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We investigate here the locally naked singularity formed due to a spherically symmetric inhomogeneous
collapsing cloud having nonzero isotropic pressure, in terms of its strength. A sufficient condition provided
by Clarke and Krolak for it to be Tipler strong has been used to restrict the parameters that represent the
nonlinear relation between the physical radius and the radial coordinate of the outgoing radial null geodesic
at the singular center. Studying an end state of a collapsing cloud requires information about the dynamics
of collapse, which is unknown in a general scenario. Hence we study small perturbations to the mass profile
for inhomogeneous dust, which is possible using the formalism developed here. This perturbed mass
profile, in turn, gives rise to nonzero pressure. We show the existence of a nonzero measure set of initial
data giving rise to such strong curvature naked singularity.
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I. INTRODUCTION

When a sufficiently massive astrophysical body under-
goes unhindered gravitational collapse, the end state is an
infinitely dense spacetime singularity according to the
general theory of relativity. Such a singularity is, however,
always hidden from an outside observer, according to the
cosmic censorship hypothesis (CCH) [1]. The strong form
of CCH, suggesting that no nonspacelike geodesics can
escape the singularity, has lately been under scrutiny
because it can now be shown that the weak energy con-
dition or the positivity of energy density guarantees a
nonzero measured set of such geodesics. Formation of such
locally naked singularity due to the gravitational collapse of
a Lemaitre-Tolman-Bondi (LTB) dust cloud, which has
zero pressure, was shown to be possible by Joshi and
Dwivedi [2], under generic initial conditions. The signifi-
cant role played by the inhomogeneity of the collapsing
cloud was highlighted in such a phenomena. However,
unlike the LTB dust cloud, a more realistic star does have
nonzero pressure. Additionally, the matter is expected to
behave like a perfect fluid at the center of the cloud as
discussed in [3]. The formalism developed to investigate
the end state of a collapsing cloud having nonzero pressure
suggests that the local nakedness or otherwise of the sin-
gularity thus formed, depends upon the polarity of the
smallest nonzero component of the Taylor expansion of the
singularity curve [4,5]. The positivity of such component

implies that the tangent of the outgoing radial null geodesic
(ORNG) is positive at the singularity, implying that the
singularity is at least locally naked.
Such locally naked singularities, however, may not be

considered as evidence for the defiance of cosmic censor-
ship if they are gravitationally weak. Any object hitting the
singularity, if crushed to zero volume, is called “strong”
curvature singularity according to Tipler [6]. It was shown
by Newman [7] that naked singularities investigated by
Eardley and Smarr [8] and Christodoulou [9] formed in the
classes of LTB cloud collapse are weak. Using the
sufficient condition given by Clarke and Krolak [10] for
a singularity to be strong in the sense of Tipler, naked
singularity formation due to collapsing self-similar margin-
ally bound singularity was studied byWaugh and Lake [11]
and independently by Ori and Piran [12]. Later, Joshi and
Dwivedi investigated the naked singularity formed due to
the collapse of an LTB dust cloud under generic initial
conditions for collapse, and derived the value of a certain
parameter α for which the singularity is gravitationally
strong [2]. The parameter α physically signifies the non-
linear relation between the physical radius of the cloud and
the radial coordinate of the ORNG at the singular center
(α ¼ 1 corresponds to a linear relation). The stability of
such singularities against some perturbations in the initial
data was later shown by Deshingkar, Joshi, and Dwivedi
[13]. Coming to the collapsing cloud having nonzero
pressure, many models have been studied in which naked
singularities are shown to arise (see e.g., [14–30] and [31]
for a review). Here, we study the singularities formed due to
a collapsing spherical cloud made up of a perfect fluid with
nonzero pressure and derive an analogous criterion needed
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to be imposed on α for the singularity to be strong. Our
basic purpose here is thus to examine and characterize the
conditions that ensure that the naked singularities forming
in collapse with nonzero pressure are strong curvature in
nature.
The paper is arranged as follows: Einstein’s field

equations, regularity conditions, and the mathematical
formalism to understand the final state of a collapsing
spherically symmetric perfect fluid with arbitrary pressure
are discussed in Sec. II. The strength of singularity and
related results are discussed in Sec. III. An example
showing the existence of a nonzero measured set of initial
data giving rise to locally naked Tipler strong singularity is
then illustrated and worked out in Sec. IV. Concluding
remarks are given in Sec. V.

II. COLLAPSE FORMALISM

The collapse of a spherically symmetric cloud made up
of perfect fluid is governed by three functions νðt; rÞ,
ψðt; rÞ. and Rðt; rÞ, and the metric is expressed as

ds2 ¼ −e2νðt;rÞdt2 þ e2ψðt;rÞdr2 þ R2ðt; rÞdΩ2 ð1Þ

in the comoving coordinates t and r. The stress-energy
tensor for a general type I matter field, more specifically a
perfect fluid, has nondiagonal terms as zero, and diagonal
terms as

Tt
t ¼ −ρ; Tr

r ¼ Tθ
θ ¼ Tϕ

ϕ ¼ p: ð2Þ

Here the ρ is the energy density and p is the isotropic
pressure of the collapsing cloud. The matter field under
consideration is assumed to be satisfying the weak energy
condition thereby restricting the components of the stress-
energy tensor in the following way:

ρ ≥ 0; ρþ p ≥ 0: ð3Þ

In the units of 8πG ¼ c ¼ 1, the Einstien’s field equations
relates the metric functions νðt; rÞ, ψðt; rÞ, and Rðt; rÞ with
the components of the stress-energy tensor in the following
way:

ρ ¼ F0

R2R0 ; ð4Þ

p ¼ −
_F

R2 _R
; ð5Þ

ν0 ¼ −
p0

ρþ p
; ð6Þ

2 _R0 ¼ R0 _G
G
þ _R

H0

H
; ð7Þ

where,

Gðt; rÞ ¼ e−2ψR02; Hðt; rÞ ¼ e−2ν _R2: ð8Þ

The superscript dot and prime are the notations used for the
partial derivative with respect to time and radial coordi-
nates, respectively. Here F is the Misner-Sharp mass
function given by

F ¼ Rð1 −GþHÞ: ð9Þ

It physically signifies the mass of the cloud inside a shell of
radius r at time t. It can be expressed as F ¼ r3M, where
M is such that it maintains regularity. By regularity, we
mean that M is a suitably differentiable function which
does not blow up or vanish as r → 0. Doing so ensures that
the energy density at the regular center does not blow up
before the formation of central shell focusing singularity.
Another regularity condition needed to be fulfilled by the
collapsing matter field to be well behaved is the absence of
cusp in the energy density at the center which is taken care
of by the equation

M0ðt; 0Þ ¼ 0: ð10Þ

The physical radius of the cloud is represented by the
component of metric, Rðt; rÞ. For different shells to avoid
crossing each other, R has to follow the inequality R0 > 0.
To get a collapsing solution of Einstein’s field equations,
we have to restrict _Rðt; rÞ to be less than zero. This
indicates that given a shell of radial coordinate r, the
corresponding physical radius R decreases as time passes
until it becomes a singularity, i.e., Rðt; rÞ ¼ 0. It is to be
noted that Rðt; rÞ vanishes also at the regular center, i.e., at
r ¼ 0. This means that vanishing Rðt; rÞ does not neces-
sarily imply the formation of a singularity. The represen-
tation of the distinction in both the cases can be achieved by
expressing R as

Rðt; rÞ ¼ rvðt; rÞ; ð11Þ

where vðt; rÞ can be viewed as a scale factor. The scaling
freedom accessible for r can be used to define Rðti; rÞ ¼ r,
where ti is the initial epoch. This allows us to write the
following:

vðti; rÞ ¼ 1; vðtsðrÞ; rÞ ¼ 0; _v < 0; ð12Þ

where tsðrÞ is called the singularity curve which gives the
time of formation of singularity due to collapsing shell
having radial coordinate r. Now it can be said that this shell
collapses to form a singularity if vðts; rÞ ¼ 0, thereby
distinguishing the case from a regular center. An additional
benefit of introducing the scale factor v, also known
alternatively as the scaling function, is the freedom to
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study the collapse formalism in the transformed ðr; vÞ
coordinates, instead of ðt; rÞ coordinates, which will be
apparent in the forthcoming approach.
Let us now recall briefly the formalism developed earlier

[4,5] to study the end state of the collapse. We start with
defining an appropriately differentiable function Aðr; vÞ as
follows:

A;v ¼ ν0
r
R0 : ð13Þ

Equation (6), after integrating, can be used to express G in
terms of Aðr; vÞ as

Gðr; vÞ ¼ bðrÞe2Aðr;vÞ; ð14Þ

where the integration constant bðrÞ is related to the velocity
with which the matter shell falls in. It can be expressed near
the regular center as

bðrÞ ¼ 1þ r2b0ðrÞ: ð15Þ

b0ðrÞ is interpreted in analogy with the Lemaitre-Tolman-
Bondi dust model in which b0 < 0 means bounded, b0 > 0
means unbounded, and b0 ¼ 0 means marginally bound
dust collapse. The equation of motion can be found using
Eq. (9) as

ffiffiffi
v

p
_v ¼ −eν

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mþ vðbe2A − 1Þ

r2

r
: ð16Þ

This can be integrated to achieve the time curve tðr; vÞ as
follows:

tðr; vÞ ¼ ti þ
Z

1

v

e−νffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M
v þ be2A−1

r2

q dv: ð17Þ

The time curve dictates the time required for a collapsing
shell of radial coordinate r to arrive at an event v. This
could now be used to get the singularity curve,

tsðrÞ ¼ tðr; 0Þ ¼ ti þ
Z

1

0

e−νffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M
v þ be2A−1

r2

q dv ð18Þ

which tells us the time required for a shell of radial
coordinate r to collapse to a singularity. Near the center,
the time curve can be Taylor expanded around r ¼ 0 as

tðr; vÞ ¼ tð0; vÞ þ rχ1ðvÞ þ r2χ2ðvÞ þ r3χ3ðvÞ þOðr4Þ;
ð19Þ

where

χiðvÞ ¼
1

i!
dit
dri

����
r¼0

: ð20Þ

For a singularity to be at least locally naked, there have to
be families of timelike or null geodesics leaving the
singularity. If the trapped surfaces in the neighborhood
around the center are formed before the formation of the
singularity, the geodesics will not be able to escape, thereby
giving a black hole as the end product. The existence or
otherwise of such escaping geodesics can be investigated
by considering the equation for outgoing radial null geo-
desics as follows:

dt
dr

¼ eψ−ν: ð21Þ

If these geodesics were to be incomplete in the past at the
singularity, R → 0 as t → ts (or v → 0) along these curves,
that ensures a visible singularity. The above equation can be
expressed using chain rule in terms of R and u ¼ rα, where
α > 1, as

dR
du

¼ 1

α

R0

rα−1

�
1þ

_R
R0 e

ψ−ν
�
; ð22Þ

which can be rewritten as

dR
du

¼ 1

α

0
B@R
u
þ

ffiffiffi
v

p
v0r5−3α2ffiffiffi

R
u

q
1
CA� 1 − F

Rffiffiffiffi
G

p ð ffiffiffiffi
G

p þ ffiffiffiffi
H

p Þ

�
: ð23Þ

Here we have used the relation obtained from Eq. (9).
Along constant v surface, dv ¼ v0drþ _vdt ¼ 0, and
hence,

ffiffiffi
v

p
v0, appearing in the above equation, could be

obtained from Eq. (16) as

ffiffiffi
v

p
v0 ¼ eψ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2Avb0 þ vhþM

q
; ð24Þ

where

hðr; vÞ ¼ e2A − 1

r2
: ð25Þ

For a singularity to be naked (at least locally), the tangent to
the future directed radially null geodesic, which ceases at
the singularity in the past, should have dR

du > 0 at the
singularity in the ðR; uÞ plane [4]. Also, it should be finite.
L’Hospital’s rule then gives us

X0 ¼ lim
ðR;uÞ→ð0;0Þ

R
u
¼ dR

du
: ð26Þ

The mass profileM near the center can be Taylor expanded
around r ¼ 0 as
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Mðr; vÞ ¼ M0ðvÞ þM2ðvÞr2 þM3ðvÞr3
þM4ðvÞr4 þ oðr5Þ: ð27Þ

At the limit ðr; vÞ → ð0; 0Þ we obtain

lim
ðr;vÞ→0

ffiffiffi
v

p
v0 ¼ ðχ1ð0Þ þ 2rχ2ð0Þ þ 3r2χ3ð0Þ

þ 4r3χ4ð0Þ þ oðr4ÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M0ð0Þ

p
: ð28Þ

Substituting for
ffiffiffi
v

p
v0 from Eq. (28) in the limiting case of

Eq. (23) along with using Eqs. (19) and (20) and Eq. (26)
gives

X
3
2

0 ¼ lim
r→0

1

α − 1
ðχ1ð0Þ þ 2rχ2ð0Þ þ 3r2χ3ð0Þ

þ 4r3χ4ð0Þ þ oðr4ÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M0ð0Þ

p
r
5−3α
2 : ð29Þ

It can be seen from the above equation that the problem of
determining the local nakedness of the singularity is
reduced to determining the polarity of X0. Equation (29)
depicts the relation between the tangent of ORNG at
singularity X0 and the components χi of the Taylor
expansion of the singularity curve. Here, a specific value
of α is chosen so that X0 ≠ 0. For instance, if χ1 ≠ 0 then
α ¼ 5=3 has to be chosen, and Eq. (29) is reduced to

X
3
2

0 ¼
3

2
χ1ð0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
M0ð0Þ

p
ð30Þ

at the limit r → 0. This implies that polarity of χ1ð0Þ is the
deciding factor for the local visibility or otherwise of the
singularity.
Another possible value which α can take is α ¼ 7=3, for

which the deciding factor is χ2 as seen in the following
specific form of Eq. (29) as follows:

X
3
2

0 ¼
3

2
χ2ð0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
M0ð0Þ

p
: ð31Þ

Here, χ1ð0Þ should be of the order of r in order to avoid the
blowing up of X0, hence χ1ð0Þ has to be zero in the limit
r → 0. Generally, α is restricted to the following values so
that X0 ≠ 0:

α ∈
�
2nþ 3

3
; n ∈ N

�
: ð32Þ

Additionally, near ðr; vÞ → ð0; 0Þ, we should have

χiðvÞ ∼Oðr3α−12
−iÞ; ∀ i <

3

2
ðα − 1Þ: ð33Þ

This ensures that χið0Þ ¼ 0 and thereby preventing X0 from
blowing up. Whether or not these values of α in (32)
corresponds to a singularity which is strong, in the sense of
Tipler, is investigated in the next section.

III. STRENGTH OF SINGULARITIES

The tangents of the outgoing timelike or null geodesic
from a singularity formed due to gravitational collapse of
an inhomogeneous spherically symmetric perfect fluid with
nonzero pressure are as follows:

Kt ¼ dt
dλ

¼ P
R
;

Kr ¼ dr
dλ

¼
ffiffiffiffi
G

p

RR0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2

_R2

H
− l2 þ BR2

s
;

Kθ2 þ sin2 θKϕ2 ¼ l2

R4
: ð34Þ

Here the value of B denotes the type of geodesics such
that for null geodesic B ¼ 0 and for timelike geodesic
B ¼ −1. Also, l is called the impact parameter which
vanishes for radial geodesics. The function Pðt; rÞ satisfies
the following geodesic equation:

dP
dλ

−
P2

R

�
_R
R
−

_H
2H

þ R̈
_R
−

_R0

R0 þ
_G
2G

�
−
P
ffiffiffiffi
G

p

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 _R2

H
− l2 þ BR2

s �
1

R
þ 1

R0

�
2 _R0

_R
−
H0

H

��

þH
_R

�
l2

R

�
1

R
þ

_G

2G _R
−

_R0

_RR0

�
þ BR

_R

�
_R0

R0 −
_G
2G

��
¼ 0: ð35Þ

For radial null geodesic, close to λ ¼ 0, i.e., near the singularity, using L’Hospital’s rule in the above equation gives us the
expression of P as follows:

P ¼ lim
r→0

R
λ

�
_R
R
−

_H
2H

þ R̈
_R
þ

_G
2G

−
_R0

R0 þ
ffiffiffiffi
G
H

r �
_R
R
−
H0 _R
HR0 þ

2 _R0

R0

��
−1
: ð36Þ

The sufficient condition for a singularity to be strong in the sense of Tipler [6], provided by Clarke and Krolak [10], is that at
least along one null geodesic with the affine parameter λ, with λ ¼ 0 at the singularity, the following inequality should be
satisfied:
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lim
λ→0

λ2RijKiKj > 0: ð37Þ

Equations (4) and (5) give

RijKiKj ¼ 1

2R2

�
_R

HR0 ðF0 _R − 3 _FR0ÞðKtÞ2

þ R0

G _R
ðF0 _Rþ _FR0ÞðKrÞ2

�
: ð38Þ

Substituting for the tangents to the radial null geodesic
from Eq. (34), we get

lim
λ→0

λ2RijKiKj ¼ 3lim
λ→0

�
λ
ffiffiffiffi
F

p
P _R

R2
ffiffiffiffiffiffiffi
rR0p ffiffiffiffi

H
p

�2

: ð39Þ

Here, we have used the following limiting values arising
from the regularity conditions:

lim
r→0

rF;r

F
¼ 3; lim

v→0

vF;v

F
¼ 0: ð40Þ

The particular case of LTB collapse reduces the expression
Eq. (39) to

lim
λ→0

λ2RijKiKj ¼ 3lim
λ→0

�
λ
ffiffiffiffi
F

p
P

R2
ffiffiffiffiffiffiffi
rR0p
�2

; ð41Þ

which agrees with the result obtained in [2]. The above
equation is obtained by substituting H ¼ _R2 in Eq. (39).
Using Eqs. (36) and (39), the Clarke and Krolak’s criteria is
restated as

lim
ðr;vÞ→ð0;0Þ

�
F0

R0 −
_F
_R

�� ffiffiffiffi
G

p �
1 −

H0R
HR0 þ

2R _R0

_RR0

�

þ
ffiffiffiffi
H

p �
1 −

_HR

2H _R
þ R̈R

_R2
þ R _G

2 _RG
−
R _R0

_RR0

��
−2

> 0; ð42Þ

which should hold at least along one null geodesic which is
past incomplete at the singularity, for the singularity to be
Tipler strong.H can be expressed using Eqs. (8) and (16) as

Hðr; vÞ ¼ Mr2

v
þ be2A − 1: ð43Þ

Differentiating Eq. (43) with respect to r can lead to

lim
ðr;vÞ→ð0;0Þ

H0

H
¼ lim

r→0

1

r
þM;r

M
: ð44Þ

Differentiating H in Eq. (8) with respect to t gives the
following equation:

R̈R
_R2

−
_HR

2H _R
¼ ν;vv: ð45Þ

Differentiating G in Eq. (8) with respect to t and using
Eq. (14) gives the following equation:

r _v0

_v
¼ 2vA2;vr2 þ 2ψ ;vv: ð46Þ

In the ðr; vÞ coordinate, we have

lim
ðt;rÞ→ðts;0Þ

F0

R0 −
_F
_R
¼ lim

ðr;vÞ→ð0;0Þ
1

2

�
F;r

v
−
F;v

r

�

¼ 3

2

Mð0; 0Þ
X0

lim
r→0

r3−α: ð47Þ

Using Eqs. (44), (45), (46), (47) in Eq. (42) we obtain the
condition of Clarke and Krolak as

lim
ðr;vÞ→ð0;0Þ

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jX0j

Mð0; 0Þ

s
rðα−32 Þ

�
1

2
−
M;rr
2M

þ 2ψ ;vvþ 2vA2;vr2
�

þ 1þ ν;vv − ψ ;vv

!−2

> 0 ð48Þ

at least along one null geodesic. The above inequality can
be satisfied only if

α ≥ 3; ð49Þ

for if α < 3, then the denominator on the left-hand side of
the inequality (48) will blow up in the limit ðr; vÞ → ð0; 0Þ,
thereby not satisfying the inequality anymore.
From Eqs. (33) and (49) it can be seen that in order to

maintain the finiteness of X0, χ1 and χ2 should be of the
order of at least r2 and r respectively, implying that

χ1ð0Þ ¼ χ2ð0Þ ¼ 0: ð50Þ

It is to be noted that α can take values as follows:

α ∈
�
2nþ 1

3
; n ≥ 4; n ∈ N

�
: ð51Þ

We now carry out a case study for one such value of α in the
next section.

IV. COLLAPSE END STATES

If α ¼ 3, the equation for tangent of the null geodesic at
the singularity for r ¼ 0 follows from Eq. (29) as

X
3
2

0 ¼ lim
r→0

3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
M0ð0Þ

p
χ3ð0Þ: ð52Þ
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Polarity of χ3 then determines the polarity of X0 which in
turn determines the nakedness or otherwise of the Tipler
strong singularity. Substituting for density and pressure of
the cloud from Eqs. (4) and (5) in Eq. (6) gives us

ν0 ¼ M;vr vþ ðM;vv v − 2M;v Þw
ð3Mþ rM;r −MvvÞv

R0: ð53Þ

Here, v0, which is the partial derivative of v in ðt; rÞ
coordinate has been expressed as a function wðr; vÞ in the
ðr; vÞ coordinate. One could use the above equation in
Eq. (13) for obtaining the integral expression of Aðr; vÞ as

Aðr; vÞ ¼
Z

1

v

M;vr vþ ðM;vv v − 2M;v Þw
ð3Mþ rM;r −MvvÞv

rdv: ð54Þ

Also regularity condition demand that A ≃ r2. Hence one
can Taylor expand it around r ¼ 0 as

Aðr; vÞ ¼ A2ðvÞr2 þ A3ðvÞr3 þ � � � ð55Þ
where the components AiðvÞ, i ≥ 2, can be obtained using
Eq. (54) as follows:

A2ðvÞ ¼
Z

1

v

2M2;v þ ðM0;vv −
2M0;v

v Þw;r
3M0 −M0;vv

dv; ð56Þ

A3ðvÞ ¼
Z

1

v

6M3;v þ ðM0;vv −
2M0;v

v Þw;rr
3M0 −M0;vv

dv; ð57Þ

A4ðvÞ ¼
Z

1

v

1

ð3M0 −M0;vvÞ2
�
2M2;vðvM2;v − 5M2Þ þ 4M4;vð3M0 − vM0;vÞ þ w;r

�
M0

�
3M2;vv

−
6M2;v

v

�
þM0;v

�
10M2

v
− vM2;vv

�
þM0;vvðvM2;v − 5M2Þ

��
þ w;rrr

ðM0;vvv − 2M0;vÞ
6vð3M0 −M0;vvÞ

dv; ð58Þ

and

A5ðvÞ ¼
Z

1

v

1

ð3M0 −M0;vvÞ2
�
−12M3M2;v − 15M2M3;v þ 5vM2;vM3;v þ w;r

�
−
6M0M3;v

v

þM3

�
12M0;v

v
− 6M0;vv

�
þM0;vvM3;vvþ 3M0M3;vv −M0;vM3;vvv

�
þ w;rr

�
5M2

�
M0;v

v
−
M0;vv

2

�

þ 3M0

�
−
M2;v

v
þM2;vv

2

�
þ v
2
ðM2;vM0;vv −M0;vM2;vvÞ

��
þ w;rrrr

ð−M0;v

12v þ M0;vv

24
Þ

3M0 −M0;vv
dv: ð59Þ

These components of Taylor expansion of Aðr; vÞ around r ¼ 0 are then used to determine χ3 by differentiating the
singularity curve thrice. We also have

be2A − 1

r2
¼
X∞
i¼0

ððiþ 2ÞAiþ2 þ b0iÞri ð60Þ

near the center. Here, b0i are the coefficients of ri in the Taylor expansion of b0ðrÞ around r ¼ 0. Substituting from Eq. (60)
in Eq. (18) along with using Eqs. (19) and (20), we obtain the expression of χ3 as

χ3 ¼
Z

1

v

3A3 þ b01
ðM0

v þ 2A2 þ b00Þ
3
2

�
g2
2
−

5

16

�
3A3 þ b01

M0

v þ 2A2 þ b00

�
2

þ 3

4

�M2

v þ 4A4 þ b02
M0

v þ 2A2 þ b00

��
−
1

2

ðM3

v þ 5A5 þ b03Þ
ðM0

v þ 2A2 þ b00Þ
3
2

dv: ð61Þ

Here, g2 ¼ 1
2
A2;vv. As is apparent from Eq. (52), polarity

of χ3 is the deciding factor for local visibility of Tipler
strong singularity. The expressions for A2, A3, A4, and A5

can be obtained from Eqs. (56)–(59) for a given mass
profile Mðr; vÞ, which is then substituted in Eq. (61).
However, while calculating the Ais, we also require the
derivatives of wðr; vÞ with respect to r, which is not known
in general. Nevertheless, for a well-chosen mass profile

such that the components nonminimally coupled with the
derivatives of wðr; vÞ in the integral expressions for Ai
vanish, we could bypass the requirement of the information
of the collapse dynamics. Since there is no mention of
equation of state here, we have total five field equations in
six unknown parameters namely p, ρ, ν, ψ , R, and F, i.e.,
two matter variables, three metric tensor components, and
the Misner-Sharp mass function. Therefore, there is one
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degree of freedom left, thereby allowing us to specify the
evolution of mass profile M. The idea is to give a small
perturbation to the mass profile corresponding to inhomo-
geneous dust which up to fourth order is expressed close to
the center as

Mðr; vÞ ¼ m0 þm2r2 þm3r3 þm4r4; ð62Þ

where m0, m2, m3, and m4 are constants. The perturbation
term δðvÞ is then coupled minimally to the fourth order
component of M. The reason for this form of perturbation
is to vanish the terms involving the derivative of wðr; vÞ in
the expression of Ai. One such example of a perturbed mass
profile is as follows:

Mðr; vÞ ¼ m0 þm2r2 þm3r3 þm4r4 þ δðvÞr4: ð63Þ

This mass profile can give rise to nonzero pressure near the
center.
Now, let us consider the mass profile Eq. (62), with

m0 ¼ 1,m2 ¼ −0.1,m3 ¼ 0, andm4 ¼ −0.1. Let us give a
fourth order perturbation, δðvÞ ¼ −0.1ð1 − v2Þ. This per-
turbed mass profile corresponds to a perfect fluid with
nonzero pressure associated with it. Fixing b00 ¼ −0.5 and
b01 ¼ −0.1, a nonzero measured set of initial data
ðb02; b03Þ satisfying the inequality

9.46857b02 þ 48.4614b03 < 1

is obtained for which χ3 > 0, and hence the end state of the
collapse for such initial data is a locally visible Tipler
strong singularity.

V. CONCLUDING REMARKS

Some concluding points and open concerns are dis-
cussed below:
(1) The necessary criterion for a central shell-focusing

singularity formed due to gravitational collapse of a
spherically symmetric inhomogeneous perfect fluid
with nonzero pressure to be visible is that the
relation between the physical radius and the radial
coordinate of ORNG should be of the form

R ¼ X0rα; X0 > 0;

where α is restricted to the values given by the set

α ∈
�
2nþ 3

3
; n ∈ N

�
:

(2) For this singularity to be strong in the sense of
Tipler, the set of possible values of α is further
refined as follows:

α ∈
�
2nþ 3

3
; n ≥ 3; n ∈ N

�
:

This restriction on α concludes that the locally naked
singularities in [32,33] are not Tipler strong because
of the fact that α was chosen to be 5

3
and 7

3
.

(3) While investigating the end state, the requirement of
preknowledge of the dynamics of the collapse,
vðt; rÞ, causes a hindrance to proceed further to
determine the visibility of the singularity, as ob-
served in Eqs. (56)–(61). Nevertheless, due to a
degree of freedom available with us, we have free-
dom of choice of fixing an unknown function. In our
case, this unknown function is the mass profile of the
fluid. By wisely choosing the mass profile, the
requirement of the knowledge of vðt; rÞ could be
bypassed. To achieve this, we have given a pertur-
bation to the mass profile for dust in such a way that
the components nonminimally coupled with the
derivative terms of the scaling function in Eqs. (56)–
(59) vanish. One way to obtain such a mass profile is
to add a perturbed term of order four in r. For an
example of such a form of a mass profile, there
indeed exists a nonzero measured set in the
ðb02; b03Þ plane for which the end state after the
collapse is a Tipler strong locally visible singularity.
Existence of such a set of initial data guarantees that
the naked singularities forming due to perfect fluid
collapse are stable against any perturbation in the
initial data from which the collapse begins.

(4) This acts as a counterexample to at least the strong
cosmic censorship hypothesis which does not allow
the existence of such locally visible singularity. It is
to be noted that the matter fluid formed due to such a
perturbed term satisfies the weak energy condition
and has nonzero pressure p ¼ − δ;v

X2
0

, not restricted to
any equation of state. Nonzero pressure in the
collapsing cloud arises because of the time depend-
ence property of the perturbed mass profile. Hence,
we have shown that there exists a collapsing cloud
having certain mass profile with nonzero pressure
which collapses to form a Tipler strong singularity
which is locally visible. Also, since the collapsing
cloud is scale independent, if its size is very large, an
observer sufficiently close to the singularity will be
able to detect the singularity even if it is only locally
naked. Hence, even a locally naked singularity is a
serious defiance of the cosmic censorship.

(5) In [2], in the case of inhomogeneous collapsing dust,
it has been shown that α ≤ 3 for a singularity to be
naked (X0 > 0). This puts a further restriction on α,
fixing it to α ¼ 3 for a singularity to be Tipler strong
and locally visible. In our case study, we have shown
that α ¼ 3 indeed gives Tipler strong locally visible
singularity formed due to a collapsing perfect fluid
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cloud with nonzero pressure. Whether or not α > 3
gives a naked singularity is yet to be studied.

(6) Throughout the paper, we have considered the
possibility of strong singularities which are locally
naked. Whether or not they are globally naked is still
unknown. The existence of such singularities would
be a big blow to the weak cosmic censorship.
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