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The Gibbons-Werner method where the Gauss-Bonnet theorem is applied to study the gravitational
deflection angle has received much attention recently. In this paper, we study the equivalence of the Gibbons-
Werner method to the standard geodesics method, and it is shown that the geodesics method can be derived
with the Gibbons-Werner method, for the asymptotically flat case. In the geodesics method, the gravitational
deflection angle of the particle depends entirely on the geodesic curvature of the particle ray in the Euclidean
space. The gravitational deflection of light in Kerr-Newman spacetime is calculated by different technologies

under the Gibbons-Werner framework, as an intuitive example to show the equivalence.
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I. INTRODUCTION

Gravitational lensing plays an important role in gravi-
tational theory. In theoretical physics, it is used to test the
fundamental theory of gravity, where a famous example is
that Eddington et al. [1,2] verified Einstein’s general
relativity by means of the deflection experiment of light
in the solar gravitational field 100 years ago. In astrophys-
ics and cosmology, it is used to measure the mass of
galaxies and clusters [3-5], and to detect dark matter and
dark energy [6-10]. In mathematics, it is related to
singularity theory, topology and Finsler geometry [11-15].

Recently, Gibbons and Werner [11] introduced an
elegant geometrical method of deriving the bending angle
of light in a static and spherically symmetric spacetime.
They used the famous Gauss-Bonnet (GB) theorem to a
surface defined by the corresponding optical metric. Later,
Werner [14] extended this method to the rotating and
stationary spacetimes. In stationary spacetimes, the optical
geometry is defined by the Randers-Finsler metric. Thus,
Werner applied Nazim’s method to construct an osculating
Riemannian manifold where one can easily use the GB
theorem. The work by Gibbons and Werner promotes the
study of light deflection. On one hand, Jusufi ez al. [16-31]
studied the gravitational lensing not only in asymptotically
flat spacetime but also in asymptotically nonflat spacetime
such as a spacetime with cosmic string. Similar works can
also be found in Refs. [32—-39]. On the other hand, Ishihara
et al. [40-44] studied the finite-distance corrections for
gravitational deflection of light both for the weak and the
strong deflection limit, where the source and observer are
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no longer assumed to be infinitely far apart from a lens. For
a review on finite-distance corrections, we refer the reader
to Ref. [45].

It is well known that there are many massive particles in
our Universe, such as massive neutrinos. The study of
gravitational deflection of massive particles allows one to
understand the properties of the sources and these particles.
In fact, the study of the massive particles lensing using
traditional methods can be found in Refs. [46-54]. Moreover,
two other routes have been established by applying the GB
theorem to study the gravitational deflection of massive
particles. The first route is related to the Jacobi metric of
curved spacetime. To be precise, one can calculate the
deflection angle of massive particles via applying the GB
theorem to the surface defined by the Jacobi metric [55,56]
for static spacetime and by the Jacobi-Maupertuis Randers-
Finsler metric [57] for stationary spacetime. The second
route is related to the optical media method. For static and
spherically symmetric spacetime, Crisnejo and Gallo [58]
used the GB theorem to study the gravitational deflections of
light in a plasma medium and the deflection angle of massive
particles. The finite-distance corrections of light with a
plasma medium and the gravitational deflection of charged
massive particles were studied quite recently [59,60]. For
rotating and stationary spacetimes, Jusufi [61] used the GB
theorem to study the deflection angles of massive particles by
the Kerr black hole and the Teo wormhole, respectively,
based on the corresponding isotropic type metrics, the
refractive index of the corresponding optical media.
Furthermore, the method in Ref. [61] was extended to
distinguish naked singularities and Kerr-like wormholes
[62], and to study the gravitational deflection of charged
particles in Kerr-Newman spacetime [63].
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In this paper, the method with the GB theorem to study
the deflection angle shall be called the Gibbons-Werner
method. It is worth investigating whether the Gibbons-
Werner method [11] is equivalent to the standard geodesics
method [64]. In fact, this topic has been discussed by some
researchers. The first-order equivalence has been shown in
Refs. [18,19,30,62], and the second-order equivalence has
been shown in Refs. [56,58]. From a conceptual point of
view, however, the two methods seem to be completely
different. The Gibbons-Werner method shows that the
deflection of particles (photon and massive particles) is
determined by a quantity outside of itself relative to the
lens [14,61], and thus the gravitational deflection angle can
be regarded as a global topological effect, whereas the
geodesics method is usually associated within a region
from particles ray to lens. In the present paper, we will
demonstrate the equivalence between the Gibbons-Werner
method and the geodesics method for asymptotically flat
spacetime, in terms of results and concepts. More specifi-
cally, the weak gravitational deflection of light in Kerr-
Newman spacetime will be taken as a simple example.

This paper is organized as follows. In Sec. II, we review
the GB theorem and use the theorem to the lens geometry.
Then, we show that the equivalence of the Gibbons-Werner
method to geodesics method. In Sec. III, we give the Kerr-
Newman spacetime as an example to show the equivalence.
Finally, we summarize our results in Sec. I'V. Throughout
this paper, we use the natural units where G = ¢ = 1 and
the metric signature (—, +, +, +).

II. THE EQUIVALENCE BETWEEN
THE GIBBONS-WERNER METHOD
AND GEODESICS METHOD

A. The Gauss-Bonnet theorem

Let D be a compact oriented two-dimensional
Riemannian manifold with the Euler characteristic y(D)
and Gaussian curvature K, and its boundary 0D is a
piecewise smooth curve with geodesic curvature k.
Then, the GB theorem states that [11,65]

// de+7{ kydo+ 370, = 2my(D). (1)
D oD —

=

where dS is the area element of the surface, do is the line
element along dD, and 0, is the exterior angle defined for
the ith vertex in the positive sense.

B. Application of the Gauss-Bonnet theorem
to the lens geometry

Assume M be a two-dimensional smooth manifold with
coordinates (x,y) and a Riemannian metric §;;. Now one
can apply the GB theorem to the lens geometry in a region
D C (M, g;;). For convenience, D is required to be asymp-
totically Euclidean and thus both the particle source S and

the observer O are in the asymptotically Euclidean region.
Let 0D = y,|JC,(i = 1.2,3) with the particle ray y, and
three curves C;. y, is described by the impact parameter b,
and the curves C; are defined by

C]:x:—R,
Cz:y:—R,
C3:X:R,

with the constant R > 0. Since the lens L is excluded in the
domain D, y(D) = 1. Additionally, as R — oo, boundary
curve intersections S, A, B and O are in the asymptotically
Euclidean region, and thus one can have k,(C;) =0,
Og+ 04+ 0 =3xn/2, and 0, = /2 + a with the deflec-
tion angle a. Then, using the GB theorem to the region D, it
can lead to

g%(/AKdS—/gokg(yg)do*) + (37”+g+a> ~ o
(2)

Thus, the gravitational deflection angle can be written as

a:lgg&(—/[)KdH/Sokg(yg)da), 3)

as shown in Fig. 1.

C. The equivalence between the Gibbons-Werner
method and geodesics method

In the discussion above, the Riemannian space (M, §;;) is
somewhat arbitrary, which is asymptotically Euclidean and
the condition of using the GB theorem is required. In the

y
L
¢ X
S Ve b] /0
c D C,
A c, B

FIG. 1. The region D C(M,j;) with boundary
OD =y, \JC;(i = 1,2,3). Particle ray y, is a spatial curve and
C; are three curves defined by C;: x = —R, C,: y = —R and
C3: x = R with the constant R > 0. As R — oo, the points of
intersection S, A, B, and O are in the asymptotically Euclidean
region, where S and O denote the particle source and the
observer, respectively. L is the lens, b is the impact parameter
and « is the deflection angle.
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following, three cases will be discussed to show the
equivalence between the Gibbons-Werner method and
the geodesics method.

1. Case 1: K # 0, and ky(y,) =0

In this case, the particle ray y, is a spatial geodesic in
(M., 3;;), and Eq. (3) becomes

a=—lim / / Kds. (4)
R—o0 D

Indeed, this is the original consideration of Gibbons and
Werner [11,14] and for convenience we shall call it the
narrow Gibbons-Werner method. In fact, many studies fall
into this category. For light deflection, one has (M, g;;) =
(M, g?}’t), where g?}’t is the corresponding optical metric of
curved spacetime. For massive particles, (M, g,-j) =
(M, j;;), where j;; is the corresponding Jacobi metric of
curved spacetime. In stationary spacetime, the optical
metric (or Jacobi metric) is a Randers-Finsler metric.
However, in these cases one can use the osculating
Riemannian metric by Werner’s method [14] or use
Jusufi’s method to avoid the Finsler metric [61].

2. Case 2: K # 0, and ky(y,) # 0

Now, the particle ray is not geodesic in a curved space,
and Eq. (3) can be written as

A = OGauss 1 Ageods (5)

AGauss — _I%i_)ngo/AKdS’

o
Ageod = I;I—I»IoloA kg(}/g)da‘

where

In Refs. [42-44], Ono et al. considered the so-called
generalized optical metric space as the lens background,
and used Eq. (5) to study the deflection angle of light in
stationary spacetimes.

3. Case 3: K=0, and ky(y,) # 0

In this case, we assume that M is Euclidean space, and
Eq. (3) arrives at

a= lim
R—o0 S

0
ky(y,)do. (6)
To our best knowledge, Eq. (6) has not been considered yet,
and next it will be proved that this result is the same with
the expression in the geodesics method.
The line element of a three-dimensional Euclidean
space is

di? = dx* + dy* + dz*, (7)

and a unit vector normal to the x—y plane is n = (0,0, 1).
The particle ray y,, can be denoted by y = y(x), and one can
define its unit tangent vector as

r=—L _(1.y.0) (8)

Vi

where ’ denotes derivative with respect to x. Therefore,

. dT 3
Eﬁzm(—ylﬂvo)’ )

and one can obtain the geodesic curvature of y, in the x—y
plane as follows [65]:

i

; Y

Then, one can calculate the deflection angle by
_ 0
a= 1;1_1)130 : ky(y,)dl
0 i
li / Y 7
koo Js (14 y")
dy X—00
= tan | — , 11
() o

which is nothing but the formula of calculating deflection
angle with geodesics method in Refs. [50-52].

In short, the geodesics method just corresponds to
special cases for the Gibbons-Werner method, where the
GB theorem is used to Euclidean space. In other words,
the geodesics method categorizes the deflection angle into
the influence of geodesic curvature of particles moving in
Euclidean space. Therefore, the geodesics method also has
geometric meaning from the perspective of curvature.

III. AN EXAMPLE: THE DEFLECTION OF
LIGHT IN KERR-NEWMAN SPACETIME

For the second-order post-Minkowskian approximation,
the components of the metric of the Kerr-Newman space-
time in the harmonic coordinates (7, x, y, z) can be written
as [66,67]

2m  2m?+ ¢*
900:—1+——42q+0(83)v

r r
9017Ci+0(€3)7

2m  m? m?—g?)xix/
gij:<l+7+7>5if+%+0(53)’ (12)

where m and ¢ are the mass and electric charge of the
Kerr-Newman black hole, respectively. x = (x,y,z2),
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r=+/x*+y>+27> and ¢ is the ith component of the
gravitational vector potential { = Z’V# (y,—x,0), where a is
the angular momentum per unit mass. §;; is the Kronecker
symbol and the expanding parameter ¢ represents the
black hole parameters m, a or g. The above metric is
expanded as the power series of the parameters m, a and g,
and O(e?) is the series with order greater than 2, such
as m*,a®, ¢*, m*a,ma’, ....

For stationary spacetime, its optical geometry defined by
the Randers-Finsler metric takes the form [14,68]

F(x', dx") = dt = \/&;;dx'dx/ + pdx’, (13)

where @;; is a Riemannian metric and f; is a one-form

satisfying a"3,8; < 1. Consider a null curve in the Kerr-

Newman spacetime, ds? = 0, and one can find a Randers-
Finsler metric,

N dm  Tm? - ¢*
Qjj = {1 +T+T:|6ij

m? — g*)xix/
LR
2 dx — xd
puxi = 2mAVIE I | o) (14)
i
where

Hyy = 2xy, Hi, = Hy, :yz—XQ,
Hy = —2xy, H\; = H3 =yz,
Hs; =0, Hy; = H3p = xz.

A. Werner’s method: K # 0, k,(y,) =0

In this subsection, we will apply Werner’s method [14] to
calculate the gravitational deflection angle of light. The
light ray is geodesic in Randers-Finsler space, and there-
fore, Eq. (4) can be considered. To simplify, one can study
the null geodesic in the equatorial plane. Chose z = 0 as the
equatorial plane, and one can find the Kerr-Newman-
Randers black hole optical metric as follows:

- dx’ [ dx'dx/ dx'
F l,— = Al“—— i T 15
(x dt) Yiar dr 7 dt (15)

where &;; and f; are the same as those in Eq. (14) except
that / and j only run in {1,2} here.

The Randers-Finsler metric is characterized by the
Hessian [14,68]

1PF2(x,v)

9ijx.v) = 2 Ov'iov (16)

where x € M, and v € T M with T M the tangent space at
a given point. In order to obtain a Remannian metric g, one

can choose a smooth nonzero vector field V over M that
contains the tangent vectors along the geodesic y such that
V(yr) = v, defining

ij(x) = g;;(x, V(x)). (17)

In this construction, we can obtain a crucial result that
the geodesic y5 of (M, F) is also a geodesic y; of (M, 7),
Le., yp =y [14].

Following Werner [14], the osculating Riemannian
manifold (M, g,;) can be used to calculate the gravitational
defection angle of light. Near the undeflected light rays

y = —b [50,51], one can choose the vector field as
dx
V¥i=—=1+0(e),
= 1106
, dy

Using Eqgs. (16), (17), and (18), finally the osculating
Riemannian metric can be obtained as follows:

dm  Tm* —g*  (m? - ¢*)x>
gxx =1+—+ 2 1 + ( 4q )
r r r
4may
+T+O(€3)’ (19)
_ _ m?> —q*)xy 2may
9xy = Gyx = ( e ) - 3 + O<£3>’ (20)
_ dm  Tm? —q*  (m* = g*)y?
Gy =1+ o + r? + r
2may
M O(e?), (21)

with the determinant up to second order,

8m 6amy 31m®>—3q>

detg=1+—+—+ 5
r r- r

+0(&), (22)

and the Gaussian curvature

k:nyxy
detg
2m  3amy(6x>+y*) 3(3m*+q?*)
=" 7 te 0. (23)

In harmonic coordinates, Eq. (4) can be written as

+o0 (x) _
a=— / / "k J/detg dydx. (24)

Here y;(x) denotes the light ray up to first order (see the
Appendix)

044043-4



EQUIVALENCE OF GIBBONS-WERNER METHOD TO ...

PHYS. REV. D 101, 044043 (2020)

+O(e2).  (25)

2(x + Vb* + x*)m
yi(x) =-b+ b
Substituting Eqs. (22), (23) and (25) into Eq. (24), one can
get the second-order deflection angle of light as follows:

ye 4m _ dam N 3n(5m? — ¢?)
b b? 4p?

+0(), (26)
which is consistent with the results in Ref. [51].

B. The generalized optical metric method:
K # 0, and k,(y,) # 0
In this section we consider the Riemannian space G)M
defined by &;;. The line element of GIM is given by

A% = &;dxidxl. (27)

The light ray is the spatial curve in )M and following
Fermat’s principle, the motion equation of light ray is [42]

de' o )
E + (3)F}kejek = a;;(Py; — ﬂj\k)ek’ (28)
= %, <3>Fj-k denotes the Christoffel symbol
associated with &,-J-, and | denotes the covariant derivative

with &;;. The existence of f3; illustrates that the orbit of light

where ¢’

is not the geodesic in ®)M. Naturally, the contribution of
geodesic curvature k, should be considered and we will use
Eq. (5) to calculate the deflection angle. We focus on the
motion of the light in the equatorial plane (z = 0). Then the
geodesic curvature of curve y, is given by [42]

kg(?’g) = _€ijkNiﬂj|k7 (29)

where €;;; is the Levi-Civita tensor and N is a unit normal
vector for the equatorial plane. Then, choose the unit

_ __1 v4 :
normal vector as N = \/fﬁﬁp, and one can obtain

1

ko(y,) = ——
1) = et

(ﬂx,y - ﬂ}xx)’ (30)

where € = —¢¥* = 1/+/det @ has been used and the
comma denotes the partial derivative. With Egs. (14) and
(30), one can have

2am
ko(rg) = — 3

+ O(&), (31)
where the first-order light ray in Eq. (25) has been used.

According to Eq. (5), the deflection angle of the light can
be divided into two parts. First, the Gauss curvature of &;; is

2m 3(3m® + ¢?)
K& - _7 +T

+O(&%), (32)

and one can calculate the part associated with Gauss
curvature,

+oo _b+2m(x+\/bx2+b2)
AGauss = — / / Kyvdet adydx
dm  3z(5m* — ¢*)
b wr o) (33)

Second, from Egs. (25) and (31), the part associated with
geodesic curvature is

o
Ageod = Iglm / kq(%})d}L
—00 S

+o0
- / kg<7g> V@ dx

o8]

/+°° [ 2am }

= ————|dx

—00 (b2 + xz)i
dam

Finally, the total deflection angle can be obtained as
follows:

A = OGayss Ageod
_4m 4dam N 3z(5m? — ¢?)
RS 4p?

+0(), (35)
which is consistent with the result in Eq. (26).
C. The geodesics method: K=0, k,(y,) # 0

From the second-order light ray in Eq. (A3), the
following relation can be obtained:

dy 2m(b—a)(x+ Vb* +x?)

dx RN
4p? 2 b b+ x?
4bm? b(m? — ¢*)x
— O(). 36
GRS MR A )

The deflection angle can be obtained by Eq. (6):

o o)

_4m _4am n 3n(5m* — ¢?)
b P 4p°

X—>00

X—>—00

+0().  (37)
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Certainly, this expression is the same as the result obtained
by Werner’s method in Eq. (26) and by the generalized
optical metric method in Eq. (35).

IV. CONCLUSION

In this work, we investigate the equivalence of the
Gibbons-Werner method to the geodesics method in the
study of gravitational lensing. It is shown that the geodesics
method can be derived with the Gibbons-Werner method
for asymptotically flat spacetime. In the Gibbons-Werner
procedure, one can choose the Euclidean space as the lens
background and the deflection effect is completely deter-
mined by the geodesic curvature of the particle’s trajectory.
Thus, one can choose arbitrary asymptotically Euclidean
space as the lens background and the deflection angle can
be written as @ = Agauss + Ageoa- The difference between
these different background spaces is that the contribution
ON AGayss ANd Ayeoq 18 different. However, the total deflec-
tion angle is always constant. In practice, it is more
convenient to use the geodesics method or the narrow
Gibbons-Werner method. We can illustrate these two
methods using the following formula:

el =[S 5

The left side of the equation represents the geodesic method
(AGauss = 0, @ = Ageoq), While the right side represents the
narrow Gibbons-Werner method (geoq = 0, @ = AGauss)-

As an example to show the equivalence, we calculate the
second-order gravitational deflection angle of light in Kerr-
Newman spacetime, for three options with the Gibbons-
Werner method, in the harmonic coordinates. Moreover, the
harmonic coordinates bring a lot of simplicity and over-
come the cumbersome iterative in Ref. [56].

Optical
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APPENDIX: SECOND-ORDER LIGHT ORBIT

In this Appendix, we calculate the second-order light ray
in Kerr-Newman spacetime. For the photon, the velocity
w =1, and thus Eq. (11) in the literature [51] reads

dy 2m(b—a)x 4bm? N b(m?*—q*)x

dp VB +x2 (P42 2(b7+x2)?
3(5m?—-¢* b
P

17 arctanz—l—m) +0(%),  (Al)

where p is the affine parameter in Kerr-Newman
spacetime. With the boundary conditions dy/dp|,__., =

dy/dp|,__ = 0 [51], one can get

dy _2m(b—a)(x+ Vb? + x%)

dp DVB + 22
+ 3om —q') ( + arctanx + bx
4h? 2 b b>+x?
4b 2 b 2 _ 2
__dbm | blm =g )f +O(e) (A2)

(b2 4 x2)7  2(b* +x?)

Finally, with the first-order parameter transformation
dp = dx [51] and integrating y, one can get the second-
order light ray as follows:

2(x +Vb* +x*)m  2am(x + Vb* + x?)
b b?
2

y==b+
m?* + 3¢* N (q> —m*)b 4xm
4b 40> +x*)  bVDE + A2
3(5m* — ¢*)x(% + arctan )
4b?

+ O(&), (A3)

where we have considered the boundary conditions
=-b [51].

y|p—>—oo = y|x—>—oo
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