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The Gibbons-Werner method where the Gauss-Bonnet theorem is applied to study the gravitational
deflection angle has receivedmuch attention recently. In this paper, we study the equivalence of theGibbons-
Werner method to the standard geodesics method, and it is shown that the geodesics method can be derived
with the Gibbons-Werner method, for the asymptotically flat case. In the geodesics method, the gravitational
deflection angle of the particle depends entirely on the geodesic curvature of the particle ray in the Euclidean
space. The gravitational deflection of light inKerr-Newman spacetime is calculated by different technologies
under the Gibbons-Werner framework, as an intuitive example to show the equivalence.
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I. INTRODUCTION

Gravitational lensing plays an important role in gravi-
tational theory. In theoretical physics, it is used to test the
fundamental theory of gravity, where a famous example is
that Eddington et al. [1,2] verified Einstein’s general
relativity by means of the deflection experiment of light
in the solar gravitational field 100 years ago. In astrophys-
ics and cosmology, it is used to measure the mass of
galaxies and clusters [3–5], and to detect dark matter and
dark energy [6–10]. In mathematics, it is related to
singularity theory, topology and Finsler geometry [11–15].
Recently, Gibbons and Werner [11] introduced an

elegant geometrical method of deriving the bending angle
of light in a static and spherically symmetric spacetime.
They used the famous Gauss-Bonnet (GB) theorem to a
surface defined by the corresponding optical metric. Later,
Werner [14] extended this method to the rotating and
stationary spacetimes. In stationary spacetimes, the optical
geometry is defined by the Randers-Finsler metric. Thus,
Werner applied Nazım’s method to construct an osculating
Riemannian manifold where one can easily use the GB
theorem. The work by Gibbons and Werner promotes the
study of light deflection. On one hand, Jusufi et al. [16–31]
studied the gravitational lensing not only in asymptotically
flat spacetime but also in asymptotically nonflat spacetime
such as a spacetime with cosmic string. Similar works can
also be found in Refs. [32–39]. On the other hand, Ishihara
et al. [40–44] studied the finite-distance corrections for
gravitational deflection of light both for the weak and the
strong deflection limit, where the source and observer are

no longer assumed to be infinitely far apart from a lens. For
a review on finite-distance corrections, we refer the reader
to Ref. [45].
It is well known that there are many massive particles in

our Universe, such as massive neutrinos. The study of
gravitational deflection of massive particles allows one to
understand the properties of the sources and these particles.
In fact, the study of the massive particles lensing using
traditionalmethods can be found inRefs. [46–54].Moreover,
two other routes have been established by applying the GB
theorem to study the gravitational deflection of massive
particles. The first route is related to the Jacobi metric of
curved spacetime. To be precise, one can calculate the
deflection angle of massive particles via applying the GB
theorem to the surface defined by the Jacobi metric [55,56]
for static spacetime and by the Jacobi-Maupertuis Randers-
Finsler metric [57] for stationary spacetime. The second
route is related to the optical media method. For static and
spherically symmetric spacetime, Crisnejo and Gallo [58]
used the GB theorem to study the gravitational deflections of
light in a plasmamedium and the deflection angle of massive
particles. The finite-distance corrections of light with a
plasma medium and the gravitational deflection of charged
massive particles were studied quite recently [59,60]. For
rotating and stationary spacetimes, Jusufi [61] used the GB
theorem to study the deflection angles ofmassive particles by
the Kerr black hole and the Teo wormhole, respectively,
based on the corresponding isotropic type metrics, the
refractive index of the corresponding optical media.
Furthermore, the method in Ref. [61] was extended to
distinguish naked singularities and Kerr-like wormholes
[62], and to study the gravitational deflection of charged
particles in Kerr-Newman spacetime [63].*taozhou@swjtu.edu.cn
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In this paper, the method with the GB theorem to study
the deflection angle shall be called the Gibbons-Werner
method. It is worth investigating whether the Gibbons-
Werner method [11] is equivalent to the standard geodesics
method [64]. In fact, this topic has been discussed by some
researchers. The first-order equivalence has been shown in
Refs. [18,19,30,62], and the second-order equivalence has
been shown in Refs. [56,58]. From a conceptual point of
view, however, the two methods seem to be completely
different. The Gibbons-Werner method shows that the
deflection of particles (photon and massive particles) is
determined by a quantity outside of itself relative to the
lens [14,61], and thus the gravitational deflection angle can
be regarded as a global topological effect, whereas the
geodesics method is usually associated within a region
from particles ray to lens. In the present paper, we will
demonstrate the equivalence between the Gibbons-Werner
method and the geodesics method for asymptotically flat
spacetime, in terms of results and concepts. More specifi-
cally, the weak gravitational deflection of light in Kerr-
Newman spacetime will be taken as a simple example.
This paper is organized as follows. In Sec. II, we review

the GB theorem and use the theorem to the lens geometry.
Then, we show that the equivalence of the Gibbons-Werner
method to geodesics method. In Sec. III, we give the Kerr-
Newman spacetime as an example to show the equivalence.
Finally, we summarize our results in Sec. IV. Throughout
this paper, we use the natural units where G ¼ c ¼ 1 and
the metric signature ð−;þ;þ;þÞ.

II. THE EQUIVALENCE BETWEEN
THE GIBBONS-WERNER METHOD

AND GEODESICS METHOD

A. The Gauss-Bonnet theorem

Let D be a compact oriented two-dimensional
Riemannian manifold with the Euler characteristic χðDÞ
and Gaussian curvature K, and its boundary ∂D is a
piecewise smooth curve with geodesic curvature kg.
Then, the GB theorem states that [11,65]

Z Z
D
KdSþ

I
∂D

kgdσ þ
X
i¼1

θi ¼ 2πχðDÞ; ð1Þ

where dS is the area element of the surface, dσ is the line
element along ∂D, and θi is the exterior angle defined for
the ith vertex in the positive sense.

B. Application of the Gauss-Bonnet theorem
to the lens geometry

Assume M be a two-dimensional smooth manifold with
coordinates ðx; yÞ and a Riemannian metric ĝij. Now one
can apply the GB theorem to the lens geometry in a region
D ⊂ ðM; ĝijÞ. For convenience, D is required to be asymp-
totically Euclidean and thus both the particle source S and

the observer O are in the asymptotically Euclidean region.
Let ∂D ¼ γg⋃Ciði ¼ 1; 2; 3Þ with the particle ray γg and
three curves Ci. γg is described by the impact parameter b,
and the curves Ci are defined by

C1∶ x ¼ −R;

C2∶ y ¼ −R;

C3∶ x ¼ R;

with the constant R > 0. Since the lens L is excluded in the
domain D, χðDÞ ¼ 1. Additionally, as R → ∞, boundary
curve intersections S, A, B and O are in the asymptotically
Euclidean region, and thus one can have kgðCiÞ ¼ 0,
θS þ θA þ θB ¼ 3π=2, and θO ¼ π=2þ α with the deflec-
tion angle α. Then, using the GB theorem to the regionD, it
can lead to

lim
R→∞

�Z Z
D
KdS −

Z
O

S
kgðγgÞdσ

�
þ
�
3π

2
þ π

2
þ α

�
¼ 2π:

ð2Þ
Thus, the gravitational deflection angle can be written as

α ¼ lim
R→∞

�
−
Z Z

D
KdSþ

Z
O

S
kgðγgÞdσ

�
; ð3Þ

as shown in Fig. 1.

C. The equivalence between the Gibbons-Werner
method and geodesics method

In the discussion above, the Riemannian space ðM; ĝijÞ is
somewhat arbitrary, which is asymptotically Euclidean and
the condition of using the GB theorem is required. In the

FIG. 1. The region D ⊂ ðM; ĝijÞ with boundary
∂D ¼ γg⋃Ciði ¼ 1; 2; 3Þ. Particle ray γg is a spatial curve and
Ci are three curves defined by C1∶ x ¼ −R, C2∶ y ¼ −R and
C3∶ x ¼ R with the constant R > 0. As R → ∞, the points of
intersection S, A, B, and O are in the asymptotically Euclidean
region, where S and O denote the particle source and the
observer, respectively. L is the lens, b is the impact parameter
and α is the deflection angle.
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following, three cases will be discussed to show the
equivalence between the Gibbons-Werner method and
the geodesics method.

1. Case 1: K ≠ 0, and kg(γg)= 0

In this case, the particle ray γg is a spatial geodesic in
ðM; ĝijÞ, and Eq. (3) becomes

α ¼ − lim
R→∞

Z Z
D
KdS: ð4Þ

Indeed, this is the original consideration of Gibbons and
Werner [11,14] and for convenience we shall call it the
narrow Gibbons-Werner method. In fact, many studies fall
into this category. For light deflection, one has ðM; ĝijÞ ¼
ðM; goptij Þ, where goptij is the corresponding optical metric of
curved spacetime. For massive particles, ðM; ĝijÞ ¼
ðM; jijÞ, where jij is the corresponding Jacobi metric of
curved spacetime. In stationary spacetime, the optical
metric (or Jacobi metric) is a Randers-Finsler metric.
However, in these cases one can use the osculating
Riemannian metric by Werner’s method [14] or use
Jusufi’s method to avoid the Finsler metric [61].

2. Case 2: K ≠ 0, and kg(γg) ≠ 0

Now, the particle ray is not geodesic in a curved space,
and Eq. (3) can be written as

α ¼ αGauss þ αgeod; ð5Þ

where

αGauss ¼ − lim
R→∞

Z Z
D
KdS;

αgeod ¼ lim
R→∞

Z
O

S
kgðγgÞdσ:

In Refs. [42–44], Ono et al. considered the so-called
generalized optical metric space as the lens background,
and used Eq. (5) to study the deflection angle of light in
stationary spacetimes.

3. Case 3: K = 0, and kgðγgÞ ≠ 0

In this case, we assume that M is Euclidean space, and
Eq. (3) arrives at

α ¼ lim
R→∞

Z
O

S
kgðγgÞdσ: ð6Þ

To our best knowledge, Eq. (6) has not been considered yet,
and next it will be proved that this result is the same with
the expression in the geodesics method.
The line element of a three-dimensional Euclidean

space is

dl2 ¼ dx2 þ dy2 þ dz2; ð7Þ

and a unit vector normal to the x–y plane is n ¼ ð0; 0; 1Þ.
The particle ray γg can be denoted by y ¼ yðxÞ, and one can
define its unit tangent vector as

T ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y02

p ð1; y0; 0Þ; ð8Þ

where 0 denotes derivative with respect to x. Therefore,

_T ≡ dT
dl

¼ y00

ð1þ y02Þ2 ð−y
0; 1; 0Þ; ð9Þ

and one can obtain the geodesic curvature of γg in the x–y
plane as follows [65]:

kgðγgÞ≡ _T · ðn × TÞ ¼ y00

ð1þ y02Þ3=2 : ð10Þ

Then, one can calculate the deflection angle by

α ¼ lim
R→∞

Z
O

S
kgðγgÞdl

¼ lim
R→∞

Z
O

S

y00

ð1þ y02Þ dx

¼
�
arctan

�
dy
dx

������
x→∞

x→−∞
; ð11Þ

which is nothing but the formula of calculating deflection
angle with geodesics method in Refs. [50–52].
In short, the geodesics method just corresponds to

special cases for the Gibbons-Werner method, where the
GB theorem is used to Euclidean space. In other words,
the geodesics method categorizes the deflection angle into
the influence of geodesic curvature of particles moving in
Euclidean space. Therefore, the geodesics method also has
geometric meaning from the perspective of curvature.

III. AN EXAMPLE: THE DEFLECTION OF
LIGHT IN KERR-NEWMAN SPACETIME

For the second-order post-Minkowskian approximation,
the components of the metric of the Kerr-Newman space-
time in the harmonic coordinates ðt; x; y; zÞ can be written
as [66,67]

g00¼−1þ2m
r
−
2m2þq2

r2
þOðε3Þ;

g0i¼ ζiþOðε3Þ;

gij¼
�
1þ2m

r
þm2

r2

�
δijþ

ðm2−q2Þxixj
r4

þOðε3Þ; ð12Þ

where m and q are the mass and electric charge of the
Kerr-Newman black hole, respectively. x ¼ ðx; y; zÞ,
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r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
and ζi is the ith component of the

gravitational vector potential ζ ≡ 2ma
r3 ðy;−x; 0Þ, where a is

the angular momentum per unit mass. δij is the Kronecker
symbol and the expanding parameter ε represents the
black hole parameters m, a or q. The above metric is
expanded as the power series of the parameters m, a and q,
and Oðε3Þ is the series with order greater than 2, such
as m3; a3; q3; m2a;ma2;….
For stationary spacetime, its optical geometry defined by

the Randers-Finsler metric takes the form [14,68]

Fðxi; dxiÞ ¼ dt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α̂ijdxidxj

q
þ βidxi; ð13Þ

where α̂ij is a Riemannian metric and βi is a one-form
satisfying α̂ijβiβj < 1. Consider a null curve in the Kerr-
Newman spacetime, ds2 ¼ 0, and one can find a Randers-
Finsler metric,

α̂ij ¼
�
1þ 4m

r
þ 7m2 − q2

r2

�
δij

þ ðm2 − q2Þxixj
r4

Hij þOðε3Þ;

βidXi ¼ 2maðydx − xdyÞ
r3

þOðε3Þ; ð14Þ

where

H11 ¼ 2xy; H12 ¼ H21 ¼ y2 − x2;

H22 ¼ −2xy; H13 ¼ H31 ¼ yz;

H33 ¼ 0; H23 ¼ H32 ¼ xz:

A. Werner’s method: K ≠ 0, kg(γg)= 0

In this subsection, we will apply Werner’s method [14] to
calculate the gravitational deflection angle of light. The
light ray is geodesic in Randers-Finsler space, and there-
fore, Eq. (4) can be considered. To simplify, one can study
the null geodesic in the equatorial plane. Chose z ¼ 0 as the
equatorial plane, and one can find the Kerr-Newman-
Randers black hole optical metric as follows:

F

�
xi;

dxi

dt

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α̂ij

dxi

dt
dxj

dt

r
þ βi

dxi

dt
; ð15Þ

where α̂ij and βi are the same as those in Eq. (14) except
that i and j only run in f1; 2g here.
The Randers-Finsler metric is characterized by the

Hessian [14,68]

gijðx; vÞ ¼
1

2

∂2F2ðx; vÞ
∂vi∂vj ; ð16Þ

where x ∈ M, and v ∈ TxM with TxM the tangent space at
a given point. In order to obtain a Remannian metric ḡ, one

can choose a smooth nonzero vector field V over M that
contains the tangent vectors along the geodesic γF such that
VðγFÞ ¼ v, defining

ḡijðxÞ ¼ gijðx;VðxÞÞ: ð17Þ

In this construction, we can obtain a crucial result that
the geodesic γF of ðM;FÞ is also a geodesic γḡ of ðM; ḡÞ,
i.e., γF ¼ γḡ [14].
Following Werner [14], the osculating Riemannian

manifold ðM; ḡijÞ can be used to calculate the gravitational
defection angle of light. Near the undeflected light rays
y ¼ −b [50,51], one can choose the vector field as

Vx ¼ dx
dt

¼ 1þOðεÞ;

Vy ¼ dy
dt

¼ 0þOðεÞ: ð18Þ

Using Eqs. (16), (17), and (18), finally the osculating
Riemannian metric can be obtained as follows:

ḡxx ¼ 1þ 4m
r

þ 7m2 − q2

r2
þ ðm2 − q2Þx2

r4

þ 4may
r3

þOðε3Þ; ð19Þ

ḡxy ¼ ḡyx ¼
ðm2 − q2Þxy

r4
−
2may
r3

þOðε3Þ; ð20Þ

ḡyy ¼ 1þ 4m
r

þ 7m2 − q2

r2
þ ðm2 − q2Þy2

r4

þ 2may
r3

þOðε3Þ; ð21Þ

with the determinant up to second order,

det ḡ ¼ 1þ 8m
r

þ 6amy
r3

þ 31m2 − 3q2

r2
þOðε3Þ; ð22Þ

and the Gaussian curvature

K̄¼ R̄xyxy

det ḡ

¼−
2m
r3

−
3amyð6x2þy2Þ

r7
þ3ð3m2þq2Þ

r4
þOðε3Þ: ð23Þ

In harmonic coordinates, Eq. (4) can be written as

α ¼ −
Z þ∞

−∞

Z
y1ðxÞ

−∞
K̄

ffiffiffiffiffiffiffiffiffi
det ḡ

p
dydx. ð24Þ

Here y1ðxÞ denotes the light ray up to first order (see the
Appendix)
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y1ðxÞ ¼ −bþ 2ðxþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ x2

p
Þm

b
þOðε2Þ: ð25Þ

Substituting Eqs. (22), (23) and (25) into Eq. (24), one can
get the second-order deflection angle of light as follows:

α ¼ 4m
b

−
4am
b2

þ 3πð5m2 − q2Þ
4b2

þOðε3Þ; ð26Þ

which is consistent with the results in Ref. [51].

B. The generalized optical metric method:
K ≠ 0, and kgðγgÞ ≠ 0

In this section we consider the Riemannian space ð3ÞM
defined by α̂ij. The line element of ð3ÞM is given by

dλ2 ¼ α̂ijdxidxj: ð27Þ

The light ray is the spatial curve in ð3ÞM and following
Fermat’s principle, the motion equation of light ray is [42]

dei

dλ
þ ð3ÞΓi

jke
jek ¼ α̂ijðβkjj − βjjkÞek; ð28Þ

where ei ≡ dxi
dλ ,

ð3ÞΓi
jk denotes the Christoffel symbol

associated with α̂ij, and j denotes the covariant derivative
with α̂ij. The existence of βi illustrates that the orbit of light
is not the geodesic in ð3ÞM. Naturally, the contribution of
geodesic curvature kg should be considered and we will use
Eq. (5) to calculate the deflection angle. We focus on the
motion of the light in the equatorial plane (z ¼ 0). Then the
geodesic curvature of curve γg is given by [42]

kgðγgÞ ¼ −ϵijkNiβjjk; ð29Þ

where ϵijk is the Levi-Civita tensor and N is a unit normal
vector for the equatorial plane. Then, choose the unit
normal vector as Np ¼ − 1ffiffiffiffiffi

α̂zz
p δzp, and one can obtain

kgðγgÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det α̂α̂zz
p ðβx;y − βy;xÞ; ð30Þ

where ϵzxy ¼ −ϵzyx ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffi
det α̂

p
has been used and the

comma denotes the partial derivative. With Eqs. (14) and
(30), one can have

kgðγgÞ ¼ −
2am
r3

þOðε3Þ; ð31Þ

where the first-order light ray in Eq. (25) has been used.
According to Eq. (5), the deflection angle of the light can

be divided into two parts. First, the Gauss curvature of α̂ij is

Kα̂ ¼ −
2m
r3

þ 3ð3m2 þ q2Þ
r4

þOðε3Þ; ð32Þ

and one can calculate the part associated with Gauss
curvature,

αGauss ¼ −
Z þ∞

−∞

Z
−bþ2mðxþ

ffiffiffiffiffiffiffiffi
x2þb2

p
Þ

b

−∞
Kα̂

ffiffiffiffiffiffiffiffiffiffiffi
det α̂

p
dy dx

¼ 4m
b

þ 3πð5m2 − q2Þ
4b2

þOðε3Þ: ð33Þ

Second, from Eqs. (25) and (31), the part associated with
geodesic curvature is

αgeod ¼ lim
R→∞

Z
O

S
kgðγgÞdλ

¼
Z þ∞

−∞
kgðγgÞ

ffiffiffiffiffiffiffi
α̂xx

p
dx

¼
Z þ∞

−∞

�
−

2am

ðb2 þ x2Þ32
�
dx

¼ −
4am
b2

þOðε3Þ: ð34Þ

Finally, the total deflection angle can be obtained as
follows:

α ¼ αGauss þ αgeod

¼ 4m
b

−
4am
b2

þ 3πð5m2 − q2Þ
4b2

þOðε3Þ; ð35Þ

which is consistent with the result in Eq. (26).

C. The geodesics method: K = 0, kgðγgÞ ≠ 0

From the second-order light ray in Eq. (A3), the
following relation can be obtained:

dy
dx

¼ 2mðb − aÞðxþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ x2

p
Þ

b2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ x2

p

þ 3ð5m2 − q2Þ
4b2

�
π

2
þ arctan

x
b
þ bx
b2 þ x2

�

−
4bm2

ðb2 þ x2Þ32 þ
bðm2 − q2Þx
2ðb2 þ x2Þ2 þOðε3Þ: ð36Þ

The deflection angle can be obtained by Eq. (6):

α ¼
�
arctan

�
dy
dx

������
x→∞

x→−∞

¼ 4m
b

−
4am
b2

þ 3πð5m2 − q2Þ
4b2

þOðε3Þ: ð37Þ
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Certainly, this expression is the same as the result obtained
by Werner’s method in Eq. (26) and by the generalized
optical metric method in Eq. (35).

IV. CONCLUSION

In this work, we investigate the equivalence of the
Gibbons-Werner method to the geodesics method in the
study of gravitational lensing. It is shown that the geodesics
method can be derived with the Gibbons-Werner method
for asymptotically flat spacetime. In the Gibbons-Werner
procedure, one can choose the Euclidean space as the lens
background and the deflection effect is completely deter-
mined by the geodesic curvature of the particle’s trajectory.
Thus, one can choose arbitrary asymptotically Euclidean
space as the lens background and the deflection angle can
be written as α ¼ αGauss þ αgeod. The difference between
these different background spaces is that the contribution
on αGauss and αgeod is different. However, the total deflec-
tion angle is always constant. In practice, it is more
convenient to use the geodesics method or the narrow
Gibbons-Werner method. We can illustrate these two
methods using the following formula:

�Z
O

S
kgðγgÞdσ

�����
Euclidean

¼
�
−
Z Z

D
KdS

�����
Optical

:

The left side of the equation represents the geodesic method
ðαGauss ¼ 0; α ¼ αgeodÞ, while the right side represents the
narrow Gibbons-Werner method ðαgeod ¼ 0; α ¼ αGaussÞ.
As an example to show the equivalence, we calculate the

second-order gravitational deflection angle of light in Kerr-
Newman spacetime, for three options with the Gibbons-
Werner method, in the harmonic coordinates. Moreover, the
harmonic coordinates bring a lot of simplicity and over-
come the cumbersome iterative in Ref. [56].
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APPENDIX: SECOND-ORDER LIGHT ORBIT

In this Appendix, we calculate the second-order light ray
in Kerr-Newman spacetime. For the photon, the velocity
w ¼ 1, and thus Eq. (11) in the literature [51] reads

dy
dp

¼ 2mðb−aÞx
b2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2þx2

p −
4bm2

ðb2þx2Þ32 þ
bðm2−q2Þx
2ðb2þx2Þ2

þ3ð5m2−q2Þ
4b2

�
arctan

x
b
þ bx
b2þx2

�
þOðε3Þ; ðA1Þ

where p is the affine parameter in Kerr-Newman
spacetime. With the boundary conditions dy=dpjp→−∞ ¼
dy=dpjx→−∞ ¼ 0 [51], one can get

dy
dp

¼ 2mðb − aÞðxþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ x2

p
Þ

b2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ x2

p

þ 3ð5m2 − q2Þ
4b2

�
π

2
þ arctan

x
b
þ bx
b2 þ x2

�

−
4bm2

ðb2 þ x2Þ32 þ
bðm2 − q2Þx
2ðb2 þ x2Þ2 þOðε3Þ: ðA2Þ

Finally, with the first-order parameter transformation
dp ¼ dx [51] and integrating y, one can get the second-
order light ray as follows:

y ¼ −bþ 2ðxþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ x2

p
Þm

b
−
2amðxþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ x2

p
Þ

b2

−
m2 þ 3q2

4b
þ ðq2 −m2Þb

4ðb2 þ x2Þ −
4xm2

b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ x2

p

þ 3ð5m2 − q2Þxðπ
2
þ arctan x

bÞ
4b2

þOðε3Þ; ðA3Þ

where we have considered the boundary conditions
yjp→−∞ ¼ yjx→−∞ ¼ −b [51].
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