
 

Isotropization of slowly expanding spacetimes
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We show that the homogeneous, massless Einstein-Vlasov system with toroidal spatial topology and
diagonal Bianchi type I symmetry for initial data close to isotropic data isotropizes towards the future and
in particular asymptotes to a radiative Einstein-de Sitter model. We use an energy method to obtain
quantitative estimates on the rate of isotropization in this class of models.
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I. INTRODUCTION

Determining the asymptotic behavior for cosmological
models is a fundamental objective of mathematical cos-
mology. A lot of effort has been made to investigate the
stability of the isotropy of the Universe (cf., e.g., [1–6], and
references therein). For the Einstein-Vlasov system, which
models universes containing ensembles of self-gravitating
collisionless particles [7–9], this program is quite advanced
for the class of spatially homogeneous (SH) spacetimes.
Much of the respective literature is based on an approach

by Rendall [10] as well as Rendall and Tod [11] in which
certain symmetries are imposed on the Vlasov matter
distribution, as a consequence of which, together with
spatial homogeneity, the Einstein-Vlasov system reduces to
a system of autonomous (time-invariant) ODEs. Hence,
dynamical systems theory can be applied to analyze these
systems. The task to utilize this approach for all those types
of SH cosmologies to which it is applicable has been
accomplished in [12–17] and recently been completed in
[18]. To the latter source we also refer to for a recent and
more detailed summary of this approach.
The dynamical systems approach is powerful in particu-

lar in that it is capable of yielding global stability results. It
however has some detriments: Firstly, its results are not of
full generality since it relies on the above mentioned
symmetry assumptions on the matter distribution.
Secondly, it cannot be applied to all types of SH cosmol-
ogies, since not all of these concrete symmetry assumptions
are known, or can be found in principle. Finally, its
applicability is limited to the spatially homogenous context
since for cosmologies with less spatial symmetry the
Einstein-Vlasov system does not reduce to ODEs.
Hence, there has been an interest in adopting other

techniques as well. Nungesser [19–21] and Nungesser

et. al. [22] performed a small data future stability analysis
for several types of spatially homogenous Einstein-Vlasov
cosmologies (cf. also the result [23] on the Einstein-
Boltzmann system). While the stability results obtained
by this approach concern generally the small data regime, it
is fit to overcome the above detriments of the dynamical
systems approach. The former thus complements the latter in
the SH context, and leaves open the possibility of gener-
alization to spacetimeswith less spatial symmetry. The focus
of this literature has been on the future stability in the case of
massive particles. The dynamics in the massless case is of
interest to be analyzed separately since it has been shown to
behave substantially differently from the massive case for
various spatial topologies; cf. e.g., [15].
In the present paper we prove the isotropization of small

perturbations of the Einstein-de Sitter (EdS) model within
the class of diagonal Bianchi type I solutions to the
massless Einstein-Vlasov system. Though the Bianchi I
Einstein-Vlasov system has already been investigated
thoroughly in [10,15], and despite the fact that we use
the same symmetry assumptions as these sources, our
results are novel and complement the latter two in the
following points: Firstly, the result of [10] is limited to the
massive case with regards to the future asymptotics, while
we treat the massless case. Secondly, we use an energy
method by which we not only recover the result of [15] with
regards to future asymptotics, but which also captures the
decay rates for the perturbations away from isotropy—the
monotone function techniques used in [15] did not. Finally,
we expect the energy method to also be applicable to the
nondiagonal case, and that it is sufficiently robust to allow
for a generalization to the class of inhomogeneous
solutions.After this work was completed we learned that
a related problem was considered independently in [24].
We start out in Sec. II with some background on the

radiative EdS model tailored to the present context. In
Sec. III we lay out the setup for our analysis on the diagonal
Bianchi I Einstein-Vlasov system, and we formulate our
result in theorem III.7. Section IV is then devoted to the
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proof of the latter by a small data stability analysis using an
energy method. Two of the calculations for the proof can be
found in the Appendix.

II. THE RADIATIVE
EINSTEIN-DE SITTER MODEL

The radiative EdS model (cf. e.g., [25])

ðð0;∞Þ × T3;−dt2 þ t · γÞ;

where ðT 3; γÞ is a flat torus, is a solution to the Einstein
equations coupled to a radiation fluid, i.e., a perfect fluid
with pressures equal to 1=3 times the energy density. With a
scale factor aðtÞ ¼ ffiffi

t
p

it expands significantly slower than
the related FLRW vacuum solution on hyperbolic spatial
topologies (the Milne model) with aðtÞ ¼ t and also slower
than the corresponding solution on T3 for dust (i.e., a
pressureless perfect fluid), the EdS model, with aðtÞ ¼ t2=3;
cf. [9]. The EdS models pose interesting examples of
matter-dominated cosmological spacetimes, i.e., space-
times whose asymptotic behavior is altered by the presence
of matter.
While for initial data close to the Milne geometry on

hyperbolic spatial manifolds vacuum and nonvacuum
future asymptotics are similar [26], on toroidal spatial
topologies vacuum asymptotics deviate drastically from the
matter dominated regime of the EdS models [9]. It is of
essential interest to investigate the stability properties of
those model solutions in order to understand whether their
behavior is representative for generic spacetimes with
similar initial data. The stability properties of EdS models
are unknown except in the homogeneous context, i.e., for
Bianchi type I models. In that case it has been shown by
Nungesser that the massive EdS model is a future attractor
of the Einstein-Vlasov system with massive particles [19].
The analogous problem for the radiative EdS model, which
concerns massless particles (or radiation) is addressed for
the massless Einstein-Vlasov system in the present paper
for the restricted class of diagonal Bianchi type I models.
We show that initial data sufficiently close to an isotropic
state for the massless Einstein-Vlasov system isotropizes
towards the future and asymptotes towards a member of the
family of radiative EdS models with suitable decay rates for
the perturbations.
The slower expansion rate for the radiative case makes it

a priori more difficult to establish sufficiently strong decay
estimates. We point out that nonlinear stability results are
established for exponential scale factors [27] or polynomial
scale factors with significantly higher exponents [26].
Indeed, our analysis requires a more careful treatment of
the evolution equation for the shear tensor and metric
perturbations. We use a fine-tuned corrected energy, which
controls shear tensor and metric perturbation simultane-
ously, to obtain the crucial decay estimates.

Our theorem assures that the radiative EdS model is an
attractor in the restricted class of diagonal Bianchi I
symmetric solutions to the massless Einstein-Vlasov sys-
tem. To what extent stability holds in less restricted sets of
solutions as for instance the set of surface-symmetric or
T2-symmetric solutions is an open problem that can be
addressed using the framework of previous works as for
instance [28] and will be the subject of future studies.

III. THE DIAGONAL BIANCHI TYPE I
EINSTEIN-VLASOV SYSTEM

In much of this section we closely follow Sec. 2 of [15].
Section III A gives some background on spatially homog-
enous cosmologies of Bianchi type. For a deeper back-
ground on the Bianchi classification and on the choice of
basis we refer to [29]. In Sec. III B we discuss Vlasov
matter in the context of Bianchi I. For a thorough back-
ground on the Einstein-Vlasov system we refer to [7–9].
After that we specialize to reflection symmetric (or diago-
nal) models in Sec. III C. In Sec. III D we then formulate a
reflection symmetric Bianchi I Einstein-Vlasov system for
massless particles. Finally, we state our main result in the
form of theorem III.7 in Sec. III E and emphasize the
relation to the result of [15].

A. Bianchi cosmologies

Bianchi spacetimes admit a Lie algebra of Killing vector
fields K1, K2, and K3 which are tangent to the orbits of the
group which is identified with the universal covering space
of Bianchi models. These orbits are called surface of
homogeneity. Moreover, the Killing vector fields satisfy
the commutation relation ½Ki; Kj� ¼ Ck

ijKk where Ck
ij are

structure constants. Bianchi I models are characterized by
Ck
ij ¼ 0. Choosing a unit vector field n normal to the group

orbits, one has a natural choice for the time coordinate. One
can choose a basis fEig of the surfaces of homogeneity
such that they commute with the Killing vector fields. In
this way, one can construct the so-called left-invariant
frame fn; Eig which is generated by the right-invariant
Killing vector fields; cf. [29] [Sec 1.5.2]. We now consider
general Bianchi I spacetimes of the form ḡ ¼ −dt2 þ g,
where g ¼ gijðtÞWi ⊗ Wj, where Wi denotes the dual
one-forms to the left-invariant basis Ei. We denote by
kij the second fundamental form and decompose via
kij ¼ σij −Hgij, where H ¼ − 1

3
trgk and σij is the trace-

free part of kij. Moreover, we define the rescaled trace-free
part and its square by

Σj
i ≔ H−1σji and F ≔ Σj

iΣi
j; ð3:1Þ

respectively. The physical interpretation of the defined
quantities is as follows: H is the Hubble scalar and
represents a measure of the overall, isotropic, rate of spatial

BARZEGAR, FAJMAN, and HEIßEL PHYS. REV. D 101, 044046 (2020)

044046-2



expansion. σij is the shear tensor and represents a measure

of the anisotropic rate of spatial expansion. Respectively Σj
i

is the Hubble normalized shear tensor, and consequently F
represents an overall measure of anisotropy. In particular,
F ¼ 0 marks an isotropic state.
As matter model we consider a collisionless kinetic gas

of massless particles, i.e., massless Vlaosv matter. The
respective energy-momentum tensor is determined by a
distribution function f which solves a transport equation,
the Vlasov equation. fðt; xi; piÞ represents the density of
particles at time t and position xi with momentum pi.

B. Vlasov matter

In the case of Bianchi I symmetry the Vlasov equation
reduces to

∂tf þ 2kijp
j∂pif ¼ 0: ð3:2Þ

In particular, compatibility with spatial homogeneity
forces f to be independent of the spatial coordinates,
i.e., f ¼ fðt; piÞ, and hence (3.2) does not contain any
spatial derivatives. The Vlasov equation (3.2) has the
general spatially homogeneous solution in Bianchi type I
symmetry of the form (cf. [30] [Sec. 4])

fðt; piÞ ¼ f0ðpiÞ:
We decompose the components of the energy-momen-

tum tensor into the spatial part Sij, the energy density ρ and
the momentum density ji, given by

ρ ≔
Z
R3nf0g

f0ðpkÞjpjgðdet gÞ−1
2d3p;

Sij ≔
Z
R3nf0g

f0ðpkÞ
pipj

jpjg
ðdet gÞ−1

2d3p;

ji ≔
Z
R3nf0g

f0ðpkÞpiðdet gÞ−1
2d3p;

where jpjg ≔ ðgijpipjÞ1=2 and d3p ≔ dp1dp2dp3. In
Bianchi type I the momentum constraint implies jk ¼ 0.

C. Reflection symmetry; diagonal models

In the present paper we restrict ourselves to the subclass
of a Bianchi type I Einstein-Vlasov system which admits
reflection symmetry (or diagonality) in the following sense;
cf. [10,15]. On the initial data the following conditions are
imposed:

f0ðp1; p2; p3Þ ¼ f0ðp1;−p2;−p3Þ ¼ f0ð−p1;−p2; p3Þ
¼ f0ð−p1; p2;−p3Þ;

gðt0Þ ¼ diagðg11ðt0Þ; g22ðt0Þ; g33ðt0ÞÞ;
kðt0Þ ¼ diagðk11ðt0Þ; k22ðt0Þ; k33ðt0ÞÞ:

Under these conditions jk ¼ 0 is satisfied and Sijðt0Þ is
diagonal. The evolution equations preserve the diagonality
for all time, i.e., gij, kij, and Sij are diagonal for all time.

D. Formulation of the system

Next, we define the dimensionless variables following
[15]. We define (no summation over repeated indices,
unless explicitly mentioned)

Ω ≔
8πρ

3H2
; si ≔

giiP
kg

kk ; Σi ≔ −Σi
i ¼ −

kii
H

− 1;

with

s1 þ s2 þ s3 ¼ 1 and Σ1 þ Σ2 þ Σ3 ¼ 0: ð3:3Þ
For simplicity we also collect the three si and Σi compo-
nents in tuples s⃗ and Σ⃗, respectively. Further, we define

wi ≔
Sii
ρ
; w ≔

1

3

X
i

wi: ð3:4Þ

In the case at hand, i.e., in the massless case, we have
w ¼ 1=3, which follows from (3.4) and the fact that trS ¼ ρ
for massless particles. It is important to note that the wi can
be written as functions of s⃗ (cf. (9) in [15]):

wiðs⃗Þ ¼
si
R
f0p2

i ð
P

kskp
2
kÞ−

1
2d3p̃R

f0ð
P

kskp
2
kÞ

1
2d3p̃

≕ siYiðs⃗Þ: ð3:5Þ

The reflection-symmetric Bianchi I Einstein-Vlasov
system for massless particles finally takes the form

Ω ¼ 1 −
1

6
F; ð3:6aÞ

H0 ¼ −Hð3 −ΩÞ; ð3:6bÞ

Σ0
i ¼ −ΩðΣi þ 1 − 3wiÞ; ð3:6cÞ

s0i ¼ −2si
�
Σi −

X
k

skΣk

�
; ð3:6dÞ

where the prime denotes ∂τ ¼ H−1∂t (cf. [15]). We see that
(3.6b) is decoupled from (3.6c) and (3.6d). Hence, the latter
two define a six-dimensional reduced system.

E. Main result

For the system introduced above we prove the following
theorem.

Theorem III.7. Consider C∞ initial data for the
massless Einstein-Vlasov system with diagonal Bianchi I
symmetry, ðg0; H0; F0Þ at t0 ¼ ð2Hðt0ÞÞ−1 with f0 suffi-
ciently close to an isotropic distribution function. There
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exists an ε > 0 such that F0 < ε and jgij − δijj < ε imply
the following future asymptotics for a constant C > 0,

FðtÞ≲εt−1.16=2þε; 2t≤H−1ðtÞ≤ 2tð1þCεt−1=2Þ; ð3:7Þ

and

tgij→gij∞ as t→∞ with jgij∞−tgijðtÞj≲εt−1.16=4þε: ð3:8Þ

In particular, the rescaled square of the shear tensor,
F ¼ jΣj2g vanishes asymptotically, i.e., the spacetime iso-
tropizes. Moreover, the rescaled spatial metric t−1gðtÞ
converges to a limit metric g∞, which remains ε-close to
the initial metric g0. As a result, the radiative EdS model is
orbitally stable in the set of solutions to the massless
Einstein-Vlasov system with diagonal Bianchi I symmetry.
Remark III.10.—The choice of initial time t0 ¼

ð2Hðt0ÞÞ−1 is made for technical reasons, and does not
restrict the generality.
Remark III.11.—The value 1.16 of the decay rate is

approximated. We obtain this value numerically from a
solution of an algebraic equation [cf. (4.12)]. We do not
claim this decay rate is sharp, but it is the optimal value in
the scope of the method we use.
Remark III.12.—The orbital stability in the previous

theorem was already proven by Heinzle and Uggla in [15].
However, their proof did not provide decay rates for the
perturbations. Moreover, the dynamical systems method
utilized in [15] does not provide a natural extension to the
inhomogeneous case, while the energy methods are flexible
in their application and in principle extend to less sym-
metric scenarios.

IV. STABILITY ANALYSIS

In the remainder of this paper we prove theorem III.7.
The basic idea of the proof is to use the fact that for the
attractor of the system, which represents the isotropic state,
wiðs⃗�Þ ¼ 1=3 holds for all i ¼ 1, 2, 3, as will be shown. We
then linearize the system around this state in Sec. IVA, and
prove by a small data stability analysis that it is indeed a
local attractor of the system in the remainder of this section.
For this we define an energy function in Sec. IV C, find the
optimal estimates for its decay to zero in Sec. IV D, and
finally translate these rates to the decay rates of the
quantities of theorem III.7 in Sec. IV E. For two calcu-
lations of this section we refer to the Appendix.
The type of energy method we apply here has been used

for the Einstein equations in different contexts (cf. [26] and
references therein). Here it is used in a context where the
behavior of the matter variables has a strong effect on the
geometry (matter dominated regime). We expect that it can
be used in different classes of Bianchi models containing
Vlasov matter. The case of Bianchi type II symmetry is
currently work in progress [31].

A. Linearization around a state of isotropic geometry

The first observation concerns the attractor geometry,
which we eventually show to be isotropic. Let us identify
this state. Firstly, from the definition and interpretation of
Σi in Sec. III D, we know that an isotropically expanding
state is characterized by Σ⃗ ¼ 0 and wi ¼ w ∀ i. Secondly,
it has been shown in [15] that to each initial matter
distribution f0 there is a unique s⃗ ¼ s⃗� which represents
the rescaled 3-metric for which wiðs⃗�Þ ¼ 1=3 ∀ i. Hence,
from (3.4) we see that s⃗� corresponds to a state in which the
matter attains isotropic pressures. Therefore, assuming an
isotropic attractor, it must be uniquely characterized by
ðs⃗; Σ⃗Þ ¼ ðs⃗�; 0Þ, which marks an equilibrium point of the
reduced system (3.6c)–(3.6d).
We now linearize (3.6a)–(3.6d) around the isotropic

state. To shift the corresponding equilibrium point to the
origin we define s̄i ≔ si − s�i and express the reduced
system as

Σ0
i ¼ −ΩðΣi þ 1 − 3wiÞ;

s̄0i ¼ −2ðs̄i þ s�i Þ
�
Σi −

X
k

ðs̄k þ s�kÞΣk

�
;

with wi given by (3.5). The corresponding linearized
system at ð ⃗s̄; Σ⃗Þ ¼ ð0; 0Þ then reads

Σ0
i ¼ −Σi þ 3s̄iYiðs�kÞ þ 3s�i

X
j

∂Yi

∂sj
����
s�k

s̄j

þOðjΣ⃗j2δÞ þOðj ⃗s̄j2δÞ; ð4:1aÞ

s̄0i ¼ −2s�iΣi þ 2s�i
X
k

s�kΣk þOðj ⃗s̄jδjΣ⃗jδÞ; ð4:1bÞ

where j:jδ denotes the Euclidean norm. Note that jΣ⃗j2δ ¼ F;
cf. (3.1).
In order to perform a stability analysis of the origin of

(4.1a)–(4.1b) we impose a smallness assumption on Σ⃗ and
⃗s̄. Consequently, the higher order terms of the system can
be treated as error terms, which can be absorbed in the final
energy estimate [see (4.13) below]. It is the linear terms that
determine the decay rates for small initial data.
Remark IV.2.—When calculating the eigenvalues and

eigenvectors of the linearization at our assumed attractor
point, one finds that it is a degenerate equilibrium point
with one zero eigenvalue. One could then try to pursue a
center manifold analysis to obtain the local stability of this
point, and decay estimates; cf. for instance [32]. In the
present work we chose an alternative path, using the
energy method laid out below, because of its potential to
be generalized to spatially inhomogenous cases.
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B. Closeness to an isotropic initial matter state

The linear system (4.1a)–(4.1b) contains factors of
Yiðs⃗�Þ and its derivatives. These depend on the initial
particle distribution, as a consequence of s⃗� depending on
f0; cf. Sec. IVA. In the following we adopt the notation
s⃗�½f0� when we want to emphasize this dependence.
Let us consider for now an isotropic initial particle

distribution fiso0 ðpkÞ ¼ fiso0 ðjpjδÞ. From (3.3) the corre-
sponding pressures are isotropic as well and thus wi ¼
1=3 ∀ i. Furthermore, we then know from the discussion in
Sec. IVA that fiso0 is associated with a unique s⃗�½fiso0 �. Thus,
from (3.3) and (3.5) we have s�i ½fiso0 � ¼ 1=3 ∀ i. Gathering
the information and plugging it into (3.5) we find

Yiðs⃗�½fiso0 �Þ ¼ 1:

Next, we calculate the derivatives of Yi for our isotropic
matter state. The result is

∂Yi

∂sj
����
s⃗�½fiso

0
�
¼

�− 7
5
; if i ¼ j

− 4
5
; if i ≠ j

; ð4:2Þ

and we refer to Appendix A 1 for the calculation. Now,
since all functionals are continuous in f0, by continuity we
can conclude that the values of Yi and ∂Yi=∂sj for f0 close
to isotropic are ε-close to (4.2).
Motivated by the discussion of this subsection, we

introduce the following parametrization for matter states
which deviate from the isotropic one:

f0 ¼ fiso0 þ ξf̃0; s�i ½f0� ¼ 1=3þ ci=3; ð4:3Þ

Yiðs⃗�½f0�Þ ¼ 1þ ai;
∂Yi

∂sj
����
s⃗�½f0�

¼
�− 7

5
þ ϵ1; if i ¼ j;

− 4
5
þ ϵ2; if i ≠ j;

ð4:4Þ
where f̃0 denotes some perturbation. The parameters
ci; ξ; ai; ϵ1; ϵ2 thereby control the deviation, and we impose
on them the smallness assumption

jcij; jξj; jaij; jϵ1j; jϵ2j ≪ 1; ∀ i: ð4:5Þ
In the following we drop again the functional notation and
if we write s⃗�, then what we mean is a close to isotropic s⃗�
in the sense of (4.3).

C. The energy function

Next, we define an energy of the system to eventually
control the deviation from

P
i s̄

2
i þ Σ2

i , i.e., we define

E≔E1þE2þE3 with Ei ≔ αs̄2i þ βs̄iΣiþðΣiÞ2; ð4:6Þ

and where α > β2=4 and β ∈ R, in order to have E ≥ 0 and
E ¼ 0 only at the isotropic state. For small initial data
(cf. Secs. IVA and IV B) we anticipate E to be strictly

monotonically decreasing and ultimately going to zero, and
we seek to obtain estimates on its decay rate which we can
then translate to the rates of the geometric quantities in
theorem III.7.
In order to achieve this goal we derive the evolution

equation for E by building the prime of (4.6) and using
(4.1a)–(4.1b). The calculation is straightforward but lengthy.
We quote here the result and refer to Appendix A 2 for more
details. It is important to note however, that in the course of
this calculation we plug in the parametrizations (4.3)–(4.4).
Introducing the notation s̄2 ≔

P
i s̄

2
i and ⃗s̄ · Σ⃗ ≔

P
i s̄iΣi the

result reads

E0 ¼ 8

5
βs̄2 − 2

�
1þ 1

3
β

�
F þ

�
24

5
− β −

4

3
α

�
⃗s̄ · Σ⃗

−
8

5
βðs̄1s̄2 þ s̄1s̄3 þ s̄2s̄3Þ þ Gðϵ1; ϵ2Þ

þ
X
i

Hiðai; ciÞ þO3ðjΣ⃗jδ; j ⃗s̄jδÞ; ð4:7Þ

with

Gðϵ1; ϵ2Þ ≔ ϵ1ðβs̄2 þ 2 ⃗s̄ · Σ⃗Þ
þ 2ϵ2ðβðs̄1s̄2 þ s̄1s̄3 þ s̄2s̄3Þ − ⃗s̄ · Σ⃗Þ;

Hiðai; ciÞ ≔ 3βais̄2i þ 2

�
3ai −

2

3
αci

�
s̄iΣi −

2

3
βciΣ2

i

þ 2

3
ð2αs̄i þ βΣiÞs�i

X
k

ckΣk

þ ð2Σi þ βs̄iÞci
X
j

∂Yi

∂sj
����
s�k

s̄j; ð4:8Þ

O3ðjΣ⃗jδ; j ⃗s̄jδÞ ≔ OðjΣ⃗j3δÞ þOðjΣ⃗j2δj ⃗s̄jδÞ
þOðjΣ⃗jδj ⃗s̄j2δÞ þOðj ⃗s̄j3δÞ; ð4:9Þ

and where ∂Yi=∂sjjs�k is understood to be substituted by the
parametrization (4.4).

D. Optimal decay estimate for the energy

In order to obtain a decay estimate on Ewe start by using
the binomial inequality on (4.7) and introducing a decay
inducing coefficient λ > 0, which yields

E0 ≤ −λEþ qð ⃗s̄; Σ⃗Þ þ Gðϵ1; ϵ2Þ
þ
X
i

Hiðai; ciÞ þO3ðjΣ⃗jδ; j ⃗s̄jδÞ; ð4:10Þ

with the quadratic form
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qð ⃗s̄; Σ⃗Þ ≔
�
λαþ 16

5
β

�
s̄2 þ

�
βðλ − 1Þ þ 24

5
−
4

3
α

�
⃗s̄ · Σ⃗

þ
�
λ − 2 −

2

3
β

�
F: ð4:11Þ

The estimate (4.10) contains three parameters, α, β, and λ.
We can vary these within their bounds in order to optimize
the decay rate of E.
When introducing α and β in (4.6) we put on them the

constraint α > β2=4 such that E is non-negative. Further,
we just introduced the constant λ > 0. In fact we want to
maximize the value of λ in order to obtain the optimal decay
rate. At the same time however we have to demand that q
stays negative semidefinite, such that it does not counter
the decay.
In summary, we wish to find a triple ðα; β; λÞ that

maximizes λ under the following constraints:
(i) α > β2

4
, β ∈ R, and λ > 0,

(ii) q is negative semidefinite.
After inspecting the conditions (i) and (ii), it turns out that
the optimal value of λ is achieved when q ¼ 0 (this can be
verified for instance using a computer algebra system such
as Mathematica). In this way we maximize the value of λ
while making the quadratic form q vanish. In other words,
if e1 and e2 are the two eigenvalues of the quadratic form
(4.11), then the system which corresponds to the conditions
(i) and q ¼ 0, i.e.,

fα > β2=4; λ > 0; e1 ¼ 0; e2 ¼ 0g;

is satisfied for the value of λ by solving the equation

15λ3 − 45λ2 þ 142λ − 128 ¼ 0: ð4:12Þ

One finds the numerical result λ ≈ 1.16426. Accordingly,
α ≈ 3.4455 and β ≈ −1.2536. Hence, for this choice of
constants we have

E0 ≤ −λEþ CεE; ð4:13Þ

where we estimated G,
P

i Hi, and O3ðjΣ⃗jδ; j ⃗s̄jδÞ using
suitable constant C > 0 and 0 < ε ≪ 1, because of the
smallness of the initial data and (4.5). This decay estimate
is optimal within the framework of our method.

E. Decay estimates for the geometric quantities

From (4.13) it follows

s̄i ≤ eð−λ=2þεÞτ; jΣij ≤ eð−λ=2þεÞτ: ð4:14Þ

What is left to do is to express these rates in terms of metric
time t. Using ∂τ ¼ H−1∂t, we can rewrite (3.6b) as

∂tðH−1Þ ¼ 3 − Ω ≤ 3:

Using dτ=dt ¼ H and t0 ¼ ð2Hðt0ÞÞ−1, one finds

e−τ ≤ Ct−
1
3;

for some constant C > 0. From (4.14) it is readily seen that
F ≤ Kt−λ=3þε=3≕Kt−κ for some positive constant K and
0 < κ < λ=3. We may rewrite (3.6b) again as

∂tðH−1Þ ¼ 2þ 1

6
F;

which implies

2 ≤ ∂tðH−1Þ ≤ 2þ Kt−κ:

Integrating this inequality and keeping in mind that
t0 ¼ ð2Hðt0ÞÞ−1, we arrive at

2t≤H−1 ≤ 2tþ K
1− κ

t1−κ ⇔H¼ 1

2
t−1½1þOðt−κÞ�: ð4:15Þ

Now, using again dτ=dt ¼ H and integrating (4.15) we
finally find

t1=2 ¼ t1=20 eτ−τ0þζ; ð4:16Þ

where ζ ≔ Oðεðt−κ þ t−κ0 ÞÞ which is a small number.
Therefore, from (4.14) and (4.16) we finally get

jΣij ¼ Oðt−λ=4þεÞ;
jsi − s�i j ¼ Oðt−λ=4þεÞ; ∀ i ∈ f1; 2; 3g; ð4:17Þ

where λ is the solution of (4.12).
It only remains to obtain the decay estimate of the metric.

From _gij ¼ kij, we get (no summation on i in the following
assumed)

d
dt

ðtgiiÞ ¼ −½2HΣi þ ð2H − t−1Þ�ðtgiiÞ: ð4:18Þ

Using (4.15) and (4.17), and after integrating (4.18), one
finds

tgii ≤ Ct0giiðt0Þ; ð4:19Þ

where C is positive constant. On the other hand, integrating
(4.18) on the interval [t;∞) with t ≥ t0, yields

jgii∞ − tgiiðtÞj ≤ Cεt−λ=4þε; ð4:20Þ

where gij∞ ≔ limt→∞ tgiiðtÞ and C is some positive constant.
This completes the proof of theorem III.7.
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V. CONCLUSION

In this work we considered a class of homogeneous
spacetimes, i.e., the diagonal Bianchi type I spacetimes,
with toroidal topology as solutions to the massless
Einstein-Vlasov system. We showed that those systems
with initial data close to the radiative Einstein-de Sitter
model described in Sec. IV B, isotropize towards the future.
In particular, the radiative Einstein-de Sitter model is an
orbital attractor of such systems.
The novelty of this work lies in the use of the energy

method in this context. This method could be applied to
other Bianchi classes, e.g., Bianchi type II [31], or even to
more general cases such as inhomogeneous spacetimes,
which could in principle be the subject of future works.
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APPENDIX: CALCULATIONS

1. Calculation of ∂Yi=∂sj
Calculating the derivatives of Yi from the definition (3.5)

we have

∂Yi

∂sj ¼ −
R
f0p2

i p
2
jð
P

kskp
2
kÞ−

3
2d3p

2
R
f0ð

P
kskp

2
kÞ

1
2d3p

−
R
f0p2

i ð
P

kskp
2
kÞ−

1
2d3p

R
f0p2

jð
P

kskp
2
kÞ−

1
2d3p

2ðR f0ð
P

kskp
2
kÞ

1
2d3pÞ2 ;

which is manifestly negative. Choosing sk ¼ 1=3 this
becomes

∂Yi

∂sj
����
sk¼1=3

¼ −
9

2

Iij2 ½f0�
I0½f0�

−
9

2

Ii1½f0�Ij1½f0�
I0½f0�2

ðA1Þ

with the integrals

I0½f0� ≔
Z

f0jpjδd3p; Ik1½f0� ≔
Z

f0p2
kjpj−1δ d3p;

Iij2 ½f0� ≔
Z

f0p2
i p

2
j jpj−3δ d3p:

Specializing now to an isotropic initial particle distribution
f0ðpkÞ ¼ fiso0 ðjpjδÞ and adopting spherical coordinates
ðjpjδ; θ;φÞ in momentum space, such that d3p ¼
jpj2δ sin θdjpjδdθdφ, one can verify that

I0½fiso0 � ¼ 4π

Z
fiso0 ðjpjδÞjpj3δdp≕ 4πĨ0;

Ii1½fiso0 � ¼ 4π

3
Ĩ0; ∀ i ∈ f1; 2; 3g;

Iij2 ½fiso0 � ¼
� 4π

5
Ĩ0; if i ¼ j;

4π
15
Ĩ0; if i ≠ j:

Substituting this into (A1) yields the result (4.2).

2. Calculation of E0

From the definition of the energy (4.6) we see that in
order to calculate E0 we require the terms ðE2

i Þ0; ðs̄2i Þ0 and
ðs̄iΣiÞ0. Using the product rule and (4.1a)–(4.1b) a direct
calculation up to second order in Σi; s̄i gives

ðΣ2
i Þ0 ¼ −2Σ2

i þ 6Yiðs⃗�Þs̄iΣi þ 6s�iΣi

X
j

∂Yi

∂sj
����
s�k

s̄j

þOðjΣ⃗j3δÞ þOðjΣ⃗jδj ⃗s̄j2δÞ;
ðs̄2i Þ0 ¼ −4s�i s̄iΣi þ 4s�i s̄i

X
k

s�kΣk þOðjΣ⃗jδj ⃗s̄j2δÞ;

ðs̄iΣiÞ0 ¼ −s̄iΣi þ 3Yiðs⃗�Þs̄2i − 2s�iΣ2
i þ 2s�iΣi

X
k

s�kΣk

þ 3s�i s̄i
X
j

∂Yi

∂sj
����
s�k

s̄j þOðj ⃗s̄j3δÞ þOðjΣ⃗j2δj ⃗s̄jδÞ:

(4.3)–(4.4) for s�i and Yiðs⃗�Þ. For E0
i we then have

E0
i ¼ 3βs̄2i −2

�
1þ1

3
β

�
Σ2
i þ

�
6−β−

4

3
α

�
s̄iΣi

þðβs̄iþ2ΣiÞ
X
j

∂Yi

∂sj
����
s�k

s̄jþHiðai;ciÞþO3ðjΣ⃗jδ; j ⃗̄sjδÞ;

where Hiðai; ciÞ and O3ðjΣ⃗jδ; j ⃗s̄jδÞ are given by (4.8) and
(4.9), respectively. What is left to do is to sum up the E0

i.
Using the notation s̄2 ≔

P
i s̄

2
i and ⃗s̄ · Σ⃗ ≔

P
i s̄iΣi we get

E0 ¼ 3βs̄2 − 2

�
1þ 1

3
β

�
F þ

�
6 − β −

4

3
α

�
⃗s̄ · Σ⃗þ

X
i;j

ðβs̄i þ 2ΣiÞ
∂Yi

∂sj
����
s�k

s̄j þ
X
i

Hiðai; ciÞ þO3ðjΣ⃗jδ; j ⃗s̄jδÞ

¼ðIV:5Þ
ðIV:9Þ

3βs̄2 − 2

�
1þ 1

3
β

�
F þ

�
6 − β −

4

3
α

�
⃗s̄ · Σ⃗ − β

�
7

5
s̄2 þ 8

5
ðs̄1s̄2 þ s̄1s̄3 þ s̄2s̄3Þ

�

− 2

�
7

5
⃗s̄ · Σ⃗þ 4

5
ðΣ1ðs̄2 þ s̄3Þ þ Σ2ðs̄1 þ s̄3Þ þ Σ3ðs̄1 þ s̄2ÞÞ

�
þGðϵ1; ϵ2Þ þ

X
i

Hiðai; ciÞ þO3ðjΣ⃗jδ; j ⃗s̄jδÞ:
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Finally, the term in square brackets can be simplified by using the trace-freeness of the shear, i.e., Σ1 þ Σ2 þ Σ3 ¼ 0, to
show that

Σ1ðs̄2 þ s̄3Þ þ Σ2ðs̄1 þ s̄3Þ þ Σ3ðs̄1 þ s̄2Þ ¼ − ⃗s̄ · Σ⃗:

With this we obtain (4.7).
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