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Recently, numerical solutions to the field equations of Einstein-scalar—Gauss-Bonnet (EsGB) gravity
that correspond to black holes with nontrivial scalar hair have been reported. Here, we employ the method
of the continued-faction expansion in terms of a compact coordinate in order to obtain an analytical
approximation for the aforementioned solutions. For a wide variety of coupling functionals to the Gauss-
Bonnet term we were able to obtain analytical expressions for the metric functions and the scalar field.
In addition we estimated the accuracy of these approximations by calculating the black-hole shadows
for such black holes. Excellent agreement between the numerical solutions and analytical approximations

has been found.
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I. INTRODUCTION

Nowadays black holes are the most important objects for
understanding the regime of strong gravity. Observations in
the gravitational [1-3] and electromagnetic [4,5] spectra
support general relativity, but, at the same time, leave ample
room for alternative theories of gravity [6,7]. One of the
most interesting alternative approaches is related to adding
higher-curvature corrections to the Einstein action. This
kind of extension of the Einstein gravity is inspired by the
low-energy limit of string theory [8,9] and, presumably,
could describe quantum corrected black holes. The lowest-
order correction is given by the (second order in curvature)
Gauss-Bonnet term, which is pure divergence in four-
dimensional spacetimes, but, when coupled to a scalar
field, it leads to modifications of the Einstein equations.

All the known black-hole solutions in the four-
dimensional Einstein-scalar—Gauss-Bonnet gravity are
obtained either numerically [9-14], or perturbatively
[15,16], which makes the usage of a number of tools for
analysis of behavior of such solutions either difficult or
impossible. Analytical expressions for such numerical
black-hole metrics, which are valid in the whole space
outside the event horizon, would allow us to see the explicit
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dependence of the metric on physical parameters of the
system and to work with the metric as, essentially, an exact
solution. The approach to finding analytical approximations
of numerical solutions was based on the general para-
metrization for spacetimes of static spherically symmetric
black holes [17] and extended in [18] to axial symmetry. For
spherical symmetry the parametrization uses a continued-
fraction expansion in terms of a compactified radial coor-
dinate. This choice leads to superior convergence properties
and allows one to approximate a black-hole metric with a
much smaller set of coefficients. This approach was used to
construct the analytical approximation of numerical black-
hole solutions in the Einstein-Weyl [19], Einstein-dilaton-
Gauss-Bonnet [20] and Einstein-scalar-Maxwell [21] theo-
ries. Further studies of observables in these parametrized
spacetimes [22-28] showed that usually only 2 to 3 orders of
the continued-fraction expansion are sufficient in order to
achieve reasonable accuracy.

In [20] the analytical approximation was found for the
particular choice of the scalar-field coupling functional—
the dilaton, exponential coupling, which was considered
numerically in [9]. Recently this approach was extended
in [10] to various types of the scalar-field function and,
therefore, allowed one to look whether there are some
common features for all the considered couplings of the
scalar field. A similar problem was attacked numerically
for the case of the Einstein-scalar-Maxwell theory [29] and
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the study of its analytical approximation [21] showed that
the radius of the black-hole shadow is increased for any of
the considered couplings of the scalar field. Scalarization,
that is, the phenomenon of spontaneous acquiring of a
scalar hair by the black hole as a result of the nonminimal
coupling of a scalar field to the system, has been actively
studied in [30-34].

Here we generalize the procedure for finding the
analytical approximation in the Einstein-scalar—Gauss-
Bonnet (EsGB) theory to the cases of various coupling
functionals of the scalar field. Then, we apply the obtained
parametrized black-hole metrics to the calculation of the
radii of shadows in order to estimate the relative error due
to the truncation of the continued fraction expansion
which we used. We also present the analytical expressions
for both the radius of the photon sphere and the black-hole
shadow.

The paper is organized as follows. In Sec. Il we present
the basics of the Einstein-scalar—Gauss-Bonnet theory.
Section III is devoted to the introduction of the contin-
ued-fraction expansion, while in Sec. IV we apply this
procedure to the numerical solution of the EsGB black
holes. Finally in Sec. V we find black-hole shadows for
the above numerical and parametrized black-hole metrics.
In the conclusions we summarize the obtained results and
discuss the open questions.

II. BLACK HOLES IN
EINSTEIN-SCALAR-GAUSS-BONNET GRAVITY

The Lagrangian for EsGB gravity reads

R 1
L= 2 + af (p)Rgs — 3 V, Vi, (1)

where k2 = 162Gc™* =1 is the Einstein’s constant. The
Gauss-Bonnet (GB) term is defined as

REp = (R* — 4Ry R + Ry, ,,RI1P), (2)

while « is the GB constant and f(¢) is an arbitrary smooth
function of the scalar field ¢ corresponding to GB coupling
functional.

In four dimensions, if f(¢) is a constant, then the GB
term is topological in the sense that it does not contribute to
the field equations. In the case of an exponential coupling
functional f(¢) = e? black-hole solutions with scalar hair
emerge for EsGB gravity and the first solutions were
obtained numerically in [9]. More recently, the authors
of [35] have reported that regular black-hole solutions with
scalar hair appear as a generic feature of the theory (1).

Let us start by considering the following line element for
a static and spherically symmetric spacetime:

ds* = —g,(r)dt* + g,.(r)dr* + r*(d6* + sin*0d¢?*). (3)

We also assume that the scalar field shares the symmetries
of the underlying spacetime and it thus depends solely on
the radial coordinate r.

The Einstein equations that are derived from the
theory (1) are the following:

1 1 1
Rm/ _ERgpw = _Zg;wap(pap(ﬁ +§aﬂ¢alj(p

1 -
5 (gp/tgllb + g/l/tgpu)r]rﬂoﬁprﬂﬁvyaq [af(§0)] ’

2
(4)
where
- €t
R g = """ Ryrap = \/—_—gR{rmﬁ’ (5)
and the scalar-field equation of motion is
V29 + af'(¢)Rgg = 0. (6)

where it is understood that throughout this article a prime
indicates differentiation with respect to the argument of
the function.

Numerical solutions to the field equations of EsGB gravity
corresponding to black holes with scalar hair have been
recently found in [10] for a wide range of GB couplings.
Here, by employing the method of [17] we obtain analytical
approximations of these numerical solutions.

III. THE CONTINUED-FRACTION
APPROXIMATION

In this section we outline the method of the continued-
fraction approximation (CFA) [17] and introduce the
notations we use in the rest of the article.

In the original coordinate system of (3), the radius of the
event horizon of the black-hole r, is determined by the
vanishing of the norm of the timelike Killing vector
associated with the invariance of the metric under time
translations. This condition eventually translates to
9u(rg) = 0. Then, we may perform a radial coordinate
transformation and introduce the compact coordinate

o

x51—7 (7)

that ranges from x = 0 at the location of the horizon up to
x =1 at spatial infinity.

In the CFA, we consider a new metric ansatz that is
suitable for approximating any spherically symmetric
metric to high accuracy with only a small number of
parameters [19,20]. The metric coefficients of (3) are
written in terms of the new set of functions A(x) and
B(x) defined via the following relations:
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9u(r) = xA(x),
9u(r) g, (r) = B(x)27

(8)

Ax)=1-€e(1=x) + (ag—€)(1 —x)*> +A(x)(1 —x)>
B(x) =1+ bo(1 —x) + B(x)(1 —x)*, ©)
where the parameter ¢ is determined by the value of the

asymptotic mass M of the black hole and the location of its
event horizon ry as

(10)

The parameter e indicates the amount of the deviation of
the EsGB black-hole geometry from the Schwarzschild
black hole, for which ry = 2M. The parameters a, and b
are defined in terms of ¢ and the so-called parametrized
post-Newtonian parameters £ and y as

_ €)?
TR "
%Eglﬁgiﬂ: (12)

The functions A(x) and B(x) have the delicate role of
describing the metric near the horizon (x = 0) and are
defined in terms of continued-fraction expansions as
follows:

b,

(x) = . B = (13)
I+ 1+az”);a§x 1+ 1 +b2h);x
L 1+h4x

I+...

The values of the parameters «@; and b; for i > 1 can be
obtained numerically upon expanding both sides of Egs. (8)
near the horizon and comparing coefficients of the same
order in the expansion.

At this point let us mention that at spatial infinity the
metric functions and the scalar field can be approximated
as [35]

2M  MD? 24MDf" + M>D?
gu(r) =1 =="4 5 6r
+0(1/r), (14)
2M  16M?* — D* 32M3 — 5MD?
9rr(r) = 1+ T + 42 453

768M* — 208M>D?* — 384MDf' + 3D*

+ 487

+O(1/7), (15)

D MD

32M*D - D?
00 =g+ F T

243
12M3*D - 24M?f' — MD?
* 6r*

+0(1/r), (16)

where ¢, is the asymptotic value of the scalar field and D
is its charge. Notice that the exact form of f(¢) plays no
role in the asymptotic expansions up to the third order. The
form of Eqs. (14) and (15) implies that f = y = 1 and thus
ag = by = 0 for any GB coupling functional.

In the same spirit, an analytical approximation for the
scalar field can also be obtained by means of the CFA [20].
For this purpose we define a new function of the compact
coordinate that is related to the scalar field and its asymptotic
value at spatial infinity via the following relation:

F(x) = e?) s, (17)
where the left-hand side is expanded as
F(x) =1+ fo(1=x) + F(x)(1 —x)% (18)

The coefficient f, = D/r, is determined by the value of the
charge of the scalar field and

Ji

fox °

F(x) =
1+1+%

(19)

Again, by expanding (17) near the event horizon one can
obtain numerically the values of the coefficients f; for i > 1.

IV. ANALYTICAL APPROXIMATIONS
FOR ESGB BLACK HOLES

By employing the method described in the previous
section we have derived analytical approximations for
numerical black-hole solutions emerging in ESGB gravity.
More precisely, for all the numerical solutions obtained for
the different coupling functionals studied in [10] we give
here the approximate analytic metric coefficients.

Near the location of the event horizon we may expand
the metric functions and the scalar field as follows:

)= i (r=r) 4 3t = oy

n=2

0N =S anlr = ro)" (20)
n=1
and
o) =3P ) 1)
n=0 """
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where @, = ¢")(r,) is the nth order derivative of the scalar
field evaluated on the event horizon.

The value of the scalar field on the horizon ¢, is a free
parameter, subject to the requirement ¢; € R in order for a
black-hole solution to exist. Upon specifying the form of
the coupling functional f(¢), the first derivative of the
scalar field ¢, on the horizon is uniquely determined for
each value of ¢, through the constraint [10]

N o 960!2f/((ﬂ0)2

Once the values of the parameters p;, ¢, and ¢; have been
specified, the rest of the parameters p;, g; and ¢; in the
expansions can be determined recursively up to an arbitrary
order. This is achieved by substituting Egs. (20) and (21)
into the field equations and then solving the corresponding
equations order by order in the expansion.

It is convenient to introduce a new dimensionless
parameter p instead of ¢, to parametrize the family of
black-hole solutions for each GB coupling as follows:

)

Notice that in order to have a regular black-hole solution
with a well-defined horizon [9,10], the following constraint
must hold via Eq. (22):

p €10,1], (24)

with the Schwarzschild limit corresponding to p = 0, while
for p — 1 the maximal-coupling regime is approached.

After fixing the units of length in such a way that ry =
1, p depends on two parameters, o and ¢, . In this paper we
consider @ = 1/4 and collect numerical data for the family
of black-hole solutions by varying ¢,. Further, by compar-
ing the numerical solutions for other values of a we see
that, for a fixed value of p and varying «, the variation of
the black-hole geometry is negligibly small; i.e., for
practical purposes we need to take into account only the
value of p.

For each value of p we numerically integrate the field
equations to obtain the accurate numerical solutions for the
metric functions and the scalar field.' The parameter p; is
then fine-tuned such that for r - oo we have g, (r) = 1
and g,.(r) — 1 and this way recover the asymptotically
flat limit.

With these solutions at hand, the next step is to determine
the values of the asymptotic parameters of the system. The
asymptotic mass M is computed by expanding the solution

'"The interested reader can find more details about the
numerical black-hole solutions emerging in EsGB gravity in [10].

for g,(r) at large values of the radial coordinate and
isolating the numerical coefficient of the term ~1/r.
Then, according to (14), M simply corresponds to
—1/2 x (value of coefficient). This also determines the
value of the parameter ¢ via (10). Similarly, the asymptotic
value for D of the scalar-field expansion (16) is determined
via the corresponding coefficient of the expansion of the
numerical solution for ¢(r).

The numerical values for the parameters (p;, g;, @;) are
thus determined as described above for each value of ¢,
and p; and in this way through Egs. (8) and (17) one finally
ends up with numerical values for the set (a;, b;, f;).

The above steps are repeated for different values of p that
span the allowed range [0, 1] and numerical data are
assembled for (a;, b;, f;). Then, one is able to perform a
fitting of these data in order to obtain analytical expressions
for the CFA parameters as functions of p. It is then
straightforward to write down approximate analytical
expressions for the metric functions and the scalar field
to the desired order in the CFA via (9) and (18).

A. The even-polynomial coupling function

The first case we study is the even-polynomial coupling
function

flo) =9, nez'. (25)
The form of the dimensionless parameter (23) for this
family of black-hole solutions (a = 1/4) is

p = (24n%)y" 2, (26)
and the allowed values for ¢, are thus
|po| < (24n?)=5. (27)

In order to be able to perform the analysis we need to
further reduce the number of free parameters and so we
must also choose a specific value for n in (25).

As illustrative cases for this family of functionals we
study n = 1 and n = 2 that correspond to the quadratic and
quartic couplings, respectively.

1. The quadratic GB-coupling functional

The obtained analytical expressions for the parameters of
the CFA (9), (13), (18) and (19) up to second order are
given below,

63p _ 23p*
_ 332 143
e TR (28)
—Z01 TP 55
_234p> | 152p
ar = 307 + 397 +1 (29)
2= 73 _13p ’
221 228
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FIG. 1. The asymptotic parameter € (10) as a function of
the dimensionless parameter p (23) for different GB-coupling
functionals.

L _r
43 201
105p °

577

€ =

(30)

The profile of the e parameter with respect to p is depicted
in Fig. 1 for all the GB couplings we have studied in this
article.

The above parameters alone suffice for the determination
of the analytical representation of g,,(r). We point out that a
general feature of the approximate expressions for both the
metric functions and the scalar field is that the relative error
(RE) increases with p. For the GB coupling f(¢) = ¢*
when p = 0.8 in Fig. 2 we plot the RE between the fourth-
order analytical approximation for the g, (r) metric func-
tion and its accurate numerical solution. The maximum
error occurs around the photon sphere radius at r ~ 1.5r
and is less than 0.24%.

In turn, the analytical approximation of g,,.(r) emerges
via (8) and thus requires also the expressions for the
parameters b; that are listed below,

91p  85p?

b, = 396 438 31
1 _% Lo @’ ( )
131 707

l73p
432

106p
203

47p2 _
+ 225

+1
by = L . (32)

221 283

Finally for the scalar field the analytically-approximated
parameters for the CFA are found to be

9172 _ D
56 67
P = 33 (33)
P’ +3 2+ 13 145
llp 317
S +
fO —_ 471) 138 113 (34)
+p + 1 + 155

0.0020
0.0015
0.0010 |
0.0005

0.0000

(8ut—8tt (»)/ 8t

-0.0005

-0.0010 |

1.0 1.5 2.0 2.5 3.0 3.5 4.0
I'/ro

FIG. 2. The relative error of the fourth-order analytical approxi-
mation for g, (r),) from the accurate numerical solution g;(r)
for p =0.8.

63p* | 3p
f o 151 + 46 (35)
1 2 5
113p~ +p+ 2
212 111
_ 23p3 _ 30p?
£y = 55 o7 TP (36)
2 5312, 19p

In Fig. 3 we plot the corresponding REs for both the
g,,(r) metric function and the scalar field ¢(r), both at the
fourth order in the CFA. The expressions for the second-
order analytical approximations for the metric functions
and the scalar field can be found in the Appendix A for all
the GB couplings studied in this article.”

2. The quartic GB coupling functional

The analytic approximations for the parameters of the
CFA expansion in this case are

_115p* | 13p* | p
804 + 84 +153

a; = , 37
1 85p° L2168 13 (37)
“317 TP 233 239
207p° 2 8p_ 1
a4, — 218 +tP s~ (38)
2 512 LBy 1 ’
379 T 283 T 359
8p?
_|_
¢ — 24T £ (39)
111p? 4+
305 311
53p _ 26p°
b o 233 135 , 40
R T (40)
393 317

“We only give the second-order expressions in the Appendix
for reasons of compactness but in the accompanying Mathema-
tica® file one can obtain the analytical expressions up to fourth
order. The file is available from [36].
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function and (right panel) the error for the scalar field when f(¢) =

_ PP T3 T8 T
b= (1)
467 T 381~ 516
ks 4p
£ + —£
33
Poo = 5 Jo55 > (42)
7+ B
21p?
fo— I8t Dstar @3)
PP+3 29p + 30
99p? 11p
+
__ 188 137
fi= I (44)
m tPte
32p* 33902 92
¥ e ol it (45)
PTonmp _dp_ 1
97~ 19 ~ 1003
B. The odd-polynomial coupling function
The odd-polynomial coupling function is
fl@) =9, neN. (46)

For a = 1/4 the dimensionless parameter has the following
form:

=6(2n+ 1)%p}", (47)
and the allowed values of ¢, are
@0l < (6(2n + 1)) (48)

For n = 1, the approximate analytic expressions for the
parameters are given below,

[ X))

0.000

—0.001 |

—0.002 ¢

—0.003 1

—0.004

—0.005 1

—0.006 |

@

l‘/i'()

For p = 0.5 and at fourth order in the continued-fraction approximation, (left panel) the relative error in the g,,.(r) metric

Up _719p°
84 638
a =——>2—0% 49
P oy yp-2 (49)
405 38
_179p3 97p
4y = 182 + "’253 (50)
_4p? | 4lp ’
212 T 200 +360
3 2
P Tpty 3p
e — 186 T 234 T 200 (51)
- 3
+ 570
33_13_5380172
b :L’ 52
1 _77pz+ 217 ( )
4 244
p?— 11992 186p 1
_ 205 227 123
=% w_ 1 (53)
181 — 811 512
3
P’ IOP 5p
P = 59 +77 (54)
© T 66p?
5 +p+1087
1p*
_ 142+ 43 + i 111
fO - 29p (55)
p*+ +312
46p 1ip
_|_
_ 138 56
fl &_’_ +L7 ( )
146 P T 19
p 8p* 4
£y = tirt P+ (57)
2 51p

SL__ Ip 4 2
93 T o5 T 127 T

C. The inverse-polynomial coupling function

The inverse-polynomial coupling function is

044054-6
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and the dimensionless parameter for a = 1/4 turns out
to be

p = 6n%(gg) 2. (59)

The allowed range of values for ¢ in this case is
90l = (6n2)7°. (60)

Once again, we fix n = 1 in order to perform the analysis.
The approximate analytic expressions for the parameters
in this case are given below,

13p°  4p>  l6p

__ 121 49 281 (61)

ay 7L1’2__+1 ’
355 263

583p+ 2 3lp 13

875 292 367 , (62)

_ 57p‘ 49p
340 + 306 + To1 1

a, =

€= 317 + 341 + 147 (63)

167 ,
P35

103p _ 75p°
477 406
by =—7—F—"—, (64)

_300p% | 585p
by = 307 + 1756 + 1 (65)
2 252 _133p | 250 ’

182 ~ 257 ' 671

_zp 3p 4 1
+ +113+8

Poo = — , (66)
TS
_p _28p* _ 5p
fo=—"T——" (67)
PP+t

3 1t _Tp 1
_ 16 _ 8T _71 16
f2 41p 2ip 1 ° (69)

alp” 2 _LElp 1
—o; tp 230 17

D. The logarithmic coupling function

Finally we turn to the logarithmic coupling function

f(p) = In(p); (70)

the dimensionless parameter for = 1/4 is

6
pP=—= (71)
Po
and the allowed values of ¢, are
@0l > V6. (72)

The approximate analytic expressions for the parameters
in this case are given below,

11p>  113p> 4 18p

761 2844 ' 709 (73)

_605n2+ _ 45’
~ 787

ay =

_586p° | 367p? 384

_ T3 tTee6 TP 60

2= 237 _ 255p ’
1072 ~ 1189

(74)

105p 44p?
__ 1018 _ 133
€="7 39 > (75)
657

85p  57p?

by = 381308 (76)

383
149p 69’ (77)

318 + 295 250

277 159p2
_ p + 159p~ + +10

_ 405 218 253
P = 37 167 73 (78)
P + 17 + P+
458 246 608 1310
140p°
_ 449 + 271 +ﬁ 79
fo=—"5—=, (79)
P’ +21 +3196
_83p> | 160p> | 28p
fi = 185 =~ 230 1 385 (80)
L= h69p? ’

3
2 TP T

81p3 | 37p>  350p 29
+_
378

203 ~ 571 802
f2 - 1393 (81)

27p + 2 _ )

605 233~ 384

173p 31 °

At this point, one must mention an important phenome-
non, the eikonal instability, which takes place when the
Gauss-Bonnet term is turned on. Once the Gauss-Bonnet
coupling constant is not small enough, the black-hole
solution suffers from a dynamical instability: if linearly
perturbed, the perturbation grows unboundedly. The linear
instability breaks down in the regime of small perturba-
tions, indicating that the black hole cannot exist in this
range of parameters.

The instability brought by the Gauss-Bonnet term is of
special kind: it develops at high multipole numbers, so that
the summation over the multipole numbers cannot be valid
anymore. This kind of instability was first observed for the
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higher-dimensional Einstein-Gauss-Bonnet black holes
[37] and later observed for a number of other cases,
including black branes [38], asymptotically de Sitter and
anti—de Sitter black holes [39—41], black holes and branes
in theories with higher than the second order in curvature
corrections [42—45]. In some cases, the instability occurs
not only for the gravitational perturbations, but also for the
test scalar field [46].

As the eikonal instability is a very wide phenomenon
which, it seems, does not depend on a particular form of the
higher-curvature correction, we believe that it must be
present also for the Einstein-scalar—-Gauss-Bonnet theory at
least once the scalar coupling is strong enough. Therefore,
the regime of near extremal p, corresponding to the
maximal coupling, most probably does not represent any
realistic stable black hole. Exactly in this regime our
continued fraction expansion converges slowly. On the
contrary, in the regime where one can expect stable
configuration the second-order expansion is sufficient to
constrain the relative error by a fraction of one percent. In
other words, our analytical approximation is very accurate
already at the second order, once one is limited by stable
configurations.

V. BLACK-HOLE SHADOWS AND ACCURACY OF
THE ANALYTICAL APPROXIMATION

In the previous sections we have obtained approximate
analytical expressions for the metric functions and the scalar
field up to fourth order in the CFA. In all cases, we have
found excellent agreement between the numerical and
analytical solutions by computing the RE. Still, the metric
itself is not gauge invariant and comparison of various metric
functions does not allow us to determine the accuracy of the
analytical approximation. For the latter one needs to consider
some gauge-invariant, observable quantity.

Recently black-hole shadows have been intensively stud-
ied for various theories of gravity and astrophysical envi-
ronment (an extensive, but not exhaustive list of works can

be found in [47-67] and references therein). In this section
we perform the computation of the shadows cast by the
EsGB black holes numerically. For different orders in the
continued-fraction approximation we compute the shadows
and compare them with the numerical ones. This way we
have a gauge-invariant measure of the accuracy of our
approximation.

The radius of the photon sphere rp;, of a black hole in the
coordinate system of (3) is determined by means of the
following function (see, for example, [68,69] and refer-
ences therein):

2

W(r) = ——, 82
) 9u(r) (82)
as the solution to the equation
d
—h%(r) = 0.
1) =0 (83)

Then, the radius of the black-hole shadow R, as seen by a
distant static observer located at r, is

R :h(”ph)"o :”ph\/gn(’”o)z Toh
. h(ro) \/gtt(rph) \/gtt<rph) ’

where in the last equation we have assumed that the
observer is located sufficiently far away from the black
hole so that she/he is deep in the asymptotically flat regime,
ie., gu(ro) =~ 1.

In the case of the Schwarzschild black hole it is known
that rp, = 1.5r and so according to (84) the shadow is
Ry, = 2.59808r. For the EsGB black holes, the deviations
from these two limiting values are expected to increase with
the parameter p as we move further and further away from
the Schwarzschild limit (p = 0). This is indeed the case
as the plots for the numerical values of ry, and Ry, reveal in
Fig. 4. We point out that although ry, is a nonobservable

(84)

Logl¢]

2.85

2.80

2.75

R

2.70

2.65

2.60

0.0 0.2 0.4 0.6 0.8 1.0
p

0.0 0.2 0.4 0.6 0.8 1.0
p

FIG. 4. The numerical values for the radius of the photon sphere (left panel) and the black-hole shadow (right panel) for each value of p.
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TABLE I. The accurate value of the black-hole shadow radius
and the relative error for the approximations of the first five
orders.

f=¢ f=¢& [f=¢" f=he) f=¢"

p=05 p=03 p=04 p=05 p =09
Rg/ro 2.62984  2.62456  2.63095 2.70299  2.74766
RE, 1.3759% 0.5597% 0.8669% 0.1694%  1.5947%
RE, 0.0782% 0.0111% 0.0138% 0.0198%  0.7590%
RE; 0.3380% 0.0625% 0.1307% 0.4864%  0.6678%
RE, 0.1224% 0.0214% 0.0188% 0.0495%  0.4288%
RE; 0.0413% 0.0015% 0.0104% 0.0105%  0.3065%

0.35
0.30
0.25
0.20
0.15
0.10
0.05

0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05

0.0 0.2 0.4 0.6 0.8
p

auxiliary quantity, which is not gauge invariant, it is very
useful in many applications beyond the computation of
black-hole shadows. To this end, its profile with p as
depicted in Fig. 4 provides useful information. Also, in
Appendix C, the interested reader can find approximate
analytical expressions for these two quantities.

Having obtained the accurate solutions for the shadows
numerically we can now compare how each order in the
CFA stands against the numerical solutions. By terminating
the series of the expansion of A(x) (13) each time at a;, a,,
as, a,, and as we obtain the first-, second-, third-, fourth-,
and fifth-order analytical approximation for the g, (r)
metric function, respectively.

0.35}
0.30
0.25 0.35
0.30
0.20 0.25
0.20
0.15 0.15
0.10
0.107 0.05
0.05
0.
0.35
0.30f
0.09
0.08
.25
025 0.07
0.06
0.20 0.05
0.04
0.03
0.15
0.02
0.01
0.10
0.05¢

0.1 0.2 0.3 0.4
p

FIG. 5. Maximum relative difference (in percents) for the function g,,(r) between the numerical solution for given values of a and p

and the numerical solution obtained for a = 1/4 and the same value of p, found for the following coupling functionals: f(¢) = ¢

3

(top left), f(¢) = ¢* (top right), f(¢) = ¢! (bottom left), and f(¢) = In(¢) (bottom right).
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The absolute RE of the analytical approximation of the
black-hole shadow from the numerical solution Ry, for
different couplings and values of the dimensionless
parameter p are given in Table I. Starting from the
fourth-order approximation the relative error quickly
decreases for small p. For larger values of p the con-
vergence becomes slower, so that for the near-extremal
black holes we need more orders to achieve a reasonable
approximation. However, for the nonextremal black holes,
the second- and fourth-order approximations give RE of
fractions of a percent. Notice that the third-order approxi-
mation usually leads to a slightly worse accuracy than
those of the second and fourth order.

The analytic expressions for the metric functions in the
second and fourth order in CFA deviate from the numerical

0.05 0.10 0.15 0.20 0.25 0.30

0.25
0.20
0.15
0.10

0.05

0.0 0.1 0.2 0.3 0.4 0.5
Po

ones by less than 1% for almost the entirety of the GB
couplings that we have studied in this work. Only for the
inverse polynomial case, the deviation is slightly larger, but
still smaller than 1.4%. It is noteworthy that these maximal
values for the RE actually emerge in the large-p regime
where the black holes are presumably unstable. Thus for
viable black-hole solutions the RE is quite small.

VI. ON THE APPROXIMATION FOR DIFFERENT
VALUES OF THE COUPLING CONSTANT

In the analysis performed in this article we considered
a=1/4 in order to perform the fitting and obtain the
approximate analytical expressions for the metric functions
and the scalar field. In principle with the help of the

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05

0.0 0.2 0.4 0.6 0.8
Pq

FIG. 6. Maximum relative difference (in percents) between C,¢(r) for given values of a and p, and @(r) obtained for @ = 1/4 and
the corresponding effective value of p, found numerically for the following coupling functionals: f(¢) = ¢* (top left), f(¢) = ¢*
(top right), f(¢) = ¢~' (bottom left), and f(¢) = In(¢) (bottom right).
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analytical expressions obtained here one is able to consider
a range of values for the GB constant a.

By considering other values of the coupling constant «
we have observed that for small p the variation of the
metric function is negligible. From Fig. 5 we see that the
relative difference between the accurate metric function
and the function obtained by fixing @ = 1/4 is as small as
fraction of a percent when p < 0.2.

We are now in a position to find the appropriate
approximation for the scalar field ¢(r) when a # 1/4.
First, we can introduce

p(r) = Cogp(r). (85)
where C, is a constant, such that

@) _ ) 56)

7 @

|

Assuming that the metric depends on the parameter p only,
we notice that ¢(r) satisfies (6) for a = 1/4, i.e., can be
well approximated by (17) with some effective value of the
parameter p,

p =6f"(p9)* = 962>Caf'(99)* = Cip,.  (87)

Here p,, is the actual value of the parameter given by (23),
which should be used in the expression for the metric
functions.

For any of the polynomial couplings f(¢) = ¢" Eq. (86)
yields

C, = (4a)™2, (88)

and, similarly, for f(¢) = In(¢p), we take r = 0 in (88).
On Fig. 6 we show the relative error of the above
approximation for the scalar field. Namely, we compare
C,(r) for various values of @ and p,, and the function @(r)
for a = 1/4 and the corresponding effective value of p,

p = Capa = (40)=p,.
We conclude that the scalar field can be approximated as

1

%C—a(?(")v (89)

@(r)

when p,, is sufficiently small.

The only exception is the coupling functional f(¢) = ¢?,
for which (86) cannot be satisfied. Nevertheless, the obtained
approximation for the metric functions can still be used in
this case.

VII. CONCLUSIONS

In the context of Einstein-scalar—Gauss-Bonnet gravity, a
plethora of black-hole solutions with nontrivial scalar hair
emerge for different coupling functionals to the GB term
[35]. This has been recently demonstrated in [10] where
numerical solutions to the field equations have been
obtained for four different GB couplings (even-, odd-,
inverse-polynomial and logarithmic). In this work, we
employed the powerful method of the continued-fraction
approximation [17] in order to obtain analytic expressions
for the metric functions and the scalar field for the
aforementioned GB couplings.

For each coupling functionals we parametrized the
family of black-hole solutions that emerge in terms of a
dimensionless compact parameter p that ranges from 0
(Schwarzschild limit) to 1. The analytical representation is
based on the continued-fraction expansion which con-
verges quickly for all values of p except the regime of
near extremal coupling, when p is close to unity. It is
known that in this regime, Gauss-Bonnet black holes (as
well as all the other known higher-curvature corrected
black holes and branes whose gravitational perturbations
were investigated) are unstable and, therefore, cannot exist.
Although the (in-) stability for the above considered
couplings of the scalar field have not been studied in the
literature so far, we assume that at least in the regime of the
strong scalar field, the instability should remain. It would
be interesting to check this supposition on the instability of
EsGB black holes in the future and the obtained here
analytical approximations for the black-hole metric and
scalar field makes further investigation of stability easier.

We performed the computation up to the fourth order in
the continued-fraction expansion and we have found that
the deviation of the analytic expressions from the accurate
numerical ones is at most of the order of O(1)% for black-
hole configurations which are expected to be gravitation-
ally stable. This observation alone is not sufficient to
guaranty the high accuracy of the approximation since
the metric coefficients are not gauge-invariant quantities.

To this end, in order to make a concrete and gauge-
invariant statement about the accuracy of the approximation
we turned to the black-hole shadows cast by the EsGB
black holes. We computed the shadows for five GB
couplings numerically and compared them against the
approximate results obtained via the analytical approxima-
tion to second, third and fourth order. We found that already
in the second order, the largest relative error for the
analytical approximations emerges in the maximal cou-
pling limit p — 1 and is less than 1%.

We noticed that all the considered coupling functionals
lead to an increase of the radius of the black-hole shadow
with respect to the Schwarzschild value Ry, = 2.59808r.
In addition, we have obtained analytical expressions for
the photon sphere which increases for all the couplings as
well. The analytical representation obtained here for the
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black-hole metrics and scalar fields in the Einstein-scalar—
Gauss-Bonnet theory allows one to explore various ana-
lytical, semianalytical and numerical tools in order to study
various effects in the background of these solutions, such
as accretion of matter, quasinormal modes, scattering,
Hawking radiation and others.
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APPENDIX A: ANALYTICAL EXPRESSIONS FOR
THE METRIC FUNCTIONS AND THE SCALAR
FIELD TO SECOND ORDER IN THE CFA

In this Appendix we give the explicit expressions for the
analytical approximations for the metric functions and the
scalar field in second order in the CFA.

These functions are rational functions of r, which we
give in the following form:

g,,(r)zNU)/D(')(l —if) (A1)
9u(r)ger(r) % N /DO, (A2)
e?(N=0 2 N'3) /D) (A3)

where the numerators, N, /@ A/G) and the denomi-
nators, D), D2 D) for each of the functions are given
for each coupling separately.

1. Even-polynomial GB coupling: f () =¢?

a = NPR(1-2) o
V(g (r) x NEL/ DL, (A5)
e?)=00 x5 NG/ DE). (A6)

where

NOL = p8(0.0273395r3 — 0.0273395r%r,) + p*(r3 — 0.737869r2r, — 0.0114842rr3 — 0.273615r3) + p*(—10.4088°
+10.12417%ry + 0.121014773 + 1.15224r3) + p*(29.813213 — 34.446172ry — 0.419751 773 — 3.0735r3)
+ p2(=7.36175r 4 25.9689rr( + 0.540161rr5 + 3.67187r3) 4+ p(=51.7172r% + 27.879r%ry — 0.230379rr3

—1.48583r3) + 39.8966r° —29.9903rr,

(A7)

DL = pr2(r = ry) + p*r2(10.8289r, — 10.40887) + p3r2(29.8132r — 34.5843r,) + p*r*(24.7365r, — 7.36175r)

+ pr?(28.8068ry — 51.7172r) + r*(39.8966r — 29.9903r),

(A8)

NEL = p5(r2 = rrg) + p*(5.97995rr, — 5.97995r2) + p3(9.25097r> — 9.03038rr) + 0.2336662) + p>(—13.5895r2

+12.1594rr; — 0.51606873) + p(22.3021r> — 19.9922rr, + 0.283453r3) — 13.2868r> + 12.1842rr,

DR = pSr(r = ry) + p*r(5.97995r, — 5.97995r) + p3r(9.25097r — 9.03038r,) + p2r(12.1594r, — 13.5895r)

+ pr(22.3021r — 19.9922r¢) + r(12.1842r, — 13.2868r).

NEL = p3(r? = 10638371, — 0.21031912) + p7(2.7580372 — 1.60013rr, + 0.8231482)

(A9)
(A10)
+ pb(—=4.75602r* 4 4.56272rr; — 1.016673) + p>(—9.42419r% + 5.36685rr) + 0.353077r3)
+ p*(7.2356r% — 5.19214rry + 0.00083603673) + p*(4.81869r> — 3.44584rr, + 0.0311472r3)
+ p*(0.132709r% — 0.0952131rry + 0.000016257173) + p(0.000867808r> — 0.000623499rr,), (A11)

and
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D) = per(r—1.14693r,) + p’r(2.75803r — 1.80427ry) + p°r(5.00688ry — 4.75602r) + p>r(5.97025r, — 9.42419r)
+ p*r(7.2356r — 5.96539r) + p>r(4.81869r — 3.52478r;) + p*r(0.132709r — 0.0963952r)
+ pr(0.000867808r — 0.000623594r). (A12)

2. Even-polynomial GB coupling: f(¢) =¢*

,
9u(r) = Nf(:il)e4/,D£\1/Z:4 (1 - 70> ) (A13)
2 2
V(19 (1) # NS/ DG, (A14)
e 3 3
e(/)( )= z'/\/’ﬁcv)e4/7)¥cv)e4’ (AIS)

where

N, = p8(r3 = 1.089r2r, + 0.088995973) + p7(—1.87642r3 + 2.42973r2r, — 0.0140959r12 — 0.324535r3)
+ p®(=6.91475r + 6.182647°r) + 0.0641805r7% + 0.536171r3) + p>(13.6824r3 — 14.74217°r,,
—0.0782894rr3 — 0.400357r3) + p*(—1.219047° + 3.58592r2ry + 0.0175305rr3 + 0.080451673)

+ p3(—4.2483673 + 3.429787ry + 0.0100198773 + 0.0134892r3) + p?(—0.64334213 + 0.437795r%r,
+ 0.000722858rr3 + 0.000594032r3) + p(—0.025867° + 0.0142478rr), (A16)

D

eved

= p8r2(r = ry) + p7r2(2.0348r, — 1.87642r) + pr2(6.59925r, — 6.91475r) + p>r2(13.6824r — 14.6863r,)
+ p*r2(3.44811ry — 1.219047) + p*r3(3.3963r, — 4.24836r) + p*r>(0.436086r, — 0.643342r)
+ pr2(0.0142432r, — 0.02586r), (A17)

Ng,zﬂ = p°(r* = rro) + p*(—6.02549r> + 6.109rr, + 0.0865879r3) + p*(7.52143r> — 8.05501rry — 0.189351r3)
+ p(0.81226217 + 0037913977, + 0.10084372) + p(=3.4170972 + 3.02529rr, + 0.00237323r2)
— 0043007872 + 0.0337265rr,, (A18)

D2, = pSr(r = ro) + p*r(6.1097; — 6.02549r) + p3r(7.52143r — 8.05501r,) + p2r(0.812262r + 0.0379139r)
+ pr(3.02529ry — 3.41709r) + r(0.0337265r, — 0.04300787), (A19)

NE), = p?(0.007142867% — 0.00714286rr0) + p®(r? — 0.830984rrg — 0.16901673) + p”(—1.7150172 + 1.43139rr,
+0.287647r2) + p©(—2.868172 + 1.90683rr, — 0.0388565r2) + p*(2.68777r> — 2.38079rr) — 0.239279r3)

+ p*(3.0814172 = 1.93109rry — 0.051242473) + p3(0.690131% — 0.376209rr, + 0.000923929/3)

+ p2(0.0167125r2 — 0.0085256rr, — 0.000026424172) + p(0.000111792 — 0.0000470767rr), (A20)

DY), = pBr(r = ro) + p r(1.71501ry — 1.71501r) + p©r(2.30399r, — 2.8681r) + p°r(2.68777r — 2.85841r,)

+ p*r(3.08141F — 2.28967r,) + p*r(0.69013r — 0.413742ry) + p2r(0.0167125r — 0.00910661r)
+ pr(0.00011179r — 0.000048073r). (A21)
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3. Odd-polynomial GB coupling: f(¢) =¢*

)
o) =N/ (1-2). (A22)
V(N g (r) N2 DR, (A23)
A 3 3
e?=00 NG /DS, (A24)

where

N = p8(0.0053763412r, — 0.00537634r3) + p7(—0.05188362r) + 0.00105719r72 + 0.0529408r3)
+ pb(r3 = 0.86139r2r, — 0.0104076rr2 — 0.14901873) + p(=3.96079r° + 4.055592r¢ + 0.029677rr2
+0.21103573) + p*(3.8968213 — 4.75407r2ry — 00293161772 — 0.143895r3) + p3(0.57227273 + 0.467441 127,
+0.005428417r2 4 0.028475473) 4 p*(~1.3556173 + 1.05084r2r) + 0.00352281rr3 + 0.00513373r3)
+ p(=0.17693r% 4 0.11352272r¢ + 0.000048065r72 + 0.000151556r3) — 0.00082213173, (A25)

DU = pSr2(r = ry) + p3r3(4.15743ry — 3.96079r) + p*r2(3.89682r — 4.71385r,) + p3r2(0.572272r + 0.426992r,)
+ p?r2(1.04068r, — 1.35561r) + pr2(0.113474r, — 0.17693r) — 0.00082213173, (A26)

NCL = p5(7 = rry) + p*(—5.8521472 + 5.95711rry + 0.108754r3) + p3(6.412917% — 7.08335rr, — 0.238311/2)
+ p?(2.69182r% — 1.62168rr, + 0.127734r3) + p(—4.37086r> + 3.87431rr) + 0.00238993r3) — 0.048214612
+0.0388754rr, (A27)

D) = p3r(r = ro) + p*r(5.95711ry — 5.85214r) + p3r(6.41291r — 7.08335r,) + pr(2.69182r — 1.62168r;)
+ pr(3.87431ry — 4.37086r) + r(0.0388754r, — 0.04821467), (A28)

N fjﬁd = p8(0.00790584r3 — 0.00704225rr,) + p’ (r* — 0.974721rry — 0.26161873) + p®(2.50004r* — 1.58963rr,
+0.23106273) + p*(—0.277785r% + 0.826815rr; + 0.023004673) + p*(—3.50087r> + 2.17273rr,
+0.11164673) + p3(—1.36372r> 4 0.827451rry + 0.00569516r3) + p?(—0.0768515r% + 0.0400392rr;,
—0.00036199372) + p(=0.0013015372 + 0.000634807rr), (A29)

D) = pTr(r — 1.12263r)) + p®r(2.50004r — 1.95942ry) + p5r(0.945795r, — 0.277785r)
+ p*r(2.69322r) — 3.50087r) + p*r(0.910352r, — 1.36372r) + p2r(0.0433891r, — 0.0768515r)
+ pr(0.000670351r, — 0.00130153r). (A30)

4. Inverse-polynomial GB coupling f(¢)=¢ !

) = NP (1-12). (A3)
V(N g (r) w N2 D), (A32)
)0 N /D) (A33)
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where

N = p8(0.00630915r2r) — 0.0063091573) + p7(=0.270873r2r¢ + 0.00158747rr3 + 0.272461r3)
+ pO(r® + 1.68132r%ry — 0.0676888r13 — 1.87658r3) + p°(=30.771r3 + 27.37441%ry + 0.65521 773
+3.2802773) + p*(52.7707r% — 61.4833r%r; — 0.744326rr% — 0.4052247r]) + p3(—0.028509r° + 13.45817%r,
—0.310375rr3 — 2.09652r3) + p*(—24.1726r° + 25.4044r%ry + 0.435715rr + 0.61900673)
+ p(=0.865964r3 — 3.69793r%r + 0.0327455rr% + 0.11195r3) + 0.604044r — 0.930292r,, (A34)

P

inv

= p®r?(r —ry) + p>r*(31.0226ry — 30.771r) + p*r?(52.7707r — 60.4391ry) + p>r*(11.1237r, — 0.028509r)
4 p2r2(25.2874ry — 24.17267) + pr2(—0.865964r — 3.6373r4) + r2(0.604044r — 0.93029r,), (A35)

N = p4(r? = 1.16356rr — 0.14855312) + p3(=4.6971472 + 6.11751rry + 0.73331372) + p*(1.51773r% — 5.7017rr,
— 1.07164r2) + p(9.04644r2 — 4.16948rr¢ + 0.487947r2) — 7.0095/> + 5.05739rr, (A36)

PR

inv

= p*r(r — 1.16356ry) + p*r(6.11751ry — 4.69714r) + p?r(1.51773r — 5.7017ry) + pr(9.04644r — 4.16948r,)
+ r(5.05739r5 — 7.0095r), (A37)

N = p8(=0.0140845rry — 0.13691212) + p7(r? + 0.455729rr — 0.327295r2) + p©(—3.28574r% + 1.52376rr,
+0.538745r3) + p°(0.397664r* — 1.30549rr) + 0.086696873) + p*(1.67086r* — 0.71786rry — 0.115423r3)
+ p3(0.381375/2 — 0.127462rr, — 0.014545772) + p?(0.0258233r2 — 0.00845295rr, — 0.00036657872)

+ p(0.0003462412 — 0.000100545rr,), (A38)
D) = pTr(r +0.79726r,) + por(0.109978r, — 3.28574r) + p3r(0.397664r — 0.585227r,)
+ p*r(1.67086r — 0.367609ry) + p3r(0.381375r — 0.0841323ry) + p>r(0.0258233r — 0.00668003 )
+ pr(0.00034624r — 0.0000924255r). (A39)
5. Logarithmic GB coupling: f(¢) = In (¢)
1 I
) = N (1-12). (A40)
V9u(r) g () ~ N o)/ Digy (A41)
A 3 3
P00 Nfog> /pfog, (A42)
where

Ny = p7(0.062608473 — 0.062608472ry) + p®(r* — 06219861770 — 0.37801413) + p’(—4.818947° + 4.13961 7,
—0.0186288r73 + 0.65135r3) + p*(7.271367° — 6.76272r%ry + 0.117437rr3 — 0.04076567r3) + p3(—1.24665r°
+0.28568172r) — 0.248593rr2 — 0.91005613) + p*(—6.33774r% 4 8.6188r%ry + 0.219636r72 + 0.84532173)

+ p(5.38018r° — 7.52226r%r; — 0.0698525rr5 — 0.230411r3) — 1.24797r° + 1.925217%r, (A43)
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Diay = POr3(r = 1) + por2(4.81894r, — 4.818947) + p*r?(7.27136r — 6.97382ry) + p*r(~1.24665r — 0.266442r)
+ p2r3(9.14686r) — 6.33774r) + pr2(5.38018r — 7.65098r,) + r*(1.92521ry — 1.24797r), (A44)
N2 = p*(r* = 0.593401rr, + 0.39439973) + p*(=7.90727% + 4.88145rr, — 1.3358573) + p(20.3089> — 13246177,
+ 1.5040772) + p(—21.27121% + 14.5616rr, — 0.56277312) + 7.88315r% — 5.61692rr,, (A45)
Di) = p*r(r = 0.5934017,) + p’r(4.88145r, — 7.9072r) + p>r(20.3089r — 13.2461ry) + pr(14.5616r, — 21.27127)

+ r(7.88315r — 5.61692r;). (A46)

N fj; = p¥(0.311804rr, — 1.56376r3) + p’(r> — 0.55209677) + 5.09849r2) + p°(5.220197% — 1.79963rr) — 5.43249r3)
+ p3(=16.40947% 4 4.36303rry + 1.5205173) + p*(8.21674r> — 1.77521rry + 0.254627r3)
+ p(2.36595r% — 0.651287rr) + 0.0795184r2) + p?(0.16033972 — 0.0446282r7 + 0.0049020872)
+ p(0.0026305r% — 0.000740342rr), (A47)

3
Dig

= p'r(r—2.35737ry) + p°r(5.22019r + 2.40632ry) + p>r(4.7997ry — 16.4094r) + p*r(8.21674r — 4.25309r)
+ p3r(2.36595r — 0.95373r,) + p?r(0.160339r — 0.0538552r;) + pr(0.0026305r — 0.000823782r,). (A48)

APPENDIX B: ANALYTICAL EXPRESSIONS 2. Even-polynomial GB coupling: f (@) =¢*
FOR THE HIGHER-ORDER CFA COEFFICIENTS
UP TO FOURTH ORDER

1. Even-polynomial GB coupling: f(¢) =¢? _ 1(2)2;573 4 p?— 4;17167 "
3T T4y _wop esp_ 1 (B7)

391 914 214 ~ 330

13p? 37
ay = —=21 2, (B1) 1234 50202 | 93
177 _ 56p __1’_|_p3__17+_l’_|_£
991 ~ 313 a, — — 28 575 1 293 T 413 (BS)
S _Ip ’
262~ 367
_de3pt 4 3 233p  4Tp 1
a, = 1015 p 338 T 363 _ 189 (B2)
- P 1 ’
353~ 350 2 _3p _ 97
_ 317 313 (BY)
2 PTIR _5p  a6”
2y, 10 291 ~ 339 T 357
by 8p289 S6p | 61556’ (B3)
131~ 375 T 737 s e
by — 28 " P77 550 T a9 (B10)
2_3p 17 4 2 _r ’
by — P~ 90 366 (B4) 271 7 134
4 10 _ 43p 5
303 ~ 1375
45p* 3
_18p? _ 39 —_leg T 47 Bl11
f :m (BS) E 13_13p (B11)
3 37 _28p a4 @
133 ~ 103
27p* 3 62p* 46p 1
_ sapt 3 50p% | 10p 1 Sty p3 02ty A6 L
fi= s TP~ Yo —am (B6) fq=—2D : 63p 105 74 (B12)
4 P _ 1 ' 100 ~ 100
763 ~ 356
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3. Odd-polynomial GB coupling: f(¢) =¢*

127p>  257p? fp-2
. — 188 270 213
3 35 _49p ’
253~ 354
_709° 4 2 167p 35
_ T3l 301 367
4 28p _ 8 ’
1009 — 287
2_Tp _ 74
b — 260 197
3752 _2p 37
296 184 T 264
409p
b p? _W+377
4T 5 _1p
144 ~ 331
_19p? 4 _ 21
i P =330
3 23 _2p
64~ 57
110p 6217 50p 1
fu= 83 + 65 T 120 ~ 140
4= 1 _r :
126 ~ 126

4. Inverse-polynomial GB coupling: f (@) =¢

as =

99p3  70p?

817 299 +p + 524

_106p? , 7lp 5
207 + 144 +276

110p 2 _13p_ 2
197 +p 94 181

a, =

b3:

b4:

21 _ 43p ’

185 379

_0p? _ 1ol
o3 TP 247
37p? 16p

211 + 245

_266p° | 2 _TIp 1
353 TP 35t oo

1 _ 6p ’
57 337

_85p3+ 2_9p 1

— 116~ 235

67 + 117 104"'%

(B13)

(B14)

(B15)

(B16)

(B17)

(B18)

-1

(B19)

(B20)

(B21)

(B22)

(B23)

(B24)

5. Logarithmic GB coupling: f(¢) = log (@)

= B2
GT s ey s (B25)
595 433 743 343
__637p? 2 _132p | 15
— 06 + 335 1 649 (B26)
4 > 487p 109
647 1523 644
_109p 6
181 188
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82 _9p 55
43 232 237
9 2 _2p | 7
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203 225

APPENDIX C: ANALYTICAL EXPRESSIONS
FOR THE PHOTON-SPHERE RADII AND
THE BLACK-HOLE SHADOWS

Here we present approximate analytical expressions for the
radius of the photon sphere and the black-hole shadow for the
four GB couplings that we have considered in this work.

Notice that in order to obtain these analytical expressions
no approximate expression for the metric functions has
been involved. Instead, we employed only the accurate
numerical solution for g,(r) aiming to get the most
accurate results.

For various values of p we computed the corresponding
values of ry, and Ry, and in turn we performed a fitting of the
collected data. Eventually, as any fitting procedure unavoid-
ably introduces some error we have also included Fig. 7 to
quantify the accuracy of the fitting of the numerical data at
each value of the dimensionless parameter p.

1. Even-polynomial GB coupling: f(¢p) =¢?

_5p° _ 366p
— 292 571+1 (Cl)
ph= "y 199
37 a8
_3p_22p g
_ T 2927 617
Rsh_—m_ﬁ_p . (C2)
265~ 373
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FIG. 7. The absolute relative error between numerical values and the analytical expressions of Egs. (C1)—(C10) that have been
obtained by fitting the accurate numerical values for the photon-sphere radius (left) and the black-hole shadow (right).

2. Even-polynomial GB coupling: f(¢) =¢*
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3. Odd-polynomial GB coupling: f(¢) =¢*
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4. Inverse-polynomial GB coupling: f(¢)=¢ !
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