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We consider the escape probability of a photon emitted from the innermost stable circular orbit (ISCO)
of a rapidly rotating black hole. As an isotropically emitting light source on a circular orbit reduces its
orbital radius, the escape probability of a photon emitted from it decreases monotonically. The escape
probability evaluated at the ISCO also decreases monotonically as the black hole spin increases. When the
dimensionless Kerr parameter a is at the Thorne limit a ¼ 0.998, the escape probability from the ISCO is
58.8%. In the extremal case a ¼ 1, even if the orbital radius of the light source is arbitrarily close to the
ISCO radius, which coincides with the horizon radius, the escape probability remains at 54.6%. We also
show that such photons that have escaped from the vicinity of the horizon reach infinity with sufficient
energy to be potentially observed because Doppler blueshift due to relativistic beaming can overcome the
gravitational redshift. Our findings indicate that signs of the near-horizon physics of a rapidly rotating black
hole will be detectable on the edge of its shadow.
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I. INTRODUCTION

The shadow structure of the M87 galactic center (M87*)
discovered by the Event Horizon Telescope Collaboration
[1–6] suggests that a supermassive black hole may exist
there. However, the possibility that the center is a horizon-
less compact object has not yet been ruled out [5,7,8]. If
M87* is a black hole, while it is essential to observe the
near-horizon region to distinguish it from black hole
mimickers, because nothing can escape from the horizon,
photons emitted from its vicinity seem unlikely to escape
to infinity. Essentially, we can hardly perceive the scale of
the gravitational radius of a black hole, and although we
must continue to make observations to investigate physical
phenomena at the horizon scale to identify the center, the
simple perspective indicates the difficulty of further explor-
ing the features of the central object.
However, according to recent research progress, this

difficulty can be overcome. One of the targets that has an
advantage in the observability of the near-horizon region is
a rapidly rotating black hole. It has been shown that some
observable features such as bright border of the shadow
edge appear in a near-extremal Kerr black hole [9,10]; more
recently, it was explicitly shown that in the extremal Kerr
spacetime, the escape probability of a photon from a
source at rest with respect to a locally nonrotating observer

is 29.1% in the limit as the emission point approaches the
horizon [11,12].1 Furthermore, the probability becomes
zero in the same limit in the subextremal case, but in the
near-extremal case, about 30% is still achieved just before
the horizon. These facts suggest that the vicinity of a
rapidly rotating black hole is more visible than that of a
slowly rotating one. Because M87* is generally expected to
have relatively high spin [14] and may be a rapidly rotating
black hole [15,16], it is worth pursuing phenomena near the
horizon of a near-extremal Kerr black hole.
In general, a light source near a black hole has proper

motion relative to the horizon, which affects its photon
escape probability and the initial energy injection to a
photon. In particular, sources moving on stable circular
orbits often exist in nature and further provide natural initial
conditions for optically observable phenomena [17,18].
For instance, the apparent shape of the innermost edge of a
standard accretion disk surrounding a black hole appears as
a closed curve [19–24]. Since the innermost edge of an
accretion disk is often identified with the innermost stable
circular orbit (ISCO) [25], it is important to reveal whether
or not photons emitted from the ISCO can reach infinity
with sufficient energy to be observed. In particular, the
ISCO radius coincides with the horizon radius in the
extremal Kerr spacetime [26,27], so that the observability
of the ISCO in a rapidly rotating black hole immediately
implies that of the near-horizon region. The appearance of
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1Ratio of photons trapped by a black hole was also discussed
in Ref. [13].
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an isotropically emitting point source on a circular orbit
in the near horizon of a rapidly rotating black hole has
been investigated [28,29], and it was clarified that the
point source moves on the so-called NHEKline on the
photon ring.
One of the additional and specific features of a source on

a stable circular orbit in the extremal Kerr spacetime is that,
as its orbital radius approaches the ISCO (i.e., the horizon),
the relative velocity to the extremal horizon increases and
can get arbitrarily close to half of the speed of light [26].
Emission from this yields the boost of each photon and
photon concentration in the forward direction of the source
by the relativistic beaming. Therefore, it can be expected
that the escape probability of a photon emitted from the
ISCO of a rapidly rotating black hole becomes relatively
large owing to the boost effect.
Understanding this phenomenon is important for observ-

ing certain features in the vicinity of the horizon. The
purpose of this paper is to clarify how many photons
emitted from a light source circularly orbiting a black hole
can escape to infinity. In particular, when evaluating the
escape probability of a photon from the ISCO in (near)
extremal Kerr spacetimes, we demonstrate the possibility of
observing the vicinity of the horizon from a distance.
Furthermore, we also discuss the frequency shift of photons
to confirm whether such photons reach infinity with
sufficient energy.
This paper is organized as follows. In Sec. II, we derive

the conditions for photon escape from the vicinity of the Kerr
black hole horizon to infinity. In Sec. III, by using the results
in the previous section, we define and show the escape cone
of a photon emitted from a light source orbiting a black hole.
Furthermore, we evaluate the escape probability under the
assumption that the emission is isotropic. We also discuss the
redshift for a photon observed at infinity. In Sec. IV, we
present a summary and discussions. Throughout this paper,
we use units in which G ¼ 1 and c ¼ 1.

II. ESCAPE OF A PHOTON FROM THE VICINITY
OF THE Kerr BLACK HOLE HORIZON

The Kerr metric in the Boyer-Lindquist coordinates is
given by

gμνdxμdxν ¼ −
ΣΔ
A

dt2 þ Σ
Δ
dr2 þ Σdθ2

þ A
Σ
sin2θ

�
dφ −

aðr2 þ a2 − ΔÞ
A

dt

�
2

; ð1Þ

Σ ¼ r2 þ a2cos2θ; Δ ¼ r2 þ a2 − 2Mr;

A ¼ ðr2 þ a2Þ2 − Δa2sin2θ; ð2Þ

where M and a are mass and spin parameters, respectively.
We assume 0 < a ≤ M in order to focus on a rotating black
hole spacetime. The event horizon is located at the radius

r ¼ rh ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
. If a ¼ M, the metric describes

the extremal Kerr black hole spacetime, where rh ¼ M. In
the following part, units in which M ¼ 1 are used.
We consider photon motion in the Kerr black hole

spacetime. Let ka be a null geodesic tangent. Because
the metric admits the Killing vectors ∂=∂t and ∂=∂φ, a
free photon has constants of motion kt ¼ kað∂=∂tÞa and
kφ ¼ kað∂=∂φÞa. Furthermore, the metric also admits the
Killing tensor,

Kab ¼ Σ2ðdθÞaðdθÞb þ sin2θ½ðr2 þ a2ÞðdφÞa − aðdtÞa�
× ½ðr2 þ a2ÞðdφÞb − aðdtÞb� − a2cos2θgab; ð3Þ

such that a photon has a quadratic constant of motion in ka

given by

Q ¼ Kabkakb − ðkφ þ aktÞ2: ð4Þ

We assume positivity of photon energy (i.e., −kt > 0)
because we only focus on photons reaching infinity. Here,
we introduce the impact parameters,

b ¼ −
kφ
kt

; q ¼ Q
k2t

: ð5Þ

Rescaling the tangent ka by −kt (i.e., −ka=kt → ka), we
rewrite the components of ka in terms of b and q as follows:

kt¼ _t¼ 1

Σ

�
aðb−asin2θÞþr2þa2

Δ
ðr2þa2−abÞ

�
; ð6Þ

kr ¼ _r ¼ σr
Σ

ffiffiffiffi
R

p
; ð7Þ

kθ ¼ _θ ¼ σθ
Σ

ffiffiffiffi
Θ

p
; ð8Þ

kφ ¼ _φ ¼ 1

Σ

�
b

sin2θ
− aþ a

Δ
ðr2 þ a2 − abÞ

�
; ð9Þ

where σr, σθ ¼ �, the dot denotes the derivative with
respect to an affine parameter, and

R ¼ ðr2 þ a2 − abÞ2 − Δ½qþ ðb − aÞ2�; ð10Þ

Θ ¼ q − b2 cot2 θ þ a2 cos2 θ: ð11Þ

We review conditions for a photon escaping from the
vicinity of the horizon to infinity [12]. To derive them, we
analyze the equation of photon radial motion (7), which is
rewritten as

_r2 þ rðr − 2Þ
Σ2

ðb − b1Þðb − b2Þ ¼ 0; ð12Þ
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where

b1ðrÞ ¼
−2arþ ½rΔðr3 − qrþ 2qÞ�1=2

rðr − 2Þ ; ð13Þ

b2ðrÞ ¼
−2ar − ½rΔðr3 − qrþ 2qÞ�1=2

rðr − 2Þ : ð14Þ

We call bi (i ¼ 1, 2) the effective potentials for photon
radial motion. The allowed parameter range of b for a
positive energy photon is

b ≤ b1 for rh < r < 2; ð15Þ

b2 ≤ b ≤ b1 for r ≥ 2: ð16Þ

Since the escape of a photon is governed by the potential
barrier, the extremum points of bi (i ¼ 1; 2) should be
known. Solving b0iðrÞ ¼ 0 for q, we obtain a common
equation

q¼fðrÞ≡ r2

a2

�
−
4ð1−a2Þr
ðr−1Þ2 þ3þð3−rÞðr−1Þ

�
: ð17Þ

It is sufficient to investigate the region where fðrÞ ≥ 0
because the light source we discuss is located on the
equatorial plane, and therefore, from Eqs. (8) and (11),
a photon must initially satisfy Θ ¼ q ≥ 0. Figure 1(a)
shows a typical shape of fðrÞ in the case of subextremal
Kerr spacetimes (i.e., 0 < a < 1). This figure shows that
Eq. (17) has two roots r1, r2 outside the horizon, which are
restricted in the range

rh < rc1 ≤ r1 ≤ 3 ≤ r2 ≤ rc2; ð18Þ

where r ¼ 3 is a local maximum point of f, and

rc1 ¼ 2þ 2 cos

�
2

3
arccosðaÞ − 2π

3

�
; ð19Þ

rc2 ¼ 2þ 2 cos

�
2

3
arccosðaÞ

�
ð20Þ

are radii of circular photon orbits solving the equation
f ¼ 0 (i.e., q ¼ 0). When a photon stays at the top of an
extremum point of b1 (b2), the orbit with constant radius
r ¼ r1 (r ¼ r2) is called the spherical photon orbit. Then
the photon must have

b ¼ bsi ≡ 2ð1 − a2Þ
aðri − 1Þ −

ðri − 1Þ2
a

þ 3

a
− a: ð21Þ

Next, we focus on the case of the extremal Kerr
spacetime (i.e., a ¼ 1), for which the first term in f
vanishes such that Eq. (17) reduces to

q ¼ r3ð4 − rÞ: ð22Þ

Figure 1(b) shows the shape of f in the extremal case (i.e.,
a ¼ 1). Contrary to the subextremal case, the number
of roots of Eq. (17) depends on q. Outside the horizon,
there exists a single root r2 for 0 ≤ q ≤ 3, while there exist
two roots r1, r2 outside the horizon for 3 < q < 27, where
the boundary values of the ranges come from fðrhÞ ¼ 3
and fð3Þ ¼ 27.
Let us consider escape conditions for a photon in terms

of ðb; qÞ. Classifying the radial position r of a light source
based on relations with the extremum point r1 and the
horizon rh, we clarify the parameter range of ðb; qÞ for a
photon that can escape from the vicinity of the horizon to
infinity. In the following part, it is assumed that r < 3.
Case a.—We consider the case r1 < rh < r, which we

define as Case a. Note that this inequality appears only for
the extremal case because r1 > rh always holds for the

FIG. 1. Relation between the impact parameter q and the radii ri (i ¼ 1, 2) of extremum points of the effective potentials biðrÞ.
The function f is shown by black lines, which are solid outside the horizon and dashed inside it. The left panel (a) is a subextremal case
(a ¼ 0.999), and the right panel (b) is the extremal case (a ¼ 1).
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subextremal case [see Fig. 1 and Eq. (18)]. The first
inequality r1 < rh leads to 0 ≤ q < 3. In this range of q,
we have typical plots of b1, b2 and marginal parameter
values of b, as shown in Fig. 2(a). From this plot, the
allowed range of b for escape can be read as follows: if
σr ¼ þ (i.e., radially outward emission), a photon with
bs2 < b ≤ b1 (i.e., the bounded range between the blue
lines) can escape to infinity. Even if σr ¼ − (i.e., radially
inward emission), a photon with 2 < b < b1 (i.e., the
bounded range between the red lines) can do so. Hence,
we find that the marginal parameter values of b are given
by ðσr; bÞ ¼ ðþ; bs2Þ; ð−; 2Þ.
Case b.—We consider the case rh ≤ r1 < r, which

we define as Case b. The corresponding range of q is 3 ≤
q < f for a ¼ 1 and 0 ≤ q < f for 0 < a < 1. Figure 2(b)

shows typical plots of bi in these ranges of q. If σr ¼ þ, a
photon with bs2 < b ≤ b1 (i.e., between the blue lines)
can escape infinity, while if σr ¼ −, a photon with bs1 <
b < b1 (i.e., between the red lines) can do so. Hence,
we find that marginal parameter values of b are given by
ðσr; bÞ ¼ ðþ; bs2Þ; ð−; bs1Þ.
Case c.—We consider the case rh < r ≤ r1, which we

define as Case c. Then the parameter range of q is restricted
to f ≤ q < 27. Figure 2(c) shows typical plots of bi in this
ranges. Only if σr ¼ þ, a photon can escape to infinity,
and it must then have bs2 < b < bs1 (i.e., between the red
and blue lines). Hence, we find that marginal parameter
values b are given by ðσr; bÞ ¼ ðþ; bs1Þ; ðþ; bs2Þ.
The allowed parameter values of ðb; qÞ for escape from

the vicinity of the horizon are summarized in Tables I and II.

FIG. 2. Typical shapes of the effective potentials bi (i ¼ 1, 2) and parameter ranges of b for escaping photons. The radius r� indicates
the radial position of the source.

TABLE I. (a ¼ 1) Allowed parameter values of ðb; qÞ for escape from the vicinity of the horizon in the extremal Kerr spacetime.

Cases q b (σr ¼ þ) b (σr ¼ −) Marginal pairs of ðσr; bÞ
(a) r1 < rh < r 0 ≤ q < 3 bs2 < b ≤ b1 2 < b < b1 ðþ; bs2Þ and ð−; 2Þ
(b) rh ≤ r1 < r 3 ≤ q < f bs2 < b ≤ b1 bs1 < b < b1 ðþ; bs2Þ and ð−; bs1Þ
(c) rh < r ≤ r1 f ≤ q < 27 bs2 < b < bs1 n=a ðþ; bs2Þ and ðþ; bs1Þ

TABLE II. (0 < a < 1) Allowed parameter values of ðb; qÞ for escape from the vicinity of the horizon in a subextremal Kerr black hole
spacetime.

Cases q b (σr ¼ þ) b (σr ¼ −) Marginal pairs of ðσr; bÞ
(b) rh ≤ r1 < r 0 ≤ q < f bs2 < b ≤ b1 bs1 < b < b1 ðþ; bs2Þ and ð−; bs1Þ
(c) rh < r ≤ r1 f ≤ q < 27 bs2 < b < bs1 n=a ðþ; bs2Þ and ðþ; bs1Þ
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III. ESCAPE CONE, ESCAPE PROBABILITY,
AND REDSHIFT

We focus on a light source circularly orbiting a rotating
black hole on the equatorial plane θ ¼ π=2. The energy E
and angular momentum L of a source in a prograde circular
orbit of radius r are given by [26]

E ¼ r3=2 − 2r1=2 þ a

r3=4ðr3=2 − 3r1=2 þ 2aÞ1=2 ; ð23Þ

L ¼ r2 − 2ar1=2 þ a2

r3=4ðr3=2 − 3r1=2 þ 2aÞ1=2 : ð24Þ

We restrict the orbital radius r of the source in the range
r ≥ rI, where rI is the ISCO radius,

rI ¼ 3þ Z2 − ½ð3 − Z1Þð3þ Z1 þ 2Z2Þ�1=2; ð25Þ

Z1 ¼ 1þ ð1 − a2Þ1=3½ð1þ aÞ1=3 þ ð1 − aÞ1=3�; ð26Þ

Z2 ¼ ð3a2 þ Z2
1Þ1=2: ð27Þ

Note that rI approaches rh as a approaches the extremal
value 1. In the extremal case, rI coincides with the horizon
radius, i.e., rI ¼ rh ¼ 1.
To describe a photon emission from the source, we

introduce a frame associated with its rest frame,

eð0Þ ¼ −Edtþ Ldφ; ð28Þ

eð1Þ ¼ rffiffiffiffi
Δ

p dr; ð29Þ

eð2Þ ¼ rdθ; ð30Þ

eð3Þ ¼
ffiffiffiffi
Δ

p

r3=4ðr3=2−3r1=2þ2aÞ1=2 ½ðr
3=2þaÞdφ−dt�; ð31Þ

which is a tetrad only on massive particle circular orbits in
the equatorial plane. Then, the tetrad components of ka at
the source position are kðμÞ ¼ kaeðμÞajθ¼π=2, where

kð0Þ ¼ b − a − r3=2

r3=4ðr3=2 − 3r1=2 þ 2aÞ1=2 ; ð32Þ

kð1Þ ¼ σr
r

ffiffiffiffi
R
Δ

r
; ð33Þ

kð2Þ ¼ σθ

ffiffiffi
q

p
r

; ð34Þ

kð3Þ ¼ bE − Lffiffiffiffi
Δ

p : ð35Þ

We parametrize the spatial direction of photon emission
by two angle parameters ðα; βÞ as follows:

cos α sin β ¼ kð1Þ

kð0Þ
; cos β ¼ −

kð2Þ

kð0Þ
; sin α sin β ¼ kð3Þ

kð0Þ
;

ð36Þ

where β is the polar angle measured from the direction
−eð2Þ to the direction of k (projection of ka normal to eð0Þ),
and α is the azimuthal angle measured from the direction
eð1Þ to the projection of k on the plane spanned by
feð1Þ; eð3Þg.2 Figure 3 shows the relation between k and
ðα; βÞ. Solving these relations for ðα; βÞ and using the null
condition, we have

cos α ¼ kð1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkð1ÞÞ2 þ ðkð3ÞÞ2

q ; sin α ¼ kð3Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkð1ÞÞ2 þ ðkð3ÞÞ2

q ;

ð38Þ

cos β ¼ −
kð2Þ

kð0Þ
; sin β ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkð1ÞÞ2 þ ðkð3ÞÞ2

q
kð0Þ

: ð39Þ

As a result, a pair ðb; qÞ has a one-to-one relation to a pair of
emission angles ðα; βÞ. Hence, the allowed parameter ranges
of ðb; qÞ for photon escape restrict the range of ðα; βÞ.
We now relate marginal parameter values for photon

escape to ðα; βÞ. Let S be the complete set of emission
angles ðα; βÞ at which a photon can escape to infinity. We
call S the escape cone of a photon. If a photon has emission

FIG. 3. Definition of photon emission angles at a light source.

2The angles α and β are related to the directional cosines Ψ
and Θ of a beam of radiation with respect to ϕ direction and θ
direction in Ref. [17] as

Θ ¼ β; cosΨ ¼ sin α sin β: ð37Þ
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angles of the boundary values of S, it cannot escape to
infinity anymore. We call the set of all critical emission
angles ∂S; this set can be explicitly specified in terms of
marginal parameter values given in Tables I and II as
follows:

∂S ¼ ⋃
i¼1;2

fðαi; βiÞj0 ≤ q ≤ 27g; ð40Þ

where, in the extremal case, we have defined

ðα1; β1Þ≡ ðα1ðaÞ; β1ðaÞÞ≡ ðα; βÞjσr¼−
b¼2

for 0 ≤ q < 3;

ð41aÞ

ðα1; β1Þ≡ ðα1ðbÞ; β1ðbÞÞ≡ ðα; βÞjσr¼−
b¼bs

1

for 3 ≤ q < f;

ð41bÞ

ðα1; β1Þ≡ ðα1ðcÞ; β1ðcÞÞ≡ ðα; βÞjσr¼þ
b¼bs

1

for f ≤ q ≤ 27;

ð41cÞ

ðα2; β2Þ≡ ðα; βÞjσr¼þ
b¼bs

2

for 0 ≤ q ≤ 27; ð42Þ

and in a subextremal case,

ðα1; β1Þ≡ ðα1ðbÞ; β1ðbÞÞ≡ ðα; βÞjσr¼−
b¼bs

1

for 0 ≤ q < f;

ð43aÞ

ðα1; β1Þ≡ ðα1ðcÞ; β1ðcÞÞ≡ ðα; βÞjσr¼þ
b¼bs

1

for f ≤ q ≤ 27;

ð43bÞ

ðα2; β2Þ≡ ðα; βÞjσr¼þ
b¼bs

2

for 0 ≤ q ≤ 27: ð44Þ

Figure 4 shows the critical emission angles for photon
escape. The red, green, blue, and orange lines show the
critical angles ðα1ðaÞ; β1ðaÞÞ, ðα1ðbÞ; β1ðbÞÞ, ðα1ðcÞ; β1ðcÞÞ, and
ðα2; β2Þ, respectively. Note that the region containing the
coordinate origin bounded by critical angles corresponds
to an escape cone. Figures 4(a)–4(c) show escape cones
in the cases r ¼ 2.98, 2.6, rIð¼ 2.32…Þ, respectively, for

FIG. 4. Escape cone of a photon emitted at a source circularly orbiting a rotating black hole. The first, second, and third lines show the
cases a ¼ 0.9, a ¼ 0.999, and a ¼ 1, respectively. The red, green, blue, and orange lines show ðα1ðaÞ; β1ðaÞÞ, ðα1ðbÞ; β1ðbÞÞ, ðα1ðcÞ; β1ðcÞÞ,
and ðα2; β2Þ, respectively. The area containing the origin bounded by the colored lines corresponds to the escape cone of a photon.
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a ¼ 0.9. The horizon radius is rh ≃ 1.43…. The area of the
escape cones becomes smaller as the emission point
approaches the ISCO. Figures 4(d)–4(f) show escape cones
in the cases r ¼ 2.98, 2, rIð¼ 1.18…Þ, respectively, for
a ¼ 0.999. The horizon radius is rh ¼ 1.04…. As is the
case for a ¼ 0.9, the area of the escape cones becomes
smaller as r approaches the ISCO radius. Comparing photon
emissions from the ISCO, we can see that the area of the
escape cone in the case of a ¼ 0.999 is smaller than that of
a ¼ 0.9. Figures 4(g)–4(i) show escape cones in the cases
r ¼ 2.98, 2, 1.001, respectively, for a ¼ 1. The area of the
escape cones becomes smaller as r decreases. It must be
noted that, according to Fig. 4(i), even if the radial coordinate
value of an emission point is sufficiently close to the horizon,
r ¼ 1, the escape cone still occupies over half of the unit
sphere, indicating that more than half of the photons
isotropically emitted from a circularly orbiting source can
escape to infinity. In particular, as the entire region for which
0 ≤ α < π is included in the escape cone, all photons
emitted forwardly from the source can escape to infinity.
We now assume that photon emission is isotropic and

then evaluate the escape probability; this is identified with
the solid angle of an escape cone divided by 4π, i.e.,

P ¼ 1

4π

Z
S
dαdβ sin β: ð45Þ

In subextremal cases, in terms of critical angles, the escape
probability P can be written as

P ¼ 1 −
1

2π

Z
r

rc
1

dr1
dα1ðbÞ
dr1

cos β1ðbÞ

−
1

2π

Z
3

r
dr1

dα1ðcÞ
dr1

cos β1ðcÞ −
1

2π

Z
rc
2

3

dr2
dα2
dr2

cos β2:

ð46Þ
All the integrands in the last three terms coincide with each
other,

dα1ðbÞ
dr1

cos β1ðbÞ

����
r1¼x

¼ dα1ðcÞ
dr1

cos β1ðcÞ

����
r1¼x

¼ dα2
dr2

cos β2

����
r2¼x

≡ gðxÞ: ð47Þ

Hence, we have

P ¼ 1 −
1

2π

Z
rc
2

rc
1

gðxÞdx: ð48Þ

In the extremal case (i.e., a ¼ 1), we can also write P in
terms of critical angles as follows:

P¼1−
1

2π

Z
rh

0

dr1
dα1ðaÞ
dr1

cosβ1ðaÞ−
1

2π

Z
rc
2

rh

dxgðxÞ: ð49Þ

Figure 5 shows the dependence of the photon escape
probability P on the orbital radius r of a circularly orbiting
source. The pink, gray, orange, blue, green, and red lines
show the cases a ¼ 0.9, 0.95, 0.98, 0.999, 0.99999, and 1,
respectively. All P values decrease monotonically as r
decreases toward rI. Furthermore, the value of P evaluated
at r ¼ rI decreases monotonically as a approaches 1. For
example, in the Thorne limit a ¼ 0.998 [30], the value of P
evaluated at the ISCO is

PðrIÞ ¼ 0.5880…; ð50Þ

where rI ¼ 1.236…. These results are consistent with a
naive expectation that P becomes increasingly smaller as r
approaches rh. However, it is worth noting that PðrIÞ does
not approach zero as a approaches 1. Even if a photon is
emitted from the source circularly orbiting a near-extremal
Kerr black hole with the orbital radius r ¼ rI ≃ rh, the
escape probability is about 55%. For the extremal case
a ¼ 1, in the limit as r approaches rI (i.e., the horizon
radius rI ¼ rh ¼ 1), P takes a nonzero value,

lim
r→1þ

P ¼ 0.5464…: ð51Þ

This indicates that more than half of photons emitted in
the vicinity of the horizon escape to infinity without falling
into the black hole.
We now evaluate the frequency shift of photons escaping

from the ISCO to infinity. The redshift factor zmeasured by
a static observer at infinity is given by

1þ z ¼ −kð0Þ: ð52Þ

Figures 6(a)–6(c) show the density contour of z for photons
emitted from the front hemisphere of the source, which
corresponds to the cases in Figs. 4(c), 4(f), and 4(i),
respectively. The gray dashed lines show the contours of
z ¼ 0, and the red/blue regions show the emission angles

FIG. 5. Dependence of the escape probability P on the orbital
radius r of a circularly orbiting source. The pink, gray, orange,
blue, green, and red lines correspond to the cases a ¼ 0.9, 0.95,
0.98, 0.999, 0.99999, and 1, respectively. The left end point on
each line corresponds to ISCO for subextremal cases, and the left
end point for a ¼ 1 is r ¼ 1.001.
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with which a photon is redshifted/blueshifted. The redshift
factor is determined by the competition between the gravi-
tational redshift and the Doppler blueshift. As a increases,
the emission angles indicating blueshift decrease, but more
than half of the hemisphere still shows blueshift.3 We
interpret that the Doppler blueshift due to the proper
motion of the source overcomes the gravitational redshift.
Therefore, combined with the escape probability results,
this implies that photons escaping from the vicinity of the
black hole horizon certainly transport the information of the
near-horizon region and relativistic phenomena to distant
observers.

IV. SUMMARY AND DISCUSSIONS

We have considered the observability of an isotropically
emitting point source on a circular orbit near the horizon of
a rapidly rotating black hole. When the source in a circular
orbit loses energy and angular momentum, it eventually
reaches the ISCO. Because the ISCO radius is very close to
the horizon radius in a near-extremal Kerr spacetime, the
observability of the ISCO indicates that of the near-horizon
region and is essential for distinguishing whether or not the
central object is a black hole.
We have provided a method to calculate the escape cone

of a photon emitted from the source and shown it explicitly;
our results indicate that a photon emitted forward and
outward from the source is likely to escape to infinity, while
one emitted backward and inward is likely to fall into the
horizon. On the basis of these results, we have evaluated the
escape probability of a photon as a function of the orbital
radius of the circularly orbiting source. As a result, we
have found that it decreases monotonically as the radius
approaches the ISCO. Furthermore, we have shown that the

escape probability evaluated at the ISCO decreases mono-
tonically when the Kerr parameter approaches the extremal
value. Despite the fact that the ISCO radius eventually
coincides with the horizon radius in the extremal case
[26,27], the probability does not become zero even in the
limit of the ISCO; on the contrary, it remains at 54.6%. In a
near-extremal Kerr spacetime, the ISCO radius is always
larger than the innermost spherical photon orbit radius
(i.e., unstable circular orbit radius). This fact implies that a
photon emitted inward from the ISCO can be bounced back
at a turning point by a potential barrier if it has a specific
impact parameter. In the extremal Kerr spacetime, a photon
can have a turning point arbitrarily close to the horizon.
Hence, photons can be scattered despite being emitted
inward from a region very close to the horizon. This is why
the escape probability becomes nonzero (or has nonzero
measure) in the ISCO limit of the (near) extremal Kerr. We
leave a more clear explanation of relatively large escape
probability by the extremal Kerr throat geometry as future
work. Because the value of 54.6% is larger than 29.1%—
the escape probability of a photon emitted from the locally
nonrotating source in the limit as the source approaches
the horizon [12]—we can interpret this enhancement as the
result of the boost (or the relativistic beaming) due to the
circular motion of the source. We have also found that
photons emitted from the front side of the source get
blueshifted for distant observers, i.e., the Doppler blueshift
due to the proper motion of the source can overcome the
gravitational redshift.
On the basis of these results, we conclude that the ISCO of

a rapidly rotating black hole spacetime is observable. Our
results provide insight into optical phenomena such as the
observation of a black hole shadow. The ISCO is often
identified as the innermost edge of the accretion disk or is
considered as the position where the phase of accretion flow
switches; however, in any case, the orbit is located in the
immediate vicinity of the near-extremal rotating black hole.
Photons emitted from this region contain information on the
near-horizon region and phenomena, and certainly transport

FIG. 6. Density contour plot of the redshift factor z in the ranges 0 ≤ α ≤ π and 0 ≤ β ≤ π (i.e., front side emission). The gray dashed
lines indicate the contour z ¼ 0. The red and blue regions denote redshift and blueshift, respectively.

3In the extremal Kerr geometry, it is known that z varies
smoothly with the directional cosine Ψ with respect to ϕ
direction, and there always exists the range of Ψ where z shows
a net blueshift [17].
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it to infinity. Finally, the information can be obtained from
photons that appear as the edge of the black hole shadow to a
distant observer. From this, we can conclude that if a black
hole is rapidly spinning, signs of near-horizon physics will
be detectable on the edge of the shadow.
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