
 

Lensing by Kerr black holes

Samuel E. Gralla 1,* and Alexandru Lupsasca 2,3,†

1Department of Physics, University of Arizona, Tucson, Arizona 85721, USA
2Center for the Fundamental Laws of Nature, Harvard University, Cambridge, Massachusetts 02138, USA

3Society of Fellows, Harvard University, Cambridge, Massachusetts 02138, USA

(Received 2 November 2019; accepted 15 December 2019; published 14 February 2020)

Interpreting horizon-scale observations of astrophysical black holes demands a general understanding of
null geodesics in the Kerr spacetime. These may be divided into two classes: “direct” rays that primarily
determine the observational appearance of a given source, and highly bent rays that produce a nested
sequence of exponentially demagnified images of the main emission: the so-called “photon ring.” We
develop heuristics that characterize the direct rays and study the highly bent geodesics analytically.We define
three critical parameters γ, δ, and τ that respectively control the demagnification, rotation, and time delay of
successive images of the source, thereby providing an analytic theory of the photon ring. These observable
parameters encode universal effects of general relativity, independent of the details of the emitting matter.
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I. INTRODUCTION

With the advent of horizon-scale observations of astro-
physical black holes [1–6], the intricate properties of null
geodesics in the Kerr spacetime [7–11] are fast becoming a
matter of practical relevance to astronomy. Thanks to ray-
tracing codes now operating with exquisite accuracy and
speed [12–14], determining the observational appearance
of a specified emission model is a quick and routine task.
However, given the enormous uncertainty in the nature of
the emission arising from the present targets M87* and Sgr
A*, the “inverse problem” may be more relevant: Given an
observation, what can one learn about the emission profile
of the source?
Answering this kind of question demands a general

understanding of the effects of gravitational lensing in the
Kerr spacetime. The authors of the present manuscript have
been involved in separate, recent efforts in this direction
[15,16]. Reference [15] argued that bright rings of emission
from optically thin matter [17–19] (hereafter, “photon
rings”1) should be understood as superposed, exponentially
demagnified images of the main emission, predicting a
distinctive multipeak structure and giving the first quanti-
tative estimate of the typical brightness enhancement (a

factor of about 2–3). Soon after, Ref. [16] obtained a
formula for the asymptotic demagnification factor as a
function of black hole spin and observer inclination,
confirmed the typical brightness enhancement and multi-
peak structure in state-of-the-art models [5] ray-traced at
higher resolution than previously considered, and proposed
an experimental method for detecting the discrete peaks
using space-based interferometry. In this paper, we unite
our perspectives on the problem and significantly general-
ize these results, with the aim of presenting a complete
guide to understanding lensing by Kerr black holes.
We have developed two new analytic tools in service of

this goal: (i) a complete, fully explicit solution of the Kerr
null geodesic equation expressed in terms of Legendre
elliptic integrals and Jacobi elliptic functions (presented in
a companion paper [11]), and (ii) a logarithmic approxi-
mation valid for highly bent photons (derived in the
Appendix B). We use the first tool to explore general
properties of null geodesics, and exploit the second to
provide a detailed analytic theory of the photon ring.
It is helpful to organize the analysis by the number of

orbits that an emitted photon executes before reaching the
detector (Fig. 7). For “direct” photons that complete of
order half-an-orbit or less, we find that the spin of the black
hole has little influence on the trajectory. For example, we
show that for an equatorial (i.e., spin-aligned or antia-
ligned) disk of emission viewed face-on, the arrival impact
parameter b of a photon emitted from Boyer-Lindquist
radius rs is given by “just adding one,”

b
M

≈
rs
M

þ 1; ð1Þ
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1We use the term “photon ring” to describe the collection of

demagnified images that appear near a closed curve on the image
plane. When optically thin matter emits from the vicinity of the
black hole, these images superpose to provide a brightness
enhancement. We use the name “critical curve” for the curve
where the images accumulate, and avoid the word “shadow”
altogether.
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with this formula holding empirically to 10% accuracy at
all spin (Fig. 5 left). For observers inclined relative to the
disk, the spin still has little effect on the arrival position
from a fixed equatorial radius, although it does shrink the
apparent size of the equator of the black hole (Fig. 6). For
models with emission extending to the horizon, the
observed central dark area will correspondingly shrink.
Photons that make of order half-an-orbit to one orbit

contribute a demagnified image of the source over a band
surrounding a critical curve on the image plane. For a
diffuse, optically thin source near the horizon, this image
superposes onto the direct emission to produce a thin ring
with diameter ∼10M, width ∼M, and about twice the
background intensity [15],2 a striking feature in simulated
images [5]. Here, we show that the precise width of this
band varies significantly with spin (Fig. 5 left), especially
in the region corresponding to photons emitted from the
vicinity of the horizon. For models with emission near the
horizon, the demagnified image will therefore be broader,
and contribute significantly more flux, when the black hole
spins rapidly.
Photons executing of order one orbit or more contribute a

sequence of highly demagnified images near the critical
curve [15,16,20,21]. We derive an asymptotic expansion
for the number of orbits as a function of the (perpendicular)
distance from the critical curve, and show that the resulting
logarithmic approximation is excellent even for photons
executing of order only a single orbit (Fig. 3). We develop a
precise analytic theory of the demagnified images based on
three key quantities defined for the bound photon orbits:

(i) The Lyapunov exponent γ characterizing the insta-
bility of the bound orbit, defined relative to a half-
libration in polar angle θ [16].

(ii) The change δ in azimuthal angle ϕ over a polar half-
libration [22].

(iii) The period τ of a polar half-libration.
We show that for an equatorial disk of emissionviewed face-
on, each successive image is demagnified by a factor of e−γ ,
rotated by an angle δ, and delayed by a time τ. These images
alternate between showing the front side and the backside of
the disk (Fig. 7). For nonequatorial sources, we instead
distinguish two families of images, each with demagnifi-
cation e−2γ , rotation 2δ, and time delay 2τ. These simple
associations break down when the observer is significantly
inclined, but we are still able to make precise statements
about the origin of emission as a function of observed
position near the critical curve.
These results unite and generalize our previous treatments

of the demagnification factor [15,16], while also introducing
δ and τ as additional key quantities characterizing the
demagnified images. The spin-dependent critical parame-
ters γ, δ and τ control universal (matter-independent)

features of general relativity that could in principle be
observed with future detectors.
This paper is organized as follows. In Sec. II, we review

and present a useful formalism forKerr null geodesics.Next,
in Sec. III, we analyze the bound photon orbits, and define
their critical parameters γ, δ, and τ. Then, in Sec. IV, we
discuss the screen of a distant observer, presenting new
details about the map from conserved quantities to position
in the image plane. We describe properties of complete rays
in theKerr exterior in Sec. V, and study segments of rays that
represent propagation from source to observer in Sec. VI.
Finally, in Sec. VII, we develop the analytic theory of the
photon ring in terms of the critical parameters γ, δ, and τ.

II. GENERAL FRAMEWORK

Wework with Boyer-Lindquist coordinates ðt; r; θ;ϕÞ on
the spacetime of a Kerr black hole with massM and angular
momentum J ¼ Ma, and define

Σðr; θÞ ¼ r2 þ a2cos2θ; ΔðrÞ ¼ r2 − 2Mrþ a2: ð2Þ

The roots of ΔðrÞ correspond to the outer/inner horizons

r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
: ð3Þ

We assume that 0 < a < M, such that the coordinate ϕ
increases in the sense of rotation of the black hole. The
nonrotating (a → 0) and extremal (a → M) limits may be
taken after final observables are computed.
In discussing null geodesics, we will make a distinction

between “rays” and “photons.” By a ray, we will mean a
complete null geodesic in the Kerr exterior, which enters
from the white hole or the celestial sphere, before even-
tually leaving via the black hole or the celestial sphere. By a
photon, we will mean a portion of a ray, which represents
the emission and absorption (or observation) of light. In
radiative transport, one considers rays that propagate
through a medium, gaining and losing photons (according
to the local emissivity and absorptivity) on their way to the
detector.
We will adopt the “integral” approach to the study of null

geodesics in the Kerr spacetime. In this approach, pio-
neered by Carter [7] and Bardeen [8], one reduces the
equations to quadratures using conserved quantities.
Building on important earlier developments [23–26], in a
companion paper [11] we have classified all motions,
reduced all integrals to real elliptic form, and inverted
the equations to provide explicit, parametrized trajectories.
Herein, we only summarize the results needed for this
paper; complete derivations may be found in Ref. [11].
Each Kerr photon trajectory possesses two conserved

quantities λ and η, corresponding to the energy-rescaled
angular momentum and Carter integral, respectively. These
allow the four-momentum pμ along the trajectory to be
reconstructed as

2This image was called the “lensing ring” in Ref. [15]; here, we
follow Ref. [16] and include it as part of the “photon ring.”
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Σ
E
pr ¼ �r

ffiffiffiffiffiffiffiffiffiffi
RðrÞ

p
; ð4aÞ

Σ
E
pθ ¼ �θ

ffiffiffiffiffiffiffiffiffiffi
ΘðθÞ

p
; ð4bÞ

Σ
E
pϕ ¼ a

Δ
ðr2 þ a2 − aλÞ þ λ

sin2 θ
− a; ð4cÞ

Σ
E
pt ¼ r2 þ a2

Δ
ðr2 þ a2 − aλÞ þ aðλ − a sin2 θÞ; ð4dÞ

where E ¼ −pt is the constant “energy at infinity,”3 and

RðrÞ ¼ ðr2 þ a2 − aλÞ2 − ΔðrÞ½ηþ ðλ − aÞ2�; ð5Þ
ΘðθÞ ¼ ηþ a2 cos2 θ − λ2 cot2 θ: ð6Þ

The symbols �r and �θ indicate the sign of pr and pθ,
respectively. Turning points in r and θ occur at zeros of the
radial and angular “potentials”RðrÞ andΘðθÞ, respectively.
Consider a null geodesic connecting spacetime events

ðts; rs; θs;ϕsÞ and ðto; ro; θo;ϕoÞ, where s and o stand for
source and observer. By integrating along the trajectory, the
geodesic equation (4) may be recast in integral form,4

Ir ¼ Gθ; ð7aÞ

Δϕ ≔ ϕo − ϕs ¼ Iϕ þ λGϕ; ð7bÞ

Δt ≔ to − ts ¼ It þ a2Gt; ð7cÞ
where we define ⨏

Ir ¼ ⨏ ro

rs

dr

�r

ffiffiffiffiffiffiffiffiffiffi
RðrÞp ; ð8aÞ

Gθ ¼ ⨏ θo

θs

dθ

�θ

ffiffiffiffiffiffiffiffiffiffi
ΘðθÞp ; ð8bÞ

Iϕ ¼ ⨏ ro

rs

að2Mr − aλÞ
�rΔðrÞ

ffiffiffiffiffiffiffiffiffiffi
RðrÞp dr; ð8cÞ

Gϕ ¼ ⨏ θo

θs

csc2 θ

�θ

ffiffiffiffiffiffiffiffiffiffi
ΘðθÞp dθ; ð8dÞ

It ¼ ⨏ ro

rs

r2ΔðrÞ þ 2Mrðr2 þ a2 − aλÞ
�rΔðrÞ

ffiffiffiffiffiffiffiffiffiffi
RðrÞp dr; ð8eÞ

Gt ¼ ⨏ θo

θs

cos2 θ

�θ

ffiffiffiffiffiffiffiffiffiffi
ΘðθÞp dθ: ð8fÞ

Here, the notation ⨏ indicates that these integrals are to be
understood as path integrals along the photon trajectory,
with the signs�r ¼ signðprÞ and�θ ¼ signðpθÞ switching
at radial and angular turning points, respectively. In
particular, all path integrals increase monotonically along
the trajectory.

A. Angular integrals

The analysis of the angular integrals differs depending
on the region of conserved quantity space. In this paper,
unless otherwise specified, we will restrict to positive η,

η > 0; ð9Þ
thereby excluding the so-called “vortical” geodesics
with η < 0. (This excludes only a small portion near the
middle of an observer’s screen, where the image is normally
dark—see Fig. 1 below. Furthermore, equatorial sources
cannot emit vortical photons, as these never intersect the
equatorial plane.) The η > 0 geodesics librate between
turning points θ� above and below the equatorial plane,

θ� ¼ arccosð∓ ffiffiffiffiffiffi
uþ

p Þ; ð10Þ
where

u� ¼ ▵θ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
▵
2
θ þ

η

a2

r
; ▵θ ¼

1

2

�
1 −

ηþ λ2

a2

�
: ð11Þ

To aid in the expression of the angular path integralsGθ,Gϕ,
and Gt, we introduce the notation

Fi ¼ F

�
arcsin

�
cos θiffiffiffiffiffiffi
uþ

p
����� uþu−

�
; ð12Þ

Πi ¼ Π
�
uþ; arcsin

�
cos θiffiffiffiffiffiffi
uþ

p
����� uþu−

�
; ð13Þ

E0
i ¼ E0

�
arcsin

�
cos θiffiffiffiffiffiffi
uþ

p
����� uþu−

�
; ð14Þ

where i ∈ fs; og can be either source or observer. Here,
FðφjkÞ, EðφjkÞ, and Πðn;φjkÞ respectively denote the
incomplete elliptic integrals of the first, second, and third
kind,5 while the prime denotes a derivative with respect to k,
E0ðφjkÞ≔∂kEðφjkÞ¼½EðφjkÞ−FðφjkÞ�=ð2kÞ. These inte-
grals vanish at the equator,

Fi ¼ Πi ¼ E0
i ¼ 0; ðθi ¼ 0Þ ð15Þ

and become complete at turning points,

3We exclude the measure-zero set of geodesics with E ¼ 0
exactly. In particular, such geodesics cannot reach an observer at
infinity.

4We identify ϕ ∼ ϕþ 2π, allowing Δϕ ¼ ϕo − ϕs to take any
value. If we had instead restricted ϕ to lie within the canonical
range ½0; 2πÞ, then the right-hand side of Eq. (7b) would have to
contain mod 2π.

5Our conventions for elliptic integrals are listed in Appendix A
of Ref. [26] and match the built-in implementation in Mathe-
matica 12.
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Fi ¼∓K; Πi ¼∓Π; E0
i ¼∓E; ðθi ¼ θ�Þ ð16Þ

where our notation for the complete elliptic integrals is

K ¼ K
�
uþ
u−

�
¼ F

�
π

2

���� uþu−
�
; ð17Þ

Π ¼ Π
�
uþ

���� uþu−
�

¼ Π
�
uþ;

π

2

���� uþu−
�
; ð18Þ

E0 ¼ E0
�
uþ
u−

�
¼ E0

�
π

2

���� uþu−
�
: ð19Þ

The η > 0 angular path integrals may be written in terms of
these quantities and the numberm of angular turning points
encountered along the trajectory as [11,26]

Gθ ¼
1

a
ffiffiffiffiffiffiffiffiffi−u−

p ½2mK �s Fs ∓o Fo�; ð20Þ

Gϕ ¼ 1

a
ffiffiffiffiffiffiffiffiffi−u−

p ½2mΠ�s Πs ∓o Πo�; ð21Þ

Gt ¼ −
2uþ

a
ffiffiffiffiffiffiffiffiffi−u−

p ½2mE0 �s E0
s ∓o E0

o�; ð22Þ

with �i denoting the sign of pθ at the source (i ¼ s) or
observer (i ¼ o) point,

�i ¼ signðpθ
i Þ: ð23Þ

Since pθ changes sign after each turning point, these signs
obey the constraint

�s ¼ �oð−1Þm: ð24Þ

Finally, note that the integral for Gθ can be inverted to
solve for θo or θs as a function of Gθ [11,25,26]. Since in
this paper, we mainly fix the observer point (a telescope at
infinity), we present θs in terms of θo and Gθ. This may be
inferred from expressions for θoðGθ; θsÞ by interchanging s
and o, before sending Gθ → −Gθ to compensate.6 From
Eq. (71) of Ref. [11] (noting that τ therein denotes Gθ,
while νθ therein denotes �s), we find

cos θsffiffiffiffiffiffi
uþ

p ¼ sn

�
Fo �o signðηÞa

ffiffiffiffiffiffiffiffiffi
−u−

p
Gθ

���� uþu−
�
; ð25Þ

where snðφjkÞ denotes the Jacobi elliptic sine function.
This formula holds regardless of the sign of η [11,26].

B. Radial integrals

In this paper, we will consider a distant observer at

ro → ∞: ð26Þ
Geodesics that reach this far observer have at most one
radial turning point outside the horizon. Given a choice of
conserved quantities (λ; η), a simple way to test whether the
ray has a turning point is to compute r4ðλ; ηÞ via Eq. (A8d)
below. If r4 is real and outside the horizon, then the ray has
a turning point at radius r4; otherwise, the ray never
encounters a turning point.
For the rays with no turning point, the radial integrals Ir,

Iϕ, and It are single-valued functions of rs, while for the
rays with a turning point, these radial integrals must be
double-valued in order to track whether or not the turning
point has been reached. We will denote the number of
turning points of a photon (portion of a ray) by w ∈ f0; 1g.
The radial integral Ir may then be written

Ir ¼
Z

∞

rs

drffiffiffiffiffiffiffiffiffiffi
RðrÞp þ 2w

Z
rs

r4

drffiffiffiffiffiffiffiffiffiffi
RðrÞp ; ð27Þ

and likewise for Iϕ and It with the appropriate integrands.7

We may relate w to the emission direction by

w ¼
�
0 pr

s > 0;

1 pr
s < 0 ðand rþ < r4 < rsÞ:

ð28Þ

The conditions rs > r4 > rþ ensure that rs lies along a ray
that reaches infinity after passing through a turning point r4
(such that negative initial radial momentum is allowed). If
these conditions are not both satisfied for a given choice of
conserved quantities, then only w ¼ 0 is allowed for those
quantities, i.e., only photons emitted outward will reach
infinity.
A ray reaching infinity originates either from the event

horizon (of the white hole) or from infinity. We denote the
associated radial integral Ir by Itotalr ,

Itotalr ¼
( 2

R∞
r4

drffiffiffiffiffiffiffi
RðrÞ

p rþ < r4 ∈ R;R∞
rþ

drffiffiffiffiffiffiffi
RðrÞ

p otherwise;
ð29Þ

wherewe remind the reader that a ray reaching infinity began
at infinity if r4ðλ; ηÞ is real and greater than the horizon, and
otherwise began at the (white hole) horizon.
The full set of radial integrals were evaluated and reduced

to elliptic form in Ref. [11], building on previous work in6The future-directed geodesic from source to observer is also a
past-directed geodesic from observer to source. The path integrals
are monotonically decreasing for the past-directed geodesic, so
after interchanging s ↔ o, we must also send Gθ → −Gθ.

7The integral It will diverge as ro → ∞, so one should let
ro → ∞ only after an observable is computed.
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Refs. [24,25]. The necessary antiderivatives for computing
Eqs. (27) and (29) are given in Appendix A below.
As in Eq. (25) for θsðGθÞ, one may derive an inversion

formula for rsðIrÞ [11,25]. Equation (B119) of Ref. [11]
gives a formula for ro, and we may infer the formula for rs
as described above Eq. (25), i.e., by interchanging o and s
and then sending Ir → −Ir. Noting that τ ¼ Ir therein, and
letting ro → ∞, the emission radius is given by

rs ¼
r4r31 − r3r41sn2ð12

ffiffiffiffiffiffiffiffiffiffiffiffi
r31r42

p
Ir − F ojkÞ

r31 − r41sn2ð12
ffiffiffiffiffiffiffiffiffiffiffiffi
r31r42

p
Ir − F ojkÞ

; ð30Þ

with

F o ¼ F

�
arcsin

ffiffiffiffiffiffi
r31
r41

r
jk
�
; k ¼ r32r41

r31r42
: ð31Þ

Here, we introduced the notation

rij ¼ ri − rj; ð32Þ

with the roots fr1; r2; r3; r4g given in Eqs. (A8) below. This
formula is contingent on the radial integral Ir being in the
allowed range,

0 < Ir < Itotalr : ð33Þ
Provided that Eq. (33) is satisfied, Eq. (30) gives the
emission radius of a photon reaching infinity with con-
served quantities (λ; η). This formula holds even when
(some of) the radial roots are complex [11].

C. Fractional number of orbits

It is useful to have some measure of the total number of
orbits executed by a given photon. However, since the
spatial trajectory is three-dimensional, there is some arbi-
trariness in the definition of an orbit. As in Ref. [16], we
define the journey from the equator to a polar turning point
θ� to be one quarter of an orbit, so that beginning and
ending at the same turning point constitutes one full orbit.
For a measure of the fractional number of orbits, we seek a
quantity that grows monotonically from zero, increasing by
1 after completing an orbit as defined above. Since the path
integralGθ satisfies the requisite monotonicity property, we
simply normalize by its value G1

θ over one orbit,
8 defining

the fractional number of orbits n to be

n ¼ Gθ

G1
θ

; ð34Þ

with

G1
θ ¼ 2

Z
θþ

θ−

dθffiffiffiffiffiffiffiffiffiffi
ΘðθÞp ¼ 4K

a
ffiffiffiffiffiffiffiffiffi−u−

p : ð35Þ

Using Ir ¼ Gθ [Eq. (7a) above], we equivalently have

n ¼ a
ffiffiffiffiffiffiffiffiffi−u−

p
4K

Ir: ð36Þ

Note that Ir ¼ Gθ is also the Mino time parameter [27] that
decouples the differential equations (4). Our parameter n is
proportional to the Mino time and provides a new physical
interpretation of this quantity.

III. CRITICAL RAYS

For generic values of λ and η, the radial potential (5)
possesses four distinct roots (A8), of which the real subset
corresponds to radial turning points. At special “critical”
values λ̃ and η̃, the radial potential may develop a double
root at some special radius r̃,

Rðr̃Þ ¼ R0ðr̃Þ ¼ 0: ð37Þ

This occurs for r̃ > rþ if [8] and only if [11]

λ̃ ¼ aþ r̃
a

�
r̃ −

2Δ̃
r̃ −M

�
; ð38Þ

η̃ ¼ r̃3

a2

�
4MΔ̃

ðr̃ −MÞ2 − r̃

�
; ð39Þ

where r̃ must lie in the range r̃ ∈ ½r̃−; r̃þ�, with

r̃� ¼ 2M

�
1þ cos

�
2

3
arccos

�
� a
M

���
: ð40Þ

Here and below, we use the notation Q̃ for a quantity Q
evaluated at criticality, i.e., at r ¼ r̃, λ ¼ λ̃, and η ¼ η̃.
The double root (37) indicates the existence of orbits

with fixed Boyer-Lindquist radius r̃, i.e., bound photon
orbits. At the boundaries (40) of the allowed range, the
orbits are circular, equatorial, and prograde (r̃−) or retro-
grade (r̃þ), whereas for intermediate radii the orbits also
librate between turning points θ− and θþ given in Eq. (10)
above [note from Eqs. (39) and (40) that η̃ ≥ 0]. The pole-
crossing orbits λ̃ ¼ 0 (where the turning points approach
the poles) lie at the radius r̃ ¼ r̃0 given by

r̃0 ¼ M þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −

a2

3

r
cos

�
1

3
arccos

ð1 − a2

M2Þ
ð1 − a2

3M2Þ3=2
�
: ð41Þ

Thus, the region of the Kerr spacetime spanned by bound
photon orbits takes the shape of a spherical shell of variable
thickness (the “photon shell”), which is thickest at the
equator and vanishingly thin at the pole (e.g., Fig. 2 of

8A quarter orbit contributes G1=4
θ ∼ Kðuþ=u−Þ, in accordance

with the name “quarter period” given to the elliptic integralKðxÞ in
the study of pendulummotion, which is precisely of the form (25).
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Ref. [16]). This shell is largest in the extremal limit a → M,
in which its range extends from r̃− ¼ M to r̃þ ¼ 4M at
the equator. In the nonrotating limit a → 0, the shell is
vanishingly thin everywhere, degenerating to the “photon
sphere” r ¼ 3M.
Since there are no orbits that oscillate between two

radial turning points outside the horizon, the bound photon
orbits are unstable. The rate of deviation of nearby orbits
may be characterized by a Lyapunov exponent, which is
usually defined with respect to a coordinate or affine time
(e.g., as in Ref. [28]). We will instead follow Ref. [16]
and define the exponent using the fractional number of
orbits as a parameter. Consider a precisely critical ray
with conserved quantities λ̃ðr̃Þ and η̃ðr̃Þ, but that is not
precisely at the radius r̃. (Such rays approach the critical
radius in the asymptotic future or past.) In the regime
jr − r̃j ≪ r̃, a simple calculation (Appendix A1 of [16])
gives9

r2 − r̃
r1 − r̃

≈ e2γðn2−n1Þ; ð42Þ

where r1 and r2 denote the photon radius after executing n1
and n2 fractional orbits, respectively, while the Lyapunov
exponent is

γ ¼ 4r̃
ffiffiffĩ
χ

p
a

ffiffiffiffiffiffiffiffiffi
−ũ−

p K̃: ð43Þ

Here, K̃ ¼ Kðũþ=ũ−Þ is evaluated using the critical con-
served quantities according to the convention established
above, while χ̃ is defined as

χ̃ ¼ 1 −
MΔðr̃Þ

r̃ðr̃ −MÞ2 : ð44Þ

We will see below that γ controls the demagnification of
successive images of an isotropically emitting source, as
first realized in Ref. [16].
It is useful to know the change in ϕ accrued over each

orbit (period in the θ-motion) of a bound photon. This
quantity was computed by Teo [22], and may also be
inferred from an r → r̃ limit of the integral formulation
above, as follows. First, note from Eqs. (8) that for r ≈ r̃,
we have

Iϕ ≈ a

�
r̃þM
r̃ −M

�
Ir ¼ a

�
r̃þM
r̃ −M

�
Gθ; ð45Þ

where the last step follows from Eq. (7a). Letting r → r̃ in
Eq. (7b) after using Eq. (45), the change in ϕ for a bound
photon is given in terms of angular integrals as

Δϕ ¼ a

�
r̃þM
r̃ −M

�
Gθ þ λGϕ: ð46Þ

To determine the change in ϕ over a complete orbit, we use
the formulas (20) and (21) with θs ¼ θo and m ¼ 2.
Denoting this change in ϕ by 2δ̂, we find

δ̂ ¼ 2

a
ffiffiffiffiffiffiffiffiffi
−ũ−

p
�
a

�
r̃þM
r̃ −M

�
K̃ þ λ̃ Π̃

�
; ð47Þ

in agreement with Eq. (18) of Ref. [22]. This quantity δ̂
encodes the change in ϕ completed by a bound photon over
each half-orbit.
As discussed in Ref. [22], this expression for δ̂ is not a

smooth function of r̃, but rather has a jump discontinuity of
2π at the pole-crossing orbit r̃ ¼ r̃0. This can be understood
by imagining two photons passing nearly over the pole, but
on opposite sides. The photon moving in a locally counter-
clockwise direction is regarded as having accumulated
approximately π radians during the passage, whereas the
clockwise photon passing on the other side is regarded as
having accumulated−π radians. This discontinuity is essen-
tial to the mathematics of the integral formulation of the
equations, but for presenting final results it will be conven-
ient to define a continuous function by adding 2π to the
r̃ > r̃0 branch of δ̂. We will denote this smooth version by δ,

δ ¼ δ̂þ 2πHðr̃ − r̃0Þ; ð48Þ

where HðxÞ denotes the Heaviside function. Combining
Eqs. (47) and (48) gives

δ ¼ 2ffiffiffiffiffiffiffiffiffi
−ũ−

p
��

r̃þM
r̃ −M

�
K̃ þ λ̃ Π̃

a

�
þ 2πHðr̃ − r̃0Þ: ð49Þ

We will see below that δ controls the apparent rotation of
successive images of an isotropically emitting source.
Finally, consider the elapsed time t over a full libration.

By a similar argument as used for Eq. (45), we find

It ≈ r̃2
�
r̃þ 3M
r̃ −M

�
Gθ: ð50Þ

Plugging this into Eq. (7c) and letting r → r̃ leads to

Δt ¼ r̃2
�
r̃þ 3M
r̃ −M

�
Gθ þ a2Gt ð51Þ

for a bound photon orbit. Using Eqs. (20) and (22) with
θs ¼ θo and m ¼ 2 gives the lapse in t for a full orbit.
Denoting this time lapse over a full orbit by 2τ, we find

9By including a factor of 2, we are effectively defining the
Lyapunov exponent with respect to the fractional number of half-
orbits, 2n. This choice was made for consistency with Ref. [16];
note, however, that Ref. [16] used the letter n to denote the
fractional number of half-orbits, whereas we have instead
followed Ref. [15] in using n for the fractional number of orbits.
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τ ¼ 2

a
ffiffiffiffiffiffiffiffiffi
−ũ−

p
�
r̃2
�
r̃þ 3M
r̃ −M

�
K̃ − 2a2ũþẼ0

�
: ð52Þ

This quantity τ gives the change in t over each half-orbit
of a bound photon. We will see below that τ controls the
time-delay between the arrival of successive images of an
isotropically emitting source.

IV. THE SCREEN OF A DISTANT OBSERVER

Now consider a distant observer with inclination θo
relative to the spin axis of the black hole. We will exclude
the equatorial case and use the reflection symmetry of the
spacetime to place the observer in the upper hemisphere,

θo ∈ ½0; π=2Þ: ð53Þ

First, consider the off-axis case θo ≠ 0. We use the
axisymmetry of the spacetime to set the observer azimuthal
angle to zero,

Observer θo ≠ 0∶ ro → ∞; ϕo ¼ 0: ð54Þ

Orthogonal impact parameters (α; β) of photons reaching
the observer (54) are proportional to direction cosines on
the observer’s sky, and may therefore be regarded as image
plane Cartesian coordinates. Expressed in terms of photon
conserved quantities, a convenient choice is [8,29]

α ¼ −
λ

sin θo
;

β ¼ �o

ffiffiffiffiffiffiffiffiffiffiffiffi
ΘðθoÞ

p
¼ �o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηþ a2cos2θo − λ2cot2θo

q
: ð55Þ

This defines a “line of sight” α ¼ β ¼ 0 to the black hole,
with the β-axis regarded as the projection of the spin axis
onto the plane perpendicular to this line of sight.10 The
projected black hole rotation is in the counterclockwise
direction as seen by the observer. In comparing to an
observed image, one may rescale α and β to adjust for
angular size, translate or rotate to adjust for the position
and orientation of the source, and reverse the handedness
α → −α to account for the projected black hole spin
direction. Finally, notice that we have

�o ¼ signðβÞ: ð56Þ

Rays that reach our distant observer may have two
qualitatively different origins: they either came from the

white hole, or else from the celestial sphere. Equivalently,
we may imagine tracing a photon back in time from the
observer and asking whether it “ends up” (started) at the
horizon r ¼ rþ, or at infinity r → ∞.11 The boundary
between these two behaviors corresponds to a ray that,
when traced backwards in time, orbits indefinitely as it
approaches a bound orbit at some radius r̃. Such rays must
have the same conserved quantities λ̃ðr̃Þ and η̃ðr̃Þ [given in
Eqs. (38) and (39) above] as the bound photon orbits. This
condition defines the critical curve C.
The radius of the associated photon orbit provides a

convenient parametrization of C,

α̃ ¼ αðλ̃ðr̃ÞÞ; β̃ ¼ βðλ̃ðr̃Þ; η̃ðr̃ÞÞ; ð57Þ

defined using Eqs. (38), (39), and (55). In light of the sign
�o ¼ signðβÞ in Eqs. (55), Eq. (57) really refers to two
separate parametrized curves (one in the upper half-plane
and one in the lower half), whose union gives rise to the
closed curve C on the image plane. Put differently, the
critical curve is a 2-1 mapping from the critical locus in
conserved quantity space (Fig. 1). In particular, C is
reflection-symmetric about the α axis. The range of the
parameter r̃ is determined by the requirement that β̃ be real,
which restricts to bound photon orbits for which nearby
photons can escape to infinity at the observer inclination θo
(see Fig. 2 of Ref. [16]). In the edge-on case θo ¼ π=2, this
corresponds to the full range r̃ ∈ ½r̃−; r̃þ� of bound orbits in
the photon shell [Eq. (40)], whereas at smaller inclinations,
there is a smaller range that can be determined numerically
by finding the roots of β̃ðr̃Þ.
The shape of the critical curve depends on the black hole

spin a and the observer inclination θo. However, it is very
nearly circular everywhere across this parameter space,
except in the extremal, edge-on limit, where it becomes
flattened on one side [8,16,18,19,29].
It is useful to have a simple test of whether a given screen

position (α; β) lies inside the critical curve. One method is
to compute (λ; η) via the inversion of Eq. (55),

λ ¼ −α sin θo; ð58Þ

η ¼ ðα2 − a2Þ cos2 θ0 þ β2; ð59Þ

and then plug these parameters into the formula (A8d) for
the radial root r4, which is always the outermost turning
point outside the horizon (when it exists). That is,10At large distances r → ∞, the Boyer-Lindquist coordinates

define a fiducial flat metric whose z-axis is identified with the
spin axis of the black hole. The photon with α ¼ β ¼ 0 is aimed
radially inward and reaches the origin r ¼ 0 of this auxiliary
spacetime. The β-axis is the projection of the z-axis onto the
“image plane” perpendicular to this line of sight (e.g., Fig. 6 of
Ref. [29]).

11One could also pose the problem forward in time, sending
photons toward the black hole from the observer at infinity.
However, the black hole must then rotate in the opposite sense, as
can be seen from the discrete t → −t, ϕ → −ϕ symmetry of the
metric.
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the screen point (α; β) is outside C if r4ðα; βÞ is real and
outside the horizon; otherwise it lies inside C [r4 is
constructed from Eqs. (58), (59), and (A8d)].

A. On-axis observer

In the special case θo ¼ 0 of an on-axis observer, it is
more convenient to use polar coordinates (b;φ) on the
image plane. Here, b is the impact radius b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ β2

p
and φ is the angle of arrival,

φ ¼ ϕo ðθ0 ¼ 0; ro → ∞Þ: ð60Þ

Since photons that reach the pole must have vanishing
azimuthal angular momentum (λ ¼ 0), it follows from
Eqs. (55) that

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ηþ a2

q
: ð61Þ

Moreover, since all photons reach a polar observer with
negative pθ

o, we also have from Eq. (56) that

�o ¼ −1: ð62Þ

To simplify expressions in the case of a polar observer,
we send

λ → 0; η → b2 − a2; ð63Þ

which in particular sends

uþ → 1; u− → 1 −
b2

a2
; ð64Þ

as well as

θ− → 0; θþ → π: ð65Þ

In most expressions, one can simply set these values, but
more care is needed near turning points (pole crossings). In
particular, the angle ϕ jumps by ϕ → ϕþ π discontinu-
ously at each turning point. This coordinate artefact is
reflected in the mathematics as a divergence of the angular
integral Gϕ at each turning point. The relevant finite limit
(recalling that η > 0) is

lim
λ→0�

2λΠ
a

ffiffiffiffiffiffiffiffiffi−u−
p ¼ �π: ð66Þ

The critical curve of a polar observer is a perfect circle
centered at the origin. The range of r̃ degenerates to a single
value r̃ ¼ r̃0, which is the unique radius (41) in the photon
shell ½r̃−; r̃þ� that admits pole-crossing bound orbits

FIG. 1. The 2-1 mapping from conserved quantities (λ; η) to image coordinates (α; β). The curve Cþ of critical rays separates the
regions of (λ; η)-space where rays have no radial turning points (blue and yellow) from the region where they have a single radial turning
point (green). (Yellow rays are vortical, while blue rays are ordinary.) Rays can reach an observer at inclination θo only in the darker
portion inside the gray parabola. The 2-1 image of this portion of Cþ defines the image-plane critical curve C. As θo → 0, the parabola
closes to the vertical half-line λ ¼ 0, η > −a2, while as θo → π=2, it opens up to a horizontal line η ¼ 0, such that the entire blue and
green regions (and none of the yellow region) map to the image. As a → 0, the vortical region disappears from both plots (no vortical
geodesics exist). In these plots, we chose a=M ¼ 94%, θo ¼ 17°, and set M ¼ 1.
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(λ̃ ¼ 0). That is, from the perspective of a polar observer,
the only visible portion of the photon shell is a photon
sphere. The critical curve radius b̃ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
η̃þ a2

p
is given by

b̃ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̃30
a2

�
4MΔðr̃0Þ
ðr̃0 −MÞ2 − r̃0

�
þ a2

s
: ð67Þ

In this case, the angle φ ¼ ϕo may be viewed as the
parameter along C.
Using Eqs. (63), (64), and (66), the critical parameters γ,

δ, and τ reduce to

γ0 ¼
4r̃0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b̃2 − a2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

MΔðr̃0Þ
r̃0ðr̃0 −MÞ2

s
K

�
a2

a2 − b̃2

�
; ð68Þ

δ0 ¼ π þ 2affiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b̃2 − a2

p
�
r̃0 þM
r̃0 −M

�
K

�
a2

a2 − b̃2

�
; ð69Þ

τ0 ¼
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b̃2 − a2
p

�
r̃20

�
r̃0 þ 3M
r̃0 −M

�
K

�
a2

a2 − b̃2

�

− 2a2E0
�

a2

a2 − b̃2

��
: ð70Þ

In the limit a → 0 of a nonspinning black hole (where
any observer can be made polar by rotational symmetry),
these quantities simplify tremendously:

r̃0 ¼ 3M; b̃ ¼ 3
ffiffiffi
3

p
M; ð71Þ

γ0 ¼ δ0 ¼ π; τ0 ¼ 3
ffiffiffi
3

p
πM: ð72Þ

These critical parameters characterize the critical orbits in
the photon spheret of the Schwarzschild spacetime.
It is helpful to contrast the cases of on-axis and off-axis

observers. In the off-axis case θo ≠ 0, we set the azimuthal
coordinate to a fiducial value ϕo ¼ 0, and the two con-
served quantities λ and η (together with the sign�o) encode
the arrival position of photons via Eqs. (55). On the other
hand, in the on-axis case θo ¼ 0, one conserved quantity λ
always vanishes, and the arrival position is encoded by the
second conserved quantity η together with the azimuthal
coordinate ϕo via Eqs. (60) and (61). The critical curve has
a similar shape in each case but a rather different math-
ematical description: for off-axis observers, we parametrize
it by r̃, while for on-axis observers, we have r̃ ¼ r̃0 and the
curve is instead parametrized by φ (and given by b ¼ b̃).

V. BEHAVIOR OF RAYS

We now make some general comments about the proper-
ties of rays, i.e., complete null geodesics in the Kerr
exterior. Their radial integral Ir is the total integral
discussed in Eq. (29) above. Plugging Eqs. (7a) and (56)
into Eq. (25), we find that (regardless of the sign of η)

cos θsffiffiffiffiffiffi
uþ

p ¼ sn

�
Fo þ signðηβÞa ffiffiffiffiffiffiffiffiffi

−u−
p

Itotalr

���� uþu−
�
: ð73Þ

The formula (73) gives the latitude at which the ray arriving
at screen coordinate (α; β) entered the spacetime (either
from the white hole if arriving inside C, or from the celestial
sphere if arriving outside C). The level sets of this function
show how the horizon and celestial sphere are “unfolded”
infinitely many times on the image plane, converging to the
critical curve (Fig. 2).
Each successive unfolding corresponds to a photon that

has undergone an additional half-orbit before reaching the
observer. To study this effect quantitatively, we consider the
total (fractional) number of oribts n, which is proportional
to Ir by Eq. (36). The results of Appendix B provide an
asymptotic expansion valid for near-critical rays. From
Eqs. (36), (B45), (B49) and (B56), we have

n ≈ −
1

2γðr̃Þ log½Ĉ�ðr̃Þd�; d → 0�; ð74Þ

where d is the signed perpendicular distance from the
closest point r̃ on the critical curve, γðr̃Þ is the Lyapunov
exponent (43), and we also introduced coefficients

Ĉþðr̃Þ ¼
�
1þ ffiffiffĩ

χ
p

8χ̃

�
2 Δðr̃Þ
2r̃4χ̃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β̃2 þ ψ̃2

q
; ð75Þ

Ĉ−ðr̃Þ ¼ −
ffiffiffiffiffiffiffiffiffiffiffi
1 − χ̃

p
1þ ffiffiffĩ

χ
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þQ2ðδrþ; 0Þ
1 −Q2ðδrþ; 0Þ

s
Ĉþðr̃Þ: ð76Þ

See Eqs. (44), (57), (B23), (B24) and (B54) for definitions
of the various quantities that appear. In the nonrotating limit
a → 0, Eqs. (74), (75) and (76) agree with Eqs. (2), (3), and
(4) of Ref. [15]. The exact and approximate fractional
number of orbits are shown in Fig. 3.
As depicted in Fig. 3, we may think of ðr̃; dÞ as a set of

coordinates for the image plane that are defined in the
neighborhood of C for which there is a unique line segment
connecting any point p to C, with the line intersecting C
perpendicularly. The coordinate r̃ of the point p is the
Boyer-Lindquist radius of the associated photon orbit
where C is intersected, and the coordinate d is the signed
length of the segment (i.e., jdj is the length, with d positive/
negative when the point p is outside/inside C). This actually
defines two coordinate charts—one in the upper half-plane
and one in the lower half-plane—since each radius r̃
corresponds to two points on C related by β → −β. That
is, points near C are uniquely described by ðr̃; d; signðβÞÞ.
We will generally leave the signðβÞ-dependence implicit,
regarding ðr̃; dÞ as a single chart. In the case of an on-axis
observer θo ¼ 0, for whom the r̃-parametrization breaks
down, we would instead use (φ; d), where φ ¼ ϕo and
d ¼ b − b̃, with b̃ given by Eq. (67).
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FIG. 2. Latitude bands of the event horizon and celestial sphere, as seen by a distant observer. Rays from the horizon (emitted just
outside the black hole, or emerging from the white hole) arrive within the critical curve (black), while rays from the celestial sphere
arrive outside of it. We show the screen position of these rays, colored by the latitude of emission on the event horizon or celestial sphere,
as shown in central inset (colors change every 30°, with orange/green dots depicting the north/south poles). The observer sees infinitely
many “unfoldings” of both the horizon and the celestial sphere. Here, we show an extreme black hole (a ¼ M) as viewed by a distant
observer at inclinations (clockwise from top left) θo ¼ 0°, 17°, 60°, and 90°.
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The formula (74) may be compared with Eq. (11) of
Ref. [16]. Accounting for a factor of two difference in the
definition of n, the prefactors agree exactly, but the argu-
ment in the log differs in two ways. First, we include the
coefficients Ĉ� associated with a definite physical quantity,
the total (fractional) number of orbits outside the horizon.
Strictly speaking, these are subleading to the dominant
log d term, but nonetheless they are necessary to attain any
reasonable degree of accuracy. The second difference is that
the dependence on the deviation from the critical curve
appears as the normal distance d in place of the unspecified
displacement δρ=ρc in Ref. [16], making precise the scaling
argument given therein.

VI. BEHAVIOR OF PHOTONS

We now make some general comments about the
behavior of photons reaching the observer, i.e., portions

of null geodesics corresponding to emission and obser-
vation of light. We will consider the apparent positions
(location on the observer screen) of various simple geo-
metric sources. A given source has infinitely many
apparent positions (arising from photons making arbitrar-
ily many orbits around the black hole), but throughout
this section, we confine our attention to the first one or
two, deferring discussion of higher-order images to
Sec. VII below. We use the term “position” even when
discussing extended sources; for example, the apparent
positions of a source ring ðrs; θsÞ are closed curves on the
image plane.

A. Spheres observed from the pole

We begin by discussing the apparent positions of
latitude lines on a sphere of some radius rs, as viewed
from above (θo ¼ 0). Recall from Sec. IVA that we use

FIG. 3. Fractional number of orbits n as a function of signed perpendicular distance d from the critical curve C on a distant observer’s
image plane. Top: black hole spin a=M ¼ 94% and observer inclination θo ¼ 17°; bottom: spin a=M ¼ 99.9% and inclination
θo ¼ 90°. The curve C is parametrized in two separate segments above and below the α-axis by the radius r̃ that rays asymptotically
approach. (The directions of increasing r̃ are indicated on each segment by red arrows. The range of r̃ is determined by the condition
β2 ≥ 0; only the equatorial observer θo ¼ π=2 sees the entire range r̃ ∈ ½r̃−; r̃þ� of bound photon orbits.) Physically, the coordinate
system ðr̃; dÞ labels (nearly) bound photons by the Boyer-Lindquist radius r̃ of their (nearby) spherical photon orbit. The fractional
number of orbits diverges logarithmically as jdj → 0. The logarithmic approximation [Eq. (74)] is excellent within a distance ∼M of the
critical curve (we set M ¼ 1 in all the plots), except near the vertical straight line (“NHEKline”) that appears in the extremal limit for
θo ≳ 47° and requires a separate analytic treatment [29].
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polar coordinates (b;φ) on the image plane for such an
observer. Using Eqs. (7a), (63) and (64), Eq. (25) becomes

cos θs ¼ cd

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − a2

p
Ir

���� a2

a2 − b2

�
; ð77Þ

where cd is the Jacobi elliptic function cdðφjkÞ. The
integral Ir may be computed either numerically, or using
elliptic integrals; we use expressions given in Ref. [11]. For
fixed rs, the radial integral Ir is a function of b that is
single-valued for b < b̃ and double-valued for b > b̃ [see
Eq. (27)]. Thus, for b < b̃ there is a unique emission
latitude θs for each radius b, whereas for b > b̃ there are
two, corresponding to outward and inward emission [see
Eq. (28)]. (The emission from these different points on the
sphere would be superposed if the sphere is optically thin.
In flat spacetime, this would be tantamount to looking
straight down through a sphere.) The emission latitude(s) as
a function of b are shown in Fig. 4 for a selection of sphere
radii rs and black hole spins a.

B. Equatorial plane observed from the pole

We now consider the apparent positions of rings lying on
the equatorial plane (θs ¼ π=2) and observed from directly
above (θo ¼ 0). Using Eqs. (62), (63), and (64), Eq. (20)
becomes12

Gθ ¼
2mþ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − a2

p K

�
a2

a2 − b2

�
¼ Ir; ð78Þ

where the second equality follows from the geodesic
equation Ir ¼ Gθ [Eq. (7a)]. The condition 0 < Ir < Itotalr
[Eq. (33)] is thus

0 <
2mþ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − a2

p K

�
a2

a2 − b2

�
< Itotalr : ð79Þ

This condition provides the range of integers m for which
there exist trajectories linking the equator and the polar
observer with m turning points, as a function of the image
radius b. For most values of b, only m ¼ 0 is allowed, with
higher-order values ofm becoming allowed near the critical
curve b̃, where Ir diverges logarithmically. For any value of
m ∈ f0; 1; 2;…g satisfying the condition (79), Eq. (30) for
rsðIrÞ with Eq. (78) for Irðb;mÞ provides the emission
radius rsðb;mÞ. These maps rsðb;mÞ for m ∈ N were
called “transfer functions” in Ref. [15]. In Fig. 5, we show
the first (m ¼ 0) and second (m ¼ 1) transfer functions,
which correspond to the main images of the front and the
back of an equatorial disk, respectively. As discussed in
Ref. [15], the “backside image” (m ¼ 1) is highly demag-
nified, appearing only in a thin band near the critical
curve.13 Subsequent (further demagnified) images will be
discussed in Sec. VII below.
The angle of arrival φ of a photon is given by Eqs. (7b),

(21), (60) and (66) as14

φ ¼ ϕs þ Iϕ þmπ; ð80Þ

FIG. 4. Behavior of photons emitted from a source sphere r ¼ rs and received at the pole θo ¼ 0. We show the cosine of the emission
latitude θs as a function of screen radius b. Each oscillation from þ1 to −1 represents an image of the source sphere. When the source
sphere is inside the photon sphere (rs < r̃0), the images do not overlap—the sphere is “unwrapped” infinitely many times on the image
plane. When the source sphere is outside the photon sphere, its first image is folded on itself, and subsequent images are superposed on
this first image. If the sphere is optically thick, emission corresponding to dashed lines will not be visible. In the flat spacetime this
corresponds to the statement that one sees only the top half of the sphere.

12The formula (78) holds only for b2 > a2 on account of our
assumption that η > 0 (excluding vortical geodesics). However,
vortical geodesics with b2 < a2 cannot cross the equatorial plane,
so there is no loss of generality for the equatorial sources that we
treat here.

13Ref. [15] used the terminology “lensing ring” for this m ¼ 1
backside image, reserving “photon ring” for higher-order images
m ≥ 2. Here, we include the m ¼ 1 image as part of the “photon
ring.”

14Note that λΠo is zero in this limit since the photon does not
cross the pole at large ro near the far observer at ro → ∞.
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where we absorb the � from Eq. (66) using φ ∼ φþ 2π.
The last term reflects the m passages of the photon
through the pole before it reaches the observer. In the
zero-spin limit, the middle term vanishes, showing that
successive images of a single source appear on alternating,
opposite sides of the image plane. The middle term Iϕ
introduces an additional, spin-dependent shift in image
plane angle φ, which we regard as the effect of frame
dragging.
In Fig. 5, we plot Iϕ for the front side (m ¼ 0) and

backside (m ¼ 1) images for a selection of spins. For a
static disk of emission with a nonaxisymmetric profile, the
observed images will be rotated by this b-dependent
factor; for example, a “color wheel” will appear “swirled.”
However, a static disk cannot exist inside the ergoradius
r ¼ 2M (where rotation is inevitable), and we have there-
fore chosen to cut off the curves at the associated apparent
radius b. If the curves were continued inside, they would
display a divergence at the apparent position of the event
horizon due to the irregularity of the coordinate ϕ. In a
physical model, time-delay effects would compensate this
divergence (Δt diverges as well) to give a regular appear-
ance to the source.

C. Equatorial plane: Inclined observer

We now consider equatorial sources (θs ¼ π=2) seen by
inclined observers (θo ≠ 0). Noting that Fs ¼ 0 and
�o ¼ signðβÞ, Eqs. (7a) and (20) become

ffiffiffiffiffiffiffiffiffiffiffiffiffi
−u−a2

q
Ir þ signðβÞFo ¼ 2mK: ð81Þ

For each rs and m, this equation defines a relationship
between α and β, i.e., a curve on the image plane.

However, if this curve intersects the α-axis, then it
will be discontinuous there on account of the signðβÞ
appearing in Eq. (81).15 This jump can be simply com-
pensated by sending m → mþ 1 whenever the α-axis is
crossed from below, since the incomplete elliptic integral
Fo becomes the complete elliptic integral K at β ¼ 0.16

That is, smooth curves on the image plane are labeled
by integers m̄ defined using the Heaviside function
HðxÞ by

m̄ ¼ m −HðβÞ: ð82Þ

This reflects the geometric fact that, since the observer is
assumed to lie above the equatorial plane, emission
arriving from above the line of sight must have an
additional angular turning point relative to the corre-
sponding emission arriving from below (Fig. 7).
Each source ring rs maps to an infinite number of

observed rings labeled by m̄ ∈ f0; 1; 2;…g. Even m̄ corre-
sponds to emission towards the observer (i.e., from the front
of an equatorial disk), while odd m̄ corresponds to emission
away from the observer (i.e., from the back of a disk). In
Fig. 6, we show the first (m̄ ¼ 0) and second (m̄ ¼ 1) rings
in the form of equatorial contour plots for various values of
black hole spin and inclination. Subsequent rings (m̄ ≥ 2)
appear very near the critical curve and are discussed in
Sec. VII below.

FIG. 5. Behavior of photons emitted from the equatorial plane θs ¼ π=2 and received at the pole θo ¼ 0. Solid lines correspond to
“direct” photons with no angular turning points (m ¼ 0), while dashed lines correspond to “backward-emitted” photons that bend
around the black hole before reaching the observer (m ¼ 1). The color bands on the horizontal axis show the range over which the
backward-emitted photons can reach the observer [the apparentm ¼ 1 range of rs ∈ ðþ;∞Þ], and the colored ticks represent the critical
curve radius b̃. Higher-order photons (m ≥ 2) produce essentially vertical lines at the critical radius (e.g., Fig. 4 of Ref. [15]) and are not
shown here. On the left, we show the emission radius rs as a function of screen radius b. On the right, we show the frame dragging
integral Iϕ, with the curves cut off at the apparent position of the ergosphere, where time-delay effects become essential (see further
discussion in the main text).

15If θo ¼ π=2 exactly, then Fo vanishes and this jump does not
occur. We have excluded this degenerate case for simplicity.

16A photon arriving on the α-axis has vanishing β ¼ pθ
o, and is

therefore at an angular turning point θ� when it reaches the
observer.
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VII. THE PHOTON RING

We now discuss universal properties of photons arriving
near the critical curve C. Our discussion will be framed in
terms of the three key quantities γ, δ, and τ that characterize
the critical orbits (Sec. III above). We will first derive
expressions of the form

d ∝ e−2nγ; ð83Þ

Δϕ ¼ 2nδþ ðcorrectionsÞ; ð84Þ

Δt ¼ 2nτ þ ðcorrectionsÞ; ð85Þ

FIG. 6. Apparent positions of source rings of constant Boyer-Lindquist radius rs in the equatorial plane θs ¼ π=2, as a function of
black hole spin and observer inclination. (We setM ¼ 1.) Solid lines are the front side image m̄ ¼ 0, while dashed lines are the backside
image m̄ ¼ 1 (Fig. 7). The apparent position of the horizon is a filled gray line, while the apparent positions of rs ¼ 3, 5, and 7 are blue,
green, and purple, respectively. From top to bottom, the rows are spin a=M ¼ 1%, 50%, 94%, 99.9%; from left to right, the columns are
observer inclination θo ¼ 1°, 17°, 60°, 80°.
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where n is the fractional number of orbits (Sec. II C) and d
is the signed perpendicular distance from the critical curve
(Fig. 3). These formulas help make conceptual points about
how the critical parameters fγ; δ; τg of bound photon orbits
influence image plane observables, but for quantitative
claims, it necessary to relate to the turning point number m
and discuss the corrections in detail. For these purposes, it
will be helpful to introduce the notation

fi ¼
F̃i

K̃
; πi ¼

Π̃i

Π̃
; e0i ¼

Ẽi

Ẽ0 ; ð86Þ

where as usual, i ∈ fs; og stands for source or observer.
These quantities range between −1 and þ1 at θþ and θ−,
respectively, while vanishing at the equator θi ¼ π=2.

A. Distance from critical curve (γ)

The analysis in Appendix B shows that near criticality,
the radial integral Ir evaluated from rs to ro → ∞ grows as

Ir ≈ −
1

2r̃
ffiffiffĩ
χ

p log ½C�ðrs; r̃Þd�; ð87Þ

where χ̃ is given in Eq. (44), while C�ðrs; r̃Þ (with � the
sign of d) can be inferred from the equations in Secs. B 5
and B 6 together with the expression (B56) for d.17

Using the geodesic equation Ir ¼ Gθ [Eq. (7a)] in
Eq. (87) and solving for d, we obtain

d ≈
1

C�ðrs; r̃Þ
exp½−2r̃

ffiffiffĩ
χ

p
Gθðm; θs; θoÞ�: ð88Þ

A more illuminating form of this equation is

d ≈
1

C�
e−2nγ; ð89Þ

where n is the fractional number of orbits [Eq. (36)] and
γðr̃Þ is the Lyapunov exponent of the photon orbit at radius
r̃ [Eq. (43)]. Thus, for each factor e−2γ closer to the critical
curve, the observed photon has executed one additional
orbit. We may relate n ¼ Gθ=G1 to the number of polar
turning points m by using Eqs. (20) and (35), and setting
the conserved quantities equal to their critical values,

n ≈
m
2
�o

1

4
½ð−1Þmfs − fo�; ð90Þ

where the geometric factor fi was introduced in Eq. (86).
Equations (88) and (89) are valid for d ≪ M, or

equivalently for n ≫ 1 or m ≫ 1. In practice, we find that
the agreement is reasonable even for d ∼M (Fig. 3), and
hence for n ∼ 1. In particular, the logarithmic approxima-
tion is already useful atm ¼ 1, and it becomes excellent for
all higher m ∈ f2; 3; 4;…g.
For each value of r̃, around the curve C, and for each

choice of integer m (typically accurate for m≳ 1), Eq. (89)
provides the signed perpendicular distance d of an arriving
photon that originated on the poloidal ring ðrs; θsÞ and
encountered m angular turning points on its way to the
observer. The emission angle along the ring, as well as the
emission time, may be found from Δϕ and Δt, which we
now discuss.

B. Lapse in azimuthal angle (δ)

Now, consider the lapse in ϕ [Eq. (7b)],

Δϕ ¼ Iϕ þ λGϕðm; θs; θoÞ: ð91Þ

The analysis of Appendix B shows that near criticality, the
integral Iϕ takes the asymptotic form

FIG. 7. Illustration of the meaning ofm and m̄ in the case of equatorial sources (“the disk”). For a polar observer (left), even/odd values
of m correspond to emission from the front/back of the disk, and arrive on opposite sides of the image. For the inclined observer (right),
we instead use m̄ [Eq. (82)], and again even/odd values come from the front/back of the disk. Solid lines are front side images, while
dashed lines are backside images. For the left source on the right figure, we omit the m̄ ¼ 2 front side image (green) for clarity. These
curves are schematic and do not represent actual trajectories.

17The product C�d is always positive. Note that Cþ is a
double-valued function of rs for d > 0, corresponding to motion
before and after the turning point is reached.
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Iϕ ≈ a

�
r̃þM
r̃ −M

�
Ir þD�ðr̃; rsÞ; ð92Þ

where the precise form of D�ðr̃Þ may be inferred from the
expressions in Appendix B. For our present purposes, the
only important property ofD�ðr̃Þ is that it is independent of
d, except via the sign � ¼ signðdÞ. Using the geodesic
equation Ir ¼ Gθ [Eq. (7a)], Eqs. (91) and (92) give

Δϕ ≈ a

�
r̃þM
r̃ −M

�
Gθ þ λ̃Gϕ þD�ðr̃Þ; ð93Þ

such that the d-dependence drops out entirely, other than
via � ¼ signðdÞ. A more illuminating form of this expres-
sion is [combining Eqs. (20), (21), (47), and (90)]

Δϕ ≈ 2nδ̂ − Jϕ�ðm; r̃Þ; ð94Þ

where 2δ̂ðr̃Þ is the lapse in ϕ per orbit of a bound photon at
radius r̃ [Eq. (49)], and

Jϕ� ¼ �oλ̃Π̃
a

ffiffiffiffiffiffiffiffiffi
−ũ−

p ½ð−1Þmðfs−πsÞ− ðfo−πoÞ�−D�ðr̃Þ: ð95Þ

Once again, we remind the reader that here, the subscript�
is the sign of d, encoding whether one is inside (−) or
outside (þ) the critical curve.

C. Lapse in time (τ)

Finally, consider the lapse in t [Eq. (7c)],

Δt ¼ It þ a2Gtðm; θs; θoÞ: ð96Þ

The analysis of Appendix B shows that near criticality, the
integral It takes the asymptotic form

It ≈ r̃2
�
r̃þ 3M
r̃ −M

�
Ir þH�ðr̃; rsÞ; ð97Þ

where the precise form of H�ðr̃Þ may be inferred from the
expressions in Appendix B. For our present purposes, the
only important property of H�ðr̃Þ is once again that it is
independent of d, except via its sign � ¼ signðdÞ. Using
the geodesic equation Ir ¼ Gθ [Eq. (7a)], Eqs. (96) and
(97) become

Δt ≈ r̃2
�
r̃þ 3M
r̃ −M

�
Gθ þ a2Gt þH�ðr̃Þ; ð98Þ

such that the d-dependence drops out entirely, other than
via � ¼ signðdÞ. A more illuminating form of this expres-
sion is [combining Eqs. (20), (22), (52), and (90)]

Δt ≈ 2nτ − Jt�ðm; r̃Þ; ð99Þ

where 2τðr̃Þ is the lapse in t per orbit of a bound photon at
radius r̃ [Eq. (52)], and

Jt� ¼ ∓o 2aũþẼ0ffiffiffiffiffiffiffiffiffi
−ũ−

p ½ð−1Þmðfs − e0sÞ − ðfo − e0oÞ� −H�ðr̃Þ:

ð100Þ

Yet again, we remind the reader that here, the subscript� is
the sign of d, encoding whether one is inside (−) or outside
(þ) the critical curve.

D. Equatorial sources viewed from the pole

To unpack the physics of the photon ring, we begin
with the simplest case of an equatorial source (θs ¼ π=2)
and a polar observer (θo ¼ 0). In this case, the source
integrals vanish (fs ¼ πs ¼ e0s ¼ 0), and the observer
integrals become complete (fo ¼ πo ¼ e0o ¼ 1). Together
with �o ¼ −1 [Eq. (62)], this reduces Eq. (90) to

n ≈
m
2
þ 1

4
: ð101Þ

Likewise, Eqs. (89), (94), and (99) simplify to

d ≈
1

C�
exp

�
−
�
mþ 1

2

�
γ

�
; ð102Þ

Δϕ ≈
�
mþ 1

2

�
δ̂þD�; ð103Þ

Δt ≈
�
mþ 1

2

�
τ þH�: ð104Þ

Because of the discontinuity in δ̂, at this stage, we consider
θo to be small but finite.
The formulas (102)–(104) encode the arrival position

and time of the infinitely many apparent positions of a
given source. The details are determined by the dependence
of the coefficients C�, D�, and H� on the source radius rs.
However, these terms are independent of the image
number m, and hence cancel out of appropriate ratios
and differences,

dmþ1

dm
≈ e−γ; ð105Þ

ðΔϕÞmþ1 − ðΔϕÞm ≈ δ̂; ð106Þ

ðΔtÞmþ1 − ðΔtÞm ≈ τ: ð107Þ

We may now replace δ̂ with δ since the two agree modulo
2π [i.e., the difference can be absorbed into the left-hand
side of Eq. (105)]. Then all quantities are continuous and
we may take the full limit θo → 0. Recalling that d ¼ b − b̃

SAMUEL E. GRALLA and ALEXANDRU LUPSASCA PHYS. REV. D 101, 044031 (2020)

044031-16



and ϕo ¼ φ, and additionally denoting the observation time
to by t, we thus obtain

bmþ1 − b̃

bm − b̃
≈ e−γ0 ; ð108Þ

φmþ1 − φm ≈ δ0; ð109Þ

tmþ1 − tm ≈ τ0; ð110Þ

where γ0, δ0, and τ0 were given in Eqs. (68), (69), and (70),
respectively.
Equations (108), (109) and (110) show that the succes-

sive apparent positions of a source ðrs; θs ¼ π=2;ϕs; tsÞ
move a factor of eγ0 closer to the critical curve for every
additional half-orbit, while rotating an angle δ0 around
the curve and appearing a time τ0 later. Recalling that δ0 ¼
π for a nonspinning black hole, we see that successive
images appear on opposite sides of the critical curve. This
is easily understood from the geometry of the source
(Fig. 7 left).
Note that the arrival positions can be neatly represented

in terms of a complex coordinate z ¼ ðb − b̃Þeiφ,18 such
that

zmþ1 ¼ e−γ0þiδ0zm: ð111Þ

Thus we may view −γ0 þ iδ0 as a single complex
exponent.
Now consider an equatorial source of some finite extent

from r−s to rþs , as in the emitting portion of an accretion
disk. Let b�mðr̃Þ represent the mth observed position of the
inner and outer edges. At some sufficiently high m
(typically m ≥ 1 is sufficient), we may compute b�m using
the approximation (108). Denoting the apparent width of
each image by Δbm ¼ bþm − b−m, from Eq. (102) we have

Δbmþ1

Δbm
≈ e−γ0 : ð112Þ

That is, successive images of the equatorial disk are
demagnified (narrower) by a factor of e−γ0 . The total flux
associated with each image also decreases by the same
typical factor, i.e., the flux is exponentially suppressed in
the orbit number. Each successive image also rotates on the
screen by an angle δ0, an effect which would be visible for
nonaxisymmetric source profiles. Finally, each successive
image arrives a time τ0 later, an effect that would be
observable for time-variable source profiles. Some of these
properties are illustrated in Fig. 8.

E. General sources viewed from the pole

Suppose now that the source is not equatorial, but the
observer is still on the pole. From Eq. (90) using �o ¼ −1
and fo ¼ πo ¼ e0o ¼ 1 yet again, we have

n ¼ m
2
þ 1

4
−
ð−1Þm

4
fs: ð113Þ

Repeating the same procedure that led to Eqs. (108), (109)
and (110), we now find19

FIG. 8. The critical parameters δ0, τ0, and γ0 for an on-axis
observer. Above, we show their dependence on black hole spin,
and below, we schematically illustrate their effects. Successive
images are demagnified by e−γ0, rotated by δ0, and delayed by τ0.
The image labeled m (top left) is shown artificially large, but the
demagnified images are then to scale.

18This coordinate maps the image plane to two copies of the
complex plane, one inside C and one outside.

19As before, one may take the θo → 0 limit only after having
eliminated all dependence on signðλ̃Þ¼−signðα̃Þ¼−signðr̃− r̃0Þ.
This direction-dependence in the limit enters via the discontinu-
ous quantity δ̂ as well as the discontinuous limit (66). Note also
that πs vanishes in the limit from both sides.
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bmþ1 − b̃

bm − b̃
≈ e−xmγ0 ; ð114Þ

φmþ1 − φm ≈ xmδ0 − ð−1Þmπfs: ð115Þ

tmþ1 − tm ≈ xmτ0 þ ð−1Þm 4aũþẼ0ffiffiffiffiffiffiffiffiffi
−ũ−

p ðfs − e0sÞ; ð116Þ

with

xm ¼ 1þ ð−1Þmfs: ð117Þ

Thus, although γ0, δ0, and τ0 no longer give precisely the
demagnification, rotation, and time delay (respectively),
they still encode these effects in a relatively straightforward
way, depending on whether m is even or odd. We again
obtain simple expressions if we advance m by two instead
of one,

bmþ2 − b̃

bm − b̃
≈ e−2γ0 ; ð118Þ

φmþ2 − φm ≈ 2δ0; ð119Þ

tmþ2 − tm ≈ 2τ0: ð120Þ

Thus, a given source gives rise to two families of
images (one for even m and one for odd m), each of
which has demagnification 2γ0, rotation 2δ0, and time delay
2τ0. These are just the Lyapunov exponent, lapse in ϕ, and
lapse in t for a complete bound photon orbit, respectively.
That is, each successive image of each family differs by one
orbit around the black hole. Roughly speaking, the two
families correspond to emission towards and away from the
observer; for an equatorial disk, they are images of the front
and back of the disk, respectively.
Recall that δ0 ¼ π in Schwarzschild. As such, each

family of images approaches the critical curve radially,
since the rotation of each successive image is 2π ∼ 0.

F. Inclined observer: Equatorial sources

Next, suppose that the source is equatorial (θs ¼ π=2), so
that fs ¼ πs ¼ e0s ¼ 0, while the observer is inclined
(θo ≠ 0), so that �o ¼ signðβÞ. Then Eq. (90) becomes

n ¼ m
2
−
1

4
signðβÞfo: ð121Þ

Recalling that we set ϕo ¼ 0 for the inclined observer, it
then also follows from Eqs. (89), (94), and (99) that

d ≈
1

C�
exp

�
−γ

�
m −

1

2
signðβÞfo

��
; ð122Þ

ϕs ≈ −
�
m −

1

2
signðβÞfo

�
δ̂

− signðβÞ λ̃ Π̃
a

ffiffiffiffiffiffiffiffiffi
−ũ−

p ðfo − πoÞ −D�; ð123Þ

t − ts ≈
�
m −

1

2
signðβÞfo

�
τ

− signðβÞ 2aũþẼ
0ffiffiffiffiffiffiffiffiffi

−ũ−
p ðfo − e0oÞ þH�: ð124Þ

As our observer is now inclined, the quantities γ, δ̂, and τ
depend nontrivially on r̃, which together with the sign of β
specifies a point on the critical curve. Selecting a position
ðr̃; signðβÞÞ on the critical curve, Eq. (122) gives the
perpendicular distance of a photon that originated at
ðrs; θs ¼ π=2Þ and encountered m polar turning points
on its way to the observer. The emission angle ϕs of this
photon is given by Eq. (123), and the emission time ts by
Eq. (124) (in terms of the observation time to ¼ t).
We may again take a ratio to find

dmþ1

dm
≈ e−γ; ð125Þ

which may be compared with Eq. (108) above. Fixing a
position ðr̃; signðβÞÞ along the critical curve, Eq. (125)
shows that photons from a given equatorial source ring
ðrs; θs ¼ π=2Þ arrive at perpendicular distances d that
successively decrease by a factor of e−γ . Fixing the
observation time t, these photons originated from angles
ϕm
s and times tms related by

ϕmþ1
s − ϕm

s ≈ −δ; ð126Þ

tmþ1
s − tms ≈ −τ; ð127Þ

where now we have switched to the continuous quantity δ,
absorbing the jump of 2π into the ϕ coordinate.
Recall that γ, δ, and τ depend on the critical curve

position r̃ under consideration. For a stationary, axisym-
metric source, we may view e−γ as a demagnification factor
that varies over the critical curve. For a general equatorial
source, we see no simple way to describe the properties of
the images in terms of those of the source, but it is clear
from the exceptionally simple formulas (125), (126), and
(127) that γ, δ, and τ still encode universal features of
high-order images. The variation of these critical param-
eters is shown in Fig. 9.
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G. General source and observer

For nonequatorial sources (θs ≠ π=2) observed at non-
zero inclination (θo ≠ 0), Eqs. (122), (123) and (124) are
supplemented by terms involving dependence on m
through ð−1Þm, as in Eqs. (114), (115), and (116) above.
These terms give rise to separate behavior for even and odd
values of m, as described in Sec. VII E above in the case of
a polar observer. Rather than present these details, we
instead merely note that in the general case, we still have
simple expressions when m is shifted by two:

dmþ2

dm
≈ e−2γ; ð128Þ

ϕmþ2
s − ϕm

s ≈ −2δ; ð129Þ

tmþ2
s − tms ≈ −2τ: ð130Þ

That is, given any source ring ðrs; θsÞ observed at
any inclination θo at some time t, and choosing any

perpendicular ðr̃; signðβÞÞ to the image-plane critical
curve, photons arrive in two separate families (even
and odd m) at distances decreasing by factors of e−2γ ,
which were emitted at successively earlier times (with
delay −2τ) as well as different positions around the
ring (with increment −2δ). Although these properties
do not translate in any simple way into a description of
the distortion and demagnification of a general source
observed at a general inclination, it is clear from the
exceptionally simple formulas (128), (129), and (130) that
γ, δ, and τ still encode universal features of high-order
images.
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FIG. 9. Variation of the critical parameters γ, δ, and τ around the critical curve. We show the value of these parameters as a function of
polar angle tan φ̃ ¼ β̃=α̃ around the curve. (For δ, we plot modulo 2π.) The rotation and delay parameters δ and τ become large near the
NHEKline (Fig. 3) present for inclined observers of rapidly rotating black holes. The demagnification parameter γ becomes small near
the edges of the NHEKline (see also Fig. 6 of Ref. [16]). The time delay τ ∼ 16M has been seen previously in numerical simulations of
emitting sources near black holes [30,31].
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APPENDIX A: RADIAL ROOTS
AND INTEGRALS

In Ref. [11], we derived analytic formulas for the roots of
the radial potential (5) which are ordered when the roots are
real. We reproduce these formulas here for convenience.
We introduce

A ¼ a2 − η − λ2; ðA1Þ

B ¼ 2M½ηþ ðλ − aÞ2� > 0; ðA2Þ

C ¼ −a2η; ðA3Þ
and further define

P ¼ −
A2

12
− C; ðA4Þ

Q ¼ −
A
3

��
A
6

�
2

− C
�
−
B2

8
; ðA5Þ

as well as

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωþ þ ω−

2
−
A
6

r
> 0; ðA6Þ

ω� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
Q
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
P
3

�
3

þ
�
Q
2

�
2

s
3

vuut : ðA7Þ

The four roots are then given by

r1 ¼ −z −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
A
2
− z2 þ B

4z

r
; ðA8aÞ

r2 ¼ −zþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
A
2
− z2 þ B

4z

r
; ðA8bÞ

r3 ¼ z −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
A
2
− z2 −

B
4z

r
; ðA8cÞ

r4 ¼ zþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
A
2
− z2 −

B
4z

r
: ðA8dÞ

These roots always satisfy ri ≤ rj when i < j and both ri
and rj are real. On the critical curve C, we have r3 ¼ r4, but
otherwise r4 is always the largest real root outside the
horizon. Thus, rays reaching infinity either have a turning
point at r4, are asymptotic to a photon orbit at r3 ¼ r4, or
have no turning point at all (when r4 is complex, or real but
inside the horizon).
We now present the results from Ref. [11] needed to

compute the radial integrals of interest to this paper. Rays
that arrive outside the critical curve are case (2) of Ref. [11].
The antiderivative is given by Eqs. (B35)–(B40) therein,

I ð2Þ
r ðrÞ ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffi

r31r42
p F

�
arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r − r4
r − r3

r31
r41

r
j r32r41
r31r42

�
: ðA9Þ

In particular, the complete radial integral (29) is

Itotalr ¼ 4ffiffiffiffiffiffiffiffiffiffiffiffi
r31r42

p F

�
arcsin

ffiffiffiffiffiffi
r31
r41

r
j r32r41
r31r42

�
: ðA10Þ

Rays that arrive inside the critical curve are also case
(2) when all roots are real; otherwise, if r3 ¼ r̄4 are
complex conjugate roots, then the rays are case (3). For
case (2), the antiderivative is again Eq. (A9), whereas for
case (3), the antiderivative is given by Eqs. (B55) and
(B67)–(B71) of Ref. [11],

I ð3Þ
r ðrÞ ¼ 1ffiffiffiffiffiffiffi

AB
p F

�
arccos

Aðr − r1Þ − Bðr − r2Þ
Aðr − r1Þ þ Bðr − r2Þ

����k3
�
;

A ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
r32r42

p
> 0; B ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

r31r41
p

> 0; ðA11Þ

k3 ¼
ðAþ BÞ2 − r221

4AB
∈ ð0; 1Þ: ðA12Þ

In particular, the complete radial integral (29) is

Itotalr ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffi
r31r42

p F

�
arcsin

ffiffiffiffiffiffi
r31
r41

r
jr32r41
r31r42

�
−I ð2Þ

r ðrþÞ; ðA13Þ

if all roots are real; otherwise, when r3 ¼ r̄4, it is

Itotalr ¼ 1ffiffiffiffiffiffiffi
AB

p F

�
arccos

A − B
Aþ B

����k3
�
− I ð3Þ

r ðrþÞ: ðA14Þ

APPENDIX B: ASYMPTOTIC APPROXIMATION
FOR THE RADIAL INTEGRALS

The integrands of the fundamental radial integrals Ir, Iϕ,
and It involve (the square root of) the radial potential (5) in
their denominators. Single roots of RðrÞ correspond to
turning points where the integral remains finite. However,
for critical conserved quantities λ ¼ λ̃ðr̃Þ and η ¼ η̃ðr̃Þ, the
roots r3 and r4 [Eqs. (A8)] coalesce, rendering the integral
logarithmically divergent at the double root r̃ ¼ r3 ¼ r4.
Physically, this represents a critical photon asymptotically
approaching its associated photon orbit radius r̃. If the
conserved quantities are not precisely critical but only
nearly so, then the total integral Ir is finite for each such
ray, but the value diverges logarithmically in the deviation
of the conserved quantities from their critical values.
Physically, this represents a near-critical photon spending
an asymptotically large amount of time orbiting near its
associated bound photon orbit at r̃. In this situation, one
expects the integral to break into two contributions, one
from near the photon orbit and one from far away, such that
the near-critical integral can be estimated by the method
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of matched asymptotic expansions. In this Appendix, we
compute the relevant approximations to the radial integrals
using this method.
All bound photon orbits cross the equatorial plane and

hence have η > 0. Therefore, in this Appendix, we will use

q ¼ ffiffiffi
η

p
> 0; ðB1Þ

in lieu of η. Consider a null geodesic whose conserved
quantities λ and q are nearly equal to those of a bound
photon orbit. We may then write

λ ¼ λ̃ð1þ δλÞ; q ¼ q̃ð1þ δqÞ; ðB2Þ

where λ̃ and η̃ ¼ q̃2 are associated to the radius r̃ of the
photon orbit by Eqs. (38) and (39), and jδλj ∼ jδqj ≪ 1. We
also introduce a new radial coordinate δr by

r ¼ r̃ð1þ δrÞ; ðB3Þ

and use it to define “near” and “far” zones as follows:

Near∶ jδrj ≪ 1; ðB4Þ

Far∶ jδλj ∼ jδqj ≪ jδrj: ðB5Þ

These regimes overlap when jδλj ∼ jδqj ≪ jδrj ≪ 1. We
emphasize that throughout this discussion, “near” and “far”
refer to distance from the photon orbit radius r̃, rather than
distance from the black hole. The far-zone region is disjoint,
consisting of a “right” region containing asymptotic infinity,
and a “left” region containing the event horizon.
The radial potential RðrÞ has different approximations

in the near and far zones. In the near zone, it is well
approximated by the scaling regime δr2 ∼ δλ ∼ δq, in which

RðrÞ ≈RnðδrÞ ≔ 4r̃4χ̃ðδr2 − δr20Þ; ðB6Þ

where χ̃ is as defined in Eq. (44), and in the last step we also
introduced a dimensionless quantity20

δr20 ¼
Δðr̃Þ
2r̃2χ̃

�
−
�
r̃ − 3M
r̃ −M

�
λ̃

a
δλþ q̃2

r̃2
δq

�
;

χ̃ ¼ 1 −
MΔðr̃Þ

r̃ðr̃ −MÞ2 : ðB7Þ

Notice that the quadratic near-zone potential RnðδrÞ has
zeros at δr ¼ �δr0; these correspond to radial turning points
provided that δr20 > 0. For photons that reach infinity, only
the outer root is relevant. Note also that

χ̃ ¼ 3

4
−
�
aq̃
2r̃2

�
2

∈
�
0;
3

4

�
: ðB8Þ

In the far zone, the radial potential RðrÞ is instead well
approximated by its value at λ ¼ λ̃ and q ¼ q̃,

RðrÞ ≈RfðδrÞ ≔ 4r̃4δr2
�
δr2

4
þ δrþ χ̃

�
¼ 4r̃4χ̃δr2QðδrÞ; ðB9Þ

where in the last step, we introduced for future convenience
a function

QðδrÞ ¼ 1þ δr
χ̃
þ δr2

4χ̃
: ðB10Þ

The double root δr ¼ 0 of RfðδrÞ is outside the regime of
validity of the far-zone approximation and does not corre-
spond to a physical turning point. (It is the far-zone remnant
of the two roots δr ¼ �δr0 that are separately resolved
by the near-zone approximation.) The quartic potential
RfðδrÞ has two other negative roots δr−0 < δrþ0 < 0, where
δr�0 ¼ 2ð−1� ffiffiffiffiffiffiffiffiffiffiffi

1 − χ̃
p Þ, which a photon that comes in from

infinity cannot encounter.
If a light ray with conserved quantities (B2) reaches

infinity, then by definition it arrives near the closed curve C.
Rays arriving inside C have no radial turning points, while
rays arriving outside have a single turning point. The
preceding analysis shows that these cases correspond to
δr20 < 0 and δr20 > 0, respectively:

Inside C∶ δr20 < 0; ðB11Þ

Outside C∶ δr20 > 0: ðB12Þ

In Sec. B 7 below, we show that δr20 is actually proportional
to the (signed) perpendicular distance from C.
We have now laid the groundwork to compute the

geodesic path integrals involving the radial potential. To
do so, it will suffice to evaluate the definite integrals

Iabr ¼
Z

rb

ra

drffiffiffiffiffiffiffiffiffiffi
RðrÞp ;

Iabϕ ¼
Z

rb

ra

að2Mr − aλÞ
ΔðrÞ ffiffiffiffiffiffiffiffiffiffi

RðrÞp dr;

Iabt ¼
Z

rb

ra

r2ΔðrÞ þ 2Mrðr2 þ a2 − aλÞ
ΔðrÞ ffiffiffiffiffiffiffiffiffiffi

RðrÞp dr; ðB13Þ

for all combinations of in/out for the conserved quantities,
and near/far for each of ra and rb. We will organize the
calculation in sections based on the near/far split, consid-
ering only the cases that arise when photons reach infinity.
We will present integrals in terms of the inverse hyperbolic
tangent, defined as

20A related quantity δB ¼ χ̃δr20 was introduced previously in
Ref. [15]. Here, we present it in greatly simplified form and,
importantly, show that it is proportional to the perpendicular
distance jdj from the curve C [see Eq. (B56)].
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arctanhx ¼ 1

2
log

�
1þ x
1 − x

�
; ðB14Þ

which is manifestly real whenever x ∈ ½−1; 1�.

1. Both points in the near zone

When both endpoints of the geodesic are in the near
zone, the radial integrals (B13) simplify to

Innr ¼ 1

2r̃
ffiffiffĩ
χ

p
Z

δrb

δra

dðδrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δr2 − δr20

p ; Innϕ ¼ a
�
r̃þM
r̃ −M

�
Innr ;

Innt ¼ r̃2
�
r̃þ 3M
r̃ −M

�
Innr ; ðB15Þ

where the label “nn” stands for “near-near” (i.e., both
points in the near zone). Here and hereafter, δra and δrb
denote the δr-coordinate values of the Boyer-Lindquist
radii ra and rb, respectively, with δrb < δrb.
We can now evaluate Innr . Photons arriving outside C

have 0 < δr0 ≤ δr and the manifestly real integral

Inn;outr ðδra;δrbÞ¼
1

2r̃
ffiffiffĩ
χ

p arctanh

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δr2−δr20

p
δr

�����δrb
δra

: ðB16Þ

On the other hand, photons arriving inside C have δr20 < 0

and the manifestly real integral

Inn;inr ðδra;δrbÞ¼
1

2r̃
ffiffiffĩ
χ

p arctanh
�

δrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δr2−δr20

p �����δrb
δra

: ðB17Þ

These results can be combined into a single formula

Innr ðδra;δrbÞ ¼
signðδrÞ
4r̃

ffiffiffĩ
χ

p log

0
B@signðδr20Þ

1þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1− δr2

0

δr2

q
1−

ffiffiffiffiffiffiffiffiffiffiffiffi
1− δr2

0

δr2

q
1
CA
������
δrb

δra

:

ðB18Þ

2. Both points in one region of the far zone

The far zone consists of two disjoint regions on either
side of the near zone, with one region containing the
horizon, and the other region containing asymptotic infin-
ity. When both points endpoints of the geodesic are in the
same region of the far zone, the radial integrals (B13)
reduce to

Iffr ¼ 1

2r̃
ffiffiffĩ
χ

p
Z

δrb

δra

dðδrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δr2QðδrÞ

p ; ðB19Þ

Iffϕ ¼
aM
r̃2

ffiffiffĩ
χ

p
Z

δrb

δra

c0þð1þδrÞ
ðδr−δrþÞðδr−δr−Þ

dðδrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δr2QðδrÞ

p ; ðB20Þ

Ifft ¼ r̃
2

ffiffiffĩ
χ

p
Z

δrb

δra

c1ð1þ δrÞ þ c2ð1þ δrÞ2 þ ð1þ δrÞ4
ðδr − δrþÞðδr − δr−Þ

×
dðδrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δr2QðδrÞ

p ; ðB21Þ

where we introduced dimensionless coefficients

c0 ¼ −
aλ̃
2Mr̃

; c1 ¼
2aM
r̃3

ða− λ̃Þ; c2 ¼
a2

r̃2
; ðB22Þ

and δr� denotes the δr-coordinate of the outer/inner event
horizon,

δr� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p

r̃
− 1 ∈ ð−1; 0Þ: ðB23Þ

Now define a symmetric function of two variables

Q2ðδra;δrbÞ¼
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
QðδraÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
QðδrbÞ

p
QðδraÞþQðδrbÞ− ðδra−δrbÞ2

4χ̃

∈ð0;1�; ðB24Þ

whose range (0, 1], which assumes that both δra and
δrb are outside the event horizon δrþ (but not that they are
positive), is derived in Sec. B 8 below. This range guar-
antees that the following functions are manifestly real
outside the horizon:

QϕðδrÞ ¼
c0 þ ð1þ δrþÞ

δrþðδrþ − δr−Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
QðδrþÞ

p arctanhQ2ðδr; rþÞ

−
c0 þ ð1þ δr−Þ

δr−ðδrþ − δr−Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qðδr−Þ

p arctanhQ2ðδr; r−Þ;

ðB25Þ

QtðδrÞ ¼ −4χ̃
ffiffiffiffiffiffiffiffiffiffiffiffi
QðδrÞ

p
−
4M

ffiffiffĩ
χ

p
r̃

arctanhQ2ðδr;∞Þ

þ c1ð1þ δrþÞ þ c2ð1þ δrþÞ2 þ ð1þ δrþÞ4
δrþðδrþ − δr−Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
QðδrþÞ

p
× arctanhQ2ðδr; rþÞ

−
c1ð1þ δr−Þ þ c2ð1þ δr−Þ2 þ ð1þ δr−Þ4

δr−ðδrþ − δr−Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qðδr−Þ

p
× arctanhQ2ðδr; r−Þ: ðB26Þ

Manifestly real forms of the far integrals are then
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Iffr ðδra; δrbÞ ¼ −
signðδrÞ
2r̃

ffiffiffĩ
χ

p arctanhQ2ðδr; 0Þ
����δrb
δra

¼ −
signðδrÞ
2r̃

ffiffiffĩ
χ

p arctanh

� ffiffiffiffiffiffiffiffiffiffiffiffi
QðδrÞp
1þ δr

2χ̃

�����δrb
δra

; ðB27Þ

Iffϕðδra; δrbÞ ¼ −
signðδrÞaM

r̃2
ffiffiffĩ
χ

p
�

r̃
2M

�
r̃þM
r̃ −M

�
arctanhQ2ðδr; 0Þ þQϕðδrÞ

�����δrb
δra

¼ a

�
r̃þM
r̃ −M

�
Iffr ðδra; δrbÞ −

signðδrÞaM
r̃2

ffiffiffĩ
χ

p QϕðδrÞ
����δrb
δra

; ðB28Þ

Ifft ðδra; δrbÞ ¼ −
signðδrÞr̃
2

ffiffiffĩ
χ

p
�
r̃þ 3M
r̃ −M

arctanhQ2ðδr; 0Þ þQtðδrÞ
�����δrb

δra

¼ r̃2
�
r̃þ 3M
r̃ −M

�
Iffr ðδra; δrbÞ −

signðδrÞr̃
2

ffiffiffĩ
χ

p QtðδrÞ
����δrb
δra

: ðB29Þ

3. One point in the near zone and one point
in the far zone

Wenowwish to consider the casewhere one point is in the
near zone and the other point is in the far zone. This requires
the method of matched asymptotic expansions, which we
implement as follows. First, we choose an arbitrary match-
ing radius δR. We then split the integral into a portion from
δra to δR, and a remaining portion from δR to δrb. The
arbitrary point δR is assumed to be in the overlap region

jδλj ∼ jδqj ≪ jδRj ≪ 1, so that the first integral may be
computed with the near-zone approximation (presented
in Sec. B 1), while the second integral may be computed
with the far-zone approximation (presented in Sec. B 2).
Using the relevant definite integrals computed in these
sections, and taking into account their various approxima-
tions, the arbitrary radius δR disappears from the final
expressions.
We begin with Ir. Photons arriving outside C necessarily

have 0 < δr0 < δra ≪ 1 and δra ≪ δrb, and the answer is

Inf;outr ðδra; δrbÞ ¼ −
1

2r̃
ffiffiffĩ
χ

p
�
arctanh

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
QðδrbÞ

p
1þ δrb

2χ̃

�
þ arctanh

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δr2a − δr20

p
δra

�
þ 1

2
log

�
1 − χ̃

ð8χ̃Þ2 δr
2
0

��
: ðB30Þ

This expression simplifies when the bounds of integration cover the entire range ½δr0;þ∞Þ of allowed radial motion. Note
that the second term vanishes as the lower bound of integration δra → δr0. Moreover, the argument of the first term goes toffiffiffĩ
χ

p
as δrb → ∞, leaving

Inf;outr ðδr0;∞Þ ¼ −
1

2r̃
ffiffiffĩ
χ

p
�
arctanh

ffiffiffĩ
χ

p
þ 1

2
log

�
1 − χ̃

ð8χ̃Þ2 δr
2
0

��
¼ −

1

4r̃
ffiffiffĩ
χ

p log

��
1þ ffiffiffĩ

χ
p

8χ̃

�
2

δr20

�
: ðB31Þ

For photons arriving inside C, we must separately consider the two regions of the far zone. In the right region containing
asymptotic infinity, we integrate from a near-zone point 0 < δra ≪ 1 to a far-zone point δrb ≫ δra > 0, so we label this
definite integral “nf” for near-far. The answer is

Inf;inr ðδra; δrbÞ ¼ −
1

2r̃
ffiffiffĩ
χ

p
�
arctanh

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
QðδrbÞ

p
1þ δrb

2χ̃

�
þ arctanh

�
δraffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

δr2a − δr20
p �

þ 1

2
log

�
1 − χ̃

ð8χ̃Þ2 jδr
2
0j
��

: ðB32Þ

In the left region containing the event horizon, we instead integrate from a far-zone point δra < 0 to a near-zone point
δrb < 0, with jδrbj ≪ 1 and jδrbj ≪ jδraj, so we label this integration “fn” for far-near. The answer involves a single
change of sign,

Ifn;inr ðδra; δrbÞ ¼ −
1

2r̃
ffiffiffĩ
χ

p
�
arctanh

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
QðδraÞ

p
1þ δra

2χ̃

�
− arctanh

�
δrbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

δr2b − δr20

q �
þ 1

2
log

�
1 − χ̃

ð8χ̃Þ2 jδr
2
0j
��

: ðB33Þ
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The calculation proceeds identically for Iϕ and It, which
are conveniently expressed in terms of the Ir integrals:

Inf;in=outϕ ðδra; δrbÞ ¼ a

�
r̃þM
r̃ −M

�
Inf;in=outr ðδra; δrbÞ

−
aM
r̃

ffiffiffĩ
χ

p ½QϕðδrbÞ −Qϕð0Þ�; ðB34Þ

Ifn;inϕ ðδra; δrbÞ ¼ a

�
r̃þM
r̃ −M

�
Ifn;inr ðδra; δrbÞ

−
aM
r̃

ffiffiffĩ
χ

p ½QϕðδraÞ −Qϕð0Þ�; ðB35Þ

Inf;in=outt ðδra; δrbÞ ¼ r̃2
�
r̃þ 3M
r̃ −M

�
Inf;in=outr ðδra; δrbÞ

−
r̃

2
ffiffiffĩ
χ

p ½QtðδrbÞ −Qtð0Þ�; ðB36Þ

Ifn;int ðδra; δrbÞ ¼ r̃2
�
r̃þ 3M
r̃ −M

�
Ifn;inr ðδra; δrbÞ

−
r̃

2
ffiffiffĩ
χ

p ½QtðδraÞ −Qtð0Þ�: ðB37Þ

4. One point in the left far zone and the other point
in the right far zone

The last remaining case of relevance is when the
geodesic has a lower endpoint δra in the left far zone
(δra < 0) and an upper endpoint δrb in the right far zone
(δrb > 0). In this case, the photon passes through the near
zone, and we may obtain the radial integral by adding
together the expressions for the near-far and far-near cases
derived above. For Ir, summing Eqs. (B32)–(B33) results in

Ilrr ðδra;δrbÞ ¼ Ifn;inr ðδra;δRÞþ Inf;inr ðδR;δrbÞ

¼−
1

2r̃
ffiffiffĩ
χ

p
�
arctanh

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
QðδraÞ

p
1þ δra

2χ̃

�

þ arctanh

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
QðδrbÞ

p
1þ δrb

2χ̃

�
þ log

�
1− χ̃

ð8χ̃Þ2 jδr
2
0j
��

;

ðB38Þ

from which the arbitrary radius δR has canceled out. Here,
the label “lr” stands for left-right. Likewise,

Ilrϕðδra; δrbÞ ¼ a

�
r̃þM
r̃ −M

�
Ilrr ðδra; δrbÞ

−
aM
r̃

ffiffiffĩ
χ

p ½QϕðδraÞ þQϕðδrbÞ − 2Qϕð0Þ�;

ðB39Þ

Ilrt ðδra;δrbÞ¼ r̃2
�
r̃þ3M
r̃−M

�
Ilrr ðδra;δrbÞ

−
r̃

2
ffiffiffĩ
χ

p ½QtðδraÞþQtðδrbÞ−2Qtð0Þ�: ðB40Þ

5. Full answer for Ir outside C

We have now computed all the basic definite integrals
that are needed to obtain the full radial integrals Ir, Iϕ, and
It for a photon reaching a distant observer at large radius
ro → ∞. As an example of how to glue them together, we
now explicitly consider the radial integral Ir. It is straight-
forward to similarly assemble Iϕ and It.
First, consider a photon arriving outside C (i.e., with

δr20 > 0). Tracing back in time from the detector, the
photon reaches a radial turning point δr0 in the near zone
and then returns to infinity. Its radial motion in the allowed
range ½δr0;þ∞Þ can thus be divided into four stages, as
follows.
Before the photon reaches the near zone, the integral is

given by

Ir≈ Iffr ðδrs;∞Þ

¼−
1

2r̃
ffiffiffĩ
χ

p
�
arctanh

ffiffiffĩ
χ

p
− arctanh

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
QðδrsÞ

p
1þ δrs

2χ̃

��
: ðB41Þ

Once the photon reaches the near zone, but before it reaches
the turning point, the integral is given by the limit δro → ∞
of Eq. (B30):

Ir ≈ Inf;outr ðδrs;∞Þ

¼ −
1

2r̃
ffiffiffĩ
χ

p
�
arctanh

ffiffiffĩ
χ

p
þ arctanh

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δr2s − δr20

p
δrs

�

þ 1

2
log

�
1 − χ̃

ð8χ̃Þ2 δr
2
0

��
: ðB42Þ

Once the photon reaches the turning point, but before it
exits the near zone,

Ir ≈ Inn;outr ðδr0; δrsÞ þ Inf;outr ðδr0;∞Þ

¼ −
1

2r̃
ffiffiffĩ
χ

p
�
−arctanh

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δr2s − δr20

p
δrs

�

þ 1

2
log

��
1þ ffiffiffĩ

χ
p

8χ̃

�
2

δr20

�	
; ðB43Þ

where the first term is obtained from Eq. (B16) and the
second from Eq. (B31). Once the photon exits the near
zone, the integral is given by

SAMUEL E. GRALLA and ALEXANDRU LUPSASCA PHYS. REV. D 101, 044031 (2020)

044031-24



Ir ≈ Inf;outr ðδr0; δrsÞ þ Inf;outr ðδr0;∞Þ

¼ −
1

2r̃
ffiffiffĩ
χ

p
�
arctanh

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
QðδrsÞ

p
1þ δrs

2χ̃

�
þ 1

2
log

�
1 − χ̃

ð8χ̃Þ2 δr
2
0

�

þ 1

2
log½

�
1þ ffiffiffĩ

χ
p

8χ̃

�
2

δr20

�	
: ðB44Þ

When the photon finally reaches infinity again, the com-
plete integral is

Ir ≈ 2Inf;outr ðδr0;∞Þ ¼ −
1

2r̃
ffiffiffĩ
χ

p log

��
1þ ffiffiffĩ

χ
p

8χ̃

�
2

δr20

�
:

ðB45Þ

6. Full answer for Ir inside C

Now consider a photon arriving inside C (i.e., with
δr20 < 0). Tracing back in time from the detector, the
photon passes through the near zone on its way to the
event horizon, never encountering a radial turning point. Its
radial motion in the allowed range ½δrþ;þ∞Þ can thus be
divided into three stages, as follows.
Before the photon reaches the near zone, the integral is

given by

Ir≈ Iffr ðδrs;∞Þ

¼−
1

2r̃
ffiffiffĩ
χ

p
�
arctanh

ffiffiffĩ
χ

p
− arctanh

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
QðδrsÞ

p
1þ δrs

2χ̃

��
; ðB46Þ

which is the same expression as outside C, Eq. (B41). Once
the photon enters the near zone, but before it exits the near
zone, the integral is given by Eq. (B32):

Ir ≈ Inf;inr ðδrs;∞Þ

¼ −
1

2r̃
ffiffiffĩ
χ

p
�
arctanh

ffiffiffĩ
χ

p
þ arctanh

�
δrsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

δr2s − δr20
p �

þ 1

2
log

�
1 − χ̃

ð8χ̃Þ2 jδr
2
0j
��

: ðB47Þ

Once the photon exits the near zone, but before it crosses
the horizon, the integral is given by the δrb → ∞ limit of
Eq. (B38),

Ir ≈ Ilrr ðrs;∞Þ

¼ −
1

2r̃
ffiffiffĩ
χ

p
�
arctanh

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
QðδrsÞ

p
1þ δrs

2χ̃

�
þ arctanh

ffiffiffĩ
χ

p

þ log

�
1 − χ̃

ð8χ̃Þ2 jδr
2
0j
��

: ðB48Þ

Finally, when the photon crosses the horizon, the complete
integral is given by

Ir≈ Ilrr ðrþ;∞Þ

¼−
1

2r̃
ffiffiffĩ
χ

p
�
arctanh

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
QðδrþÞ

p
1þ δrþ

2χ̃

�
þ arctanh

ffiffiffĩ
χ

p

þ log

�
1− χ̃

ð8χ̃Þ2 jδr
2
0j
��

¼−
1

2r̃
ffiffiffĩ
χ

p log

� ffiffiffiffiffiffiffiffiffiffi
1− χ̃

p ð1þ ffiffiffĩ
χ

p Þ
ð8χ̃Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þQ2ðδrþ;0Þ
1−Q2ðδrþ;0Þ

s
jδr20j

�
:

ðB49Þ

Interestingly, note that the square root containingQ2 can be
pulled out of the logarithm, since

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þQ2ðδrþ; 0Þ
1 −Q2ðδrþ; 0Þ

s
¼ earctanhQ2ðδrþ;0Þ: ðB50Þ

7. Perpendicular distance from C

The logarithmic approximations for the radial integrals
presented thus far are written in terms of the variable δr20
defined in Eq. (B7) above. For each choice of r̃, this
quantity encodes the arrival positions of photons near the
associated point ðα̃; β̃Þ on the curve C [Eq. (57)], expressed
in terms of their fractional deviations in conserved quan-
tities δλ and δq. Since the point r̃ is arbitrary, we are in
effect using three coordinates ðr̃; δλ; δqÞ to describe posi-
tions on a two-dimensional image plane. A convenient way
to remove this large redundancy is to consider only
perpendicular displacements from C, denoting the signed
distance by d (i.e., d < 0 inside and d > 0 outside the
closed curve C). We expect this choice to provide the best
approximation for a given point near the curve C, since the
line segment intersecting the curve perpendicularly is the
shortest. In this Appendix, we relate δr20 to d [Eq. (B56)
below], restricting to perpendicular displacements.
Plugging into the above logarithmic approximations gives
the desired expressions in terms of the coordinates ðr̃; dÞ
depicted in Fig. 3.
Since δr20 ¼ 0 corresponds to the curve C, the gradient of

δr20 in the image plane (α; β) is perpendicular to C. The
norm of the gradient therefore gives the rate of change in
the perpendicular direction,

δr20
d

≈ j∇⃗ðδr20ÞjC; ðB51Þ

where we restrict δr20 to perpendicular displacements. To
compute the gradient, we first express δr20 in terms of α and
β. Using the inverse of Eq. (55),

λ ¼ −α sin θo; q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðα2 − a2Þcos2θo þ β2

q
; ðB52Þ
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one finds that, to leading order in a small deviation from the
curve C with jα=α̃ − 1j ∼ jβ=β̃ − 1j ≪ 1,

δλ ¼ λ

λ̃
− 1 ≈

α

α̃
− 1;

δq ¼ q
q̃
− 1 ≈

α̃cos2θoðα − α̃Þ þ β̃ðβ − β̃Þ
q̃2

: ðB53Þ

Plugging these relations into Eq. (B7) results in

δr20 ≈
Δðr̃Þ
2r̃4χ̃

½ψ̃ðα − α̃Þ þ β̃ðβ − β̃Þ�;

ψ̃ ¼ α̃ −
�
r̃þM
r̃ −M

�
a sin θo; ðB54Þ

from which we may read off the gradient as

∇⃗ðδr20Þ ¼ Δðr̃Þ
2r̃4χ̃

ðψ̃∂α þ β̃∂βÞ: ðB55Þ

(In light of the flat metric ds2 ¼ dα2 þ dβ2 on the image
plane, the vector fields f∂α; ∂βg coincide with the unit
vectors fα̂; β̂g.) From Eqs. (B51) and (B55), it therefore
follows that, when δr20 is evaluated on a perpendicular
displacement,

d ¼ 2r̃4χ̃
Δðr̃Þ

δr20ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β̃2 þ ψ̃2

p : ðB56Þ

Finally, we also present expressions for the unit tangent
and normal to C. The parameter derivatives are given by

α0ðr̃Þ ¼ 2r̃ χ̃
a sin θo

> 0; β0ðr̃Þ ¼ −
ψ̃

β̃
α0ðr̃Þ: ðB57Þ

The unit tangent vector to C is therefore

T̂ ¼ �o
α0ðr̃Þ∂α þ β0ðr̃Þ∂βffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½α0ðr̃Þ�2 þ ½β0ðr̃Þ�2

p ¼ β̃∂α − ψ̃∂βffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β̃2 þ ψ̃2

p ; ðB58Þ

where the inclusion of the sign �o ¼ signðβÞ guarantees
that T̂ points clockwise around C, which corresponds to the
direction of increasing/decreasing r̃ in the upper/lower half
of the image plane (see Fig. 3). As such, the outward
normal is obtained by rotating T̂ by 90° counterclockwise
in the image plane:

n̂ ¼ ψ̃∂α þ β̃∂βffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β̃2 þ ψ̃2

p : ðB59Þ

We thus confirm directly that the gradient of δr20 is
proportional to n̂,

∇⃗ðδr20Þ ¼
Δðr̃Þ
2r̃4χ̃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β̃2 þ ψ̃2

q
n̂: ðB60Þ

8. Range of Q2

In this section, we prove that the range of the bivariate
function Q2ðδra; δrbÞ defined in Eq. (B24) is (0, 1]. This
guarantees that the expressions derived in Sec. B 2 for the
far-zone integrals are indeed (manifestly) real, as claimed.
We assume that both δra and δrb are outside the event

horizon. That is, we assume that δra ≥ δrþ and δrb ≥ δrþ,
though neither δra nor δrb need be positive. In that case, we
have both QðδraÞ > 0 and QðδrbÞ > 0, since the roots
δr�0 ¼ 2ð−1� ffiffiffiffiffiffiffiffiffiffiffi

1 − χ̃
p Þ of QðδrÞ always obey

δr−0 < δrþ0 ≤ δr− < δrþ < 0: ðB61Þ

First, we wish to prove that 0 ≤ Q2ðδra; δrbÞ, or equiv-
alently, that

0 < QðδraÞ þQðδrbÞ −
�
δra − δrb
2

ffiffiffĩ
χ

p
�

2

: ðB62Þ

Expanding and canceling terms leaves

0 < 2þ 1

χ̃

�
δra þ δrb þ

δraδrb
2

�
: ðB63Þ

In terms of the positive quantities pa ¼ δra − δrþ0 > 0 and
pb ¼ δrb − δrþ0 > 0, this reduces to the inequality

0 <

ffiffiffiffiffiffiffiffiffiffiffi
1 − χ̃

p
χ̃

ðpa þ pbÞ þ
papb

2χ̃
; ðB64Þ

which is manifestly satisfied since pa, pb, χ̃, and
ffiffiffiffiffiffiffiffiffiffiffi
1 − χ̃

p
are all positive.
Next, we need to show that Q2ðδra; δrbÞ ≤ 1, or equiv-

alently, that

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
QðδraÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
QðδrbÞ

p
≤QðδraÞ þQðδrbÞ−

�
δra − δrb
2

ffiffiffĩ
χ

p
�

2

:

ðB65Þ

Completing the square and rearranging yields�
δrb − δra
2

ffiffiffĩ
χ

p
�

2

≤ ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
QðδrbÞ

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
QðδraÞ

p
�2: ðB66Þ

From now on, we assume without loss of generality that
δrb ≥ δra. Then taking the square root of both sides leaves

0 ≤
δrb − δra
2

ffiffiffĩ
χ

p ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
QðδrbÞ

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
QðδraÞ

p
; ðB67Þ

or equivalently,
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0 ≤
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

QðδrbÞ
p

−
δrb
2

ffiffiffĩ
χ

p
�
−
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

QðδraÞ
p

−
δra
2

ffiffiffĩ
χ

p
�
: ðB68Þ

A simple way to establish that this inequality holds is by
noting that the function

PðδrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
QðδrÞ

p
−

δr
2

ffiffiffĩ
χ

p ðB69Þ

is monotonic on the radial range δr > δrþ of interest.
Indeed, letting p ¼ δr − δrþ0 > 0, one finds that

P0ðδrÞ¼ 2
ffiffiffiffiffiffiffiffiffiffi
1− χ̃

p
−

ffiffiffĩ
χ

p þp
2

ffiffiffĩ
χ

p >
2

ffiffiffiffiffiffiffiffiffiffi
1− χ̃

p
−

ffiffiffĩ
χ

p
2

ffiffiffĩ
χ

p > 0; ðB70Þ

where the last inequality follows from the range of
χ̃ ∈ ð0; 3=4�.
Finally, note that Q2ðδr; δrÞ ¼ 1 for all δr, so the

upper bound may be saturated. On the other hand, the
lower bound may not, since Q2ðδr; xÞ ¼ 0 if and only if
x ¼ δr�0 < δrþ, which is outside the range of δr under
consideration.
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