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It is standard practice to study the lensing of gravitational waves (GW) using the geometric optics
regime. However, in many astrophysical configurations this regime breaks down as the wavelength
becomes comparable to the Schwarzschild radius of the lens. We revisit the lensing of GW including
corrections beyond geometric optics. We propose a perturbative method for calculating these corrections
simply solving first order decoupled differential equations. We study the behavior of a single ray and find
that the polarization plane defined in geometric optics is smeared due to diffraction effects, which leads to
the rise of apparent vector and scalar polarization modes. We analyze how these modes depend on the
observer choice, and we study the impact of diffraction on the pseudostress energy momentum tensor of the
gravitational field.
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I. INTRODUCTION

The direct detection of gravitational waves (GW) by the
LIGO/Virgo Collaboration [1,2] has given us a new way of
observing the cosmos. Instead of measuring electromag-
netic waves at various frequencies, we can detect pertur-
bations of the spacetime itself. Very much like the
electromagnetic field, these perturbations obey a wave
equation—hence being dubbed gravitational waves.
In studying the propagation of gravitational waves from

distant objects, the standard approach is to use the geo-
metric optics regime. In practice, this means that waves
propagate along geodesics of the background (or perturbed)
spacetime. Furthermore, the two transverse tensor polar-
izations of the wave are unchanged apart from parallel
transport along the geodesic path. This means that effects
such as lensing or time delay can be calculated for
gravitational waves much in the same way as is done for
light rays. One can then import the techniques that have
been developed for light propagation in astrophysics and
cosmology (such as, for example, the cosmic microwave
background or galaxy lensing) directly into gravitational
wave physics (see, e.g., [3–6] for weak lensing analyses
of GW).
If one scrutinizes the conditions under which geometric

optics can be applied, one finds that it may not be
appropriate in the case of realistic scenarios for gravita-
tional waves [7–10]. Consider a localized object with a
certain mass (or equivalently, Schwarzschild radius) acting
as a lens for an incoming monochromatic plane wave with

wavelength λ. The geometric optics approximation is valid
in the weak field regime when the wavelength is much
smaller than the Schwarzschild radius of the lens [7–10].
We can understand this by making an analogy with the
double slit experiment, with the geometry represented in
Fig. 1. When waves with wavelength λ pass through the
slits, an interference pattern is produced on the screen. We
denote the distance from each slit to the observer as l�. By
geometry, these distances can be expressed as

l� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� rE=2Þ2 þD2

q
; ð1Þ

where rE is the separation between the slits, D is the
distance between the slits and the screen, and x is the
position of the observer on the screen, measured from
the point on the screen with the minimum distance to the
middle point between the two slits. Denoting the path
length differences as Δl ¼ jlþ − l−j we obtain

Δl ≃
rEx
D

; ð2Þ

where we have assumed D ≫ ðrE; xÞ. The width of the
central peak is obtained setting Δl ∼ λ, and it is given by

Δx ∼
D
rE

λ: ð3Þ

In the ray optics regime, the radiation incoming across the
screen effectively behaves as a particle. On the screen, only
observers located in correspondence to the two slits in x1
and x2 would receive a signal. In particular, an observer
located at x ¼ 0 would not receive any signal; i.e., the
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width of the first peak can be neglected in this regime. In
more formal terms, we can state that the regime of validity
of ray optics is when Δx ≪ rE, i.e., using (3), for

λ ≪ r2E=D: ð4Þ

We can now think of a similar setting, where instead
of the two slits we have a pointlike lens with Einstein
radius [11]

rE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2rS

DOLDLS

DOS

s
; ð5Þ

where DLS, DOS, and DOL are the angular diameter
distances of lens-source, observer-source, and observer-
lens, respectively. Then it turns out that the validity of ray
optics to study the propagation of the wave after the lens is
given by (4). Assuming for simplicity DOL ∼DLS ∼DOS,
this gives back the condition that the wavelength is smaller
than the Schwarzschild radius of the lens, λ ≪ rS. This is a
necessary condition for geometric optics to be valid.1

Geometric optics is certainly appropriate for waves from
gamma to radio frequencies, but that may not be the case
for gravitational waves. Indeed, Pulsar Timing Arrays2 and
the Laser Interferometer Space Antenna (LISA)3 may
detect GW with a wavelength of astrophysical lengths,
of the order of a fraction of parsecs. This means that GW

will have wavelengths comparable to or even larger than the
Schwarzschild radius of astrophysical objects, and standard
lensing processes will likely include wave effects that must
be appropriately taken into account. Furthermore, lens
objects that are in optically thick regions (such as inside
galaxies) can still be detected by lensing of GW since GW
propagate through surrounding matter without much
absorption. As a consequence, GW can probe much smaller
lenses, at the subgalactic scale.
We emphasize that the analysis of wave effects is

essential in order to appropriately interpret the GW signals
received, reconstruct the gravitational potential of struc-
tures along the line of sight, and hence extract unbiased
intrinsic properties of GW sources. Over the years, a lot of
work has been dedicated to the computation of wave effects
in GW propagation [11–16], including diffraction, refrac-
tion, and scattering. Regarding lensing of GW, wave effects
from binary compact objects have been considered in
[7,8,10,17,18]. However, in all these works the spin nature
of GW is neglected, and the wave is treated as a scalar
(spin-0) wave. In other words, it is assumed that the
polarization tensor of the wave stays constant during
propagation. Indeed, perturbative approaches similar to
the one we will consider in this paper have been considered
in the past to estimate magnifications and time delays
beyond geometric optics [19]. However, in this work, we
do not introduce this assumption and we keep track of the
spin-2 nature of GW, which allows us to analyze wave
effects on both amplitude and polarization. We find that,
beyond geometric optics, an incident ray is diffracted and,
as a result, the original polarization plane is smeared and
effective vector and scalar polarizations arise. The work
proposed here provides a first step toward disentangling
effects coming from propagation in a universe with
structures and effects coming from intrinsic properties of
the emitting sources.
Whenever there is a moderate separation of scales (as in

most cases of physical interest), one expects that geometric
optics remains a valid approximation, and that more
accurate results can be obtained by including higher-order
corrections, which will provide insights into wave-optical
phenomena that are not taken into account in the eikonal
limit.4 This is the idea that we follow in this work: we
develop a perturbative approach to study small effects
beyond geometric optics. This approach has been used for
the case of electromagnetic waves in [20] and more recently
in [21], where it was shown that corrections beyond
geometric optics lead to the so-called spin Hall effect
[22]. A similar perturbative approach has been considered
in the context of electromagnetic and gravitational wave

FIG. 1. Schematic representation of the double slit experiment.

1Note that the condition is actually given by λ ≪ 2rSDLS=DOS.
The geometric factor DLS=DOS is of order one when the lens is
close to the observer, and it decreases as the lens gets closer to the
source. However, it gets significantly small only when the lens is
very close to the source. As an example, for a source at 40 Mpc
from us and a lens at 38 Mpc (i.e., much closer to the source than
to us) in a ΛCDM universe, the condition of validity of geometric
optics reads λ ≪ 0.1rS. Nevertheless, we will neglect this geo-
metric factor when making order of magnitude estimates through-
out the paper.

2See, e.g., http://www.ipta4gw.org.
3www.lisamission.org.

4The regime we want to describe is similar to the Fresnel
regime of optical diffraction (in the absence of curvature), which
arises when a wave propagating in an inhomogeneous medium
manifests a modest wavefront spreading (and geometric optics is
beginning to work, at least roughly).
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propagation in [23]. In this paper, we introduce a new
framework to recursively solve the beyond geometric optics
equations in terms of a system of decoupled first order
differential equations. This allows us to investigate general
properties of the polarization tensor of the wave as well as
its pseudoenergy momentum tensor once beyond geometric
optics corrections are accounted for.
This paper is organized as follows. In Sec. II we derive

the equations describing the propagation of gravitational
waves once geometric optics corrections are added. We
then perform a perturbative expansion that allows us to
identify the geometric optics limit and leading corrections
beyond it. In Sec. III we propose a framework to explicitly
solve these equations in terms of a system of decoupled first
order differential equations. In Sec. IV we introduce the
Newman-Penrose scalars, which provide gauge-invariant
quantities describing the possible polarizations of GW. In
Sec. V we compute the pseudo-energy-momentum tensor
of the gravitational field, and we identify a propagation
vector effectively giving the direction of propagation of the
wave’s average energy. Finally, in Sec. VI we discuss the
regime in which our formalism may be useful and lay out
future steps in developing this machinery to accurately
predict and assess the detectability of wave effects of GW.
Throughout this paper we will use natural units with

c ¼ 8πG ¼ 1 and signature mostly plus for the metric. We
will also denote symmetrization and antisymmetrization of an
operatorAμν asAðμνÞ≡1

2
ðAμνþAνμÞ andA½μν�≡1

2
ðAμν−AνμÞ,

respectively.

II. FORMALISM

We start by considering the Einstein equations of motion
in the presence of matter:

Gμν ¼ Rμν −
1

2
gμνR ¼ Tμν; ð6Þ

where Gμν is the Einstein tensor and Tμν the stress-energy
momentum tensor of matter. To study gravitational waves,
we separate the dynamical spacetime into a smooth (or
slowly varying in space) background field ḡμν and a quickly
varying perturbation hμν as

gμν ¼ ḡμν þ hμν; jḡμνj ≫ jhμνj; ð7Þ
where hμν describes small ripples on the background, hence
identified as gravitational waves. The background metric
ĝμν satisfies the Einstein equations, whereas the linear
perturbation satisfies the following dynamical equation:

ψμν;α
;α − 2fðμ;νÞ þ ĝμνfα;α − 2ψαβR̂

α
μν

β þ 2ψαðμRα
νÞ

− hμνR̂þ ĝμνhαβR̂
αβ ¼ −2δTμν; ð8Þ

where we have defined ψμν ¼ hμν − ð1=2ÞĝμνðĝαβhαβÞ, and
fμ ¼ ψμν

;ν. We also introduce the trace of this object,

defined as ψ ¼ ψμνĝμν. Here, all covariant derivatives are
taken with respect to the background metric. Note that
under a linear coordinate transformation xμ → xμ þ ξμ the
equations of motion are invariant, but the individual
quantities previously defined change as

fμ → fμ − ξμ
;ν
;ν þ R̂μνξ

ν; ψ → ψ þ 2ξα;α; ð9Þ

where ξμ is an arbitrary small function of the spacetime
coordinates xμ. Then, we can fix the gauge parameter ξμ to
have fμ ¼ ψ ¼ 0. Note that this gauge choice corresponds
to the Lorentz gauge where ψμν ¼ hμν, h ¼ 0, and

∇μhμν ¼ 0: ð10Þ

We see that Eq. (10) and the traceless condition give five
constraints of the 10 degrees of freedom of the metric
perturbation. As we will confirm later, there will be a
residual gauge freedom to be fixed in order to reduce the
system to the 2 physical degrees of freedom of the massless
graviton. The residual freedom can be explicitly identified
and fixed once the background ĝμν is chosen.
From now on we assume that we are outside the lens, and

hence in the vacuum where the stress energy tensor
vanishes for the background and perturbations. In this
case, the background metric is a solution to the Einstein
equations in vacuum. In the Lorentz gauge, the equations of
motion then become

hμν;α;α − 2hαβR̂
α
μν

β þ 2hαðμRα
νÞ − hμνR̂þ ĝμνhαβR̂

αβ ¼ 0;

ð11Þ

and using the background equations for ĝμν, one is left with

hμν;α;α − 2hαβR̂
α
μν

β ¼ 0: ð12Þ

In curved spacetimes, Eq. (12) cannot be solved explic-
itly, except in cases of high symmetry. Furthermore, on a
general curved background, we cannot define exact plane
waves. However, in many cases of interest for gravitational
lensing, one is interested in waves that appear as nearly
plane on a scale large with respect to a typical wavelength
of the wave, but small compared to the radius of curvature
of the curved background on which the wave propagates. In
analogy to these locally plane waves, we parametrize hμν in
the following form:

hμν ¼ ℜðεμνeiΦÞ; ð13Þ

where ℜ is the real part of the expression in parentheses.
Here, ΦðxÞ is a real scalar function of the coordinates
describing the phase of the waves, whereas εμνðxÞ is a
symmetric complex tensor describing the polarization and
amplitude. The parametrization (13) will become intuitive
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in the limit of geometric optics, where there is a natural split
into a fast varying phase, Φ, that describes a large wave
frequency, and there is a slowly varying part, ϵμν, that
describes a smoothly evolving wave amplitude. Next, we
insert this ansatz into the Einstein equations:

□̂ℜðϵμνeiΦÞ − 2R̂α
μν

βℜðϵαβeiΦÞ ¼ 0; ð14Þ
which can be explicitly written as

− kβkβϵμν þ i½2kβϵμν;β þ kβ ;βϵμν�
þ ϵμν;α

;α − 2ϵαβR̂
α
μν

β ¼ 0; ð15Þ
where we have defined kβ ¼ Φ;β as the gradient of the
phase. Similarly, the gauge Eq. (10) gives

∇μϵμν ¼ −ikμϵμν; ð16Þ
together with the traceless choice ϵμμ ¼ 0.
In geometric optics, the last two terms of Eq. (15) are

systematically neglected, which is legitimate only in the
weak field regime where the curvature contribution
becomes small. More precisely, as discussed in [24,25]
the weak-field approximation is valid when ðrE=bÞ2 ≪ 1,
where b is the impact parameter; otherwise, nonlinearities
become large. However, even in the weak field regime one
can get wave effects if the wavelength is sufficiently large.
In general, we expect the size of beyond geometric optics
corrections to be of order ϵð1Þ=AI ∼ ðλ=rSÞðrS=bÞðrE=bÞ2
(with respect to the incident amplitude AI of the wave),
which will be small when the wavelength is small com-
pared to the Schwarzschild radius of the lens, and when the
impact parameter is much larger than rE (and rS), i.e.,
λ ≪ rS ≪ b. Since the typical size of weak lensing effects

in geometric optics is of order ϵð0Þlens ∼ ðrE=bÞ2, then the
relative suppression of wave corrections is expected to be

of order ϵð1Þ=ϵð0Þlens ∼ ðλ=bÞ.
To illustrate this, let us consider the case of a wave

traveling past a pointlike lens described by a Schwarzschild
metric, with radius rS. In this case, the gravitational potential
is only a function of the radial coordinate r, ϕðrÞ ∼ rS=r,
whichwewill assume to bemuch smaller than one. Then,we
estimate the contributions of the last two terms in Eq. (15) as
(at linear order in the metric potential ϕ)

∂2ϵþ ϵR ∼ ϵϕ=r2; ð17Þ

while the terms in square brackets in Eq. (15) give

ð∂kϵþ k∂ϵÞ ∼ ∂k
k
kϵ ∼ ϵϕ=ðrλÞ; ð18Þ

where we used ∂k=k ∼ ϕ=r. It follows that for geometric
optics to be valid one needs the terms in Eq. (18) to be much
smaller than those in (17), i.e., λ ≪ b.

In this regime, we compute beyond geometric optics
corrections using a perturbative approach. We introduce a
large dimensionless parameter ω and expand the phase and
tensor of Eq. (13) in the following way:

Φ → ωΦ; ð19Þ

ϵμν → ϵð0Þμν þ ω−1ϵð1Þμν þ ω−2ϵð2Þμν þ � � � : ð20Þ

This expansion corresponds to a beyond Wentzel-Kramers-
Brillouin (WKB) approximation for a spin-2 wave. The
parameter ω is introduced for bookkeeping but at the end
one can absorb and ignore it. Also, Φ and ϵμν are assumed
to not depend on ω. The limit ω → ∞ will describe the
geometric optics limit, in which the phase ωΦ changes
rapidly compared to the amplitude of the wave, and whose
gradient will describe the momentum of the geometric
optics wave. Note that we could have also expanded the
phase in powers of ω, and the result would have been
equivalent to (13) with rescaled and shifted ampli-

tudes ϵðnÞμν .
5

In what follows, we write down explicitly the equations
of motion for the leading and subleading terms in the
expansion (20) in order to describe the geometric optics
regime and its corrections.

A. Geometric optics

At leading and next-to-leading order in ω we have the
following equation that describes the geometric optics
regime:

−ω2kβkβϵ
ð0Þ
μν þ iω½2kβϵð0Þμν

;βþkβ ;βϵ
ð0Þ
μν �þOðω0Þ¼ 0; ð21Þ

which then leads to two separate conditions for each order
in ω:

kβkβ ¼ 0; ð22Þ

2kβϵ
ð0Þ
μν

;β þ kβ ;βϵ
ð0Þ
μν ¼ 0: ð23Þ

From Eq. (22) we see that kμ is a null vector, and thus
gravitational waves propagate at the speed of light. Since kμ

is also a gradient we have that it inevitably satisfies the null
geodesic equation

kμkν;μ ¼ 0: ð24Þ

5However, if we did so we would have a superposition of
multiple waves with different momenta and the total perturbed
phase of the wave would not have a clear physical interpretation
anymore. For this reason, the only case in which the phase has a
direct physical meaning is in the geometric optics regime, which
motivates our choice of expanding only the complex amplitude
ϵμν in Eq. (20).
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The gauge condition at leading order in ω gives

kμϵð0Þμν ¼ 0; ð25Þ

which indicates that the polarization is a transverse tensor.
We note that we can separate ϵμν into amplitude and
polarization parts as

ϵð0Þμν ¼ AAμν; ð26Þ

with A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ0�μνϵ0μν

q
and AμνAμν ¼ 1, and simplify Eq. (23)

using the gauge condition to obtain

kμA;μ ¼ −
1

2
θA; θ ¼ kμ;μ; ð27Þ

kαAμν;α ¼ 0: ð28Þ

These equations indicate that polarization is parallel propa-
gated along the null vector kμ, and lead to the covariant
conservation of flux [i.e., ðA2kαÞ;α ¼ 0]. Indeed, we can
define a four-momentum of the gravitons as Pμ ≡ ℏkμ and
introduceNμ ¼ A2=ðℏ2ÞPμ that we interpret as the graviton
number current density. Then, we have ∇μNμ ¼ 0 which
implies (via the Gauss’s theorem) that the number of
gravitons in a ray bundle is conserved and observer
independent. From this point of view, we can treat an
incoherent gravitational radiation field as a graviton
gas whose state is given by a distribution function on
phase space.

B. Beyond geometric optics

Next, we take into account the leading order corrections
beyond geometric optics. In the equation of motion (15) we
collect subleading order terms in ω and obtain

½2kβϵð1Þμν
;β þ kβ ;βϵ

ð1Þ
μν � ¼ Sð0Þμν ; ð29Þ

and the gauge condition gives

kνϵð1Þμν ¼ Sgð0Þμ ; ð30Þ

where we have introduced the sourcelike tensors

Sð0Þμν ¼ −i½2ϵð0Þαβ R̂
α
μν

β − ϵð0Þμν ;α
;α þ ðkαkαÞϵð2Þμν �; ð31Þ

Sgð0Þμ ¼ i∇νϵð0Þμν ; ð32Þ

where the last term in Eq. (31) is actually vanishing
since kμ is a null vector. We see that the gauge equation (30)
tells us that the polarization tensor beyond geometric
optics is not transverse. The Einstein equation for the
polarization tensor (29) has now a source term and does not

have a direct interpretation in terms of conservation of
graviton flux. Note that these two sources (31) and (32)
are solely responsible for deviations beyond geometric
optics.
We emphasize that this procedure can be generalized at a

generic order n > 0 beyond geometric optics. In general,
the Einstein and gauge equations will be given by

½2kβϵðnÞμν
;β þ kβ ;βϵ

ðnÞ
μν � ¼ Sðn−1Þμν ; ð33Þ

kνϵðnÞμν ¼ Sgðn−1Þμ ; ð34Þ

where

Sðn−1Þμν ¼ −i½2ϵðn−1Þαβ R̂α
μν

β − ϵðn−1Þμν ;α
;α�;

Sgðn−1Þμ ¼ i∇νϵðn−1Þμν : ð35Þ

The goal is then to construct an algorithm for solving
Eqs. (29) with gauge (30) in order to reconstruct the total
GW tensor including corrections beyond geometric optics,
that is,

hμν ¼ hð0Þμν þ hð1Þμν ; ð36Þ

with

hð0Þμν ¼ ℜfϵð0Þμν eiωΦg; hð1Þμν ¼ ℜfω−1ϵð1Þμν eiωΦg: ð37Þ

In general, beyond geometric optics terms will add a
correction to the phase and the amplitude of the wave,
which, from Eq. (34), will no longer be transverse to the
wave vector kμ. This will generically be the case due to the
fact that the wave will be diffracted, leading thus to a new
total wave with oscillations in different directions. In this
case, the polarization plane transverse to kμ will be smeared
and, as we will show in Sec. IV, new effective polarizations
will arise.
In the next section, we will discuss how to solve the

equations of motion for ϵðnÞμν . However, we first mention that
in order to find the solutions of this system, we will have to
fix the residual gauge freedom. Indeed, Eq. (34) and the
traceless condition, at each given perturbative order provide

five algebraic conditions on ϵðnÞμν . This implies that there are
three residual gauge parameters that remain to be fixed. We
will explicitly discuss how to fix the gauge in a specific
example in Sec. III.
We conclude this section with a remark. We observe that

the real and the imaginary parts of ϵð2n−1Þμν source the

imaginary and the real parts of ϵð2nÞμν , respectively. As an

example, if the geometric optics polarization tensor ϵð0Þμν is
real (as would be the case for a linearly polarized wave
from a black hole binary edge-on along the line of sight),

then ϵð2nÞμν will be real and ϵð2n−1Þμν will be purely imaginary.
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In this case, we can rewrite the first order correction in

Eq. (37) using the fact that ϵð1Þμν is purely imaginary, as

hð1Þμν ¼ ℜfjϵð1Þμν jeiðΦþπ=2Þg: ð38Þ

Hence we see that the total leading correction beyond
geometric optics is a wave that has an additional contri-
bution of π=2 to the phase.

III. COMPUTATIONAL TECHNIQUE

In this section, we propose an algorithm to compute
beyond geometric optics corrections in a recursive way
in terms of decoupled first-order differential equations. We
introduce a tetrad of null vectors (parallel transported
along the geodesic associated with kμ)6

fkμ; mμ;lμ; nμg; ð39Þ

where nμ is real, and mμ and lμ are complex such that

lμ� ¼ mμ; gμνmμlν ¼ 1; gμνkμnν ¼ −1; ð40Þ

with all other contractions vanishing. This null tetrad forms
a complete basis for real 4-vectors, and the spacetime
metric can always be written as

gμν ¼ mμlν þmνlμ − nμkν − nνkμ: ð41Þ

Next, we use the null tetrad to form a basis for the rank-2
tensor ϵμν as

ϵμν ¼ αnkΘnk
μν þαmlΘml

μν þαnnΘnn
μν þαkkΘkk

μνþαnmΘnm
μν

þαnlΘnl
μν þαkmΘkm

μν þαklΘkl
μν þαmmΘmm

μν þαllΘll
μν ;

ð42Þ

where αAB are all complex coefficients, whereas Θμν are
operators constructed from the null tetrad and form a basis
for rank-2 tensors. Explicitly, there will be ten symmetric
operators defined as

ΘAB
μν ≡ 1

2
ðAμBν þ AνBμÞ; ð43Þ

with ðA; BÞ ¼ fk;m;l; ng. For future reference, we men-
tion properties that these operators satisfy due to the
orthogonality of the null tetrad:

ðΘmlÞμνðΘmlÞμν ¼
1

2
; ð44Þ

ðΘnkÞμνðΘnkÞμν ¼
1

2
; ð45Þ

ðΘkmÞμνðΘnlÞμν ¼ −
1

2
; ð46Þ

ðΘklÞμνðΘnmÞμν ¼ −
1

2
; ð47Þ

ðΘkkÞμνðΘnnÞμν ¼ 1; ð48Þ
ðΘmmÞμνðΘllÞμν ¼ 1; ð49Þ

with all other scalar contractions vanishing. We use this
decomposition to obtain a set of equations of motion for the
coefficients αAB such that the Einstein and gauge equations
are satisfied. Explicitly, we replace Eq. (42) into (15) and
obtain

2Dαnk þ∇αkααnk ¼ 2SμνðΘnkÞμν; ð50Þ

2Dαml þ∇αkααml ¼ 2SμνðΘmlÞμν; ð51Þ

2Dαkk þ∇αkααkk ¼ SμνðΘnnÞμν; ð52Þ

2Dαnn þ∇αkααnn ¼ SμνðΘkkÞμν; ð53Þ

2Dαnm þ∇αkααnm ¼ 2SμνðΘklÞμν; ð54Þ

2Dαnl þ∇αkααnl ¼ 2SμνðΘkmÞμν; ð55Þ

2Dαkm þ∇αkααkm ¼ 2SμνðΘnlÞμν; ð56Þ

2Dαkl þ∇αkααkl ¼ 2SμνðΘnmÞμν; ð57Þ

2Dαmm þ∇αkααmm ¼ SμνðΘllÞμν; ð58Þ

2Dαll þ∇αkααll ¼ SμνðΘmmÞμν; ð59Þ

where we have introduced the directional derivative along
kμ defined as

D≡ kμ∇μ ¼
D
dλ

; ð60Þ

where λ is an affine parameter along the graviton geodesic.
Similarly, the Lorentz gauge equation gives

αnk ¼ 2Sgμnμ; ð61Þ

αnn ¼ Sgμkμ; ð62Þ

αnm ¼ −2Sgμlμ; ð63Þ

αnl ¼ −2Sgμmμ: ð64Þ

6Note that we choose the tetrad such that the geodesic equation
is also satisfied for mμ and lμ, which in turn means that it will
also be satisfied for nμ. Therefore, all the properties of the tetrad
are maintained as the wave propagates in the geometric
optics limit.
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The gauge condition on the trace is equivalent to gμνϵμν ¼ 0

and gives the condition

αnk ¼ αml: ð65Þ
We can use this formalism to revisit the geometric optics

limit and its corrections. In the geometric optics limit, all
the source terms in the equations for the coefficients αAB
vanish. Therefore, from the gauge conditions (61)–(65) it
follows that in this regime the following coefficients will
vanish:

αð0Þnk ¼ αð0Þnn ¼ αð0Þnm ¼ αð0Þnl ¼ αð0Þml ¼ 0; ð66Þ

whereas the remaining five coefficients fαð0Þkk ; α
ð0Þ
km; α

ð0Þ
kl ;

αð0Þmm; α
ð0Þ
llg will satisfy the same schematic equation:

2Dαð0ÞAB þ∇αkαα
ð0Þ
AB ¼ 0: ð67Þ

Next, we expand the Einstein and gauge equations to
obtain the leading order beyond geometric optics (note that
equations for higher order corrections will have the same
structure). The source terms are given by

Sð0Þμν ¼ −i2ϵð0Þαβ R̂
α
μν

β þ iϵð0Þμν;α
;α; ð68Þ

Sgð0Þμν ¼ i∇μðϵð0Þμν Þ; ð69Þ

and the equations of motion become

2Dαð1Þnk þ∇αkαα
ð1Þ
nk ¼ 2Sð0Þμν ðΘnkÞμν; ð70Þ

2Dαð1Þml þ∇αkαα
ð1Þ
ml ¼ 2Sð0Þμν ðΘmlÞμν; ð71Þ

2Dαð1Þkk þ∇αkαα
ð1Þ
kk ¼ Sð0Þμν ðΘnnÞμν; ð72Þ

2Dαð1Þnn þ∇αkαα
ð1Þ
nn ¼ Sð0Þμν ðΘkkÞμν; ð73Þ

2Dαð1Þnm þ∇αkαα
ð1Þ
nm ¼ 2Sð0Þμν ðΘklÞμν; ð74Þ

2Dαð1Þnl þ∇αkαα
ð1Þ
nl ¼ 2Sð0Þμν ðΘkmÞμν; ð75Þ

2Dαð1Þkm þ∇αkαα
ð1Þ
km ¼ 2Sð0Þμν ðΘnlÞμν; ð76Þ

2Dαð1Þkl þ∇αkαα
ð1Þ
kl ¼ 2Sð0Þμν ðΘnmÞμν; ð77Þ

2Dαð1Þmm þ∇αkαα
ð1Þ
mm ¼ Sð0Þμν ðΘllÞμν; ð78Þ

2Dαð1Þll þ∇αkαα
ð1Þ
ll ¼ Sð0Þμν ðΘmmÞμν; ð79Þ

where all the operators on the right-hand side are evaluated
in the geometric optics limit. Similarly, the gauge equation
gives

αð1Þnk ¼ 2Sgð0Þμ nμ; ð80Þ

αð1Þnn ¼ Sgð0Þμ kμ; ð81Þ

αð1Þnm ¼ −2Sgð0Þμ lμ; ð82Þ

αð1Þnl ¼ −2Sgð0Þμ mμ; ð83Þ

and the traceless condition gives

αð1Þnk ¼ αð1Þml: ð84Þ

We see that beyond geometric optics, in principle all the
components of the polarization tensor are sourced and thus
are nonvanishing.We also note that the gauge conditions fix
some of the same coefficients that satisfy also Eqs. (70),
(71), (73), (74), (75). Thismeans that in these cases therewill
be relations between the sources Sð0Þμν ðΘABÞμν and Sð0Þμ Aμ,
which will be automatically satisfied by construction.
As we have mentioned before, to find the solution to

these equations, we must fully fix the gauge. We assume
that sufficiently far from the source and the lens, the
spacetime is nearly flat. Then far from the source we still
have the freedom to transform the (total) polarization
tensor as

ϵμν → ϵμν þ Cμkν þ Cνkμ; ð85Þ

where Cμ is a complex arbitrary vector orthogonal to kμ.
This gauge transformation preserves both the Lorentz
gauge and the traceless condition in Minkowski. We fix
this freedom in the geometric optics limit by imposing that

nμϵð0Þμν ¼ 0 near emission. As a consequence, we end up
with the following additional coefficients vanishing:

αð0Þkk ¼ αð0Þkm ¼ αð0Þkl ¼ 0: ð86Þ

We are therefore left with only two nonzero amplitudes:

ϵð0Þμν ¼ αð0Þmmmμmν þ αð0Þlllμlν: ð87Þ

These amplitudes (which are complex) require four initial
conditions to be fully fixed and describe the two possible
polarizations of gravitational waves for a massless graviton.
For the corrections beyond geometric optics, since the

source terms (68) and (69) are vanishing on a flat back-
ground, a natural gauge choice is to set all the coefficients

αðnÞAB beyond geometric to zero near emission. Hence in that

region we have ϵμν ¼ ϵð0Þμν . This choice fixes the initial
conditions for all the first-order differential equations for

αðnÞAB. As the wave propagates, corrections to (87) are
generated, sourced by (68) and (69) which are nonzero
on a curved background. However, these are not new
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degrees of freedom of the wave but they rather represent
additional effects that appear from taking the curvature of
the background into consideration.

A. An example: Geometric optics for pointlike lens

To illustrate the use of the technique proposed, we solve
the geometric optics order in an explicit situation: GW
lensed by a pointlike lens in the weak field regime. Let us
then consider the following spherically symmetric back-
ground spacetime:

ds2 ¼ ḡμνdxμdxν ¼ −ð1þ 2ϕÞdt2 þ ð1 − 2ϕÞdΩ2; ð88Þ

with dΩ2 ¼ r2ðdθ2 þ sin θ2dφ2Þ, and ϕ ¼ ϕðx⃗Þ is the
gravitational potential of the lens which we assume to
be weak outside the lens, ϕ ≪ 1. This spacetime will be
valid for scenarios where we have a massive astrophysical
object acting as a lens and we study the behavior of
gravitational waves far enough from the object.
Outside the source and sufficiently far from the lens, the

spacetime is flat so we can solve the equations for the
geometric optics regime perturbatively around Minkowski.
We thus introduce the Minkowski tetrad fk̄μ; m̄μ; l̄μ; n̄μg.
Explicitly, the wave vector k̄μ can be written as

k̄ ¼ ðk̄0; k̄iÞ ¼ Eð1;−eÞ; ð89Þ
where e is the direction of the spatial momentum normal-
ized to unity: jej2 ¼ 1, and E is a constant amplitude for the
4-vector momentum. Similarly, the rest of the tetrad can be
chosen as

n̄μ ¼ 1

2E
ð1; eÞ; m̄μ ¼ 1ffiffiffi

2
p ð0; e1 þ ie2Þ; ð90Þ

where e1;2 are real orthonormal three-dimensional (3D)
vectors, i.e., je1;2j2 ¼ 1 and e1 · e2 ¼ 0, orthogonal to e as
well, that is, e1;2 · e ¼ 0. For instance, for a wave traveling
along −z we would have

k̄μ ¼ Eð1; 0; 0;−1Þ; n̄μ ¼ 1

2E
ð1; 0; 0; 1Þ;

m̄μ ¼ 1ffiffiffi
2

p ð0; 1; i; 0Þ: ð91Þ

In Minkowski, the two coefficients ᾱmm and ᾱll are
constants that will be determined by initial conditions,
which in turn describe different physical setups (e.g., the
choice of ᾱmm ¼ 1 and ᾱll ¼ 0 describes an emitted right-
handed circularly polarized wave).
Next, we calculate how the emitted plane wave gets

modified when it propagates on a spacetime that is curved.
Wework in theweak field limit, andwe reconstruct thewave
at the observer at linear order in the metric potential ϕ. In
particular, we expand the geometric optics vector kμ as

kμ ¼ k̄μ þ δkμ; ð92Þ

where k̄μ is the 4-vector in Minkowski and δkμ is a small
perturbation satisfying the linearized geodesic equation,
which gives [26]

δkμ ¼ ðδk0; δkiÞ

¼
�
−2k̄0ϕjλλS ; 2k̄iϕjλλS − 2

Z
λ

λS

dλE2∂iϕ

�
; ð93Þ

where we chose the affine parameter such that dλ ¼
−E−1dz and λS is the value of the affine parameter at
the source. Similarly, we can use the geodesic equation to
obtain δmμ:

δmμ¼ðδm0;δmiÞ

¼
�
−k̄0m̄j

Z
λ

λS

dλ∂jϕ;m̄iϕjλλS þ k̄im̄j

Z
λ

λS

dλ∂jϕ

�
; ð94Þ

with δlμ given by its complex conjugate. Note that this
solution indeed satisfies the orthogonality condition kμmμ

to linear order, that is, δkμm̄μ ¼ −δmμk̄μ. Using the rest of
the properties of the tetrads we solve for δnμ and obtain

δnμ ¼ −2n̄μ
�
−ϕjλλS þ n̄i

Z
λ

λS

dλE2∂iϕ

�
; ð95Þ

which satisfies the relations δnμm̄μ ¼ δnμn̄μ ¼ 0 and
δnμk̄μ ¼ −δkμn̄μ. Finally, we solve for the two coefficients

αð0Þmm and αð0Þll ,

δαmmðλÞ ¼ −
1

2
ᾱmm

Z
λ

λS

dλ∇αkα; ð96Þ

δαllðλÞ ¼ −
1

2
ᾱll

Z
λ

λS

dλ∇αkα; ð97Þ

which vanish at linear order in the potential. It follows that
the polarization tensor at any position x≡ xðλÞ, in geo-
metric optics is given by

ϵð0Þμν ðxÞ ¼ ᾱmmΘmm
μν ðxÞ þ ᾱllΘll

μν ðxÞ; ð98Þ

where the tensors Θmm
μν and Θll

μν are built using mμ ¼
m̄μ þ δmμ and lμ ¼ l̄μ þ δlμ up to first order in pertur-
bations. From this example we see that the total tensor ϵð0Þ
will have a component coming from the Minkowski
expansion in addition to a component generated exclusively

by lensing ϵð0Þlens that is typically of the order of ϵð0Þlens=ϵ
ð0Þ ∼

ðrE=bÞ2. From this explicit example we see that the
frequency of the wave does not change in geometric optics
for far observers, and the only changes are given by the
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directions of the tetrad, which is parallel transported along
the geodesic of gravitons. We also see that the amplitude of
the tensor is not modified by the propagation. This is
because in this specific example the right-hand side of
Eq. (27) vanishes. Finally, the ratio between left- and right-
handed polarizations at the observer and at the source are
the same. This is a consequence of the fact that the
polarization tensor is parallel transported along a ray.

IV. POLARIZATION

In a general metric theory, gravitational waves can have
up to six different polarization modes corresponding to six
independent degrees of freedom carried by the Riemann
tensor. These components are encoded in the so-called
Newman-Penrose (NP) scalars, which are given in terms of
projections of the Weyl tensor of the wave on the null tetrad
basis. Specifically, the six polarizations are encoded in the
following quantities [27]:

Ψ2 ¼ −
1

6
Cμναβkμnνkαnβ; ð99Þ

Ψ3 ¼ −
1

2
Cμναβnμkνnαlβ; ð100Þ

Ψ4 ¼ −Cμναβnμlνnαlβ; ð101Þ

Φ22 ¼ Cμναβnμmνlαnβ; ð102Þ

with all other projections being redundant or vanishing for
this choice of tetrad. The scalars Ψ4 and Ψ3 are complex
and describe helicity-2 and helicity-1 polarizations, respec-
tively. The scalars Ψ2 and Φ22 are real and describe spin-0
polarizations. Here, Cμναβ is the Weyl tensor linear in the
hμν perturbation. In this work, since we are considering
perturbations in vacuum, the Weyl tensor is equal to the
Riemann tensor.
Next, we explicitly compute the Newman-Penrose sca-

lars associated with a gravitational wave propagating on a
vacuum solution, up to first order beyond geometric optics.
Using doubled square brackets to denote independent
antisymmetrization over the inner and outer pairs of indices
[for example, t½a½bc�d� ¼ 1

2
ðta½bc�d − td½bc�aÞ] we can write the

Riemann tensor as

Rμναβ ¼ −2∇½μ∇½αhβ�ν� þ Rμν½αγhβ�γ: ð103Þ

Replacing the expression for the metric (37) and ordering
powers of ω up to Oðω0Þ, one obtains

Rμναβ ¼ Rð0Þ
μναβ þRð1Þ

μναβ; ð104Þ

where

Rð0Þ
μναβ ¼ −2ω2ℜfeiΦk½μϵð0Þν�½αkβ�g ð105Þ

and

Rð1Þ
μναβ ¼−2ωℜfeiΦk½μϵð1Þν�½αkβ�

þ ieiΦ½ð∇½μϵ
ð0Þ
ν�½αÞkβ� þ ð∇½αϵ

ð0Þ
β�½μÞkν�− ð∇½αk½μÞϵð0Þν�β��g:

ð106Þ

We see that terms with the background Riemann in (103)
appear only 2 orders beyond geometric optics since they do
not contain any derivative of the GW field. Since in
geometric optics the polarization tensor is transverse, using
the properties of the tetrad and in particular the fact that
kμnν and lμmμ are the only nonvanishing contractions, it is
straightforward to check that in geometric optics only Ψ4 is
nonvanishing. We stress that the usefulness of the
Newman-Penrose formalism resides in the fact that these
are all gauge invariant variables. It follows that even if we
did not fix completely the gauge at the level of hμν, the
Newman-Penrose scalars will contain only those compo-
nents of hμν corresponding to physical degrees of freedom.
In general, when using the geometric optics tetrad to

project the Weyl and compute the Newman-Penrose scalars
beyond geometric optics, polarizations other than Ψ4 will
arise, as recently discussed in Ref. [23] for the cases of both
electromagnetic and gravitational waves. We compute here

their explicit expression in terms of the coefficients αð1ÞAB
introduced in the previous section.
All the Newman-Penrose scalars will have the same

schematic form,

pCμναβAμBνCαDβ; ð107Þ

where p denotes the numerical prefactor in the definitions
(99)–(102) and the vectors fAμ; Bμ; Cμ; Dμg correspond to
specific vectors of the null tetrad. We can rewrite this
general expression as

2pω cosðωΦÞ½−ωℜðr0μναβÞ −ℜðr2μναβÞ
þℑðr1μναβÞ�AμBνCαDβ

þ 2pω sinðωΦÞ½ωℑðr0μναβÞ þ ℑðr2μναβÞ
þℜðr1μναβÞ�AμBνCαDβ; ð108Þ

where we have defined

r0μναβ ≡ k½μϵ
ð0Þ
ν�½αkβ�; ð109Þ

r1μναβ≡ ½ð∇½μϵ
ð0Þ
ν�½αÞkβ�þð∇½αϵ

ð0Þ
β�½μÞkν�−ð∇½αk½μÞϵð0Þν�β��; ð110Þ

r2μναβ ≡ k½μϵ
ð1Þ
ν�½αkβ�: ð111Þ
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Next, we assume that ϵð0Þμν is given by Eq. (98), whereas ϵð1Þμν

is completely generic with all nonzero αð1ÞAB coefficients. In
this case, we find the following expressions for the NP
scalars:

Ψ2 ¼ −
1

24
ω½cosðωΦÞðαð1Þnn þ αð1Þ�nn Þ

þi sinðωΦÞðαð1Þnn − αð1Þ�nn Þ�; ð112Þ
which is manifestly real and only contributes beyond
geometric optics. Note that this can be rewritten solely
in terms of the geometric optics solution by using Eq. (81),

Ψ2 ¼
1

12
iωð∇μkνÞ½cosðωΦÞℜðϵð0Þμν Þ − sinðωΦÞℑðϵð0Þμν Þ�:

ð113Þ
We also obtain

Ψ3 ¼
1

16
ω cosðωΦÞðαð1Þnm þ αð1Þ�nl Þ

þ 1

16
iω sinðωΦÞðαð1Þnm − αð1Þ�nl Þ

þ 1

4
ωmαnβð∇βkαÞ½sinðωΦÞðαð0Þmm þ αð0Þ�ll Þ

− i cosðωΦÞðαð0Þmm − αð0Þ�ll Þ�; ð114Þ
which is a complex scalar, whose real and imaginary parts
describe the two vector polarizations. Again, this can be
fully rewritten in terms of the geometric optics solution
using the gauge equations to obtain

Ψ3 ¼
1

4
ω cosðωΦÞlμð∇νℑðϵð0Þνμ ÞÞ

þ 1

4
ω sinðωΦÞÞlμð∇νℜðϵð0Þνμ ÞÞ

þ 1

4
ωmαnβð∇βkαÞ½sinðωΦÞðαð0Þmm þ αð0Þ�ll Þ

− i cosðωΦÞðαð0Þmm − αð0Þ�ll Þ�: ð115Þ
In addition, we find

Ψ4 ¼ −
1

4
ωcosðωΦÞ½ωðαð0Þmm þ αð0Þ�ll Þ þ ðαð1Þmm þ αð1Þ�ll Þ

− 8nαlβlμ∇½αℑðϵð0Þβ�μÞ− iðαð0Þmm − αð0Þ�ll Þnαnβð∇βkαÞ�

−
1

4
iω sinðωΦÞ½ωðαð0Þmm − αð0Þ�ll Þ þ ðαð1Þmm − αð1Þ�ll Þ

þ 8inαlβlμ∇½αℜðϵð0Þβ�μÞ− iðαð0Þmm þ αð0Þ�ll Þnαnβð∇βkαÞ�:
ð116Þ

From here we explicitly confirm thatΨ4 is the only nonzero
NP scalar in the geometric optics regime, whose real and

complex components are determined by the amplitudes

αð0Þmm and αð0Þll , which describe the two tensor polarizations
as expected. Finally, we obtain the last NP scalar,

Φ22¼
1

2
ωsinðωΦÞ

�
ð∇αnβÞ

�
1

2
ðαð0Þmmþαð0Þ�ll Þmβmαþc:c:

�

þ2mαlμðnβ∇βℜðϵð0Þαμ ÞÞ
�

þ1

2
ωcosðωΦÞ

�
ð∇αnβÞ

�
−
i
2
ðαð0Þmm−αð0Þ�ll Þmβmαþc:c:

�

þ2mαlμðnβ∇βℑðϵð0Þαμ ÞÞ
�
; ð117Þ

which is real as it can be explicitly verified using the fact
that the polarization tensor is symmetric.
We conclude that all the NP scalars are fully determined

by the components αmm and αll at all orders, together with
the null tetrad (which is fixed in the geometric optics
regime). This means that from the full set of equations (70)–
(79) beyond geometric optics, we only need to solve (78)

and (79) for αð1Þmm and αð1Þll . All the other components are
hence expected to be dependent or gauge artifacts.
Note that the NP scalars depend on the chosen tetrad, and

here we are projecting the Riemann tensor onto the parallel
transported tetrad of weak lensing. In Appendix we study in
detail how the NP scalars change when projected onto a
general tetrad. The fact that NP scalars are tetrad dependent
is a well-known result. In particular, it is well-known that,
in a large class of alternative theories of gravity, the
polarization content of a wave is an observer dependent
quantity. See [27] for a pedagogical introduction.
Once beyond geometric optics corrections are included,

the total wave changes its propagation properties as
diffraction effects are taken into account. Wave mechanics
differs increasingly from geometric optics as the wave-
length increases relative to the scale length of the medium
inhomogeneities. The number of paths that can combine
constructively increases and the rays that connect two
points become blurred. In our description, this phenomenon
manifests itself in the appearance of effective polarization
modes along the direction of the geometric optics ray. We
emphasize that this does not mean that there are actual new
physical degrees of freedom: everything is still expressed in
terms of four real initial conditions; i.e., we have only 2
propagating degrees of freedom.
The results of this section show that beyond geometric

optics lead to diffraction effects that smear the polarization
plane transverse to kμ, and small new vector and scalar
polarizations arise when projecting the wave onto a parallel
transported tetrad. Different observers would measure
different amount of extrahelicities modes, as explained
in Appendix A. This is a consequence of the fact that in the
presence of diffraction the definition of a wave vector
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becomes an ambiguous concept. The issue of attempting to
define one single propagation direction beyond geometric
optics has been discussed recently in [23] (see Sec. III.5) in
the context of both electromagnetic and gravitational
waves. It is shown that it is not necessarily meaningful
to define a single propagation vector for finite-wavelength
lensing as different phenomena may have different direc-
tions associated. In the next section we will explicitly
compute the average direction of propagation of the wave’s
energy in the presence of diffraction.

V. PROPAGATION OF ENERGY

As we have previously discussed, when corrections
beyond geometric optics are included, the null tetrad loses
its precise physical meaning. In particular, kμ will not
represent the direction of propagation of energy anymore.
Because of the absence of a geometrical definition of
propagation, in this section, we study the effective propa-
gation of energy of the wave as a physically meaningful
quantity. This quantity can be reconstructed by a direct
inspection of the pseudo-stress-energy momentum tensor
of the wave.

In the absence of curvature (sufficiently far from the
lens), the energy momentum tensor of gravitational waves
can be written as [28]

tμν ¼
c4

32πG
∂μhαβ∂νhαβ; ð118Þ

where we have reintroduced units of c and G to make
contact with standard results in the literature. Using (36)
and (37) we can write the geometric optics contribution and
the contribution beyond geometric optics as

tμν ¼
c4

32πG
½ω2tð0Þμν þ ωtð1Þμν þOðω0Þ�: ð119Þ

We calculate these terms and obtain

tð0Þμν ¼ kμkν½sin2Φℜðϵð0Þαβ Þℜðϵð0ÞαβÞ
þ cos2Φℑðϵð0Þαβ Þℑðϵð0ÞαβÞ
− 2 sinΦ cosΦℜðϵð0Þαβ Þℑðϵð0ÞαβÞ� ð120Þ

and

tð1Þμν ¼ 2kðμ½− sinΦ cosΦℜðϵð0Þαβ Þ∂νÞℜðϵð0ÞαβÞ þ cos2Φℑðϵð0Þαβ Þ∂νÞℜðϵð0ÞαβÞ − sin2 Φℜðϵð0Þαβ Þ∂νÞℑðϵð0ÞαβÞ
þ cosΦ sinΦℑðϵð0Þαβ Þ∂νÞℑðϵð0ÞαβÞ� þ 2kμkν½sin2Φℜðϵð0Þαβ Þℜðϵð1ÞαβÞ þ cos2Φℑðϵð0Þαβ Þℑðϵð1ÞαβÞ
− sinΦ cosΦℜðϵð0Þαβ Þℑðϵð1ÞαβÞ − sinΦ cosΦℜðϵð1Þαβ Þℑðϵð0ÞαβÞ�: ð121Þ

Next, we define the effective energy momentum tensor,
obtained averaging over several oscillations of the
wave, as

teffμν ¼ c4

32πG
h∂μhαβ∂νhαβi; ð122Þ

where h� � �i denotes a time average over several periods of
the wave. In our context, the fast oscillating part of the wave
is driven by the eikonal phase Φ, and thus we average over
Φ (equivalently, over several fast oscillations, at a fixed
location). By doing this, we find in the geometric optics
limit the standard result (see, e.g., [28])

tð0Þeffμν ¼ c4

64πG
A2kμkν; ð123Þ

where A is the amplitude of the polarization in geometric
optics as defined in Eq. (26). For the leading order
corrections to geometric optics we get

tð1Þeffμν ¼ c4

32πG
kðμ½ℑðϵð0ÞαβÞ∂νÞℜðϵð0Þαβ Þ�

−
c4

32πG
kðμ½ℜðϵð0ÞαβÞ∂νÞℑðϵð0Þαβ Þ�

þ c4

32πG
kμkνℜðϵð0Þαβ ϵ

�αβð1ÞÞ: ð124Þ

Since the polarization tensor in geometric optics has the
form in (87), using the orthogonality property of the tetrad,

Eqs. (44)–(49), we obtain that only the coefficients αð1Þll and

αð1Þmm are nonvanishing in Eq. (124). We also observe that for

a wave linearly polarized at emission, tð1Þeffμν ¼ 0 being

ℑðϵð0Þαβ Þ ¼ 0 ¼ ℜðϵð1Þαβ Þ. In other words, for linearly polar-
ized wave corrections to the energy momentum tensor at 1
order beyond geometric optics cancel out once averaging
over several periods of oscillation. This is due to the fact
that, as mentioned in Sec. II B, for a linearly polarized wave
the geometric optic solution is real and corrections at 1
order beyond geometric optics are dephased of π=2 with
respect to the geometric optics order (i.e., they are purely
imaginary).
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We can write the (effective) energy momentum tensor up
to order ω in the following compact form:

teffμν ¼ c4

64πG
A2KμKν; ð125Þ

where we have introduced the vector

Kμ ¼ kμ þKkμ þ Vμ; ð126Þ

with

K ¼ A−2ℜðϵð0Þαβ ϵ
�αβð1ÞÞ; ð127Þ

Vμ¼A−2½ℑðϵð0ÞαβÞ∂μℜðϵð0Þαβ Þ−ℜðϵð0ÞαβÞ∂μℑðϵð0Þαβ Þ�: ð128Þ

For a pointlike lens, an order of magnitude estimate of the
size of these two corrections givesK ∼ ϵð1Þ ∼ ðλ=bÞðrE=bÞ2
and V=k ∼ ∂ϵð0Þ=k ∼ ϵð1Þ ∼ ðλ=bÞðrE=bÞ2, where we used
Eqs. (30) and (32). A tentative interpretation of this result is
that, at first order beyond geometric optics, the real vector
Kμ, as opposite to kμ gives the effective direction along
which the average energy of the wave mainly propagates.
We recall that here ω is just an expansion parameter, with
no physical meaning. However, since it multiplies the phase
Φ [see Eq. (19)], flipping the sign of ω from 1 to −1
corresponds to a flip of the helicity of the wave. It follows
that, since the corrections in Eq. (125) are proportional to
ω, waves of opposite helicity do not feel the same effect
when propagating on a curved background. We expect this
effect to be particularly important for waves propagating
across a Kerr black hole. Indeed, in this case it is known
that in the long wavelength limit gravitational waves of
opposite helicity are scattered in a different way; see, e.g.,
[29]. A similar result has been found recently in [21] for the
case of electromagnetic waves. An explicit computation
and analysis of this effect for various astrophysical lenses
will be addressed in the future.

VI. DISCUSSION

We have shown that beyond geometric optic corrections
become important when the wavelength of the wave is of
the order (or larger) than the Schwarzschild radius of
the lens. In Table I, we mention relevant wavelengths
for present and future GW observatories. The range
10−9–10−6 Hz is covered by the International Pulsar
Timing Array Consortium7 (IPTA). Frequencies in the
range 10−4–10−1 Hz will be probed with the space-based
LISA scheduled to be launched in 2034. Higher frequen-
cies (1–103 Hz) are accessible with ground-based interfer-
ometers, including Advanced LIGO (aLIGO) [30] and
Advanced Virgo (aVirgo) [2], KAGRA interferometer

which is expected to become operational by the end of
2019, and LIGO India which is currently under construc-
tion. A third generation of ground-based interferometers,
the Einstein Telescope8 (ET) and the Cosmic Explorer (CE)
[31] are in their design stages.
As a comparison, we also mention the values of

Schwarzschild radii of different objects. Solar mass black
holes have rS ∼ 10−13 pc, supermassive black holes have
rS ∼ 10−9 pc, and galaxies such as the Milky Way have
rS ∼ 10−2 pc. In the LIGO frequency band wave effects are
expected for waves passing in the vicinity of solar mass or
some supermassive black holes. In the LISA band, wave
effects are expected to appear when the lens is given by
astrophysical objects in a wide mass range. For waves in the
frequency range covered by IPTA, effects beyond geo-
metric optics become relevant even when the lens is a
galaxy (see, e.g., [18] for an analysis on time delay
including wave effects). When wave effects start becoming
important, geometric optics may still remain a useful
approximation and more accurate results can be obtained
by including higher-order corrections, which provide
insight into wave-optical phenomena that are not present
in the eikonal limit.
In this article, we have analyzed the propagation of

gravitational waves on a curved background, and we have
proposed a perturbative method for studying corrections to
the geometric optics limit. In particular, we have discussed
the effects of beyond geometric optics corrections on the
polarization tensor of the wave, and we have illustrated the
impact on the energy momentum tensor of the gravitational
wave. We found that, in general, the wave beyond geo-
metric optics gets diffractive effects that smear the polari-
zation plane transverse to the geometric optics wave. As a
result, the total wave exhibits longitudinal components
along the geometric optics propagation vector, which is
reflected on the appearance of additional (effective) vector
and scalar polarization modes when projecting the
Riemann tensor of the wave onto the standard eikonal
4-vector basis. In the absence of a natural definition of a
single wave vector for the diffracted wave, we have
analyzed the effective direction of propagation of the
energy by direct inspection of the pseudo-stress-energy
momentum tensor (at first order beyond geometric optics).
We found that the effective direction (obtained averaging

TABLE I. Frequency and wavelength range of different GW
observatories.

Detector Frequency [Hz] Wavelength [pc]

LIGO=Virgo 100–103 10−8–10−11

LISA 10−4–10−1 10−4–10−7

IPTA 10−9–10−6 10−1–101

7http://www.ipta4gw.org. 8http://www.et-gw.eu.
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over several fast oscillations) of propagation of energy is
misaligned with the eikonal direction of the wave.
We emphasize that in this paper we have made an initial

study on how the propagation of a single plane wave gets
affected by diffraction. Observationally, because of dif-
fraction effects, the number of paths that can combine
constructively increases, and the rays that connect two
points are the geometric optics rays plus diffracted com-
ponents of other rays ignored in the geometric optics
description. The fact that we have kept the tensor structure
of the wave in the equations of motion will allow us in the
future to estimate what the net amplitude and polarization
of the detected wave will be for different lensing geom-
etries. The idea is to make use of a path integral approach
similar to the one traditionally used to study diffraction of a
scalar wave; see, e.g., [8], to study the diffraction pattern
keeping track of the polarization structure of the wave.
Ultimately, we will address the observability of the wave
effects discussed in this article in different physical
situations—e.g., for GW signals from binary systems
detectable by LISA and lensed by a foreground stellar
field—and compute corrections to standard lensing quan-
tities, e.g., magnification and time delay.
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APPENDIX: TETRAD DEPENDENCE

We have shown that due to diffraction effects, the
Newman-Penrose scalars are not only characterized by
tensor perturbations only Ψ4 but instead all the other
polarizations are excited. We study here how this statement
depends on the tetrad choice; i.e., we analyze whether this
statement is observer dependent. To this scope we consider
a generalized Lorentz transformation of the tetrad, and we
check whether there exists a class of observers for whom
the wave appears as a purely helicity-2 wave, i.e., with
Ψ4 ≠ 0 and all other NP scalar vanishings.
The most general transformation of the tetrad that

preserves the orthonormal properties defined in Eq. (40)
has six real free functions of time and space (generalization
of Lorentz transformations in flat space); however, two of
them simply correspond to renormalizations of the tetrad

which are irrelevant for determining whether the NP scalars
will vanish or not. See, e.g., [27] for a pedagogical
derivation. Explicitly, this transformation is

kμ
0 ¼ Akμ; nμ

0 ¼ A−1nμ; mμ0 ¼ eiΩmμ; ðA1Þ

with A and Ω arbitrary real functions. In this case, the
four relevant NP scalars will transform with a simple
rescaling as

Ψ0
2 ¼ Ψ2; Ψ0

3 ¼ A−1e−iΩΨ3;

Ψ0
4 ¼ A−2e−i2ΩΨ4; Φ0

22 ¼ A−2Φ22: ðA2Þ
We therefore focus here on how the NP scalars transform
under the remaining four free parameters of the general
tetrad transformation, which is given by

kμ
0 ¼ kμ þ jz1j2nμ þ z�1m

μ þ z1lμ; ðA3Þ

mμ0 ¼ mμ þ z1nμ þ z2kμ; ðA4Þ

nμ
0 ¼ nμ þ jz2j2kμ þ z�2m

μ þ z2lμ; ðA5Þ

where z1 and z2 are two complex parameters. Under this
transformation we find that all the NP scalars change as

Ψ2
0 ¼Ψ2þ

2

3
ðz1Ψ3þz�1Ψ�

3Þþ
1

6
ðz21Ψ4þz�21 Ψ�

4Þþ
1

3
jz1j2Φ22;

ðA6Þ

Ψ3
0 ¼ Ψ3 þ

1

2
ðz�1Φ22 þ z1Ψ4Þ þ 3Ψ2z�2; ðA7Þ

Ψ4
0 ¼ Ψ4 þ 4Ψ3z�2 þ 6Ψ2z�22 ; ðA8Þ

Φ0
22 ¼ Φ22 þ 2ðz2Ψ3 þ z�2Ψ�

3Þ þ 6Ψ2jz2j2: ðA9Þ

The transformations driven by z1 and z2 are referred to as
class II and class I rotations, respectively. Class I rotations
(z1 ¼ 0) correspond to the little group of Lorentz trans-
formations that leaves the vector kμ invariant, i.e., they
relate a class of observers that identify the same wave
vector. Class I transformations are used to define quasi-
Lorentz invariant classes of gravitational waves. Each class
is labeled by the Petrov type of its nonvanishing Weyl
tensor and the maximum number of nonvanishing ampli-
tudes as seen by any observer [27]. We see that if the four
NP scalars are nonvanishing, the complex transformation
parameter z1 is not sufficient to set all of them but ψ4 to
zero. If we include the z2 transformation, which transforms
the wave vector, we see that there exists a special choice of
z1 and z2 such that Ψ2

0 ¼ Ψ3
0 ¼ Φ0

22 ¼ 0: e.g., the real part
of z2 is fixed to makeΦ0

22 ¼ 0, the real part of z1 is fixed to
make Ψ2

0 ¼ 0, and then the remaining two imaginary parts
are fixed by the requirement that Ψ3

0 ¼ 0. However, in this
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case, other projections of the Weyl that were originally
vanishing and hence ignored in our analysis (e.g., the so-
called NP scalars Ψ0 or Ψ1) will now be excited when
performing a class II transformation; see [32].
We therefore conclude that the identification ofNP scalars

in the presence of diffraction is an observer-dependent
statement, as it is the case in alternative models of gravity
[27]. Nevertheless, we find that there is no choice of the
tetrad such that only Ψ4 ≠ 0 when beyond geometric optics
corrections are taken into account. The issue of attempting to

define one single propagation direction beyond geometric
optics has been discussed in [23] (see Sec. 3. 5) in the context
of both electromagnetic and gravitational waves, where it
was also concluded that it is not necessarily meaningful to
define a single propagation vector for finite-wavelength
lensing as different phenomena may have different direc-
tions associated. For example, we defined one propagation
vector in Sec. V determining the average direction of the
propagation of energy, but other observablesmay have other
average directions associated with them.
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