(ZZ)m s

{mzyo={7.2}o=1, Am7a}y={z.2}=0.

The presence of a nonzero potential breaks the kinematical
U(1) symmetry, z — €z, 7 — ez, but in the free-particle
case a = 0 the Hamiltonian becomes manifestly invariant
under this transformation and thus defines the integrable
system

with

(4.8)

74
H = J=i(zr —Z7), Hy,J},=0,
k,m,0 I_KQ(ZZ_)m I(Z” Zﬂ) { 0 }0

(4.9)

where J is the generator of U(1) symmetry.

However, for specific values of m the system can have
hidden symmetries. The simplest example corresponds to
the m = —2 case.

i) m=-=-2:

In this case the Hamiltonian (4.8) admits a
separation of variables in the polar coordinates,

_ —ip i 24 laP(1+5 2 + k|a|* cos(¢ + arga
z = re'?, ﬂ:e Pr—& , HK—za:p il (z ,4) Py il 5 ((g g ) (4.10)
2 r o 4(1-5) 4(r2 — k2)
which allows us to immediately find the quadratic constant of motion
~ -2 A2 2.2, 252
Heopo =222 |1Kazkz A Py + 2klaf* cos(p +arga) = (27— 27)* — 4"%- (4.11)
- ,

To find additional values of the parameter m leading to (super)integrable systems, one has to do the following. Fixing the
energy surface of the Hamiltonian (4.8), one may rewrite it as

77t + K ([a* + Eq o)z + ka2 4+ ka*Z" = Ey 0 — al*.

(4.12)
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From this expression we immediately deduce that for m =
1 it coincides with the energy surface of a two-dimensional
oscillator interacting with a linear electric field, which
could be absorbed by the trivial shift of the complex
coordinate z, while for m = —1/2 it can be easily trans-
formed to the m = 1 case using the Bohlin—Levi-Civita
transformation z = 2, which relates the energy surfaces of
a two-dimensional oscillator and the Coulomb problem
[19]. Hence, for the particular values of m = 1, —1/2 the
Hamiltonian (4.8) possesses two functionally independent

52
J. =1 4 —-—
! [G x(jal + Hy, 4

and by the complex constant of motion

Fe= ol + Hoa) (74

constants of motion and hence becomes superintegrable.
Let us consider these cases in full detail.

@) m=1:
In this particular case, the Hamiltonian (4.8) takes
the form
aw + |kaz +al?
H === 4.13
x,1,a 1 —K2|Z|2 ( )

It possesses a hidden symmetry given by the
deformed U(1) generator J presented in Eq. (4.9),

) (o ) g
(M%zle))z (4.15)

which can be interpreted as a deformation of the so-called Fradkin tensor written in terms of complex coordinates

z = (x; +ix,)/+v/2 and conjugate momentum.
They form the nonlinear algebra

{JK,17FK} = 2iF,

{Je1, F} = =2iF,

{FK’ FK} = 4iK'2(|d|2 + HK,l,a)‘]K,l‘ (416)

To emphasize the relationship between this system and an oscillator, let us rewrite the Hamiltonian (4.13) as

follows:

|

HK,l.a = Hgsc + Hgsc -

_ ai+ |w]z2 + Ez + EZ

, w = V2x|al, E:=xa*.  (4.17)

22’

1 —k*(z2)

The function in the numerator can be interpreted as a two-dimensional isotropic oscillator with frequency |w|
interacting with an electric field E = (E,, E,), with E = (E; +iE,)/2. The parameters x and a can be expressed

using w and E as follows:

_ P

=2 0E

(i) m = —1/2:

In this case, the Hamiltonian (4.8) acquires the form

HK,—I/Z,a =

It possesses a hidden symmetry given by the deformed U(1) generator J, _; s,

ka’\/z
(g o (o S
ol HK.—]/Z.u - |a|2 HK,—1/2.u - |Cl|2

.arg E E
= \fze-'TE%'. (4.18)
a7+ [ka-t-+ al?
1 AR (4.19)
El
_2 -
ka2 )::] , (4.20)

and by the fact that the complex constant of motion is a deformation of the two-dimensional Runge-Lenz vector

A = (A.A,), with A, = (A, +iA,)/2:
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=52

2
Kda
Az — (e —laP <\/g—_—) . (4.21)
(H,, 1/2, lal*) He 14— |af?

They form the nonlinear algebra
{JK,—1/27AK} = 2iA,, {JK,—1/2’AK} = _ZiAK’ {AK’AK} = _i(HK,—l/Z,a - |a|2)‘]1<.—1/2- (4'22)

The Hamiltonian (4.19) can be interpreted as a deformation of the two-dimensional Coulomb problem perturbed by
2

the potential 5V = k(“TZZ + \“/—z)
The bosonic Hamiltonian H (4.8) possesses the duality transformation

a7+ |kaz" + al? mr+|kaz™ + al
HK,m,a = 1— KZlZ‘m = - 1— k2‘2|,;, = _chﬁlfzv (423)
where the variables are related as (cf. [19])
k‘.zﬁz+1 7
= =— 4.24
TEair TT e (4.24)

and the following constraints on the parameters are imposed:

(m+1)(m+1)=1, k" = |+ 1, a=a. (4.25)

To be self-consistent, in the transformations (4.24) we should change the admitted values of the coordinates
from |z| € [0,x7/™) to |z| € [FV/™, ). (4.26)
Explicitly, the supercharges of the N' = 8 supersymmetric extensions of the presented bosonic systems read
Qiq = Mg + (kaz" + a)Tgﬁiﬁ + %sz‘m_lﬁiﬁﬁjﬁﬁjw

while the Hamiltonian has the form

_ _ _1 _ el =
o = TR LI ST ety i G et
—m— 112+(1K2_( i;zi‘?f"))(zam @ nian g + 2l M)
- % (Rt + 13 T))- (4.27)
The U(1) transformation z — ez extended to the supersymplectic structure (3.2) is
7 — ez, T — e, Nia = Mg (4.28)

It is defined by the generator

_Ph(z2) ., _

)m+1
iy h s 7) = —_
5207 " ia (z.2) = 22

K*(zZ
— (g — 55 A 4.29
J =i(zn —Z7) o (4.29)
where h(z,Z) is the Killing potential for U(1) isometry.
It is seen that the supercharges and the Hamiltonian in Eq. (4.27) are not invariant under this transformation for generic m,
even for a = 0. This is not surprising, since the third-order tensor f(a)[dz]? in Eq. (4.3) is invariant under the U(1)

transformation z — e only for m = —2, while the one-form (4.7) is not U(1) invariant at all. Since 7;,, transforms as dz, we
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conclude that the supercharges and supersymmetric
Hamiltonian fail to be U(1) invariant in the generic case.
Hence, it is only for the case a = 0, m = —2 [correspond-
ing to the bosonic Hamiltonian (4.11)] that we can

On the other hand, the Hamiltonian H,.,, o, in contrast to
the supercharges Q. 0)iq» 18 invariant under the trans-
formation

construct the N' = 8 supersymmetric extension with the 7 — ez, T — ey, Nig = 3. (4.30)
supercharges and Hamiltonian that are invariant under the
transformation (4.28). Hence, it commutes with the generator

- . OPh(z2) . _ +2 . ~

J=i(zm—27) — W”mnia +———9(z22)nialT {T "o} =0, (4.31)

where h(zZ) is the Killing potential (4.29) and g(zZ) =
1 —k*(zZ)™ is the component of the special Kihler
metrics (4.1).

V. CONCLUDING REMARKS

In this paper we have constructed the N = 8 super-
symmetric mechanics with a potential term, whose con-
figuration space is a special Kédhler manifold of rigid type.
We observed that it can be viewed as a complex counterpart
of the recently suggested N = 4 supersymmetric mechan-
ics [1,5]. Then, we constructed the U(1)-invariant one-
dimensional special Kéhler manifold and corresponding
N =8 supersymmetric mechanics, including N =8
supersymmetric extensions of superintegrable perturba-
tions of a deformed two-dimensional oscillator and
Coulomb systems considered in Ref. [8] as particular
cases. It is an open question whether A/ = 8 supersym-
metric counterparts of the hidden symmetries of these
superintegrable systems exist.

A less straightforward and more interesting task is the
construction of the nonlinear N =8 supersymmetric
mechanics generalizing the nonlinear supersymmetric sys-
tems considered by Plyushchay et al. (see, e.g., Ref. [20]

|
and references therein). We believe that a nonlinear super-
symmetric mechanics on the two-dimensional manifolds
considered in Ref. [21] could be directly extended to the
examples of the superintegrable models presented in
Sec. IV of this paper. This topic definitely deserves a
separate consideration, in a separate study.
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