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We construct the N ¼ 8 supersymmetric mechanics with a potential term whose configuration space is
the special Kähler manifold of rigid type and show that it can be viewed as the Kähler counterpart ofN ¼ 4

mechanics related to “curvedWitten-Dijkgraaf-Verlinde-Verlinde equations.” Then, we consider the special
case of the supersymmetric mechanics with a nonzero potential term defined on the family of Uð1Þ-
invariant one-(complex)dimensional special Kähler metrics. The bosonic parts of these systems include
superintegrable deformations of perturbed two-dimensional oscillators and Coulomb systems.
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I. INTRODUCTION

The construction ofN -extended supersymmetric mecha-
nics has remained one of the main research goals of the
supersymmetric community since the introduction of
the concept of supersymmetry. Nevertheless, until now
there has been no regular way to find the N > 2
supersymmetric extensions of the given mechanical
systems. The traditional way to increase the number
of supersymmetries (without exceeding the number of
fermionic degrees of freedom (d.o.f.)) is to provide the
configuration space with complex structure(s) (with an

appropriate specification of the potential term), i.e., to
restrict the configuration space to Kähler, hyper-Kähler,
or quaternionic manifolds. For example, on a generic
N-dimensional Riemann manifold one can always
construct the N ¼ 2 supersymmetric mechanics with
ðNj2NÞ (i.e., N bosonic and 2N fermionic) d.o.f.;
requiring that the configuration space be a generic
N-(complex)dimensional Kähler manifold and properly
specifying the potential, we can construct the N ¼ 4
supersymmetric mechanics with ðNj2NÞ (complex) d.o.f.
The bosonic part of these Hamiltonians reads

Hð2Þ ¼
1

2
gijðxÞðpipj þ ∂iWðxÞ∂jWðxÞÞ ⟶ Hð4Þ ¼

1

2
gābðz; z̄Þðπ̄aπb þ ∂̄aŪðz̄Þ∂bUðzÞÞ; ð1:1Þ

with ðpi; xiÞ and ðπa; zaÞ being canonically conjugate pairs
and gijðxÞ and gāb being the inverse Riemann and Kähler
metrics, respectively.
Another way to increase the number of supersymmetries

(above N ¼ 2 supersymmetry) is to double the number of
fermionic d.o.f., which introduces additional geometric
objects. For example, to construct the N ¼ 4 supersym-
metric extension of a free-particle system in generic

configuration space, we have to double the number of
fermionic d.o.f. from 2N to 4N and introduce the third-
rank symmetric tensor FijkðxÞdxidxjdxk, which satisfies
the curved Witten-Dijkgraaf-Verlinde-Verlinde (WDVV)
equations [1],

Fkmj;i ¼ Fkmi;j; FjkpgpqFimq − FikpgpqFjmq ¼ Rijkm;

ð1:2Þ
where Rijkl are the components of the Riemann tensor of
ðM0; gijdxidxjÞ, and the subscript “;” denotes a covariant
derivative with the Levi-Civita connection.
Similarly, to construct theN ¼ 8 supersymmetric exten-

sion of a free-particle system on a Kähler manifold we
have to increase the number of (real) fermionic variables
from 4N to 8N and introduce the third-rank holomorphic
symmetric tensor fabcðzÞdzadzbdzc, which satisfies the
equations [2]
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fabc;d ¼ fabd;c; Rab̄cd̄ ¼ −facegē
0ef̄ē0b̄ d̄; ð1:3Þ

where fabc;d ¼ fabc;d − Γe
adfebc − Γe

bdfeac − Γe
cdfeab, and

Rab̄cd̄ and Γa
bc are the nonzero components of the Riemann

tensor and Levi-Civita connection, which are defined as

Γa
bc ¼ gad̄gbd̄;c; Rab̄cd̄ ¼ gnb̄ðΓn

acÞ;d̄: ð1:4Þ

These manifolds are known as special Kähler manifold of
rigid type [3] and they have been extensively studied since
their introduction within the context of Seiberg-Witten
duality [4]. The similarity between these systems has not
been noticed before.
In this paper we show that this similarity holds for the

supersymmetric mechanics with a potential term as well.
Namely, after reviewing the main properties of N ¼ 4
supersymmetric mechanics connected with the solution of
the modified WDVV equations [1,5,6] (Sec. II), we con-
struct on the special Kähler manifold of rigid type the
N ¼ 8 supersymmetric mechanics with potential term
(Sec. III). We find that when we double the supersymme-
tries the prepotentials WðxÞ and UðzÞ in the bosonic
Hamiltonians (1.1) should satisfy the following equations:

Wi;j þFijkgkmWm ¼ 0; Ua;b − fabcgd̄cŪd̄ ¼ 0: ð1:5Þ

Finally, in Sec. IV we present the general solution of the
one-(complex)dimensional Uð1Þ-symmetric special Kähler
manifold and find the admissible set of potentials for
N ¼ 8 supersymmetric mechanics. The bosonic parts of
these supersymmetric mechanics include the superintegr-
able perturbations of a deformed two-dimensional oscil-
lator and the Coulomb system suggested in Refs. [7,8].

II.N = 4 MECHANICS ON RIEMANNMANIFOLDS

In order to construct the N ¼ 4 supersymmetric
mechanics on an N-dimensional Riemannian manifold
ðM0; gijðxÞdxidxjÞ we extend the cotangent bundle (T�M0,

dpi ∧ dxi) by 4N fermionic variables ψ iα, ψ̄ j
β ¼ ðψβ

j Þ†,
with suð2Þ indices α; β ¼ 1; 2which are raised and lowered
as follows: Aα ¼ ϵαβAβ, Aα ¼ ϵαβAβ, with ϵ12 ¼ ϵ21 ¼ 1.
We then define the following transition maps from one
chart to the other:

x̃i ¼ x̃iðxÞ; p̃i ¼
∂xj
∂x̃i pj; ψ̃ ia ¼ ∂x̃iðxÞ

∂xj ψ ja: ð2:1Þ

Then, we equip this supermanifold with a supersymplectic
structure, which is manifestly invariant with respect
to Eq. (2.1):

Ω ¼ dpi ∧ dxi þ idðψ iαgijDψ̄ j
α − ψ̄ iαgijDψ j

αÞ ¼ dpi ∧ dxi þ iRijklψ
iαψ̄ j

αdxk ∧ dxl þ 2igijDψ iα ∧ Dψ̄ j
α; ð2:2Þ

where Dψ iα ≡ dψ iα þ Γi
jkψ

jαdxk, α ¼ 1; 2, and Γi
jk and Rijkl are the components of the connection and curvature of the

metric gijðxÞdxidxj.
The Poisson brackets corresponding to this (super)symplectic structure are defined by the following nonzero

relations:

fpj; xig ¼ δij; fpi;ψ jαg ¼ −Γj
ikψ

kα; fpi; pjg ¼ 2iRijkmψ
kαψ̄m

α ; fψ iα; ψ̄ j
βg ¼ −

i
2
δαβg

ij: ð2:3Þ

Our goal is to construct the supercharges Qα and Q̄β and
the HamiltonianH, which obey theN ¼ 4, d ¼ 1 Poincaré
superalgebra

fQα; Q̄βg ¼ −
i
2
δαβH; ; fQα; Qβg ¼ fQ̄α; Q̄βg ¼ 0:

ð2:4Þ
To this end, following Ref. [1], we first equip the Riemann
manifold ðM0; gijðxÞdxidxjÞ with the third-rank symmetric
tensor FijkðxÞdxidxjdxk, which obeys Eq. (1.2).
The first equation in Eq. (1.2) defines the well-known

Codazzi tensor, while the second equation could be viewed
as a generalization of the Witten-Dijkgraaf-Verlinde-
Verlinde equation [9] to Riemann manifolds, and was
referred to the as curved WDVV equation in Refs. [1,5,6].

To construct the supersymmetric mechanics with a
nontrivial potential we can define a closed one-form on
ðM0; gijdxidxj; FijkðxÞdxidxjdxkÞ that obeys the following
compatibility condition:

Wð1Þ ¼WiðxÞdxi; dWð1Þ ¼0; Wi;jþFijkgkmWm¼0:

ð2:5Þ

Clearly, it can be locally presented as an exact one-form
Wð1Þ ¼ dWðxÞ, where the locally defined function WðxÞ is
called the “prepotential.”
With these objects in hand, we can construct the N ¼ 4

supersymmetric mechanics defined by the following super-
charges and Hamiltonian [5]:
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Qα ¼ piψ
iα þ iWiψ

iα þ iFijkψ
iβψ j

βψ̄
kα; Q̄α ¼ piψ̄

i
α − iWiψ̄

i
α þ iFijkψ̄

i
βψ̄

jβψk
α; ð2:6Þ

H ¼ gijpipj þ gijWiWj þ 4Wi;jψ
iαψ̄ j

α − 4½Fkmj;i þ Rimjk�ψ iαψ̄m
α ψ

jβψ̄k
β: ð2:7Þ

It follows from Eq. (1.2) that there exists a special coordinate frame where the metrics (and, respectively, Christoffel
symbols and Riemann tensor) takes the form [6]

gij ¼
∂2A
∂xi∂xj ; Γijk ¼

1

2

∂3AðxÞ
∂xi∂xj∂xk ; Rijkm ¼ ΓimpgpqΓqjk − ΓikpgpqΓqjm: ð2:8Þ

From the last equation it becomes clear that the choice Fijk ¼ �Γijk solves the curved WDVV equations (1.2). Then, by
solving Eq. (2.5) we get the two sets of solutions

�
Fijk ¼ −Γijk;W ¼

X
i

ci
∂A
∂xi

�
;

�
Fijk ¼ Γijk;W ¼

X
i

cixi
�
; with ci ¼ const: ð2:9Þ

The first solution is that obtained in Ref. [10]. The second solution can be transformed to the first one by a Legendre
transformation

xi → ui ¼ ∂iAðxÞ; AðxÞ → ÃðuÞ ¼ ðuixi −AðxÞÞjui¼∂iAðxÞ: ð2:10Þ

In this coordinate frame the system (2.6)–(2.7) coincides
with the N-dimensionalN ¼ 4 supersymmetric mechanics
constructed by using the N scalar supermultiplets [10] (the
respective system with a single supermultiplet was inves-
tigated in Ref. [11]).
However, in many cases it is more convenient to solve

Eqs. (1.2) and (2.5) in other frames. Below, we will
exemplify this by presenting their solutions on soðNÞ-
invariant special Riemann manifolds.

A. SOðNÞ-invariant Riemann manifolds

Let us consider the curved WDVV and potential equa-
tions (1.2) and (2.5) in isotropic [soðNÞ-invariant] spaces
with the metric represented in a conformally flat form,

gijdxidxj¼
XN
i¼1

gðrÞdxidxi; where r2¼
XN
i¼1

xixi: ð2:11Þ

Let us show that these manifolds always admit nontrivial
solutions.
Indeed, let Fð0ÞijkðxÞ and Wð0ÞðxÞ be the solutions of the

WDVV and potential equations in Euclidian space, which
obey some additional condition

Fð0ÞikpFð0Þpjm ¼ Fð0ÞjkpFð0Þpim;

∂i∂jWð0Þ þ Fð0Þijk∂kWð0Þ ¼ 0; ð2:12Þ

with

XN
i¼1

xiFð0Þijk ¼ δjk;
XN
i¼1

xi∂iWð0Þ ¼ α0; ð2:13Þ

where Fð0Þijk ¼ ∂3Fð0Þ
∂xi∂xj∂xk and α0 is some constant. The

variety of pairs ðFð0Þ;Wð0ÞÞ that obey these equations
was presented in Ref. [12].
These flat solutions can be lifted to the solutions of the

curved WDVV and potential equations in isotropic spaces
as follows (here we use a slightly different notation than
that in Refs. [1,5]):

Fσ
κjijk

¼ gðrÞ
�
Fð0ÞijkþΓðrÞδijx

kþ δjkxiþ δikxj

r2
−AðrÞx

ixjxk

r4

�
;

ð2:14Þ

where

ΓðrÞ ¼ r
2

d log g
dr

; AðrÞ ¼ 2Γ −
rΓ0=2
Γþ 1

: ð2:15Þ

The corresponding solutions of the curved potential equa-
tion and the respective Hamiltonian are given by

W¼Wð0Þ−α0

Z
Γ

1þΓ
dr
r
⇒H

¼ g−1ðrÞ
XN
i¼1

ðpipiþWð0ÞiWð0ÞiÞ−
2α20
rgðrÞ

�
1−

1

ð1þΓÞ2
�
:

ð2:16Þ

GEOMETRY AND INTEGRABILITY IN N ¼ 8 … PHYS. REV. D 101, 045002 (2020)

045002-3



Note that the “curved” counterpart of the initial
Hamiltonian yields an additional potential term with
coupling constant α20. In the particular case of a sphere
and two-sheet hyperboloid (pseudosphere), when g ¼ ð1þ
ϵr2Þ−2 (with ϵ ¼ 1 corresponding to the sphere and ϵ ¼ −1
to the pseudosphere), it coincides with the potential of the
superintegrable (pseudo)spherical generalization of a har-
monic oscillator known as a Higgs oscillator [13].
Thus, with a specific choice of the initial prepotential

Wð0ÞðxÞ we can construct N ¼ 4 supersymmetric super-
integrable deformations of a Higgs oscillator. For example,
the choiceWð0Þ ¼

P
N
i¼1 αi log x

i, Fð0Þ ¼ 1
2

P
N
i¼1ðxiÞ2 log xi

yields superintegrable (pseudo)spherical deformations of
an N-dimensional oscillator with extra centrifugal terms
(which is also known as a Rosochatius system) [14], with
an additional restriction on the oscillator frequency [5],

HRos ¼ ð1þ ϵr2Þ2
�XN

i¼1

p2
i þ

X
i

α2i
xi2

þ ϵ
4ðPiαiÞ2
ð1 − ϵr2Þ2

�
:

ð2:17Þ

Taking the solutions of Eq. (2.12) corresponding to the
three-particle rational Calogero model [15], we get the
following (pseudo)spherical Hamiltonian:

H3Calogero

¼ ð1þ ϵr2Þ2
�X3

i¼1

p2
i þ

X3
i>j¼1

2g2

ðxi − xjÞ2
þ ϵ

36g2

ð1 − ϵr2Þ2
�
:

ð2:18Þ

This is a particular case of a superintegrable (pseudo)
spherical Calogero-Higgs oscillator [16].

III. N = 8 MECHANICS ON SPECIAL
KÄHLER MANIFOLDS

In this section we generalize the system presented in
Ref. [2] and construct, on the special Kähler manifolds of
the rigid type, the ðNj4NÞ-(complex)dimensional mechan-
ics with a potential term, which possesses the N ¼ 8
supersymmetry

fQiα;Qjβg ¼ fQ̄iα; Q̄jβg ¼ 0; fQiα; Q̄jβg ¼ −iϵijϵαβH:

ð3:1Þ

For this purpose we define the ð2Nj4NÞC-dimensional
phase superspace equipped with the supersymplectic
structure

Ω ¼ dπa ∧ dza þ dπ̄ā ∧ dz̄a − Rab̄cd̄η
c
iαη̄

djiαdza ∧ dz̄b þ gab̄Dηaiα ∧ Dη̄bjiα; Dηaiα ¼ dηaiα þ Γa
bcη

b
iαdz

c; ð3:2Þ

where the fermionic variables ηaiα and η̄āiα related as
ðηaiαÞ† ¼ η̄āiα. Here α; i ¼ 1; 2 are suð2Þ indices which
are raised and lowered as follows: Aα ¼ ϵαβAβ,
Aα ¼ ϵαβAβ, Ai ¼ ϵijAj, Ai ¼ ϵijAj, with ϵ12 ¼ ϵ21 ¼ 1.
This supersymplectic structure is manifestly invariant

under the coordinate transformation

z̃a ¼ z̃aðzÞ; π̃a ¼
∂zb
∂z̃a πb; η̃aiα ¼

∂z̃a
∂zb η

b
iα; ð3:3Þ

i.e., ηaiα transforms as dza.
The Poisson brackets corresponding to Eq. (3.2) are

defined by the relations

fπa; zbg ¼ δba; fπa; ηbiαg ¼ −Γb
acη

c
iα;

fπa; π̄b̄g ¼ iRab̄cd̄η
c
iαη̄

d̄iα; fηaiα; η̄bjβg ¼ −igab̄δjiδ
β
α:

ð3:4Þ

To construct the supersymmetric mechanics with a
nonzero potential we have to equip the Kähler manifold
with the closed holomorphic one-form

Uð1Þ ¼ UaðzÞdza; Ua ¼
∂UðzÞ
∂za ; ð3:5Þ

where UðzÞ is a locally defined holomorphic function
called the “prepotential.”
With these ingredients in hand we can construct the

N ¼ 8 supersymmetric mechanics with a potential term.
Having in mind the structure of supercharges of the N ¼ 4
supersymmetric mechanics on a generic Kähler manifold
[17], and that of the N ¼ 8 supersymmetric mechanics
(without a potential term) on special Kähler manifolds [2],
we choose the following Ansätze for supercharges:

Qiα ¼ πaη
a
iα þ ŪāT

β
αη̄āiβ þ

i
3
f̄ā b̄ c̄η̄

ā
iβη̄

b̄jβη̄c̄jα;

Q̄iα ¼ π̄āη̄
ā
iα −UaT

γ
αηaiγ þ

i
3
fabcηaiβη

bjβηcjα; ð3:6Þ

where the matrix Tβ
α collects the parameters that control the

explicit breaking of the suð2Þ symmetry realized on the
greek indices, and, without loss of generality, is para-
metrized by the two angle-like parameters α0 and β0,

Tβ
α ¼

�
cos α0 eiβ0 sin α0

e−iβ0 sin α0 − cos α0

�
: ð3:7Þ

We should stress that it is impossible to introduce an
interaction that preserves both suð2Þ symmetries [realized
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on the greek and latin indices from the middle of alphabet
(i; j; k)]. However, the simultaneous breaking of both of
these symmetries results in the appearance of the central
charges in the super Poincaré algebra [18].
The components of the (anti)holomorphic symmetric

tensors fabcðzÞ and f̄ā b̄ c̄ðz̄Þ have to obey the constraints
(1.3), and Ua and Ūā were defined in Eq. (3.5).

Then, by taking their Poisson brackets we find that these
supercharges span the N ¼ 8 Poincaré superalgebra (3.1)
if Ua and Ūā obey the equations

Ua;b − fabcgd̄cŪd̄ ¼ 0; ð3:8Þ
with Ua;b ¼ Ua;b − Γc

abUc. In such a case, the
Hamiltonian reads

H ¼ gab̄ðπaπ̄b̄ þUaŪb̄Þ −
i
2
Uagaēf̄ē b̄ c̄η̄

b̄α
i Tβ

αη̄c̄iβ −
i
2
Ūāgāefebcηbαi Tβ

αηciβ

−
1

12
fabc;dηaiρηbiγη

cjγηdjρ −
1

12
f̄ā b̄ c̄;d̄η̄

āiρη̄b̄iγη̄
c̄jγη̄d̄jρ −

1

4
fabegē

0ef̄ē0c̄ d̄ðηaiα ηbiβη̄c̄jαη̄d̄βj þ ηaαi ηbjαη̄
c̄jβη̄d̄iβ Þ: ð3:9Þ

Equation (1.3) can be expressed in the distinguished
coordinate frame via a single holomorphic function F ðzÞ
(the “Seiberg-Witten potential”) (see, e.g., Ref. [3]),

gab̄¼Re∂a∂bF ðzÞ; Γābc ¼ ∂a∂b∂cF ðzÞ;⇒ fabc¼Γābc:

ð3:10Þ

In this coordinate frame Eq. (3.8) becomes

∂a∂bU − ð∂dU þ ∂ d̄ŪÞgd̄c∂a∂b∂cF ¼ 0: ð3:11Þ

From this equation we immediately get the following
solution:

UðzÞ ¼
XN
a¼1

ðma∂aF ðzÞ þ inazaÞ; ð3:12Þ

where ma and na are real constants.

The bosonic part of the constructed N ¼ 8 supersym-
metric mechanics respects the “T-duality” transforma-
tion, which is the complex counterpart of the Legendre
transformation (2.10),

za → ua ¼ ∂aF ; F ðzÞ→ F̃ ðuÞ ¼ ðzaua−F ðzÞÞjua¼∂aF :
ð3:13Þ

For the potential it reads

UðzÞ ¼
XN
a¼1

ma∂aF ðzÞ þ inaza → UðuÞ

¼
XN
a¼1

maua þ ina∂aF̃ ðuÞ: ð3:14Þ

The extension of the duality transformation to the whole
phase superspace is as follows:

ðza; πa; ηaiαÞ → ðua; pa; ξaiαÞ; where ua ¼ ∂aF ðzÞ; pa ∂2F
∂za∂zb ¼ −πb; θaiα ¼

∂2F
∂za∂zb ξ

b
iα: ð3:15Þ

Looking back at the presented model of N ¼ 8 super-
symmetric mechanics we can observe many similarities
with the N ¼ 4 supersymmetric mechanics described in
the previous section, which prompts us to consider it as a
complex counterpart of the latter. In particular, the notion of
a “special Kähler manifold of rigid type” [Eq. (1.3)] can be
viewed as the complex analog of the curved WDVV
equations (1.2), and the restriction on the prepotential
UðzÞ can be viewed as he complex counterpart of those
on the real one (1.5). In both cases, there exist special
coordinate frames where the metrics and the respective
third-rank tensors are expressed via a single function, cf.
Eqs. (2.8) and (3.10). Further similarities can be noticed by
comparing Eqs. (3.12) and (2.9).

However, the requirement of “special Kähleriality” (1.3)
is more restrictive than Eq. (1.2). For example, a special
Kähler manifold of rigid type necessarily has a negative
curvature, while the “curved WDVV equations” do not
yield such a restriction; the “curved WDVV equations”
admit nontrivial solutions on generic soðNÞ-invariant
Riemann manifolds (including N-dimensional spheres
and hyperboloids). In contrast to this, complex projective
spaces (and their noncompact counterparts) cannot be
equipped with the structure of a special Kähler manifold.
Moreover, it seems that special Kähler metrics could
possess UðNÞ isometry only in the simplest case where
N ¼ 1, which we consider in the next section.
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IV. TWO-DIMENSIONAL SYSTEMS

In this section we construct the one-(complex)dimen-
sional special Kähler manifolds which are invariant
under the Uð1Þ transformation z → eiλz, and then find

the potentials that admit the N ¼ 8 supersymmetric
extension.
Choosing the metric g to be a function of zz̄ only, i.e.,

setting g ¼ gðzz̄Þdzdz̄, one may explicitly solve the second
equation in Eq. (1.3) as

gðzz̄Þdzdz̄ ¼ ðc1ðzz̄Þn1 þ c2ðzz̄Þn2Þdzdz̄; fðzÞ½dz�3 ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
−c1c2

p ðn1 − n2Þzn1þn2−1½dz�3; c1c2 < 0: ð4:1Þ

The corresponding Kähler potential reads

Kðz; z̄Þ ¼ c1ðzz̄Þn1þ1

ðn1 þ 1Þ2 þ c2ðzz̄Þn2þ1

ðn2 þ 1Þ2 : ð4:2Þ

Then, performing the transformation
ffiffiffiffi
c1

p
n1þ1

zn1þ1 → z, we
can simplify these structures as follows:

ds2 ¼ ð1 − κ2ðzz̄ÞmÞdzdz̄;
fðzÞ½dz�3 ¼ κmzm−1½dz�3; with jzj ∈ ½0; κ−1=mÞ: ð4:3Þ

The Christoffel symbol and the Riemann curvature are

Γ1
11 ¼ −

κ2mzm−1z̄m

1 − κ2ðzz̄Þm ; R11̄11̄ ¼ −
κ2m2ðzz̄Þm−1

1 − κ2ðzz̄Þm : ð4:4Þ

For this special case the potential equation (3.8) takes the
form

U00 þ κ2mzm−1z̄m

1 − κ2ðzz̄Þm U0 −
κmzm−1

1 − κ2ðzz̄Þm Ū0 ¼ 0: ð4:5Þ

Then, we obtain

dŪðz̄Þ
dz

¼ d
dz

�
1− κ2ðzz̄Þm
κmzm−1 U00ðzÞ þ κz̄mU0ðzÞ

�
¼ 0: ð4:6Þ

From this equation we immediately get the solution

U0ðzÞ ¼ κazm þ ā; ð4:7Þ

with a being an arbitrary complex constant.
Thus, the one-(complex)dimensional N ¼ 8 supersym-

metric mechanics is defined by the following bosonic
Hamiltonian:

Hκ;m;a ¼
ππ̄þ jκazm þ āj2

1− κ2ðzz̄Þm ; with

fπ; zg0 ¼ fπ̄; z̄g0 ¼ 1; fπ; π̄g0 ¼ fz; z̄g0 ¼ 0: ð4:8Þ
The presence of a nonzero potential breaks the kinematical
Uð1Þ symmetry, z → eiλz, π → eiλπ, but in the free-particle
case a ¼ 0 the Hamiltonian becomes manifestly invariant
under this transformation and thus defines the integrable
system

Hκ;m;0 ¼
ππ̄

1− κ2ðzz̄Þm J ¼ iðzπ − z̄ π̄Þ; fH0; Jg0 ¼ 0;

ð4:9Þ

where J is the generator of Uð1Þ symmetry.
However, for specific values of m the system can have

hidden symmetries. The simplest example corresponds to
the m ¼ −2 case.

(i) m ¼ −2:
In this case the Hamiltonian (4.8) admits a

separation of variables in the polar coordinates,

z ¼ reiφ; π ¼ e−iφ

2

�
pr −

ipφ

r

�
; Hκ;−2;a ¼

p2
r þ jaj2ð1þ κ2

r4Þ
4ð1 − κ2

r2Þ
þ κ

p2
φ þ κjaj2 cosðφþ arg aÞ

4ðr2 − κ2Þ ; ð4:10Þ

which allows us to immediately find the quadratic constant of motion

Hκ;−2;a ¼
ππ̄ þ jκaz−2 þ āj2

1 − κ2

jzj2
; I ¼ p2

φ þ 2κjaj2 cosðφþ arg aÞ ¼ ðzπ − z̄ π̄Þ2 − 4κ
ā2z2 þ a2z̄2

zz̄
: ð4:11Þ

To find additional values of the parameter m leading to (super)integrable systems, one has to do the following. Fixing the
energy surface of the Hamiltonian (4.8), one may rewrite it as

ππ̄ þ κ2ðjaj2 þ Eκ;m;aÞjzj2m þ κa2zm þ κā2z̄m ¼ Eκ;m;a − jaj2: ð4:12Þ
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From this expression we immediately deduce that for m ¼
1 it coincides with the energy surface of a two-dimensional
oscillator interacting with a linear electric field, which
could be absorbed by the trivial shift of the complex
coordinate z, while for m ¼ −1=2 it can be easily trans-
formed to the m ¼ 1 case using the Bohlin–Levi-Civita
transformation z ¼ z̃2, which relates the energy surfaces of
a two-dimensional oscillator and the Coulomb problem
[19]. Hence, for the particular values of m ¼ 1, −1=2 the
Hamiltonian (4.8) possesses two functionally independent

constants of motion and hence becomes superintegrable.
Let us consider these cases in full detail.
(ii) m ¼ 1:

In this particular case, the Hamiltonian (4.8) takes
the form

Hκ;1;a ¼
ππ̄ þ jκazþ āj2

1 − κ2jzj2 : ð4:13Þ

It possesses a hidden symmetry given by the
deformed Uð1Þ generator J presented in Eq. (4.9),

Jκ;1 ¼ i

��
zþ ā2

κðjaj2 þHκ;1;aÞ
�
π −

�
z̄þ a2

κðjaj2 þHκ;1;aÞ
�
π̄

�
; ð4:14Þ

and by the complex constant of motion

Fκ ¼ π2 þ κ2ðjaj2 þHκ;1;aÞ
�
z̄þ a2

κðjaj2 þHκ;1;aÞ
�

2

; ð4:15Þ

which can be interpreted as a deformation of the so-called Fradkin tensor written in terms of complex coordinates
z ¼ ðx1 þ ix2Þ=

ffiffiffi
2

p
and conjugate momentum.

They form the nonlinear algebra

fJκ;1; Fκg ¼ 2iF; fJκ;1; F̄κg ¼ −2iF̄κ; fFκ; F̄κg ¼ 4iκ2ðjaj2 þHκ;1;aÞJκ;1: ð4:16Þ

To emphasize the relationship between this system and an oscillator, let us rewrite the Hamiltonian (4.13) as
follows:

Hκ;1;a ¼ Hκ
osc þ

jωj2
2κ2

; Hκ
osc ¼

ππ̄ þ jωj2zz̄þ Ēzþ Ez̄
1 − κ2ðzz̄Þ ; ω ≔

ffiffiffi
2

p
κjaj; E ≔ κā2: ð4:17Þ

The function in the numerator can be interpreted as a two-dimensional isotropic oscillator with frequency jωj
interacting with an electric field E ¼ ðE1; E2Þ, with E ¼ ðE1 þ iE2Þ=2. The parameters κ and a can be expressed
using ω and E as follows:

κ ¼ 1

2

jωj2
jEj ; a ¼

ffiffiffi
2

p
e−i

argE
2
jEj
jωj : ð4:18Þ

(iii) m ¼ −1=2:
In this case, the Hamiltonian (4.8) acquires the form

Hκ;−1=2;a ¼
ππ̄ þ jκa 1ffiffi

z
p þ āj2

1 − κ2

jzj
: ð4:19Þ

It possesses a hidden symmetry given by the deformed Uð1Þ generator Jκ;−1=2,

Jκ;−1=2 ¼ 2i

��
z −

κa2
ffiffiffi
z

p
Hκ;−1=2;a − jaj2

�
π −

�
z̄ −

κā2
ffiffiffī
z

p
Hκ;−1=2;a − jaj2

�
π̄

�
; ð4:20Þ

and by the fact that the complex constant of motion is a deformation of the two-dimensional Runge-Lenz vector
A ¼ ðA1; A2Þ, with Aκ ¼ ðA1 þ iA2Þ=2:
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Aκ ¼ zπ2 − ðHκ;−1=2;a − jaj2Þ
� ffiffiffī

z
p

−
κā2

Hκ;−1=2;a − jaj2
�

2

: ð4:21Þ

They form the nonlinear algebra

fJκ;−1=2; Aκg ¼ 2iAκ; fJκ;−1=2; Āκg ¼ −2iĀκ; fAκ; Āκg ¼ −iðHκ;−1=2;a − jaj2ÞJκ;−1=2: ð4:22Þ

The Hamiltonian (4.19) can be interpreted as a deformation of the two-dimensional Coulomb problem perturbed by
the potential δV ¼ kða2ffiffizp þ ā2ffiffī

z
p Þ.

The bosonic Hamiltonian H (4.8) possesses the duality transformation

Hκ;m;a ¼
ππ̄ þ jκazm þ āj2

1 − κ2jzjm ¼ −
π̃ ¯̃πþjκ̃ ã�z̃m̃ þ ¯̃aj2

1 − κ̃2jz̃jm̃ ¼ −Hκ̃;m̃;ã; ð4:23Þ

where the variables are related as (cf. [19])

z ¼ κ̃z̃m̃þ1

m̃þ 1
; π ¼ π̃

κ̃z̃m̃
; ð4:24Þ

and the following constraints on the parameters are imposed:

ðmþ 1Þðm̃þ 1Þ ¼ 1; κκ̃mþ1 ¼ jm̃þ 1jm; ã ¼ ā: ð4:25Þ

To be self-consistent, in the transformations (4.24) we should change the admitted values of the coordinates

from jzj ∈ ½0; κ−1=mÞ to jz̃j ∈ ½κ̃−1=m̃;∞Þ: ð4:26Þ

Explicitly, the supercharges of the N ¼ 8 supersymmetric extensions of the presented bosonic systems read

Qiα ¼ πηiα þ ðκāz̄m þ aÞTβ
αη̄iβ þ

i
3
κmz̄m−1η̄iβη̄

jβη̄jα;

while the Hamiltonian has the form

Hκ;m;a ¼
ππ̄ þ jκazm þ āj2

1 − κ2ðzz̄Þm þ i
mκzm−1ðaþ κāz̄mÞ
2ð1 − κ2ðzz̄ÞmÞ ηαi T

β
αηiβ − i

mκz̄m−1ðāþ κazmÞ
2ð1 − κ2ðzz̄ÞmÞ η̄αi T

β
αη̄iβ

− κm
m − 1þ κ2ð1þ 2mÞðzz̄Þm

12ð1 − κ2ðzz̄ÞmÞ ðzm−2ηiαη
iβηjβη

jα þ z̄m−2η̄iαη̄
iβη̄jβη̄

jαÞ

−
κ2m2ðzz̄Þm−1

4ð1 − κ2ðzz̄ÞmÞ ðη
i
αηiβη̄

jαη̄βj þ ηαi ηjαη̄
jβη̄iβÞ: ð4:27Þ

The Uð1Þ transformation z → eiλz extended to the supersymplectic structure (3.2) is

z → eiλz; π → e−iλπ; ηiα → eiληiα: ð4:28Þ

It is defined by the generator

J ¼ iðzπ − z̄ π̄Þ − ∂2hðzz̄Þ
∂z∂z̄ ηiαη̄iα; hðz; z̄Þ ¼ zz̄ −

κ2ðzz̄Þmþ1

mþ 1
; ð4:29Þ

where hðz; z̄Þ is the Killing potential for Uð1Þ isometry.
It is seen that the supercharges and the Hamiltonian in Eq. (4.27) are not invariant under this transformation for genericm,

even for a ¼ 0. This is not surprising, since the third-order tensor fðaÞ½dz�3 in Eq. (4.3) is invariant under the Uð1Þ
transformation z → eiν only form ¼ −2, while the one-form (4.7) is notUð1Þ invariant at all. Since ηiα transforms as dz, we

KRIVONOS, NERSESSIAN, and SHMAVONYAN PHYS. REV. D 101, 045002 (2020)

045002-8



conclude that the supercharges and supersymmetric
Hamiltonian fail to be Uð1Þ invariant in the generic case.
Hence, it is only for the case a ¼ 0; m ¼ −2 [correspond-
ing to the bosonic Hamiltonian (4.11)] that we can
construct the N ¼ 8 supersymmetric extension with the
supercharges and Hamiltonian that are invariant under the
transformation (4.28).

On the other hand, the HamiltonianHκ;m;0, in contrast to
the supercharges Qðκ;m;0Þiα, is invariant under the trans-
formation

z → eiλz; π → e−iλπ; ηiα → ei
2−m
4
ληiα: ð4:30Þ

Hence, it commutes with the generator

J̃ ¼ iðzπ − z̄ π̄Þ − ∂2hðzz̄Þ
∂z∂z̄ ηiαη̄iα þ

mþ 2

4
gðzz̄Þηiαη̄iα; fJ̃ ;Hm;0g ¼ 0; ð4:31Þ

where hðzz̄Þ is the Killing potential (4.29) and gðzz̄Þ ¼
1 − κ2ðzz̄Þm is the component of the special Kähler
metrics (4.1).

V. CONCLUDING REMARKS

In this paper we have constructed the N ¼ 8 super-
symmetric mechanics with a potential term, whose con-
figuration space is a special Kähler manifold of rigid type.
We observed that it can be viewed as a complex counterpart
of the recently suggested N ¼ 4 supersymmetric mechan-
ics [1,5]. Then, we constructed the Uð1Þ-invariant one-
dimensional special Kähler manifold and corresponding
N ¼ 8 supersymmetric mechanics, including N ¼ 8
supersymmetric extensions of superintegrable perturba-
tions of a deformed two-dimensional oscillator and
Coulomb systems considered in Ref. [8] as particular
cases. It is an open question whether N ¼ 8 supersym-
metric counterparts of the hidden symmetries of these
superintegrable systems exist.
A less straightforward and more interesting task is the

construction of the nonlinear N ¼ 8 supersymmetric
mechanics generalizing the nonlinear supersymmetric sys-
tems considered by Plyushchay et al. (see, e.g., Ref. [20]

and references therein). We believe that a nonlinear super-
symmetric mechanics on the two-dimensional manifolds
considered in Ref. [21] could be directly extended to the
examples of the superintegrable models presented in
Sec. IV of this paper. This topic definitely deserves a
separate consideration, in a separate study.
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