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It is shown that the Kerr solution exists in the generalized hybrid metric-Palatini gravity theory and that
for certain choices of the function fðR;RÞ that characterizes the theory, the Kerr solution can be stable
against perturbations on the scalar degree of freedom of the theory. We start by verifying which are the most
general conditions on the function fðR;RÞ that allow for the general relativistic Kerr solution to also be a
solution of this theory. We perform a scalar perturbation in the trace of the metric tensor, which in turn
imposes a perturbation in both the Ricci and Palatini scalar curvatures. To first order in the perturbation, the
equations of motion, namely the field equations and the equation that relates the Ricci and the Palatini
curvature scalars, can be rewritten in terms of a fourth-order wave equation for the perturbation δR which
can be factorized into two second-order massive wave equations for the same variable. The usual ansatz and
separation methods are applied and stability bounds on the effective mass of the Ricci scalar perturbation
are obtained. These stability regimes are studied case by case and specific forms of the function fðR;RÞ
that allow for a stable Kerr solution to exist within the perturbation regime studied are obtained.
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I. INTRODUCTION

General relativity, a relativistic theory of gravitation (see
e.g., Ref. [1]), has passed a great number of tests, from the
weak-field tests within the Solar System to strong-field
tests that include black holes and gravitational waves. In a
cosmological setting, one needs to add to the ingredients of
general relativity some form of dark matter to deal with the
large-scale structure of the Universe, and to postulate a
cosmological constant, or a variant of it, to explain the
acceleration of the Universe.
In alternative to the general relativity plus dark matter

and cosmological constant package, one can use a modified
theory of gravitation, an extension of general relativity, by
modifying the gravitational sector of the theory. In this way
one can also address the structure and dynamics of the
known self-gravitating systems and account for the
Universe’s self-accelerated cosmic expansion. In fðRÞ
gravity [2–5], it has been established that both metric
and Palatini [6] versions of these theories have interesting
features but also manifest severe and different downsides.
To overcome these problems, a hybrid combination of
theories, containing elements from both formalisms, turns
out to be fruitful in accounting for the observed phenom-
enology and in addition is able to avoid some drawbacks of

the original approaches. This approach is known as the
hybrid metric-Palatini gravity [7,8]. The action that
describes this theory is obtained from the usual Einstein-
Hilbert action R by the addition of a function fðRÞ, where
R is a curvature scalar defined in terms of an independent
connection Γ̂. In this theory, the metric and the affine
connection are considered to be independent degrees of
freedom, therefore combining both the metric and the
Palatini formalisms into a new modified gravity. This
theory was shown to be very successful in accounting
for observed phenomena in cosmological [9] and galactic
dynamics [10,11], leaving the Solar System constraints
unaffected [7]. For a comprehensive and extensive review
on the hybrid metric-Palatini theory see Ref. [12].
The generalized hybrid metric-Palatini (GHMP) gravity

arises as a natural outcome of the hybrid metric-Palatini
gravity, where the action Rþ fðRÞ is replaced by a general
function fðR;RÞ of both the Ricci and Palatini scalar
curvatures [13]. This theory was studied in the context of
cosmology, both with dynamical systems methods [13] and
with reconstruction techniques [14], for which it was
shown, among other behaviors, that exponentially expand-
ing cosmological models exist even when the matter
distribution is not purely vacuum. Also, asymptotically
anti–de Sitter wormhole solutions with thin shells that
satisfy the null energy condition for the whole spacetime
were obtained in this theory [15].
General relativity has produced as solutions, the static,

i.e., Schwarzschild, black hole, and the rotating, i.e., Kerr
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[16], black hole, which mirror the observed rotating
astrophysical black holes. As physically realistic objects,
Kerr black holes must be stable against exterior perturba-
tions. Within general relativity, the stability of Kerr black
holes has been studied for scalar, vectorial and tensorial
perturbations. For massless perturbations, the Kerr black
hole was shown to be stable [17,18]. For massive pertur-
bations the issue is more subtle; see e.g., Ref. [19].
Moreover, for massive scalar, vectorial and tensor pertur-
bations, the confinement of superradiant modes can lead to
an amplification of the perturbation ad infinitum, giving
rise to instabilities such as the black hole bomb [20,21].
In fðRÞ gravity black hole solutions and perturbations

have also been analyzed. An initial effort has been to
reproduce and study within fðRÞ gravity the Schwarzschild
and Kerr solutions of general relativity. This theory was
motivated to understand the acceleration of the Universe
in a natural way, and thus in principle, it contains in it
some form of a cosmological constant, meaning that the
spacetime is asymptotically de Sitter. However, the
Schwarzschild and Kerr solutions are asymptotically flat
rather than asymptotically de Sitter, the rationale for using
those, is that, as a first approximation, locally, the influence
of the cosmological constant term is negligible and thus
consideration of the Schwarzschild or Kerr solutions is
justified, besides being more simple. Thus, confining to
Schwarzschild or Kerr, perturbation analyses of those
solutions have been performed within fðRÞ gravity. For
instance, the stability of the fðRÞ Schwarzschild black hole
in fðRÞ theory was investigated in its scalar-tensor repre-
sentation by introducing two auxiliary scalars [22]. It was
shown that the curvature scalar becomes a scalaron, so that
the linearized equations are second order and in addition
are the same equations as for the massive Brans-Dicke
theory. Furthermore, it was proved that the fðRÞ black hole
solution is stable against external perturbations if the scalaron
does not have a tachyonic mass. The analysis was even
extended to include the stability of the Schwarzschild–anti–
de Sitter black hole in fðRÞ theories with a negative
cosmological constant [23] with the conclusion that stable
solutions against external perturbations exist if the scalaron is
again free from tachyons. The stability of the Schwarzschild
black hole was also analyzed in several extensions of fðRÞ
gravity [24–26]. The studyof the stability of theKerr solution
infðRÞ gravity has been studied inRefs. [27,28],where it has
been proved that it is unstable due to the fact that the
perturbation equation for the massive spin-0 graviton in this
theory, or equivalently the perturbed Ricci scalar, is analo-
gous to a Klein-Gordon equation for a massive scalar field in
general relativity which has been intensively studied and
showed to be unstable.
In GHMP gravity it is also important to analyze black

holes and their stability. Again, the Schwarzschild and Kerr
solutions are useful in this theory. The logic to study these
solutions in fðR;RÞ gravity is the same as that used in
fðRÞ, namely, although GHMP gravity was motivated to

understand the acceleration of the Universe having some
form of a cosmological constant, locally one can argue that
the influence of it is negligible and thus the use of the
Schwarzschild and Kerr solutions, rather than the asymp-
totically de Sitter counterparts, is justified. Since Kerr black
holes are stable within general relativity it is of interest to
know whether those black holes exist or not as solutions of
the GHMP gravity and, in the case that the answer is
positive, it is important to perform a stability analysis of the
black holes themselves with the theory. A first step in that
direction is to understand the perturbations in both the Ricci
and Palatini scalar curvatures of fðR;RÞ gravity within this
setting and to work out for which choices of the function
fðR;RÞ Kerr black holes are stable to those perturbations.
This is what we set out to do here.
The paper is organized as follows. In Sec. II, we

introduce the action of the GHMP gravity and compute
the respective equations ofmotion. In Sec. III, we start with a
general form of the function f that guarantees that constant
Ricci scalar R solutions exist in the GHMP gravity, and then
choose the specific case of the Kerr metric to compute
perturbations to the massive spin-0 degree of freedom. In
Sec. IV,we compute the stability regimes of the perturbations
and the forms of the function f that allow for these regimes to
be attained. In Sec. V, we conclude.

II. ACTION AND FIELD EQUATIONS
OF THE GHMP GRAVITY

Consider the action S of the GHMP gravity given by

S ¼ 1

2κ2

Z
Ω

ffiffiffiffiffiffi
−g

p
fðR;RÞd4xþ Sm; ð2:1Þ

where κ ≡ 8πG, G is the gravitational constant, Ω is the
spacetime volume and d4x its the volume element, g is the
determinant of the spacetime metric gab, R is the metric
Ricci scalar,R≡Rabgab is the Palatini Ricci scalar, where
the Palatini Ricci tensor is defined in terms of an inde-
pendent connection Γ̂c

ab as,

Rab ¼ ∂cΓ̂c
ab − ∂bΓ̂c

ac þ Γ̂c
cdΓ̂d

ab − Γ̂c
adΓ̂d

cb; ð2:2Þ

fðR;RÞ is a well-behaved function of R and R, and Sm is
the matter action defined as Sm ¼ R

d4x
ffiffiffiffiffiffi−gp

Lm where Lm

is the matter Lagrangian density considered minimally
coupled to the metric gab. We set the speed of light to one,
c ¼ 1. Equation (2.1) is the geometrical representation of
the GHMP gravity. An equivalent scalar-tensor represen-
tation of the theory with two scalar fields is possible to
obtain with the help of auxiliary scalar fields; see the
Appendix.
Variation of the action (2.1) with respect to the metric gab

yields the following equation of motion:
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∂f
∂RRab þ

∂f
∂RRab −

1

2
gabfðR;RÞ

− ð∇a∇b − gab□Þ ∂f∂R ¼ κ2Tab; ð2:3Þ

where ∇a is the covariant derivative and □ ¼ ∇a∇a is the
d’Alembertian operator, both with respect to gab, and Tab is
the stress-energy tensor defined in the usual manner as

Tab ¼ −
2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp

LmÞ
δðgabÞ : ð2:4Þ

Varying the action (2.1) with respect to the independent
connection Γ̂c

ab provides the following relationship:

∇̂c

� ffiffiffiffiffiffi
−g

p ∂f
∂R gab

�
¼ 0; ð2:5Þ

where ∇̂a is the covariant derivative with respect to the
connection Γ̂c

ab. Now recalling that
ffiffiffiffiffiffi−gp

is a scalar density

of weight 1, we have that ∇̂c
ffiffiffiffiffiffi−gp ¼ 0 and so Eq. (2.5)

simplifies to ∇̂cð∂f∂R gabÞ ¼ 0. This means that there exists a
new metric hab defined as

hab ¼ gab
∂f
∂R ð2:6Þ

such that the connection Γ̂a
bc is the Levi-Civita connection

for this metric, i.e.,

Γ̂a
bc ¼

1

2
hadð∂bhdc þ ∂chbd − ∂dhbcÞ; ð2:7Þ

where ∂a denotes a partial derivative. Note also from
Eq. (2.6) that hab is conformally related to gab through
the conformal factor ∂f=∂R. This result implies that the
two Ricci tensors Rab and Rab, that we assumed to be
independent at first, are actually related to each other by

Rab ¼ Rab −
1

fR

�
∇a∇b þ

1

2
gab□

�
fR þ 3

2f2R
∂afR∂bfR;

ð2:8Þ

where the subscripts R and R denote derivatives of the
function f with respect to either R and R, respectively.
Note that we shall be working with forms of the function f
that satisfy the Schwartz theorem, which means that its
crossed derivatives are the same, i.e., fRR ¼ fRR. We
therefore have a system of two independent equations of
motion, Eqs. (2.3) and (2.8), the latter being equivalent
to Eq. (2.5).

III. PERTURBATIONS IN GHMP OF GENERAL
RELATIVITY SOLUTIONS WITH Rab = 0

A. General conditions on the function f ðR;RÞ
In this section we assume a general form for the function

fðR;RÞ that guarantees that general relativity solutions
with Rab ¼ 0, such as the Schwarzschild and Kerr sol-
utions, are also solutions of the GHMP theory.
To do so, let us assume two very general conditions for

the function fðR;RÞ. First, consider that the function f is
analytical in both R and R around a point f0;R0g, where
R0 is a constant, and therefore can be expanded in a Taylor
series of the form

fðR;RÞ ¼
X∞

fn;mg¼0

∂ðnþmÞfð0;R0Þ
∂nR∂mR

×
Rn

n!
ðR −R0Þm

m!
: ð3:1Þ

Second, impose that the function f has a zero at the point
where we perform the Taylor series expansion, that is

fð0;R0Þ ¼ 0: ð3:2Þ

We now show that for a function f that satisfies these two
conditions it is always possible for a general relativity
solution with Rab ¼ 0 and so R ¼ 0 to be also a solution in
the GHMP gravity. To start with, let X denote R, R, or any
combination of the form RR, and so on, and let fX denote
the derivative of f with respect to X. Then, the derivatives
of the functions fX with respect to the coordinates xa can be
written as functions of the derivatives of R and R by
making use of the chain rule, from which we obtain

∂afX ¼ fXR∂aRþ fXR∂aR; ð3:3Þ

which also allow us to write the terms ∇a∇bfX and□fX as
functions of R and R as

∇a∇bfX ¼ fXRR∇aR∇bRþ fXRR∇aR∇bR

þ 2fXRR∇ðaR∇bÞRþ fXR∇a∇bR

þ fXR∇a∇bR; ð3:4Þ

where indices within parentheses are symmetrized, and

□fX ¼ gab∇a∇bfX: ð3:5Þ

Now, let us first use Eq. (2.8) to eliminate the term
Rab in Eq. (2.3), from which we get ðfR þ fRÞRab−
ð∇a∇b þ 1

2
gab□ÞfR þ 3

2fR
∂afR∂bfR − 1

2
gabf − ð∇a∇b−

gab□ÞfR ¼ κ2Tab. We want vacuum solutions of the
GHMP theory and so we further assume Tab ¼ 0. Since
we are also assuming from the start that Rab ¼ 0, this latter
equation turns into
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−
�
∇a∇b þ

1

2
gab□

�
fR þ 3

2fR
∂afR∂bfR

− ð∇a∇b − gab□ÞfR ¼ 0; ð3:6Þ

where the expansions given in Eqs. (3.3) and (3.4) could
have been inserted, but we have not written the final result
due to its length. Equation (3.6) is a partial differential
equation for R that in principle cannot be solved until we
choose a particular form for the function f. However, notice
that if R ¼ R0, where R0 is a constant, then Eq. (3.6) is
identically zero upon using Eqs. (3.3) and (3.4), with the
first assumption, i.e., Eq. (3.1), guaranteeing that all the
terms in Eq. (3.6) are finite at R ¼ 0 andR ¼ R0. We then
take the particular solution R ¼ R0. Finally, tracing
Eq. (2.8), assuming R ¼ 0 and using the solution R ¼
R0 from the previous equation, we obtain directly that
R0 ¼ 0. Thus solutions of general relativity with Rab ¼ 0
are also solutions of GHMP for which Rab ¼ 0 and so
R ¼ 0, and R ¼ 0. This result is consistent with the fact
that we have chosen a specific value for both R andR in the
previous paragraph, which implies that the conformal factor
between the metrics gab and hab, given by fR, is constant,
the two metrics thus have the same Ricci tensor, and so
R ¼ gabRab ¼ gabRab ¼ R. Note that the field equation
and the relation between the scalar curvatures are both
partial differential equations, and therefore their solutions
are not unique. We choose this particular solution because it
allows us to perform the following analysis without
specifying a form for the function f besides the two
assumptions already made.
Thus, we will work with the solutions

Rab ¼ 0; R ¼ 0; ð3:7Þ

and

R ¼ 0; ð3:8Þ

of the GHMP theory.

B. Metric perturbations and linearized
equations of motion

Let us now consider a perturbation δgab in the back-
ground metric ḡab, such that the new metric can be
written as

gab ¼ ḡab þ ϵδgab; ð3:9Þ

where ϵ is a small parameter. A bar here represents
unperturbed quantities. This perturbation in the metric
induces a perturbation in the Ricci tensor and Ricci scalar
of the form

Rab ¼ R̄ab þ ϵδRab; ð3:10Þ

R ¼ R̄þ ϵδR; ð3:11Þ

respectively. Through the definitions of Rab in terms of gab
and its derivatives, the perturbations δRab and δR can be
written in terms of δgab and its derivatives as

δRab ¼
1

2
ð2∇c∇ðaδgbÞc −□δgab −∇a∇bδgÞ; ð3:12Þ

δR ¼ ∇a∇bδgab −□δg; ð3:13Þ

where the parentheses in the indices denote index symmet-
rization and g is the trace of gab. Note that due to the
conformal relation between the metrics gab and hab, a
perturbation in the former induces a perturbation in the
latter, and thus both the Palatini Ricci tensor Rab and the
Palatini scalarRwill also bewritten in terms of perturbations
of the form Rab ¼ R̄ab þ ϵδRab and R ¼ R̄þ ϵδR,
respectively. The relation between the perturbations of the
Palatini tensor and scalar, δRab and δR, respectively, and the
perturbations of the Ricci tensor and scalar via Eq. (2.8)
perturbed to first order can beworked out, as we shall see in a
moment.
Since the unperturbed quantities R̄ and R̄ vanish in the

solutions we are considering [see Eqs. (3.7) and (3.8)], the
function f and its derivatives fX can be expanded to first
order in ϵ as

f ¼ ϵðf̄RδRþ f̄RδRÞ; ð3:14Þ

fX ¼ f̄X þ ϵðf̄XRδRþ f̄XRδRÞ; ð3:15Þ

respectively, where in Eq. (3.14) we have used f̄ð0; 0Þ ¼ 0
[see Eq. (3.2) with R0 ¼ 0]. The expansions (3.14)
and (3.15) can also be achieved using Eq. (3.1) with
fðR;RÞ ¼ fðR̄þ δR; R̄þ δRÞ. Note that the barred func-
tions are constants, because they represent the coefficients
of the Taylor expansion of the unperturbed function f, and
therefore they can be taken out of the derivative operators
unchanged, e.g., ∂af ¼ ϵðf̄R∂aδRþ f̄R∂aδRÞ. To sim-
plify the notation, from now on we shall drop the bars, and
any term containing the function f and its derivatives is to
be considered as a constant. In the scalar-tensor represen-
tation of the theory with two scalar fields it can be shown
that the perturbation analysis remains the same; see the
Appendix for more details.
The equations of motion (2.3) and (2.8) then become, in

vacuum and to first order in ϵ,

fRδRab þ fRδRab −
1

2
ḡabðfRδRþ fRδRÞ

− ð∇a∇b − gab□ÞðfRRδRþ fRRδRÞ ¼ 0; ð3:16Þ
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δRab¼δRab

−
1

fR

�
∇a∇bþ

1

2
ḡab□

�
ðfRRδRþfRRδRÞ; ð3:17Þ

respectively. These equations are fourth-order equations in
the metric perturbation δgab, and difficult to handle.
However, a system of equations for δR and δR can be

obtained by taking the trace of Eqs. (3.16) and (3.17), and
the perturbation analysis of this sector is simpler and can be
dealt with. This approach is well motivated: similarly to the
fðRÞ theories of gravity, the GHMP theory presents three
degrees of freedom without ghosts, two for massless spin-2
gravitons, and one for a massive spin-0 scalar graviton. One
might think that there are two scalar degrees of freedom
corresponding to both fR and fR, but these actually
correspond to the same degree of freedom due to their
conformal relation expressed by the trace of Eq. (2.8). Now,
the scalar degree of freedom is well described by the trace
δg. Using the Lorenz gauge, i.e., ∇bδgab ¼ ð1=2Þ∇aδg,
Eq. (3.13) turns into δR ¼ ∇a∇bδgab −□δg ¼ − 1

2
□δg.

So, under this gauge, the perturbation δR is directly related
to δg which represents the massive spin-0 degree of
freedom of the theory. We restrict ourselves to the study
of the massive scalar degree of freedom of the GHMP
theory by the analysis of the perturbation δR, i.e., we will
study stability against scalar mode perturbations.
To obtain an equation for the perturbation in the Ricci

scalar δR we shall work with the traces of Eqs. (3.16) and
(3.17). These equations become

fRδRþ fRδR − 3fRR□δR − 3fRR□δR ¼ 0; ð3:18Þ

δR ¼ δR −
3

fR
ðfRR□δRþ fRR□δRÞ; ð3:19Þ

respectively, where we used Tab ¼ 0 and f̄ ¼ fð0; 0Þ ¼ 0.
Note that the perturbations δR and δR cannot be equal. If
they were, then one of the equations above would immedi-
ately set fðR;RÞ ¼ fðR −RÞ, and thus the perturbations
would cancel completely in the other equation and we
would obtain an identity. This is not a feature of the first-
order expansion, for it can be shown with some care that for
any order in ϵ that we choose, if fðR;RÞ ¼ fðR −RÞ then
the perturbations cancel identically in these two equations.
Equations (3.18) and (3.19) can both be rewritten in the

form ð□þ a1ÞδR ¼ a2ð□þ a3ÞδR, where a1, a2, and a3
are constants that depend only on the values of fX and that
are different for both equations. To obtain an equation that
depends only on δR, we proceed as follows. First, we
solve Eq. (3.19) with respect to □δR and we replace
it in Eq. (3.18) to obtain an equation of the form
ð□þ b1ÞδR ¼ b2δR, where b1 and b2 are constants.
Second, we solve Eq. (3.19) with respect to □δR and
insert the result into Eq. (3.18) to obtain an equation of the

form ð□þ c1ÞδR ¼ c2δR, where c1 and c2 are constants.
Third, we use the first of these two equations to replace the
term depending on δR in the second equation. The
resultant equation is

□
2δRþ A□δRþ BδR ¼ 0; ð3:20Þ

where the constants A and B are given in terms of the
background quantities fX as

A ¼ fRfRR − 2fRfRR − fRfRR
3ðf2RR − fRRfRRÞ

; ð3:21Þ

B ¼ fRðfR þ fRÞ
9ðf2RR − fRRfRRÞ

: ð3:22Þ

Note that Eq. (3.20) is a fourth-order equation in the
perturbation δR. However, since A and B are constants, it is
possible to factorize Eq. (3.20) into

ð□ − μ2þÞð□ − μ2−ÞδR ¼ 0; ð3:23Þ

where the constants μ2� can be expressed in terms of the
constants A and B as

μ2þ ¼ −
1

2

�
Aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 − 4B

p �
;

μ2− ¼ −
1

2

�
A −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 − 4B

p �
; ð3:24Þ

with their main properties in terms of the parameters A and
B being plotted in Fig. 1. Note that, since μ2� are constants,
the terms ð□ − μ2þÞ and ð□ − μ2−Þ commute in Eq. (3.23),
and so we can reduce Eq. (3.23) into a set of two equations
of the form

FIG. 1. The properties of the masses μ� in the parameter space
ðA; BÞ are displayed.
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ð□ − μ2þÞδR ¼ 0; ð□ − μ2−ÞδR ¼ 0; ð3:25Þ

which are of the form of a Klein-Gordon equation for a
scalar field where the constants μ2� take the role of the
field’s mass. Thus, the scalar mode of the perturbation is a
massive mode.
We can state in brief, that when we perturb the metric

tensor, the equation that describes the perturbation in the
Ricci scalar is a fourth-order massive wave equation with
two different masses. However, since the Ricci scalar
perturbation depends on second-order derivatives of the
metric perturbation, we would expect to be confronted with
a sixth-order differential equation involving δgab, with a
very complicated and untreatable form. The use of the
Lorenz gauge is what enables one to reduce this equation to
a fourth-order equation for a massive spin-0 degree of
freedom. This fourth-order equation can be factorized into
two commutative second-order equations of the form of a
massive Klein-Gordon in general relativity. One can now
apply the usual separation methods to expand the perturba-
tion into spheroidal harmonics and a radial wave function. If
wished one can use numerical integration techniques to
compute the quasibound state frequencies.

IV. THE KERR SOLUTION IN GHMP:
EQUATIONS, SUPERRADIANT INSTABILITIES

AND STABILITY REGIMES

A. Separability of the equations of motion

1. Separability of the equations of motion,
quasibound state

Equations of the form (3.25) have been studied and are
known to be separable for the Schwarzschild and Kerr
metrics. We will be working with the Kerr metric, knowing
that the Schwarzschild metric can be directly obtained from
the Kerr metric by taking the limit where the angular
momentum is equal to zero. The Kerr metric in Boyer-
Lindquist coordinates ðt; r; θ;ϕÞ is given by

ds2 ¼ −
�
1 −

2Mr
ρ2

�
dt2 þ ρ2

Δ
dr2 þ ρ2dθ2

−
4Mrasin2θ

ρ2
dtdϕ

þ
�
r2 þ a2 þ 2Mra2sin2θ

ρ2

�
dϕ2; ð4:1Þ

with

Δ¼ r2þa2−2Mr; ρ2¼ r2þa2cos2θ; a¼ J
M
; ð4:2Þ

where M is the black hole mass and J is the black hole
angular momentum. The event horizon of the Kerr black
hole is at the radius rþ given by

rþ ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
: ð4:3Þ

To study the separability of the equations of motion,
we first note that Eq. (3.23) is a fourth-order partial
differential equation (PDE) for δR, and should therefore
have four linearly independent solutions. The equation
ð□ − μ2þÞδR ¼ 0 has two solutions, one solution corre-
sponding to ingoing waves, the other corresponding to
outgoing waves. Also, the equation ð□ − μ2−ÞδR ¼ 0 has
two solutions, one solution corresponding to ingoing
waves, and the other corresponding to outgoing waves.
To find these solutions we chose an ansatz of the form

δR ¼ ψðrÞSðθÞ exp ð−iωtþ imϕÞ; ð4:4Þ

where ψðrÞ is the radial wave function, ω is the wave
angular frequency,m is the azimuthal number, and SðθÞ are
the scalar spheroidal harmonics.
Using this ansatz, we can separate each of the factors

ð□ − μ2�ÞδR ¼ 0 into a radial and an angular equation. The
angular equation is given by

½λ −m2 þ a2ðω2 − μ2�Þcos2θ�sin2θSðθÞ
þ sin θ∂θ½sin θ∂θSðθÞ� ¼ 0; ð4:5Þ

where λ ¼ lðlþ 1Þ þ fðcÞ, l is the angular momentum
number, c ¼ a2ðω2 − μ2�Þ is a constant, and fðcÞ is
some function of c that in the regime we are working is
negligible fðcÞ ¼ OðcÞwith c ≪ 1 as we will show. In this
case, thus, the spheroidal harmonics can be approximated
by the spherical harmonics, with a constant of separation
λ ¼ lðlþ 1Þ.
Using Eq. (4.5) in Eq. (3.25) one finds a radial equation

for the radial wave function ψðrÞ. To find a more suitable
way to write this radial equation, it is useful to redefine the
radial coordinate r and the radial wave function ψðrÞ. Let
us define the tortoise coordinate r� and a new radial wave
function uðrÞ as

dr
dr�

¼ Δ
r2 þ a2

; uðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
ψðrÞ; ð4:6Þ

so that the new radial equation can be written in the form of
a wave equation in the presence of a potential barrier as

d2u
dr2�

þ ½ω2 − VðrÞ�u ¼ 0; ð4:7Þ

where the potential is given by
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VðrÞ¼ Δ
r2þa2

�
ΔþΔ0r
ðr2þa2Þ2−

3r2Δ
ðr2þa2Þ3þ

1

r2þa2

×

�
μ2�r

2−ω2a2þ4Mramω

Δ
−
m2a2

Δ
þλ

��
: ð4:8Þ

Equation (4.7) admits two solutions, one corresponding to
an ingoing wave and one to an outgoing wave. Due to the
complicated form of the potential VðrÞ of Eq. (4.8),
Eq. (4.7) has no direct analytical solution and we resort
to solving the equation numerically. For that we impose
appropriate boundary conditions at the horizon, where
r ¼ rþ and r� ¼ −∞, and at infinity, where r ¼ þ∞ and
r� ¼ þ∞.

2. Quasibound states

At the horizon rþ the potential in Eq. (4.8) takes the form
VðrþÞ ¼ ω2 − ðω −mΩÞ2, where Ω ¼ a

2Mrþ
is the angular

velocity of the horizon itself. Thus, Eq. (4.7) is d2u
dr2�

þ
ðω −mΩÞ2u ¼ 0. The solution is uðrÞ ¼ Aþeiðω−mΩÞr� þ
Bþe−iðω−mΩÞr� , for some constants of integration Aþ and
Bþ. Since the horizon functions as a one-directional
membrane, we want our boundary condition at the horizon
to be given by a purely ingoing wave, i.e., at the horizon
there are no outgoing waves, so the corresponding Aþ is
zero, Aþ ¼ 0. The solution is then uðr → rþÞ ¼
Bþe−iðω−mΩÞr� . At infinity the potential in Eq. (4.8)
takes the form Vð∞Þ ¼ μ2�. Thus, Eq. (4.7) is d2u

dr2�
þ

ðω2 − μ2�Þu ¼ 0. The solution is uðrÞ ¼ A∞e
i

ffiffiffiffiffiffiffiffiffiffi
ω2−μ2�

p
r þ

B∞e
−i

ffiffiffiffiffiffiffiffiffiffi
ω2−μ2�

p
r, for some constants of integration A∞ and

B∞. At infinity we want the solution to decay exponentially
to give rise to a quasibound state, i.e., at infinity we want no
waves and a decaying solution, so ω2 < μ2� and B∞ ¼ 0.

The solution is then uðr → ∞Þ ¼ A∞e
−

ffiffiffiffiffiffiffiffiffiffi
μ2�−ω

2
p

r. In brief, at
the horizon and at infinity the solutions are

uðr → rþÞ ¼ Bþe−iðω−mΩÞr� ;

uðr → ∞Þ ¼ A∞e
−

ffiffiffiffiffiffiffiffiffiffi
μ2�−ω

2
p

r; ð4:9Þ

respectively.
Finding the quasibound states consists of integrating the

radial Eq. (4.6) subjected to the boundary conditions in
Eq. (4.9) and computing the roots for ω. These roots will be
of the form ω ¼ ωR þ iωI , with ωR being the real part of
the frequency and ωI its imaginary part. As can be seen
from Eq. (4.4), if ωI < 0 the perturbation decays exponen-
tially with time, but if ωI > 0 the wave function grows
exponentially and at some later time can no longer be
considered a perturbation. These frequencies have been
calculated in several places [17] and we will not do it here.
We want to study the instability and the stability of Kerr

black holes in GHMP theory, so we proceed to such an
analysis.

B. Superradiant stability regimes

1. General considerations about stability

As explained, each of the terms ð□ − μ2�ÞδR ¼ 0 [see
Eq. (3.25)] gives rise to a set of two different solutions,
corresponding to an ingoing and an outgoing wave. Since
these terms commute in the full equation given by
Eq. (3.23), the complete solution for this equation is given
by a linear combination of the two sets of solutions for each
of the μ2�’s. Since Eq. (3.23) is a fourth-order equation,
these four solutions represent all the possible solutions for
the equation. As the masses μ� are different in general, the
two sets of solutions will form quasibound states for
different ranges of the angular frequency ω. Note that if
one of the two sets of solutions is unstable, then the entire
solution will also be unstable, even if the other set is stable.
The case μ� ¼ 0 is special in the sense that the solutions
will be decaying oscillating solutions and so there are no
quasibound states. If the superradiant condition ω < mΩ is
not satisfied the solution will be automatically stable. Let us
now show that it is still possible to have stability even if
there is superradiance. In this case there are two ways the
solution can be stable.
The first way to have stability even if there is super-

radiance is to consider massless perturbations, μ2� ¼ 0. In
this case, there might be superradiant modes, but quasi-
bound states never form, and so clearly the perturbation is
stable.
The second way to have stability even if there is

superradiance is to have a stable quasibound state. So,
in this case the solution obeys the superradiant condition,
namely, ω < mΩ. The solution has to have quasibound
states, so the conditions μ� > 0 and ω2 < μ2� hold. Thus,
we have

ω < minðmΩ; μ�Þ: ð4:10Þ

Moreover, to have stable bound states it is a sufficient
condition that μ� obeys [19]

μ� > μc; μc ¼ mΩ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2M

rþ

s
: ð4:11Þ

We can also achieve stability for a combination of the
two cases above, i.e., one of the masses might vanish and
the other might be in the range μ > μc.
Note that since m is an azimuthal number, it does not

have an upper bound, and so one could argue that for any
constant value of μ2�, there is always a value of m such that
μ� < μc. However, it has been shown that superradiant
instabilities are exponentially suppressed for larger values
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of m. This implies that we can consider an upper bound on
m for which the instability time scale is greater than the age
of the Universe, say mmax, and only after we choose an
appropriate value of μ� that satisfies the inequality
μ� > μmax

c . This guarantees that even if the instabilities
occur, their effects would not be seen.

2. Stability regimes: Sufficient conditions on f ðR;RÞ
The case μ2� ¼ 0.—Let us start by studying the case

where the masses μ2� vanish, μ2� ¼ 0, which implies that
quasibound states can never form and hence no instabilities
can occur. From Eqs. (3.20) and (3.24), we verify that if
both A and B vanish, then Eq. (3.23) becomes simply
□

2δR ¼ 0. This corresponds to the origin of the plot in
Fig. 1. If we can find a form of the function fðR;RÞ such
that both A and B vanish, then the Kerr solution will always
be stable in this fðR;RÞ theory.
To guarantee that none of the equations of motion

diverge, we need to guarantee that all the first and second
derivatives of f, i.e., fR, fR, fRR, fRR, fRR, are finite. On
the other hand, the factors A and B, given by Eqs. (3.21)
and (3.22), will vanish if the following conditions are
satisfied: f2RR−fRRfRR≠0, fRfRR−2fRfRR−fRfRR¼0,
and fR þ fR ¼ 0. Note that these conditions must be
satisfied at R ¼ R ¼ 0. There are many different functions
f that satisfy these conditions. The simplest class of
functions f that satisfies these conditions is

fðR;RÞ ¼ ða1 þ a2Rþ a3RÞðR −RÞ ð4:12Þ

where a1, a2, and a3 are constants that must satisfy the
constraint a2 ≠ −a3. Any higher-order form of the function
fðR;RÞ obtained from Eq. (4.12) by adding terms such as
R3 or R2R will also have stable solutions because all
these extra terms vanish when we set R ¼ 0 and R ¼ 0 in
Eqs. (3.21) and (3.22).
The case μ− ¼ 0 with μþ > μc.—Here we want μ− ¼ 0

with μþ > μc. As can be seen from Eq. (3.24), the only way
for μ− ¼ 0 is to have B ¼ 0; A > 0, but these constraints
impose that μþ < 0 (see Fig. 1), so μþ can never be greater
than μc. So there are no forms of fðR;RÞ for which the
conditions μ− ¼ 0 with μþ > μc are satisfied.
The case μþ ¼ 0 with μ− > μc.—Let us now set μþ ¼ 0

by choosing B ¼ 0, A < 0, and in this region we have
μ− > 0 (see Fig. 1), and we have to see whether we can
choose the function f in such a way that μ− > μc or not.
As before, in order to avoid divergences in the equations

of motion we have to guarantee that all the first and second
derivatives of f, i.e., fR, fR, fRR, fRR, fRR, are finite, and
the extra constraints on the function f such that B ¼ 0 and
A ≠ 0 are f2RR − fRRfRR ≠ 0, fRfRR − 2fRfRR, and
fR þ fR ¼ 0. These conditions must be satisfied at
R ¼ R ¼ 0. A simple class of functions f that satisfies
these constraints is

fðR;RÞ ¼ a1ðR −RÞ þ a2R2 þ a3R2 þ a4RR; ð4:13Þ

where a1, a2, a3, and a4 are constants. This form of the
function f implies, by Eqs. (3.21), (3.22) and (3.24), that
μ− and A can be written as

μ− ¼ −A ¼ 2a1ða2 þ a3 þ a4Þ
12a2a3 − 3a24

: ð4:14Þ

In order that the solutions are stable we have to guarantee
that the μ− of Eq. (4.14) is greater than μc, i.e.,
2a1ða2þa3þa4Þ
12a2a3−3a24

> μc. To obtain a finite A, and thus a finite

μ−, both the numerator and the denominator of Eq. (4.14)
must be ≠ 0. Now, let us try to find a specific combination
of the constants a1, a2, a3, and a4 such that μ− > μc is
satisfied. There are many combinations that work, but let us
take for example the case where a3 and a4 are set and verify
if there is a value of a2 that solves the problem. Note that
the denominator of Eq. (4.14) diverges to þ∞ when we
take the limit a2 → a24=ð4a3Þ from above. Also, if we
choose both a3 > 0 and a4 > 0, then a2 > 0 and the
numerator of Eq. (4.14) is positive in this limit. This
implies that we can always choose a finite value of a2 ≳
a24=ð4a3Þ arbitrarily close to a24=ð4a3Þ such that for any m
and Ω the condition μ− > μc is always satisfied. Note that
m does not have an upper limit, but since superradiant
instabilities are exponentially suppressed for larger values
of l and m, one has that for m ≫ 1 the effects of these
instabilities are negligible. Again, any higher-order form of
the function fðR;RÞwill also have stable solutions because
all these extra terms vanish when we set R ¼ 0 and R ¼ 0
in Eqs. (3.21) and (3.22).
The case μ� > μc.—Finally, we turn to the case where

both masses are μ� > μc. In this case we need both A and B
to be finite. Let us analyze the regions of the parameter
space of A and B that allow for these solutions to exist.
From Eq. (3.24) and Fig. 1, we can see that there are three
regions of the phase space that must be excluded: (1) the
region where 4B > A2, because both μ2� are complex;
(2) the region where B < 0, because μþ is always negative;
(3) the region where B > 0 and A > 0, because both μ2� are
negative. We are then constrained to work in the region
defined by the three conditions B > 0, A < 0 and A2 > 4B.
The approach to this problem is different from the

previous ones. Let us first study the structure of the μ2�
as functions of A and B in Eq. (3.24). In the limit of large
μ2�, we must have A → −∞ like in the previous case.
However, in this limit, the quantity inside the square root is
going to depend on how B is proportional to A. If B ∝ jAjn
with n < 2, then in this limit

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 − 4B

p
→ jAj and μþ → 0,

and we recover the previous case. On the other hand,
if B ∝ jAjn with n > 2, then in this limit we eventually
break the relation A2 > 4B and the μ2� become complex.
Therefore, we need a behavior of B of the form
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B ¼ CA2 for some constant C. Then, the constraints
B > 0 and A2 > 4B imply that the constant C must be
somewhere in the region 0 < C < 1=4. Inserting this
form of B into Eq. (3.24) leads to the relation μ2� ¼
−ð1=2ÞAð1 ∓ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4C
p Þ > 0, where the inequality arises

since we know that A < 0 and C < 1=4. At this point, if we
can choose a specific form of the function f such that we
can make A arbitrarily large, our problem is solved. Also
note that in the limit C ¼ 0 we recover the previous case C
where μþ ¼ 0, and in the limit C ¼ 1=4we obtain μþ ¼ μ−
which can be shown to give μþ ¼ μ− ¼ 0 recovering
case A, i.e., μ2� ¼ 0.
Consider now the most general form of the function f

that avoids divergences in the equations of motion, i.e., a
function f for which fR, fR, fRR, fRR and fRR are finite,

fðR;RÞ ¼ a1Rþ a2Rþ a3R2 þ a4R2 þ a5RR; ð4:15Þ

where a1, a2, a3, a4, and a5, are constants that are assumed
to be different than zero. For this particular choice of f, we
see by Eq. (3.22) that A diverges to −∞ if the numerator is
positive and we take the limit a3 → a25=ð4a4Þ from above,
or if the numerator is negative and we take the limit a3 →
a25=ð4a4Þ from below. However, this is not enough to
conclude that we can make μ2� arbitrarily large. We also
need to verify that B ¼ CA2, with 0 < C < 1=4, i.e., from
Eq. (3.22) we must have fRðfR þ fRÞðf2RR − fRRfRRÞ ¼
CðfRfRR − 2fRfRR − fRfRRÞ2 with f2RR − fRRfRR ≠ 0.
Finding the most general combinations of a1, a2, a3, a4,
and a5, for which the function f satisfies these constraints
is a fine-tuning problem. To solve this problem we proceed
as follows. First we write a3¼a25=ð4a4Þþϵ, for some ϵ≳ 0

that must be finite but we can make it arbitrarily small. We
also need to have a2 ≠ a1 to guarantee that B ≠ 0, so it is
better to redefine a2 as an a6 given by a2 ≡ −ða6 þ 1Þa1,
where a6 ≠ 0. Inserting these considerations into
fRðfR þ fRÞðf2RR − fRRfRRÞ ¼ CðfRfRR − 2fRfRR−
fRfRRÞ2, we verify that C is positive in the small-ϵ limit
only if the condition a4a6ð1þ a6Þ < 0. This happens in the
regimes −1 < a6 < 0 with a4 > 0, a6 < −1 with a4 < 0,
and a6 > 0 with a4 < 0. As an example, let us consider
a4 ¼ 1, and then a6 ¼ −1=2 which corresponds to the
maximum of the polynomial −a6ða6 þ 1Þ. Finally, we have
to guarantee that A < 0 in this regime. Inserting these
results into Eq. (3.21) we verify that A < 0 requires that
the quantities ða5 þ 1Þ and a1 have the same sign. For
simplicity, let us take a1 ¼ a5 ¼ 1. So in this example we
have a1 ¼ 1, a1 ¼ − 1

2
, a3 ¼ 1

4
þ ϵ, a4 ¼ 1, and a5 ¼ 1.

Note that other choices for the values of the parameters a1,
a2, a3, a4, and a5, could also be made following the same
reasoning. Here, our aim is simply to provide an example of
a combination that works. We are thus left with

μ2� ¼ −
A
2
ð1 ∓ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4C
p

Þ;

A ¼ −
13þ 4ϵ

48ϵ
; C ¼ 16ϵ

ð13þ 4ϵÞ2 : ð4:16Þ

From these results, we verify that for any ϵ > 0 we have,
0 < C < 1=4, and also that in the limit ϵ → 0 we have
A → −∞ and thus μ2� → þ∞. We can thus consider ϵ
arbitrarily small and force μ2� > μc for any m and Ω. We
note that m does not have an upper bound, but superradiant
instabilities are exponentially suppressed for large values of
m and we can neglect their effects. Again, any higher-order
form of the function fðR;RÞ will also work because the
extra terms vanish for R ¼ R ¼ 0.

V. CONCLUSIONS

Within GHMP with its generic function fðR;RÞ, we
have shown that it is always possible to choose a specific
value for R, namely R ¼ R0 for some solution in general
relativity with constant R ¼ 0 such that this solution is also
a solution for the GHMP gravity for any form of the
function f that satisfies two very general conditions: f must
be analytical at the point f0;R0g, and f must have a zero at
the same point, i.e., fð0;R0Þ ¼ 0. Inserting this result into
the field equations leads to the conclusion that R0 ¼ 0.
This result is in agreement with the fact that for constant R
and R, the conformal factor between the metrics gab and
hab, which is given by fR, is constant and therefore both
metrics gab and hab must have the same Ricci tensor.
We have extended the scrutiny of the GHMP gravity by

studying which functions fðR;RÞ yield stability against
scalar perturbations of Kerr black hole solutions. The
stability of the Kerr metric against superradiant instabilities
is dictated by two conditions: either the masses of the
perturbations vanish, μ� ¼ 0, or the masses of these
perturbations exceed a critical value μ� > μc. We have
shown that it is possible to select specific well-behaved
forms of the function f such that one of these two
conditions is satisfied for any value of the angular fre-
quency ω. Also, since the masses only depend on the values
of f and its derivatives at R ¼ R ¼ 0, any higher-order
term in R andR up to infinity can be added to the function
f leaving these results unaffected, being then coherent with
the two general constraints we imposed on the function f to
begin with. It would be of interest to see the restrictions
imposed on f by vector and tensor perturbations of the Kerr
solution.
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APPENDIX: SCALAR-TENSOR
REPRESENTATION OF GHMP GRAVITY

The objective of this Appendix is to show that one can
perform the perturbative analysis in the scalar-tensor
representation of the GHMP theory and that the perturba-
tion equations and the results are the same. The scalar-
tensor representation can be achieved by considering an
action with two auxiliary fields, α and β, respectively, in the
following form:

S ¼ 1

2κ2

Z
Ω

ffiffiffiffiffiffi
−g

p �
fðα; βÞ þ ∂f

∂α ðR − αÞ

þ ∂f
∂β ðR − βÞ

�
d4xþ Sm: ðA1Þ

Using α ¼ R and β ¼ R we recover the initial action in
Eq. (2.1). Therefore, we can define two scalar fields as
φ ¼ ∂f=∂α and ψ ¼ −∂f=∂β, where the negative sign is
set here for convention. The equivalent action is of the form

S ¼ 1

2κ2

Z
Ω

ffiffiffiffiffiffi
−g

p ½φR − ψR − Vðφ;ψÞ�d4x; ðA2Þ

where we defined the potential V as

Vðφ;ψÞ ¼ −fðα; βÞ þ φα − ψβ: ðA3Þ
We now have an action with four independent variables,
namely the metric gab, the independent connection Γ̂, and
the scalar fields φ and ψ . The equation of motion for Γ̂
remains the same as in the geometrical representation and it
is given by Eq. (2.5) or, equivalently, by Eq. (2.8). Using
the definitions of the scalar fields, this now becomes

Rab ¼Rab−
1

ψ

�
∇a∇bþ

1

2
gab□

�
ψþ 3

2ψ2
∂aψ∂bψ : ðA4Þ

Varying Eq. (A2) with respect to the metric gab yields the
field equation

φRab − ψRab −
1

2
gabðφR − ψR − VÞ

− ð∇a∇b − gab□Þφ ¼ 0; ðA5Þ

where we used the fact that Tab ¼ 0 for the solutions in
which we are interested in this paper. This equation is in

agreement with the geometrical representation in the sense
that it can be obtained from Eq. (2.3) simply by using the
definitions of the scalar fields φ, ψ , and the potential V.
Finally, varying the action in Eq. (A2) with respect to the
scalar fields φ and ψ yields directly

R ¼ Vφ; R ¼ −Vψ ; ðA6Þ

where the subscripts φ and ψ denote derivatives with
respect to the scalar fields φ and ψ , respectively.
Using Eq. (A4) and its trace to cancel the terms Rab and

R in Eq. (A2), and tracing the result, one verifies that one
of the possible ways for a solution in general relativity with
R ¼ 0 to be a solution for this representation of the GHMP
gravity is to impose that V ¼ 0 and also that both scalar
fields φ and ψ are constants. Note that the trace of the field
equation is a PDE for φ and ψ , like in Sec. III where it was a
PDE for R, and therefore these solutions are not unique.
We choose constant scalar fields as solutions because this is
equivalent to settingR ¼ R0 for some constantR0, and we
recover the results of the geometrical representation. Then,
using ψ ¼ ψ0 for some constant ψ0 in the trace of Eq. (A4)
one verifies that R ¼ R ¼ 0, which is the same result we
obtained before. The constraint V ¼ 0, for solutions with
R ¼ R ¼ 0 is equivalent to the constraint fð0; 0Þ ¼ 0 that
we obtained in Sec. III. On the other hand, constraining φ
and ψ to be constants is equivalent to constraining fR and
fR to be constants in the geometrical representation, which
is exactly what happens for R ¼ R ¼ 0, and thus these
results are consistent with the ones from Sec. III.
Now, let us perturb the metric gab in the sameway we did

in Eq. (3.9). This will again impose a perturbation in both R
and R of the forms R ¼ R̄þ ϵδR and R ¼ R̄þ ϵδR, plus
additional perturbations of the scalar fields of the form φ ¼
φ̄þ ϵδφ and ψ ¼ ψ̄ þ ϵδψ . From the definitions of the
scalar fields and using the fact that α ¼ R and β ¼ R, we
can rewrite the perturbations in the scalar fields as

δφ ¼ ∂2f
∂α2 δαþ ∂2f

∂α∂β δβ ¼ f̄RRδRþ f̄RRδR; ðA7Þ

δψ ¼ ∂2f
∂β2 δβ þ

∂2f
∂β∂α δα ¼ f̄RRδRþ f̄RRδR: ðA8Þ

Inserting these perturbations into the traces of Eqs. (A4)
and (A5) and keeping only the terms to leading order in ϵ
yields again the same equations as Eqs. (3.18) and (3.19),
and the procedure is the same as that in Sec. III. We
therefore conclude that the analysis of metric perturbations
in both representations of the theory is equivalent, as
anticipated.
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