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Interpreting horizon-scale observations of astrophysical black holes demands a general understanding of
null geodesics in the Kerr spacetime. These may be divided into two classes: “direct” rays that primarily
determine the observational appearance of a given source, and highly bent rays that produce a nested
sequence of exponentially demagnified images of the main emission: the so-called “photon ring.” We
develop heuristics that characterize the direct rays and study the highly bent geodesics analytically. We define
three critical parameters y, 8, and 7 that respectively control the demagnification, rotation, and time delay of
successive images of the source, thereby providing an analytic theory of the photon ring. These observable
parameters encode universal effects of general relativity, independent of the details of the emitting matter.
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I. INTRODUCTION

With the advent of horizon-scale observations of astro-
physical black holes [1-6], the intricate properties of null
geodesics in the Kerr spacetime [7—11] are fast becoming a
matter of practical relevance to astronomy. Thanks to ray-
tracing codes now operating with exquisite accuracy and
speed [12-14], determining the observational appearance
of a specified emission model is a quick and routine task.
However, given the enormous uncertainty in the nature of
the emission arising from the present targets M87* and Sgr
A¥*, the “inverse problem” may be more relevant: Given an
observation, what can one learn about the emission profile
of the source?

Answering this kind of question demands a general
understanding of the effects of gravitational lensing in the
Kerr spacetime. The authors of the present manuscript have
been involved in separate, recent efforts in this direction
[15,16]. Reference [15] argued that bright rings of emission
from optically thin matter [17-19] (hereafter, “photon
rings”") should be understood as superposed, exponentially
demagnified images of the main emission, predicting a
distinctive multipeak structure and giving the first quanti-
tative estimate of the typical brightness enhancement (a
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'We use the term “photon ring” to describe the collection of
demagnified images that appear near a closed curve on the image
plane. When optically thin matter emits from the vicinity of the
black hole, these images superpose to provide a brightness
enhancement. We use the name “critical curve” for the curve
where the images accumulate, and avoid the word “shadow”
altogether.
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factor of about 2-3). Soon after, Ref. [16] obtained a
formula for the asymptotic demagnification factor as a
function of black hole spin and observer inclination,
confirmed the typical brightness enhancement and multi-
peak structure in state-of-the-art models [5] ray-traced at
higher resolution than previously considered, and proposed
an experimental method for detecting the discrete peaks
using space-based interferometry. In this paper, we unite
our perspectives on the problem and significantly general-
ize these results, with the aim of presenting a complete
guide to understanding lensing by Kerr black holes.

We have developed two new analytic tools in service of
this goal: (i) a complete, fully explicit solution of the Kerr
null geodesic equation expressed in terms of Legendre
elliptic integrals and Jacobi elliptic functions (presented in
a companion paper [11]), and (ii) a logarithmic approxi-
mation valid for highly bent photons (derived in the
Appendix B). We use the first tool to explore general
properties of null geodesics, and exploit the second to
provide a detailed analytic theory of the photon ring.

It is helpful to organize the analysis by the number of
orbits that an emitted photon executes before reaching the
detector (Fig. 7). For “direct” photons that complete of
order half-an-orbit or less, we find that the spin of the black
hole has little influence on the trajectory. For example, we
show that for an equatorial (i.e., spin-aligned or antia-
ligned) disk of emission viewed face-on, the arrival impact
parameter b of a photon emitted from Boyer-Lindquist
radius r, is given by “just adding one,”

b r
— 241, 1
wcut (1)
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with this formula holding empirically to 10% accuracy at
all spin (Fig. 5 left). For observers inclined relative to the
disk, the spin still has little effect on the arrival position
from a fixed equatorial radius, although it does shrink the
apparent size of the equator of the black hole (Fig. 6). For
models with emission extending to the horizon, the
observed central dark area will correspondingly shrink.

Photons that make of order half-an-orbit to one orbit
contribute a demagnified image of the source over a band
surrounding a critical curve on the image plane. For a
diffuse, optically thin source near the horizon, this image
superposes onto the direct emission to produce a thin ring
with diameter ~10M, width ~M, and about twice the
background intensity [15],% a striking feature in simulated
images [5]. Here, we show that the precise width of this
band varies significantly with spin (Fig. 5 left), especially
in the region corresponding to photons emitted from the
vicinity of the horizon. For models with emission near the
horizon, the demagnified image will therefore be broader,
and contribute significantly more flux, when the black hole
spins rapidly.

Photons executing of order one orbit or more contribute a
sequence of highly demagnified images near the critical
curve [15,16,20,21]. We derive an asymptotic expansion
for the number of orbits as a function of the (perpendicular)
distance from the critical curve, and show that the resulting
logarithmic approximation is excellent even for photons
executing of order only a single orbit (Fig. 3). We develop a
precise analytic theory of the demagnified images based on
three key quantities defined for the bound photon orbits:

(i) The Lyapunov exponent y characterizing the insta-

bility of the bound orbit, defined relative to a half-
libration in polar angle 6 [16].
(i) The change 6 in azimuthal angle ¢ over a polar half-
libration [22].
(iii) The period 7 of a polar half-libration.
We show that for an equatorial disk of emission viewed face-
on, each successive image is demagnified by a factor of 77,
rotated by an angle 6, and delayed by a time 7. These images
alternate between showing the front side and the backside of
the disk (Fig. 7). For nonequatorial sources, we instead
distinguish two families of images, each with demagnifi-
cation e~?, rotation 26, and time delay 27z. These simple
associations break down when the observer is significantly
inclined, but we are still able to make precise statements
about the origin of emission as a function of observed
position near the critical curve.

These results unite and generalize our previous treatments
of the demagnification factor [15,16], while also introducing
0 and 7t as additional key quantities characterizing the
demagnified images. The spin-dependent critical parame-
ters y, 6 and 7 control universal (matter-independent)

*This image was called the “lensing ring” in Ref. [15]; here, we
follow Ref. [16] and include it as part of the “photon ring.”

features of general relativity that could in principle be
observed with future detectors.

This paper is organized as follows. In Sec. II, we review
and present a useful formalism for Kerr null geodesics. Next,
in Sec. III, we analyze the bound photon orbits, and define
their critical parameters y, 0, and 7. Then, in Sec. IV, we
discuss the screen of a distant observer, presenting new
details about the map from conserved quantities to position
in the image plane. We describe properties of complete rays
in the Kerr exterior in Sec. V, and study segments of rays that
represent propagation from source to observer in Sec. VI.
Finally, in Sec. VII, we develop the analytic theory of the
photon ring in terms of the critical parameters y, &, and 7.

II. GENERAL FRAMEWORK

We work with Boyer-Lindquist coordinates (z, r, 0, ¢p) on
the spacetime of a Kerr black hole with mass M and angular
momentum J = Ma, and define

2(r,0) = r* + a*cos®0, A(r) =r*=2Mr+a*. (2)

The roots of A(r) correspond to the outer/inner horizons

ro =M=+ VM -d’ (3)
We assume that 0 < a < M, such that the coordinate ¢
increases in the sense of rotation of the black hole. The
nonrotating (a — 0) and extremal (a — M) limits may be
taken after final observables are computed.

In discussing null geodesics, we will make a distinction
between “rays” and “photons.” By a ray, we will mean a
complete null geodesic in the Kerr exterior, which enters
from the white hole or the celestial sphere, before even-
tually leaving via the black hole or the celestial sphere. By a
photon, we will mean a portion of a ray, which represents
the emission and absorption (or observation) of light. In
radiative transport, one considers rays that propagate
through a medium, gaining and losing photons (according
to the local emissivity and absorptivity) on their way to the
detector.

We will adopt the “integral” approach to the study of null
geodesics in the Kerr spacetime. In this approach, pio-
neered by Carter [7] and Bardeen [8], one reduces the
equations to quadratures using conserved quantities.
Building on important earlier developments [23-26], in a
companion paper [11] we have classified all motions,
reduced all integrals to real elliptic form, and inverted
the equations to provide explicit, parametrized trajectories.
Herein, we only summarize the results needed for this
paper; complete derivations may be found in Ref. [11].

Each Kerr photon trajectory possesses two conserved
quantities 4 and #, corresponding to the energy-rescaled
angular momentum and Carter integral, respectively. These
allow the four-momentum p* along the trajectory to be
reconstructed as
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z
—-P = :I:r R(F), (48_)
E
z
E 0 _ :|:9 @(9), (4b)
> a 2
gV Rt ma)r g a (40)
> 2 2
=P = e (2 +a?® —al) + a(d—asin?0), (4d)
E A

where E = —p, is the constant “energy at inﬁnity,”3 and

R(r) = (r* +a*—al)’ = A+ (A -a)’].  (5)
0(0) = n + a*cos> O — 2% cot* 0. (6)

The symbols &, and =+, indicate the sign of p” and p?,
respectively. Turning points in r and € occur at zeros of the
radial and angular “potentials” R(r) and ©(6), respectively.
Consider a null geodesic connecting spacetime events
(t5, 15,05, ) and (2,,r,,6,,¢,), where s and o stand for
source and observer. By integrating along the trajectory, the
geodesic equation (4) may be recast in integral form,"*

1, =G, (7a)
A¢ = ¢0—¢s :I¢ +AG¢7 (7b)
At=t,—1,=1,+dG, (7¢)

where we define

=t e &
Gy = fz igdifa(a)’ (8b)
N e ot ®
Gy = fZ:%dgv (8d)
g,
G, = f: i:i’/si%de. (8¢)

*We exclude the measure-zero set of geodesics with £ =0
exactly. In particular, such geodesics cannot reach an observer at
infinity.

*We identify ¢ ~ ¢ + 27, allowing A = ¢, — ¢, to take any
value. If we had instead restricted ¢ to lie within the canonical
range [0, 27), then the right-hand side of Eq. (7b) would have to
contain mod 2.

Here, the notation # indicates that these integrals are to be
understood as path integrals along the photon trajectory,
with the signs +, = sign(p”) and 4, = sign(p?) switching
at radial and angular turning points, respectively. In
particular, all path integrals increase monotonically along
the trajectory.

A. Angular integrals
The analysis of the angular integrals differs depending

on the region of conserved quantity space. In this paper,
unless otherwise specified, we will restrict to positive 7,

n>0, )

thereby excluding the so-called “vortical” geodesics
with 7 < 0. (This excludes only a small portion near the
middle of an observer’s screen, where the image is normally
dark—see Fig. 1 below. Furthermore, equatorial sources
cannot emit vortical photons, as these never intersect the
equatorial plane.) The 5 > 0 geodesics librate between
turning points 6 above and below the equatorial plane,

0. = arccos(F \/ir?), (10)

where

- [, 7 1 n+ A2
Uy —Aa:i: A9+?, A9§<1— a2 . (11)

To aid in the expression of the angular path integrals Gy, G 4,
and G,, we introduce the notation

F; = F(arcsin (COS 9') u—+), (12)
Vg )| u_
. [cosO;\ |u,
I, = M| uy;arcsin| —— ) | — |, (13)
Vg ) | u_

u

.

E.=F (arcsin <&>

N -
where i € {s,0} can be either source or observer. Here,
F(plk), E(pl|k), and TI(n;@|k) respectively denote the
incomplete elliptic integrals of the first, second, and third
kind,” while the prime denotes a derivative with respect to k,
E'(p|k) =0, E(g|k) = [E(p|k) - F(¢|K)]/ (2K). These inte-
grals vanish at the equator,

“). (14)

Fi=I;=E;=0, (6;=0) (15)

and become complete at turning points,

>Our conventions for elliptic integrals are listed in Appendix A
of Ref. [26] and match the built-in implementation in Mathe-
matica 12.
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F,=7FK, IL=vI, E=FE (6,=60.) (16

where our notation for the complete elliptic integrals is

K—K(Z—j) —F<g ”—*), (17)

=) s

Uy _ T

u_>_H<u+’2u
u T\u

E=FE(—=)|=FE(Z]-—=2). 1
() == (%) 1)

u_

The n > 0 angular path integrals may be written in terms of
these quantities and the number m of angular turning points
encountered along the trajectory as [11,26]

H=H<u+

1
Gy = [me +, Fy T, Fo]’ (20)
a\/—u_
G L pmnit,m, 7, 1) (21)
= m s
& a\/_—u_ s g F4 11,
2IA+ / ! !
Gt = - [sz :Izs Es Fo E()]’ (22)

ay/—u_

with +; denoting the sign of p? at the source (i = s) or
observer (i = o) point,

+; = sign(pf). (23)

Since p? changes sign after each turning point, these signs
obey the constraint

£y =%, (=)™ (24)

Finally, note that the integral for G, can be inverted to
solve for @, or @, as a function of G, [11,25,26]. Since in
this paper, we mainly fix the observer point (a telescope at
infinity), we present ¢, in terms of 6, and G,. This may be
inferred from expressions for 8,(Gy, 6;) by interchanging s
and o, before sending Gy = —Gy to compensate.6 From
Eq. (71) of Ref. [11] (noting that 7 therein denotes Gy,
while vy therein denotes =), we find

cos 6,

=sn <F0 +, sign(n)a/—u_Gy

). es)

Uy

®The future-directed geodesic from source to observer is also a
past-directed geodesic from observer to source. The path integrals
are monotonically decreasing for the past-directed geodesic, so
after interchanging s <> 0, we must also send G,y — —Gj.

where sn(gp|k) denotes the Jacobi elliptic sine function.
This formula holds regardless of the sign of # [11,26].

B. Radial integrals

In this paper, we will consider a distant observer at
r, = 0. (26)

Geodesics that reach this far observer have at most one
radial turning point outside the horizon. Given a choice of
conserved quantities (4, ), a simple way to test whether the
ray has a turning point is to compute r4(4, 77) via Eq. (A8d)
below. If r, is real and outside the horizon, then the ray has
a turning point at radius r4; otherwise, the ray never
encounters a turning point.

For the rays with no turning point, the radial integrals /,.,
I,, and I, are single-valued functions of r,, while for the
rays with a turning point, these radial integrals must be
double-valued in order to track whether or not the turning
point has been reached. We will denote the number of
turning points of a photon (portion of a ray) by w € {0, 1}.
The radial integral /, may then be written

Ir:/:o Z(r)ﬂw[:" ;Z(r), (27)

and likewise for 1,4, and I, with the appropriate integrands.”’
We may relate w to the emission direction by

{0 ps >0,
1 pi<O

(28)

(and r, < ry <ry).

The conditions r; > r, > r, ensure that r lies along a ray
that reaches infinity after passing through a turning point r,
(such that negative initial radial momentum is allowed). If
these conditions are not both satisfied for a given choice of
conserved quantities, then only w = 0 is allowed for those
quantities, i.e., only photons emitted outward will reach
infinity.

A ray reaching infinity originates either from the event
horizon (of the white hole) or from infinity. We denote the
associated radial integral I, by 1'%,

oo _ dr

r. <rys €R,

" \/R(r)
Itrotal — (29)
ot —dr otherwise,
+/R(r)

where we remind the reader that a ray reaching infinity began
at infinity if r4(4, 7) is real and greater than the horizon, and
otherwise began at the (white hole) horizon.

The full set of radial integrals were evaluated and reduced
to elliptic form in Ref. [11], building on previous work in

"The integral 7, will diverge as r, — oo, so one should let
r, — oo only after an observable is computed.
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Refs. [24,25]. The necessary antiderivatives for computing
Egs. (27) and (29) are given in Appendix A below.

As in Eq. (25) for 6,(Gy), one may derive an inversion
formula for r((7,) [11,25]. Equation (B119) of Ref. [11]
gives a formula for r,, and we may infer the formula for r,
as described above Eq. (29), i.e., by interchanging o and s
and then sending /, — —I,. Noting that 7 = I, therein, and
letting r, — oo, the emission radius is given by

LS ryrqsn? (5 /g, — F k)
' ry — rasn® (3 /r3iranl, — F k)

F,= F<arcsin1 /m\k)
r'q1

Here, we introduced the notation

., (30)

with

k— I3lqn . (31)
31742

rijzr,-—rj, (32)
with the roots {ry, r5, r3, r4 } given in Egs. (A8) below. This
formula is contingent on the radial integral /, being in the

allowed range,
0<1, <o (33)

Provided that Eq. (33) is satisfied, Eq. (30) gives the
emission radius of a photon reaching infinity with con-
served quantities (4,7). This formula holds even when
(some of) the radial roots are complex [11].

C. Fractional number of orbits

It is useful to have some measure of the total number of
orbits executed by a given photon. However, since the
spatial trajectory is three-dimensional, there is some arbi-
trariness in the definition of an orbit. As in Ref. [16], we
define the journey from the equator to a polar turning point
0. to be one quarter of an orbit, so that beginning and
ending at the same turning point constitutes one full orbit.
For a measure of the fractional number of orbits, we seek a
quantity that grows monotonically from zero, increasing by
1 after completing an orbit as defined above. Since the path
integral Gy satisfies the requisite monotonicity property, we
simply normalize by its value Gé, over one orbit,® defining
the fractional number of orbits n to be

_Go

n—=—
1°
GG

(34)
with

¥A quarter orbit contributes Gé/ YK (uy/u_), in accordance
with the name “quarter period” given to the elliptic integral K (x) in
the study of pendulum motion, which is precisely of the form (25).

4K

Gl _ o / 0. dg
0 0. \/00) ay—u_
Using I, = Gy [Eq. (7a) above], we equivalently have

ay/—u_
1K I.. (36)

(35)

n =

Note that I, = G is also the Mino time parameter [27] that
decouples the differential equations (4). Our parameter n is
proportional to the Mino time and provides a new physical
interpretation of this quantity.

III. CRITICAL RAYS

For generic values of A and 7, the radial potential (5)
possesses four distinct roots (A8), of which the real subset
corresponds to radial turning points. At special “critical”

values A and #, the radial potential may develop a double
root at some special radius 7,

R(F) = R'(F) = 0. (37)

This occurs for 7 > r if [8] and only if [11]

Z:a+2[?—?2_AM], (38)

where 7 must lie in the range 7 € [F_, 7, ], with

o= 2M [1 1 cos @ arccos <i %) ﬂ . (40)

Here and below, we use the notation Q for a quantity Q
evaluated at criticality, i.e., at r =7, A = 7, and n=1i.

The double root (37) indicates the existence of orbits
with fixed Boyer-Lindquist radius 7, i.e., bound photon
orbits. At the boundaries (40) of the allowed range, the
orbits are circular, equatorial, and prograde (7_) or retro-
grade (7,), whereas for intermediate radii the orbits also
librate between turning points 8_ and 8, given in Eq. (10)
above [note from Egs. (39) and (40) that 7 > 0]. The pole-
crossing orbits 4 = 0 (where the turning points approach
the poles) lie at the radius 7 = 7, given by

/ a [l (1-£%)
Fo =M + 24/ M* — — = — M. 41
To + 3 cos [3 arccos(1 - ?;2)3/2 (41)

3

Thus, the region of the Kerr spacetime spanned by bound
photon orbits takes the shape of a spherical shell of variable
thickness (the “photon shell”), which is thickest at the
equator and vanishingly thin at the pole (e.g., Fig. 2 of

044031-5
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Ref. [16]). This shell is largest in the extremal limit a — M,
in which its range extends from 7. =M to 7, =4M at
the equator. In the nonrotating limit a — 0, the shell is
vanishingly thin everywhere, degenerating to the “photon
sphere” r = 3M.

Since there are no orbits that oscillate between two
radial turning points outside the horizon, the bound photon
orbits are unstable. The rate of deviation of nearby orbits
may be characterized by a Lyapunov exponent, which is
usually defined with respect to a coordinate or affine time
(e.g., as in Ref. [28]). We will instead follow Ref. [16]
and define the exponent using the fractional number of
orbits as a parameter. Consider a precisely critical ray
with conserved quantities A(7) and 7(7), but that is not
precisely at the radius 7. (Such rays approach the critical
radius in the asymptotic future or past.) In the regime
|r — 7| < 7, a simple calculation (Appendix Al of [16])
gives

ry —r

- ~ g2r(n=m) (42)

where r; and r, denote the photon radius after executing n,
and n, fractional orbits, respectively, while the Lyapunov
exponent is

VT
Cay-as
Here, K = K(ii, /ii_) is evaluated using the critical con-

served quantities according to the convention established
above, while ¥ is defined as

(43)

MA(F)

S e
“ F(F — M)?

(44)

We will see below that y controls the demagnification of
successive images of an isotropically emitting source, as
first realized in Ref. [16].

It is useful to know the change in ¢ accrued over each
orbit (period in the #-motion) of a bound photon. This
quantity was computed by Teo [22], and may also be
inferred from an r — 7 limit of the integral formulation
above, as follows. First, note from Egs. (8) that for r = 7,

we have
F+M F+M
1, ~ 1. = 45
¢ “(7—M>’ a(?—M>G6’ (43)

’By including a factor of 2, we are effectively defining the
Lyapunov exponent with respect to the fractional number of half-
orbits, 2n. This choice was made for consistency with Ref. [16];
note, however, that Ref. [16] used the letter n to denote the
fractional number of half-orbits, whereas we have instead
followed Ref. [15] in using n for the fractional number of orbits.

where the last step follows from Eq. (7a). Letting » — 7 in
Eq. (7b) after using Eq. (45), the change in ¢ for a bound
photon is given in terms of angular integrals as

F+M
F—M

Ap=a ( ) Gy + 1G,. (46)

To determine the change in ¢ over a complete orbit, we use
the formulas (20) and (21) with 6, =6, and m = 2.

Denoting this change in ¢ by 25, we find

Sza\/zri[aCfg)kmﬂ, (47)

in agreement with Eq. (18) of Ref. [22]. This quantity 5
encodes the change in ¢ completed by a bound photon over
each half-orbit.

As discussed in Ref. [22], this expression for 5 is not a
smooth function of 7, but rather has a jump discontinuity of
27 at the pole-crossing orbit 7 = 7. This can be understood
by imagining two photons passing nearly over the pole, but
on opposite sides. The photon moving in a locally counter-
clockwise direction is regarded as having accumulated
approximately 7 radians during the passage, whereas the
clockwise photon passing on the other side is regarded as
having accumulated —z radians. This discontinuity is essen-
tial to the mathematics of the integral formulation of the
equations, but for presenting final results it will be conven-
ient to define a continuous function by adding 2z to the

7 > ¥, branch of 5. We will denote this smooth version by &,

5 =06+ 2xH(F — 7). (48)

where H(x) denotes the Heaviside function. Combining
Egs. (47) and (48) gives

PR K;—'—M)IN(#—/{—H}#—MH(?—FO). (49)

a

We will see below that 6 controls the apparent rotation of
successive images of an isotropically emitting source.

Finally, consider the elapsed time ¢ over a full libration.
By a similar argument as used for Eq. (45), we find

7t 3M
I,z?2<r+ )Ge. (50)

F—M

Plugging this into Eq. (7c) and letting » — 7 leads to

7+ 3M
At:7’2<r+ M>G0+02Gt (51)

7 —
for a bound photon orbit. Using Egs. (20) and (22) with
0, =0, and m = 2 gives the lapse in ¢ for a full orbit.
Denoting this time lapse over a full orbit by 2z, we find

044031-6
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2 [ (FA3IM\ . o, o
T_a\/——it_{r(?—M)K 2au+E] (52)

This quantity 7 gives the change in ¢ over each half-orbit
of a bound photon. We will see below that 7 controls the
time-delay between the arrival of successive images of an
isotropically emitting source.

IV. THE SCREEN OF A DISTANT OBSERVER

Now consider a distant observer with inclination 6,
relative to the spin axis of the black hole. We will exclude
the equatorial case and use the reflection symmetry of the
spacetime to place the observer in the upper hemisphere,

0, €[0.7/2). (53)

First, consider the off-axis case 0, # 0. We use the
axisymmetry of the spacetime to set the observer azimuthal
angle to zero,
Observer 6, #0: r, - o, ¢,=0. (54)
Orthogonal impact parameters («, ) of photons reaching
the observer (54) are proportional to direction cosines on
the observer’s sky, and may therefore be regarded as image

plane Cartesian coordinates. Expressed in terms of photon
conserved quantities, a convenient choice is [8,29]

A
sinf,’

p==+,/000, ==+, \/;1 + a’cos?d, — A>cot®d,.  (55)

This defines a “line of sight” @ = f# = 0 to the black hole,
with the f-axis regarded as the projection of the spin axis
onto the plane perpendicular to this line of sight.'” The
projected black hole rotation is in the counterclockwise
direction as seen by the observer. In comparing to an
observed image, one may rescale @ and f to adjust for
angular size, translate or rotate to adjust for the position
and orientation of the source, and reverse the handedness
a — —a to account for the projected black hole spin
direction. Finally, notice that we have

+, = sign(p). (56)

Rays that reach our distant observer may have two
qualitatively different origins: they either came from the

At large distances r — oo, the Boyer-Lindquist coordinates
define a fiducial flat metric whose z-axis is identified with the
spin axis of the black hole. The photon with & = f = 0 is aimed
radially inward and reaches the origin r = 0 of this auxiliary
spacetime. The p-axis is the projection of the z-axis onto the
“image plane” perpendicular to this line of sight (e.g., Fig. 6 of
Ref. [29]).

white hole, or else from the celestial sphere. Equivalently,
we may imagine tracing a photon back in time from the
observer and asking whether it “ends up” (started) at the
horizon r =r,, or at infinity r — 00.'! The boundary
between these two behaviors corresponds to a ray that,
when traced backwards in time, orbits indefinitely as it
approaches a bound orbit at some radius 7. Such rays must
have the same conserved quantities () and 7(7) [given in
Egs. (38) and (39) above] as the bound photon orbits. This
condition defines the critical curve C.

The radius of the associated photon orbit provides a
convenient parametrization of C,

a=a(F).  p=pAF.  @#). (57)
defined using Eqgs. (38), (39), and (55). In light of the sign
+, = sign(p) in Egs. (55), Eq. (57) really refers to two
separate parametrized curves (one in the upper half-plane
and one in the lower half), whose union gives rise to the
closed curve C on the image plane. Put differently, the
critical curve is a 2-1 mapping from the critical locus in
conserved quantity space (Fig. 1). In particular, C is
reflection-symmetric about the o axis. The range of the
parameter 7 is determined by the requirement that /3 be real,
which restricts to bound photon orbits for which nearby
photons can escape to infinity at the observer inclination 6,
(see Fig. 2 of Ref. [16]). In the edge-on case 8, = /2, this
corresponds to the full range 7 € [F_, 7, ] of bound orbits in
the photon shell [Eq. (40)], whereas at smaller inclinations,
there is a smaller range that can be determined numerically
by finding the roots of f(F7).

The shape of the critical curve depends on the black hole
spin a and the observer inclination 8,. However, it is very
nearly circular everywhere across this parameter space,
except in the extremal, edge-on limit, where it becomes
flattened on one side [8,16,18,19,29].

It is useful to have a simple test of whether a given screen
position (a, ) lies inside the critical curve. One method is
to compute (4,7) via the inversion of Eq. (55),

A= —asind,, (58)

n = (a® —a*)cos? O, + >, (59)

and then plug these parameters into the formula (A8d) for
the radial root r4, which is always the outermost turning
point outside the horizon (when it exists). That is,

"'One could also pose the problem forward in time, sending
photons toward the black hole from the observer at infinity.
However, the black hole must then rotate in the opposite sense, as
can be seen from the discrete t — —¢, ¢p = —¢ symmetry of the
metric.
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One turning point

T 3

No turning point 5

—6 —4 —2
Forbidden _5

\

FIG. 1.

The 2-1 mapping from conserved quantities (4,#) to image coordinates (a, ). The curve C, of critical rays separates the

regions of (4, n)-space where rays have no radial turning points (blue and yellow) from the region where they have a single radial turning
point (green). (Yellow rays are vortical, while blue rays are ordinary.) Rays can reach an observer at inclination 6, only in the darker
portion inside the gray parabola. The 2-1 image of this portion of C. defines the image-plane critical curve C. As 8, — 0, the parabola
closes to the vertical half-line 1 = 0, > —a?, while as , — /2, it opens up to a horizontal line 5 = 0, such that the entire blue and
green regions (and none of the yellow region) map to the image. As a — 0, the vortical region disappears from both plots (no vortical
geodesics exist). In these plots, we chose a/M = 94%, 0, = 17°, and set M = 1.

the screen point (a, f3) is outside C if r4(a, f) is real and
outside the horizon; otherwise it lies inside C [ry is
constructed from Egs. (58), (59), and (A8d)].

A. On-axis observer
In the special case 8, = 0 of an on-axis observer, it is
more convenient to use polar coordinates (b, @) on the
image plane. Here, b is the impact radius b = \/a* +
and ¢ is the angle of arrival,
(60)

»=0, (6o=0.r, > ).

Since photons that reach the pole must have vanishing
azimuthal angular momentum (4 = 0), it follows from
Egs. (55) that

n+a. (61)

Moreover, since all photons reach a polar observer with
negative p?, we also have from Eq. (56) that
+,=-1. (62)

To simplify expressions in the case of a polar observer,
we send

A=0, n-b>-d, (63)
which in particular sends
b2
u, -1, u_—>1—;, (64)
as well as
6_—0, 0, - . (65)

In most expressions, one can simply set these values, but
more care is needed near turning points (pole crossings). In
particular, the angle ¢ jumps by ¢ — ¢ + x discontinu-
ously at each turning point. This coordinate artefact is
reflected in the mathematics as a divergence of the angular
integral G, at each turning point. The relevant finite limit
(recalling that # > 0) is

. 21T
lim
=0T a/—u_

The critical curve of a polar observer is a perfect circle
centered at the origin. The range of 7 degenerates to a single
value 7 = 7, which is the unique radius (41) in the photon
shell [7_,7,] that admits pole-crossing bound orbits

= *+x.

(66)

044031-8



LENSING BY KERR BLACK HOLES

PHYS. REV. D 101, 044031 (2020)

(A = 0). That is, from the perspective of a polar observer,
the only visible portion of the photon shell is a photon

sphere. The critical curve radius b = /7 + a2 is given by

7 T
b= \/_g [M_;O] + a’. (67)

a* [(Fo — M)

In this case, the angle ¢ = ¢, may be viewed as the
parameter along C.

Using Eqgs. (63), (64), and (66), the critical parameters y,
o, and 7 reduce to

47, MA(F a’
Yo = ——r —~~(°)2 ). (68)
b —a? Fo(Fo—M)* \a*—b
2 M 2
o= 4t (DM (@ ) (g9
b*—a®> \To—M a*—b*
2 - 70+3M Clz
%o = = K5
Vb —a? Fo—M a-—=b
2 a’

In the limit @ — O of a nonspinning black hole (where
any observer can be made polar by rotational symmetry),
these quantities simplify tremendously:

Fo=3M, b=3V3M, (71)

Yo =06y =7, 70 = 3V31M. (72)
These critical parameters characterize the critical orbits in
the photon spheret of the Schwarzschild spacetime.

It is helpful to contrast the cases of on-axis and off-axis
observers. In the off-axis case 6, # 0, we set the azimuthal
coordinate to a fiducial value ¢, = 0, and the two con-
served quantities 4 and 7 (together with the sign £,) encode
the arrival position of photons via Egs. (55). On the other
hand, in the on-axis case 8, = 0, one conserved quantity 1
always vanishes, and the arrival position is encoded by the
second conserved quantity n together with the azimuthal
coordinate ¢, via Egs. (60) and (61). The critical curve has
a similar shape in each case but a rather different math-
ematical description: for off-axis observers, we parametrize
it by 7, while for on-axis observers, we have 7 = 7, and the

curve is instead parametrized by ¢ (and given by b = b).

V. BEHAVIOR OF RAYS

We now make some general comments about the proper-
ties of rays, i.e., complete null geodesics in the Kerr
exterior. Their radial integral /, is the total integral
discussed in Eq. (29) above. Plugging Egs. (7a) and (56)
into Eq. (25), we find that (regardless of the sign of #)

cos 0,
AZE

The formula (73) gives the latitude at which the ray arriving
at screen coordinate (a,/3) entered the spacetime (either
from the white hole if arriving inside C, or from the celestial
sphere if arriving outside C). The level sets of this function
show how the horizon and celestial sphere are “unfolded”
infinitely many times on the image plane, converging to the
critical curve (Fig. 2).

Each successive unfolding corresponds to a photon that
has undergone an additional half-orbit before reaching the
observer. To study this effect quantitatively, we consider the
total (fractional) number of oribts n, which is proportional
to I, by Eq. (36). The results of Appendix B provide an
asymptotic expansion valid for near-critical rays. From
Eqgs. (36), (B45), (B49) and (B56), we have

Z—*) (73)

= sn (Fo + sign(np)a/—u_I°%

1 PO
ne —T(?)log[ci(r)d},

where d is the signed perpendicular distance from the
closest point 7 on the critical curve, y(7) is the Lyapunov
exponent (43), and we also introduced coefficients

&7 = (1 ;ﬁ)z%\/ﬁ + i, (75)

d — 07, (74)

p o N1I=F 1+ Q(6r,0)
C_(}")——]+\/)? 1_Q§(5r+’0)\”+(r>' (76)

See Eqgs. (44), (57), (B23), (B24) and (B54) for definitions
of the various quantities that appear. In the nonrotating limit
a — 0, Egs. (74), (75) and (76) agree with Egs. (2), (3), and
(4) of Ref. [15]. The exact and approximate fractional
number of orbits are shown in Fig. 3.

As depicted in Fig. 3, we may think of (7, d) as a set of
coordinates for the image plane that are defined in the
neighborhood of C for which there is a unique line segment
connecting any point p to C, with the line intersecting C
perpendicularly. The coordinate 7 of the point p is the
Boyer-Lindquist radius of the associated photon orbit
where C is intersected, and the coordinate d is the signed
length of the segment (i.e., |d| is the length, with d positive/
negative when the point p is outside/inside C). This actually
defines two coordinate charts—one in the upper half-plane
and one in the lower half-plane—since each radius 7
corresponds to two points on C related by f — —f. That
is, points near C are uniquely described by (7, d, sign(f3)).
We will generally leave the sign(/f)-dependence implicit,
regarding (7, d) as a single chart. In the case of an on-axis
observer 8, = 0, for whom the 7-parametrization breaks
down, we would instead use (¢, d), where ¢ = ¢, and
d = b — b, with b given by Eq. (67).
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B

FIG. 2. Latitude bands of the event horizon and celestial sphere, as seen by a distant observer. Rays from the horizon (emitted just
outside the black hole, or emerging from the white hole) arrive within the critical curve (black), while rays from the celestial sphere
arrive outside of it. We show the screen position of these rays, colored by the latitude of emission on the event horizon or celestial sphere,
as shown in central inset (colors change every 30°, with orange/green dots depicting the north/south poles). The observer sees infinitely
many “unfoldings” of both the horizon and the celestial sphere. Here, we show an extreme black hole (¢ = M) as viewed by a distant
observer at inclinations (clockwise from top left) 8, = 0°, 17°, 60°, and 90°.
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SIS

FIG. 3.

Fractional number of orbits n as a function of signed perpendicular distance d from the critical curve C on a distant observer’s

image plane. Top: black hole spin a/M = 94% and observer inclination 6, = 17° bottom: spin a/M = 99.9% and inclination
6, = 90°. The curve C is parametrized in two separate segments above and below the a-axis by the radius 7 that rays asymptotically
approach. (The directions of increasing 7 are indicated on each segment by red arrows. The range of 7 is determined by the condition
f? > 0; only the equatorial observer 6, = 7/2 sees the entire range 7 € [#_, 7] of bound photon orbits.) Physically, the coordinate
system (7, d) labels (nearly) bound photons by the Boyer-Lindquist radius 7 of their (nearby) spherical photon orbit. The fractional
number of orbits diverges logarithmically as |d| — 0. The logarithmic approximation [Eq. (74)] is excellent within a distance ~M of the
critical curve (we set M = 1 in all the plots), except near the vertical straight line (“NHEKIine”) that appears in the extremal limit for

0, Z 47° and requires a separate analytic treatment [29].

The formula (74) may be compared with Eq. (11) of
Ref. [16]. Accounting for a factor of two difference in the
definition of n, the prefactors agree exactly, but the argu-
ment in the log differs in two ways. First, we include the
coefficients C, associated with a definite physical quantity,
the total (fractional) number of orbits outside the horizon.
Strictly speaking, these are subleading to the dominant
log d term, but nonetheless they are necessary to attain any
reasonable degree of accuracy. The second difference is that
the dependence on the deviation from the critical curve
appears as the normal distance d in place of the unspecified
displacement 6p/p, in Ref. [16], making precise the scaling
argument given therein.

VI. BEHAVIOR OF PHOTONS

We now make some general comments about the
behavior of photons reaching the observer, i.e., portions

of null geodesics corresponding to emission and obser-
vation of light. We will consider the apparent positions
(location on the observer screen) of various simple geo-
metric sources. A given source has infinitely many
apparent positions (arising from photons making arbitrar-
ily many orbits around the black hole), but throughout
this section, we confine our attention to the first one or
two, deferring discussion of higher-order images to
Sec. VII below. We use the term “position” even when
discussing extended sources; for example, the apparent
positions of a source ring (r, ;) are closed curves on the
image plane.

A. Spheres observed from the pole

We begin by discussing the apparent positions of
latitude lines on a sphere of some radius ry, as viewed
from above (6, = 0). Recall from Sec. IVA that we use
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FIG. 4. Behavior of photons emitted from a source sphere r = r, and received at the pole 8, = 0. We show the cosine of the emission
latitude 6, as a function of screen radius b. Each oscillation from +1 to —1 represents an image of the source sphere. When the source
sphere is inside the photon sphere (r; < ), the images do not overlap—the sphere is “unwrapped” infinitely many times on the image
plane. When the source sphere is outside the photon sphere, its first image is folded on itself, and subsequent images are superposed on
this first image. If the sphere is optically thick, emission corresponding to dashed lines will not be visible. In the flat spacetime this
corresponds to the statement that one sees only the top half of the sphere.

polar coordinates (b, ¢) on the image plane for such an
observer. Using Egs. (7a), (63) and (64), Eq. (25) becomes

&2
a-bt)

where cd is the Jacobi elliptic function cd(¢@|k). The
integral /, may be computed either numerically, or using
elliptic integrals; we use expressions given in Ref. [11]. For
fixed r,, the radial integral /, is a function of b that is
single-valued for b < b and double-valued for b > b [see
Eq. (27)]. Thus, for b < b there is a unique emission
latitude 6, for each radius b, whereas for b > b there are
two, corresponding to outward and inward emission [see
Eq. (28)]. (The emission from these different points on the
sphere would be superposed if the sphere is optically thin.
In flat spacetime, this would be tantamount to looking
straight down through a sphere.) The emission latitude(s) as
a function of b are shown in Fig. 4 for a selection of sphere
radii g and black hole spins a.

cos @, = cd< b* —a’l, (77)

B. Equatorial plane observed from the pole

We now consider the apparent positions of rings lying on
the equatorial plane (6, = 7/2) and observed from directly
above (9? = 0). Using Egs. (62), (63), and (64), Eq. (20)

becomes
2m +1 a?
2 2K 2_p? =1In
b —a a-—b

"’The formula (78) holds only for b* > a* on account of our
assumption that # > 0 (excluding vortical geodesics). However,
vortical geodesics with b> < a* cannot cross the equatorial plane,
so there is no loss of generality for the equatorial sources that we
treat here.

Gy = (78)

where the second equality follows from the geodesic
equation I, = G, [Eq. (7a)]. The condition 0 < I, < I'°@
[Eq. (33)] is thus

2m + 1 a?
& (79)

total
o K a2—b2> < IP%.

This condition provides the range of integers m for which
there exist trajectories linking the equator and the polar
observer with m turning points, as a function of the image
radius b. For most values of b, only m = 0 is allowed, with
higher-order values of m becoming allowed near the critical
curve b, where I, diverges logarithmically. For any value of
m € {0, 1,2, ...} satisfying the condition (79), Eq. (30) for
ry(I,) with Eq. (78) for I,(b,m) provides the emission
radius r (b, m). These maps ry(b,m) for m € N were
called “transfer functions” in Ref. [15]. In Fig. 5, we show
the first (m = 0) and second (m = 1) transfer functions,
which correspond to the main images of the front and the
back of an equatorial disk, respectively. As discussed in
Ref. [15], the “backside image” (m = 1) is highly demag-
nified, appearing only in a thin band near the critical
curve.”® Subsequent (further demagnified) images will be
discussed in Sec. VII below.

The angle of arrival ¢ of a photon is given by Egs. (7b),
(21), (60) and (66) as'*

@ =+ 1, +mz, (80)

PRef. [15] used the terminology “lensing ring” for this m = 1
backside image, reserving “photon ring” for higher-order images
m > 2. Here, we include the m = 1 image as part of the “photon
ring.”

¥4Note that AIl, is zero in this limit since the photon does not
cross the pole at large r, near the far observer at r, — 0.
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Behavior of photons emitted from the equatorial plane 8, = z/2 and received at the pole 8, = 0. Solid lines correspond to

“direct” photons with no angular turning points (m = 0), while dashed lines correspond to “backward-emitted” photons that bend
around the black hole before reaching the observer (m = 1). The color bands on the horizontal axis show the range over which the
backward-emitted photons can reach the observer [the apparent m = 1 range of r, € (+, )], and the colored ticks represent the critical
curve radius b. Higher-order photons (i > 2) produce essentially vertical lines at the critical radius (e.g., Fig. 4 of Ref. [15]) and are not
shown here. On the left, we show the emission radius r, as a function of screen radius ». On the right, we show the frame dragging
integral I, with the curves cut off at the apparent position of the ergosphere, where time-delay effects become essential (see further

discussion in the main text).

where we absorb the & from Eq. (66) using ¢ ~ ¢ + 2.
The last term reflects the m passages of the photon
through the pole before it reaches the observer. In the
zero-spin limit, the middle term vanishes, showing that
successive images of a single source appear on alternating,
opposite sides of the image plane. The middle term 7,
introduces an additional, spin-dependent shift in image
plane angle ¢, which we regard as the effect of frame
dragging.

In Fig. 5, we plot 1 for the front side (m =0) and
backside (m = 1) images for a selection of spins. For a
static disk of emission with a nonaxisymmetric profile, the
observed images will be rotated by this b-dependent
factor; for example, a “color wheel” will appear “swirled.”
However, a static disk cannot exist inside the ergoradius
r = 2M (where rotation is inevitable), and we have there-
fore chosen to cut off the curves at the associated apparent
radius b. If the curves were continued inside, they would
display a divergence at the apparent position of the event
horizon due to the irregularity of the coordinate ¢. In a
physical model, time-delay effects would compensate this
divergence (At diverges as well) to give a regular appear-
ance to the source.

C. Equatorial plane: Inclined observer

We now consider equatorial sources (6, = 7/2) seen by
inclined observers (6, # 0). Noting that F, =0 and
=+, = sign(p), Egs. (7a) and (20) become

\/—u_a’I, + sign(p)F, = 2mK.

For each r; and m, this equation defines a relationship
between @ and f, i.e., a curve on the image plane.

(81)

However, if this curve intersects the a-axis, then it
will be discontinuous there on account of the sign(f)
appearing in Eq. (81)." This jump can be simply com-
pensated by sending m — m + 1 whenever the a-axis is
crossed from below, since the incomplete elliptic integral
F, becomes the complete elliptic integral K at f = 0.'
That is, smooth curves on the image plane are labeled
by integers m defined using the Heaviside function
H(x) by

m=m—H(p). (82)

This reflects the geometric fact that, since the observer is
assumed to lie above the equatorial plane, emission
arriving from above the line of sight must have an
additional angular turning point relative to the corre-
sponding emission arriving from below (Fig. 7).

Each source ring r; maps to an infinite number of
observed rings labeled by m € {0, 1,2, ...}. Even m corre-
sponds to emission towards the observer (i.e., from the front
of an equatorial disk), while odd 7 corresponds to emission
away from the observer (i.e., from the back of a disk). In
Fig. 6, we show the first (m = 0) and second (7n = 1) rings
in the form of equatorial contour plots for various values of
black hole spin and inclination. Subsequent rings (11 > 2)
appear very near the critical curve and are discussed in
Sec. VII below.

Brf 0, = r/2 exactly, then F, vanishes and this jump does not
occur. We have excluded this degenerate case for simplicity.
A photon arriving on the a-axis has vanishing # = pY, and is
therefore at an angular turning point . when it reaches the
observer.
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FIG. 6. Apparent positions of source rings of constant Boyer-Lindquist radius r, in the equatorial plane 6, = 7/2, as a function of
black hole spin and observer inclination. (We set M = 1.) Solid lines are the front side image /m = 0, while dashed lines are the backside
image /m = 1 (Fig. 7). The apparent position of the horizon is a filled gray line, while the apparent positions of r; = 3, 5, and 7 are blue,
green, and purple, respectively. From top to bottom, the rows are spin a/M = 1%, 50%, 94%, 99.9%; from left to right, the columns are
observer inclination 6, = 1°, 17°, 60°, 80°.

VII. THE PHOTON RING do e, (83)
We now discuss universal properties of photons arriving
near the critical curve C. Our discussion will be framed in A¢ = 2n8 + (corrections), (84)

terms of the three key quantities y, 9, and 7 that characterize
the critical orbits (Sec. III above). We will first derive
expressions of the form At = 2nt + (corrections), (85)
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FIG.7.

llustration of the meaning of m and /m in the case of equatorial sources (“the disk™). For a polar observer (left), even/odd values

of m correspond to emission from the front/back of the disk, and arrive on opposite sides of the image. For the inclined observer (right),
we instead use m [Eq. (82)], and again even/odd values come from the front/back of the disk. Solid lines are front side images, while
dashed lines are backside images. For the left source on the right figure, we omit the 7, = 2 front side image (green) for clarity. These

curves are schematic and do not represent actual trajectories.

where n is the fractional number of orbits (Sec. I C) and d
is the signed perpendicular distance from the critical curve
(Fig. 3). These formulas help make conceptual points about
how the critical parameters {y, 5, 7} of bound photon orbits
influence image plane observables, but for quantitative
claims, it necessary to relate to the turning point number m
and discuss the corrections in detail. For these purposes, it
will be helpful to introduce the notation

Fi I, E;
fi:T’ Ty = =, ;

I G =g (86)

where as usual, i € {s,0} stands for source or observer.
These quantities range between —1 and +1 at 6, and 0_,
respectively, while vanishing at the equator 6; = z/2.

A. Distance from critical curve (y)

The analysis in Appendix B shows that near criticality,
the radial integral /, evaluated from r, to r, — co grows as

1
I,z—ﬁlog [Co(ry. F)d], (87)
where ¥ is given in Eq. (44), while C. (r,, 7) (with + the
sign of d) can be inferred from the equations in Secs. B 5
and B 6 together with the expression (B56) for d.
Using the geodesic equation I, = Gy [Eq. (7a)] in
Eq. (87) and solving for d, we obtain

1

4% ey P2 VI Go(m.0,.0,)). (88)

A more illuminating form of this equation is

"The product C.d is always positive. Note that C L is a
double-valued function of r, for d > 0, corresponding to motion
before and after the turning point is reached.

NL —2ny

d= . e, (89)
where n is the fractional number of orbits [Eq. (36)] and
y(7) is the Lyapunov exponent of the photon orbit at radius
7 [Eq. (43)]. Thus, for each factor e~ closer to the critical
curve, the observed photon has executed one additional
orbit. We may relate n = Gy/G, to the number of polar
turning points m by using Egs. (20) and (35), and setting
the conserved quantities equal to their critical values,

m
n~—=+,

D) [(_l)mfs - fo]’ (90)

=

where the geometric factor f; was introduced in Eq. (86).

Equations (88) and (89) are valid for d < M, or
equivalently for n > 1 or m > 1. In practice, we find that
the agreement is reasonable even for d ~ M (Fig. 3), and
hence for n ~ 1. In particular, the logarithmic approxima-
tion is already useful at m = 1, and it becomes excellent for
all higher m € {2,3,4,...}.

For each value of 7, around the curve C, and for each
choice of integer m (typically accurate for m = 1), Eq. (89)
provides the signed perpendicular distance d of an arriving
photon that originated on the poloidal ring (r,,6,) and
encountered m angular turning points on its way to the
observer. The emission angle along the ring, as well as the
emission time, may be found from A¢ and Az, which we
now discuss.

B. Lapse in azimuthal angle (6)
Now, consider the lapse in ¢ [Eq. (7b)],

Ap =1,+1Gy(m,6,.0,). (91)

The analysis of Appendix B shows that near criticality, the
integral [, takes the asymptotic form
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F+M
Iy~ a<’ + )1, DL (R 1), (92)

where the precise form of D, (7) may be inferred from the
expressions in Appendix B. For our present purposes, the
only important property of D_ () is that it is independent of
d, except via the sign + = sign(d). Using the geodesic
equation /, = Gy [Eq. (7a)], Egs. (91) and (92) give

F+M
F—M

A¢w< >G9+/~1G¢+Di(?), (93)

such that the d-dependence drops out entirely, other than
via £ = sign(d). A more illuminating form of this expres-
sion is [combining Egs. (20), (21), (47), and (90)]

A~ 206 — T2 (m, 7), (94)

where 25(7) is the lapse in ¢ per orbit of a bound photon at
radius 7 [Eq. (49)], and

o= 7o) =Dx(F).  (95)

Once again, we remind the reader that here, the subscript +
is the sign of d, encoding whether one is inside (=) or
outside (+) the critical curve.

C. Lapse in time (7)
Finally, consider the lapse in ¢ [Eq. (7c)],
At =1, +d*G,(m,6,.0,). (96)

The analysis of Appendix B shows that near criticality, the
integral /, takes the asymptotic form

F43M
AP <r~+ - >I, Y HL (7 1), (97)

r —

where the precise form of H_(7) may be inferred from the
expressions in Appendix B. For our present purposes, the
only important property of H(7) is once again that it is
independent of d, except via its sign + = sign(d). Using
the geodesic equation I, = G4 [Eq. (7a)], Egs. (96) and
(97) become

7 M
At ~ 7"2 <rr_|;31‘4 >G() + CZZG[ + Hi(?)s (98)

such that the d-dependence drops out entirely, other than
via + = sign(d). A more illuminating form of this expres-
sion is [combining Eqgs. (20), (22), (52), and (90)]

At = 2nt = J' (m, F), (99)

where 27(7) is the lapse in ¢ per orbit of a bound photon at
radius 7 [Eq. (52)], and

_ Fo 2aﬁ+E,

Jti* \/——1}_ [(_l)m(fs_eg')_(fo_%)]—Hi(i),

(100)

Yet again, we remind the reader that here, the subscript =+ is
the sign of d, encoding whether one is inside (—) or outside
(+) the critical curve.

D. Equatorial sources viewed from the pole

To unpack the physics of the photon ring, we begin
with the simplest case of an equatorial source (6, = 7/2)
and a polar observer (6, = 0). In this case, the source
integrals vanish (f, = 7, = ¢, = 0), and the observer
integrals become complete (f, = 7, = e}, = 1). Together
with +, = —1 [Eq. (62)], this reduces Eq. (90) to

m 1
N—+-—. 101
nK> +4 (101)
Likewise, Eqgs. (89), (94), and (99) simplify to
d ! e +1 (102)
X ——exp|— =
c, P Im\"T)T )
1 4
1

Because of the discontinuity in 5, at this stage, we consider
6, to be small but finite.

The formulas (102)—(104) encode the arrival position
and time of the infinitely many apparent positions of a
given source. The details are determined by the dependence
of the coefficients C, D, and H_. on the source radius ;.
However, these terms are independent of the image
number m, and hence cancel out of appropriate ratios
and differences,

d;{";' re, (105)
(A¢)m+1 - (A¢)m ~ 3’ (106)
(A1), — (A1), m 7. (107)

We may now replace & with & since the two agree modulo
27 [i.e., the difference can be absorbed into the left-hand
side of Eq. (105)]. Then all quantities are continuous and
we may take the full limit @, — 0. Recalling thatd = b — b
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and ¢, = ¢, and additionally denoting the observation time
t, by t, we thus obtain

by — b
Zmtl oy e, (108)
bm -
Pm+1 = Pm %60, (109)
tm+l — 1 R 7, (110)

where y,, ), and 7, were given in Egs. (68), (69), and (70),
respectively.

Equations (108), (109) and (110) show that the succes-
sive apparent positions of a source (r,0, = 7/2, ¢, t,)
move a factor of e? closer to the critical curve for every
additional half-orbit, while rotating an angle &, around
the curve and appearing a time 7, later. Recalling that 5, =
z for a nonspinning black hole, we see that successive
images appear on opposite sides of the critical curve. This
is easily understood from the geometry of the source
(Fig. 7 left).

Note that the arrival positions can be neatly represented
in terms of a complex coordinate z = (b — b)e','® such
that

Imt+1 = e_y0+iéozm' (1 1 l)
Thus we may view —y,+id, as a single complex
exponent.

Now consider an equatorial source of some finite extent
from ry to r{, as in the emitting portion of an accretion
disk. Let b (7) represent the mth observed position of the
inner and outer edges. At some sufficiently high m
(typically m > 1 is sufficient), we may compute b, using
the approximation (108). Denoting the apparent width of
each image by Ab,, = b}, — b}, from Eq. (102) we have

Abm+l -7
— . 112
ab, € (112)

That is, successive images of the equatorial disk are
demagnified (narrower) by a factor of e 7¢. The total flux
associated with each image also decreases by the same
typical factor, i.e., the flux is exponentially suppressed in
the orbit number. Each successive image also rotates on the
screen by an angle &, an effect which would be visible for
nonaxisymmetric source profiles. Finally, each successive
image arrives a time 7, later, an effect that would be
observable for time-variable source profiles. Some of these
properties are illustrated in Fig. 8.

"This coordinate maps the image plane to two copies of the
complex plane, one inside C and one outside.

Critical parameter

>

2m+ W J
W/ (3\/5;\,] )
3|
2 L Joli
0
s
Tt
a
0 L L L L g
0 0.2 0.4 0.6 0.8 1 M
m m+1
Spin 100%
e ~ 8.8%
o ~ 15.0M (50 ~ 271°
m+1 m+1
Spin 0% Spin 50%
e ~4.3% e =~ 4.9%
7o ~ 16.3M 0o = 180° | 70 =~ 16.0M dp ~ 216°
FIG. 8. The critical parameters &y, 7y, and y, for an on-axis

observer. Above, we show their dependence on black hole spin,
and below, we schematically illustrate their effects. Successive
images are demagnified by e~7¢, rotated by d,, and delayed by 7.
The image labeled m (top left) is shown artificially large, but the
demagnified images are then to scale.

E. General sources viewed from the pole

Suppose now that the source is not equatorial, but the
observer is still on the pole. From Eq. (90) using 4+, = —1
and f, =, = ¢/, = 1 yet again, we have

1 (=)
47 1

n:%+ 1.. (113)

Repeating the same procedure that led to Egs. (108), (109)
and (110), we now find"’

"As before, one may take the €, — 0 limit only after having
eliminated all dependence on sign(1) = —sign(&) = —sign(7—7,).
This direction-dependence in the limit enters via the discontinu-
ous quantity & as well as the discontinuous limit (66). Note also

that 7, vanishes in the limit from both sides.
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b;";__b ~ 0, (114)
Pins1 = P R XS — (=1)"xf . (115)
gt = by ® X To + (—=1)" 4ai:+ﬂ:/ (fs—e5).  (116)

with
Xy = L+ (=1)"f, (117)

Thus, although y,, &y, and 7 no longer give precisely the
demagnification, rotation, and time delay (respectively),
they still encode these effects in a relatively straightforward
way, depending on whether m is even or odd. We again
obtain simple expressions if we advance m by two instead
of one,

bm+2 -b

— e 0, 118

- (118)
P2 — Pm = 2507 (1 19)
tois — b & 27, (120)

Thus, a given source gives rise to two families of
images (one for even m and one for odd m), each of
which has demagnification 2y, rotation 28, and time delay
27,. These are just the Lyapunov exponent, lapse in ¢, and
lapse in ¢ for a complete bound photon orbit, respectively.
That is, each successive image of each family differs by one
orbit around the black hole. Roughly speaking, the two
families correspond to emission towards and away from the
observer; for an equatorial disk, they are images of the front
and back of the disk, respectively.

Recall that 0, = 7 in Schwarzschild. As such, each
family of images approaches the critical curve radially,
since the rotation of each successive image is 2z ~ 0.

F. Inclined observer: Equatorial sources

Next, suppose that the source is equatorial (6, = 7/2), so
that f, =z, = ¢, =0, while the observer is inclined
@, # 0), so that £, = sign(f). Then Eq. (90) becomes

1

n=""sign(p)f,.

52 (121)

Recalling that we set ¢, = 0 for the inclined observer, it
then also follows from Egs. (89), (94), and (99) that

1 1.

d~ C—iexp [—y (m - §s1gn(ﬂ)f0)] , (122)
¢s ~ = <m - %Slgn(ﬁ)fo)s
I
~sign(f) A (f, =) = Dis (123)
1.

t—t, = <m - §s1gn(ﬁ)f0>r

—sign(p) 2 oy im, (04)

—i_

;

As our observer is now inclined, the quantities y, 3, and 7
depend nontrivially on 7, which together with the sign of
specifies a point on the critical curve. Selecting a position
(7,sign(B)) on the critical curve, Eq. (122) gives the
perpendicular distance of a photon that originated at
(rg,0, = /2) and encountered m polar turning points
on its way to the observer. The emission angle ¢, of this
photon is given by Eq. (123), and the emission time ¢, by
Eq. (124) (in terms of the observation time ¢, = t).
We may again take a ratio to find

Y

1 —
m+ ~e y’
d

(125)

which may be compared with Eq. (108) above. Fixing a
position (7,sign(f)) along the critical curve, Eq. (125)
shows that photons from a given equatorial source ring
(rg,0, = /2) arrive at perpendicular distances d that
successively decrease by a factor of e77. Fixing the
observation time ¢, these photons originated from angles
¢ and times 1 related by

Py =y & =6, (126)

1
iy 1,

(127)

where now we have switched to the continuous quantity &,
absorbing the jump of 27 into the ¢ coordinate.

Recall that y, 6, and 7 depend on the critical curve
position 7 under consideration. For a stationary, axisym-
metric source, we may view e 7 as a demagnification factor
that varies over the critical curve. For a general equatorial
source, we see no simple way to describe the properties of
the images in terms of those of the source, but it is clear
from the exceptionally simple formulas (125), (126), and
(127) that y, 8, and 7 still encode universal features of
high-order images. The variation of these critical param-
eters is shown in Fig. 9.
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FIG. 9. Variation of the critical parameters y, §, and 7 around the critical curve. We show the value of these parameters as a function of
polar angle tan ¢ = /@ around the curve. (For &, we plot modulo 27.) The rotation and delay parameters & and 7 become large near the
NHEKIine (Fig. 3) present for inclined observers of rapidly rotating black holes. The demagnification parameter y becomes small near
the edges of the NHEKIine (see also Fig. 6 of Ref. [16]). The time delay 7 ~ 16M has been seen previously in numerical simulations of

emitting sources near black holes [30,31].

G. General source and observer

For nonequatorial sources (6 # z/2) observed at non-
zero inclination (6, # 0), Egs. (122), (123) and (124) are
supplemented by terms involving dependence on m
through (—1)™, as in Egs. (114), (115), and (116) above.
These terms give rise to separate behavior for even and odd
values of m, as described in Sec. VII E above in the case of
a polar observer. Rather than present these details, we
instead merely note that in the general case, we still have
simple expressions when m is shifted by two:

dm+2 —2y
MLy , 128
u (128)
Pt — P x =26, (129)
R S ) (130)

That is, given any source ring (r,6,) observed at
any inclination 6, at some time ¢, and choosing any

perpendicular (7,sign()) to the image-plane critical
curve, photons arrive in two separate families (even
and odd m) at distances decreasing by factors of e™?,
which were emitted at successively earlier times (with
delay —27) as well as different positions around the
ring (with increment —26). Although these properties
do not translate in any simple way into a description of
the distortion and demagnification of a general source
observed at a general inclination, it is clear from the
exceptionally simple formulas (128), (129), and (130) that
7, 0, and 7 still encode universal features of high-order
images.
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APPENDIX A: RADIAL ROOTS
AND INTEGRALS

In Ref. [11], we derived analytic formulas for the roots of
the radial potential (5) which are ordered when the roots are
real. We reproduce these formulas here for convenience.
We introduce

A=ad>—n-22, (A1)
B=2M[n+ (A-a)?] >0, (A2)
C =-a’y, (A3)
and further define
A2
P=- - C, (A4)
AT [AN? B?
o--3[(5) -5 @
as well as
_ oo A
= > G 0, (A06)
e P\ 3 0\ 2
The four roots are then given by
_ A_, B
ry =—7— —E—Z +4—Z, (ASa)
B
- 2=
ry=-7+ 52 +4Z’ (A8b)
ry=2z-— —A—ZZ—B, (A8c)
A
ry = z—H/—E—Z —E. (A8d)

These roots always satisfy r; < r; when i < j and both r;
and r; are real. On the critical curve C, we have r3 = ry, but
otherwise r, is always the largest real root outside the
horizon. Thus, rays reaching infinity either have a turning
point at r4, are asymptotic to a photon orbit at r3 = ry, or
have no turning point at all (when r, is complex, or real but
inside the horizon).

We now present the results from Ref. [11] needed to
compute the radial integrals of interest to this paper. Rays
that arrive outside the critical curve are case (2) of Ref. [11].
The antiderivative is given by Egs. (B35)-(B40) therein,

T(r) =

F(arcsin — r31| r32r41>. (A9)

r—7r3ry 31y

2
V31742

In particular, the complete radial integral (29) is

S F<arcs1n \/737| %>
V31742 Tq1r T31742
Rays that arrive inside the critical curve are also case
(2) when all roots are real; otherwise, if r; =7, are
complex conjugate roots, then the rays are case (3). For
case (2), the antiderivative is again Eq. (A9), whereas for

case (3), the antiderivative is given by Egs. (B55) and
(B67)-(B71) of Ref. [11],

Itota.l (A 1 0)

1 A(r—ry)—B(r—
Z<,3)(r) = —F(arccos (r=r) (r=rs) k3>,
VAB A(r—ry)+ B(r—rnr)
A= /ryrp >0, B = \/r3irsy; >0, (A11)
(A+ B)* -1},
ky =——"-"—"—"——=¢€(0,1). Al2
= B (0) (a12)
In particular, the complete radial integral (29) is
2
N (arcsin @|M> ~79(r,), (A13)
N Tq1 31742

if all roots are real; otherwise, when r; = 74, it is

1 A
(S — <arccos

N —5 k3> —I0(r,). (A14)

A+ B

APPENDIX B: ASYMPTOTIC APPROXIMATION
FOR THE RADIAL INTEGRALS

The integrands of the fundamental radial integrals /,, [,
and /, involve (the square root of) the radial potential (5) in
their denominators. Single roots of R(r) correspond to
turning points where the integral remains finite. However,
for critical conserved quantities 1 = A(7) and # = 7j(F), the
roots r3 and r4 [Egs. (A8)] coalesce, rendering the integral
logarithmically divergent at the double root # = r; = ry.
Physically, this represents a critical photon asymptotically
approaching its associated photon orbit radius 7. If the
conserved quantities are not precisely critical but only
nearly so, then the total integral /, is finite for each such
ray, but the value diverges logarithmically in the deviation
of the conserved quantities from their critical values.
Physically, this represents a near-critical photon spending
an asymptotically large amount of time orbiting near its
associated bound photon orbit at 7. In this situation, one
expects the integral to break into two contributions, one
from near the photon orbit and one from far away, such that
the near-critical integral can be estimated by the method
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of matched asymptotic expansions. In this Appendix, we
compute the relevant approximations to the radial integrals
using this method.

All bound photon orbits cross the equatorial plane and
hence have n > 0. Therefore, in this Appendix, we will use

qg=+n>0,

in lieu of 5. Consider a null geodesic whose conserved
quantities 4 and ¢ are nearly equal to those of a bound
photon orbit. We may then write

(B1)

A=21+82),  q=4q(l1+dq), (B2)
where 1 and 7 = §* are associated to the radius 7 of the
photon orbit by Egs. (38) and (39), and |51 ~ |6¢g| < 1. We
also introduce a new radial coordinate 6r by

r=#(1+6r). (B3)

and use it to define “near” and “far” zones as follows:

Near: |6r| < 1, (B4)

Far: [64] ~ |6g| < |6r]|. (B3)
These regimes overlap when |64] ~ |6¢g| < |6r] < 1. We
emphasize that throughout this discussion, “near” and “far”
refer to distance from the photon orbit radius 7, rather than
distance from the black hole. The far-zone region is disjoint,
consisting of a “right” region containing asymptotic infinity,
and a “left” region containing the event horizon.

The radial potential R(r) has different approximations
in the near and far zones. In the near zone, it is well
approximated by the scaling regime 67> ~ 64 ~ 8¢, in which

R(r) & R, (5r) = 477 (6r* — 613), (B6)
where 7 is as defined in Eq. (44), and in the last step we also
introduced a dimensionless quantity

AR [ (F=3M\I_ &
o1 = A0 {_(r )56/1+%6q}

27y F—-M
;:1_%, (B7)

Notice that the quadratic near-zone potential R, (5r) has
zeros at 6r = £0r; these correspond to radial turning points
provided that 63 > 0. For photons that reach infinity, only
the outer root is relevant. Note also that

A related quantity 6B = 76r% was introduced previously in
Ref. [15]. Here, we present it in greatly simplified form and,
importantly, show that it is proportional to the perpendicular
distance |d| from the curve C [see Eq. (B56)].

3 ag\? 3
r=~—|s=) €(0.+]- B8
“74 (2?2> ( 4} (B8)

In the far zone, the radial potential R(r) is instead well
approximated by its value at A = 1 and ¢ = g,

2
R(r) = Ry(5r) := 4751 (‘% +6r +;z)

= 4#76r* Q(6r), (B9)
where in the last step, we introduced for future convenience
a function

5 o
o(5r) :1+;r+L

s (B10)

The double root 6r = 0 of R/(dr) is outside the regime of
validity of the far-zone approximation and does not corre-
spond to a physical turning point. (It is the far-zone remnant
of the two roots 6r = £0r, that are separately resolved
by the near-zone approximation.) The quartic potential
R (8r) has two other negative roots §ry < &rj < 0, where
ory = 2(-1 = /T =), which a photon that comes in from
infinity cannot encounter.

If a light ray with conserved quantities (B2) reaches
infinity, then by definition it arrives near the closed curve C.
Rays arriving inside C have no radial turning points, while
rays arriving outside have a single turning point. The
preceding analysis shows that these cases correspond to
5ry < 0 and 8r3 > 0, respectively:

Inside C: 672 < 0, (B11)

Outside C: 6r3 > 0. (B12)
In Sec. B 7 below, we show that 5r3 is actually proportional
to the (signed) perpendicular distance from C.

We have now laid the groundwork to compute the
geodesic path integrals involving the radial potential. To
do so, it will suffice to evaluate the definite integrals

b o dr

") VRO

I;” _ /rb a(2Mr — al) dr.

A(r)y/R(r)
 r2A(r) + 2Mr(r* + a® — al)
1% = dr, B13
A A(r)y/R(r) (B

for all combinations of in/out for the conserved quantities,
and near/far for each of r, and r,. We will organize the
calculation in sections based on the near/far split, consid-
ering only the cases that arise when photons reach infinity.
We will present integrals in terms of the inverse hyperbolic
tangent, defined as
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1 1
arctanhx = —log< + x>’ (B14)

2 1 —x
which is manifestly real whenever x € [—1, 1].

1. Both points in the near zone

When both endpoints of the geodesic are in the near
zone, the radial integrals (B13) simplify to

1 o d(67)

r+M
— , IIln — I['ll’l
27V Jar, \/5r2—5r% ¢ a<V—M>
=7 (;fL 3M> I,
F—M

where the label “nn” stands for “near-near” (i.e., both
points in the near zone). Here and hereafter, or, and dr,
denote the Jr-coordinate values of the Boyer-Lindquist
radii r, and r, respectively, with r;, < ory,.

We can now evaluate I%". Photons arriving outside C
have 0 < ory < or and the manifestly real integral

/ S 2 _ S 2
arctanh (M>

or

nn
m

(B15)

ory

I (3, 8ry) =

(B16)

1
27

or,

On the other hand, photons arriving inside C have 5r3 <0
and the manifestly real integral

Sr ) ory

These results can be combined into a single formula

™0 (5, 6r,) = arctanh ( (B17)

e

2\ (97
or,
sign(ér) . L4+4/1=55
1" (8r,,6r,) = 177 log s1gn(5r%)17:r§

B _57 5rl)

(B18)

2. Both points in one region of the far zone

The far zone consists of two disjoint regions on either
side of the near zone, with one region containing the
horizon, and the other region containing asymptotic infin-
ity. When both points endpoints of the geodesic are in the
same region of the far zone, the radial integrals (B13)
reduce to

1 o d(6r)

277 Jor, \/5r2Q(5r

Iff

(B19)

i jM~ oy co+(1+6r) d(ér) . (B20)
P\ Jor, (8r=ory)(or—or_),/5r2Q(6r)
I Foofomce (1 +6r)+ (1 +6r)*+ (1 +6r)*
W7 o, (6r —bry)(6r—6r_)
d(é
ﬁ, (B21)
or’Q(ér)
where we introduced dimensionless coefficients
ai 2aM ~ a?
COZ_M7 127(0—/1), 02:;—2, (B22)

and 6r, denotes the dr-coordinate of the outer/inner event
horizon,

M+ VM? - ad?
Sr. = "% 1e(-1,0). (B23)
r
Now define a symmetric function of two variables
2 12 )
QZ((sra?érb) Q( ’ ) Q(é:‘b)ﬁr 6(071]7 (B24)
Q(6r,)+Q(6r),) - "Tb

whose range (0, 1], which assumes that both ér, and
ory, are outside the event horizon 6r, (but not that they are
positive), is derived in Sec. B 8 below. This range guar-
antees that the following functions are manifestly real
outside the horizon:

co+ (1 +0ry)
or (6ry —br_)\/Q(dr,)
co+ (1+6r_)

— hQ,(or, r_),
5 (or. — o) Q(ér_)arctan Q,(6r,r_)

Qy(or) =

arctanhQ, (ér, )

(B25)

= —47+/Q(6r) —
N ci(146ry)+ c2(1 +6r )2+ (1+6ry)*
or (6ry —br_)\/Q(ér,)
x arctanhQ, (6r, r_.)

ci(1+0r )+ (1 +6r )> 4+ (1+6r_)*

5r_(6r. — or_)\/Q6r)

x arctanhQ, (6r, r_).

(6r, 0)

(B26)

Manifestly real forms of the far integrals are then
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‘ S ory, o o oy
I;f(éra’ b) Slgﬂ( r) arctanth((Sr 0) ! = Slgn( r) arctanh <4Q(5:)> 5 (B27)
2F o, Eva 1+ s,
‘ sign(ér)aM [ 7 (F+ M o
15 (6r,, 6ry) = — ?<2\/)= [m <? - M> aretanh @y (3r. 0) + Q[ﬁ(&)} Sr
F+M 51gn(5r)aM oy
_ I (51, 6 5 B2
“(r—M> ora-on) = g WN| o
sign(ér)7 [7 + 3M o
I (8r,.6ry) = 2\(/;? | [?—M arctanh@a(3r, 0) + &) |
L (F+3M sign(6r)F o
- (5 en.an) -2 o on (B29)

3. One point in the near zone and one point
in the far zone

We now wish to consider the case where one pointis in the
near zone and the other point is in the far zone. This requires
the method of matched asymptotic expansions, which we
implement as follows. First, we choose an arbitrary match-
ing radius SR. We then split the integral into a portion from
or, to OR, and a remaining portion from J6R to or;,. The
arbitrary point R is assumed to be in the overlap region
|

I',’f’om(éra, ory) =

2y

Q(ory) \/m 1 -y 2
7 \/_ [arctanh (W) -+ arctanh <—) 51 g<W 5”0)} .

|6A] ~ |6¢q| < |6R| < 1, so that the first integral may be
computed with the near-zone approximation (presented
in Sec. B 1), while the second integral may be computed
with the far-zone approximation (presented in Sec. B 2).
Using the relevant definite integrals computed in these
sections, and taking into account their various approxima-
tions, the arbitrary radius SR disappears from the final
expressions.

We begin with /,.. Photons arriving outside C necessarily
have 0 < dry < 6r, < 1 and 6r, < dry,, and the answer is

B30
o (B30)

This expression simplifies when the bounds of integration cover the entire range [5r, +o0) of allowed radial motion. Note
that the second term vanishes as the lower bound of integration 6r, — dr,. Moreover, the argument of the first term goes to

V¥ as 8r, — oo, leaving

1" (8rp, 00) = — 5 \/_[arctanhf += 10g<(8 )25r0)] :—ﬁlog{< ;;f) O].

(B31)

For photons arriving inside C, we must separately consider the two regions of the far zone. In the right region containing
asymptotic infinity, we integrate from a near-zone point 0 < ér, < 1 to a far-zone point ér;, > or, > 0, so we label this

definite integral “nf” for near-far. The answer is

N (§r,, 6ry) =

i

2%

) 1)
[arctanh (@) + arctanh ( d
1432

(B32)

1. [1-7
e ) 4 o252 )]
oo ara> 2 °g<<8z>2' ')]

In the left region containing the event horizon, we instead integrate from a far-zone point dr, < 0 to a near-zone point
6ry, <0, with |6r,| < 1 and |6r),| < |6r,], so we label this integration “fn” for far-near. The answer involves a single

change of sign,

Jinin (67g,0rp) =

1
~ %7 7 {arctanh(

1) o 1 1-7
#) — arctanh <$> + —log< /g |5r3|)] .
+% Jor o) 2@

(B33)
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The calculation proceeds identically for /4 and /,, which
are conveniently expressed in terms of the /, integrals:

P+ M
F—M

[94)(5%)

L (61, 61,) = a< >I’r‘f‘in/ (814 1)

2,(0)],  (B34)

f

F+M
F—M

If/?’in(ara’érb) = ( >Ifnm(6 a’5rb)

- \/— [Q¢(5ra) 2,(0)],

<r+3M

r —

(B35)

I,ﬂf’in/out(5 Fos 5rb) )Ixzf,in/out(&,a’ 5rb)

[Q,(6r}) =

2,(0)]. (B36)

2\f

F+3M
F—M

[Qt((sra) -

Ifn,in<5ra’ 57’17) 7 ( ) Iﬁ“.in (5}"(1, 51"b)

2(0)]. (B37)

.
2V7

4. One point in the left far zone and the other point
in the right far zone

The last remaining case of relevance is when the
geodesic has a lower endpoint 6r, in the left far zone
(6r, < 0) and an upper endpoint or;, in the right far zone
(6r, > 0). In this case, the photon passes through the near
zone, and we may obtain the radial integral by adding
together the expressions for the near-far and far-near cases
derived above. For /,, summing Eqgs. (B32)—(B33) results in

15(8r,.8ry) = 1" (67, 6R) + I}"™ (3R, 5r))

! VQ(ra)
= r\/_[arctanh< 1+5r~0)

Zy
\/9O(6rp) 1-%
+arctanh< 1+52;bb >+1 g(<8)~()2|5r(2)|>],
(B38)

from which the arbitrary radius 6R has canceled out. Here,
the label “Ir” stands for left-right. Likewise,

Ig(éra,érb) = a<ii—]‘1‘j) 1 (6r,,6r,)
r\/_[Q¢(5r o) + Qy(0rp) —2Q4(0)].
(B39)

IM
(5raa5rb) _?2 <r+ M >I¥(5raﬂ5rb)

[Qi(6ra) + Qi(6r,) =2Q,(0)].  (B40)

37

5. Full answer for I, outside C

We have now computed all the basic definite integrals
that are needed to obtain the full radial integrals /,, I, and
I, for a photon reaching a distant observer at large radius
r, — c0. As an example of how to glue them together, we
now explicitly consider the radial integral /,. It is straight-
forward to similarly assemble 7, and /,.

First, consider a photon arriving outside C (i.e., with
5r(2) > 0). Tracing back in time from the detector, the
photon reaches a radial turning point 6r( in the near zone
and then returns to infinity. Its radial motion in the allowed
range [6ry, +oo) can thus be divided into four stages, as
follows.

Before the photon reaches the near zone, the integral is
given by

I,zlﬁf(érs,oo)

Q(M)ﬂ
= arctanh —arctanh | —————= | |. (B4l

Once the photon reaches the near zone, but before it reaches
the turning point, the integral is given by the limit 6r, — oo
of Eq. (B30):

I~ I?f“’“t(ﬁrs, o)

\/ort — o1
== \f [arctanh\/' + arctanh (%)

g 1=Ear)|-

Once the photon reaches the turning point, but before it
exits the near zone,

(B42)

I, = I (1, 6ry) + 1" (61, 00)

1 /S,2 _ S42
=—— {—arctanh <M>
~

2 T
1 1+ v7\?
{5 )

where the first term is obtained from Eq. (B16) and the
second from Eq. (B31). Once the photon exits the near
zone, the integral is given by

(B43)
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I, ~ I'r’f"om(éro, ory) + I';f‘oul(éro, )

1 Q(érv)> 1 (1—)? >
= arctanh [ Y——-) +-1o 5r2
2r\/_{ ( 1+% 2%\ (877 "0

(55

+:1

(B44)
When the photon finally reaches infinity again, the com-

plete integral is
1 1 7\
®) = ————=log +~\/)? 53l
2F VY 87

(B45)

I, ~ 2I'}f"°”t(5r0,

6. Full answer for I, inside C

Now consider a photon arriving inside C (i.e., with
61% < 0). Tracing back in time from the detector, the
photon passes through the near zone on its way to the
event horizon, never encountering a radial turning point. Its
radial motion in the allowed range [6r,, +o0) can thus be
divided into three stages, as follows.

Before the photon reaches the near zone, the integral is
given by

I~ I (5rs,oo)

YEN]

o1y

= arctanh+/jy —arctanh (
2

2f

which is the same expression as outside C, Eq. (B41). Once
the photon enters the near zone, but before it exits the near
zone, the integral is given by Eq. (B32):

1, = I (5r,, 00)
1 or
= arctanh/7 + arctanh <7Y>
VA [ v Jorr —ort

(i)

Once the photon exits the near zone, but before it crosses
the horizon, the integral is given by the 6r, — oo limit of
Eq. (B38),

(B47)

I, ~1"(r,, )

1 o
=5 7 [arctanh <1Q+<£Y)> + arctanh\/;:(

2y
1 17
ot @

2|)] : (B48)

Finally, when the photon crosses the horizon, the complete
integral is given by

INI (r+, )

{arctanh ( Lo > +arctanh/7
+ 52

14 Q,(6r,.,0)
&7 \1=0:6r.0 >"5r°'}
(B49)

Interestingly, note that the square root containing Q, can be
pulled out of the logarithm, since

1+ (6r,.,0)

—_ earctanth (5r+,0)'
1 - Q2 (5r+, O)

(B50)

7. Perpendicular distance from C

The logarithmic approximations for the radial integrals
presented thus far are written in terms of the variable 513
defined in Eq. (B7) above. For each choice of 7, this
quantity encodes the arrival positions of photons near the
associated point (&, ) on the curve C [Eq. (57)], expressed
in terms of their fractional deviations in conserved quan-
tities 64 and 6¢q. Since the point 7 is arbitrary, we are in
effect using three coordinates (7, 54, 5¢g) to describe posi-
tions on a two-dimensional image plane. A convenient way
to remove this large redundancy is to consider only
perpendicular displacements from C, denoting the signed
distance by d (i.e., d <0 inside and d > 0 outside the
closed curve C). We expect this choice to provide the best
approximation for a given point near the curve C, since the
line segment intersecting the curve perpendicularly is the
shortest. In this Appendix, we relate 5r(2) to d [Eq. (B56)
below], restricting to perpendicular displacements.
Plugging into the above logarithmic approximations gives
the desired expressions in terms of the coordinates (7, d)
depicted in Fig. 3.

Since 73 = 0 corresponds to the curve C, the gradient of
5r(2) in the image plane (e, §) is perpendicular to C. The
norm of the gradient therefore gives the rate of change in
the perpendicular direction,

or: =
70 ~ |V (6r5) c

(B51)

where we restrict 6r3 to perpendicular displacements. To
compute the gradient, we first express 6r3 in terms of a and
p. Using the inverse of Eq. (59),

A= —asiné,, q= \/(a2 —a®)cos’0, + >, (B52)

044031-25



SAMUEL E. GRALLA and ALEXANDRU LUPSASCA

PHYS. REV. D 101, 044031 (2020)

one finds that, to leading order in a small deviation from the
curve C with |a/a— 1|~ |B/p - 1| < 1,

A
A= 1m2-1,
A a
~ 26 _ 5 7 _ 7
5g =91 5305 0(a g) +hB-P) (B53)
q q
Plugging these relations into Eq. (B7) results in
A(F) - -
532 S0 ) + B ),
rx
F+M
= <f+ >asm9,,, (B54)
F—M
from which we may read off the gradient as
= A
Vo) =20 o, jo).  (B53)

2~4

(In light of the flat metric ds®> = da® + df* on the image
plane, the vector fields {8(,,8/;} coincide with the unit
vectors {@, ﬁ}) From Egs. (B51) and (B55), it therefore
follows that, when 5;’% is evaluated on a perpendicular
displacement,

2Fy  org
(F) VB + 5

Finally, we also present expressions for the unit tangent
and normal to C. The parameter derivatives are given by

(B56)

>

- 27y - Vo
/ _ / __r
a(F) = asind, >0, A7) = ﬁa (7) (B57)
The unit tangent vector to C is therefore
A '(7)0 '(7)0 O, — 0
T::I:o a ’/')~a2+ﬂ(}:)~ﬂ2:ﬁ fz l//ﬁ’ (BSS)
VAP +IPOPF VP +

where the inclusion of the sign £, = sign() guarantees
that T points clockwise around C, which corresponds to the
direction of increasing/decreasing 7 in the upper/lower half
of the image plane (see Fig. 3). As such, the outward
normal is obtained by rotating 7 by 90° counterclockwise
in the image plane:

5 70a+ PO (B59)

We thus confirm directly that the gradient of 6r§ is
proportional to 7,

N

8. Range of Q,

In this section, we prove that the range of the bivariate
function Q,(6r,, ér;,) defined in Eq. (B24) is (0, 1]. This
guarantees that the expressions derived in Sec. B 2 for the
far-zone integrals are indeed (manifestly) real, as claimed.

We assume that both ér, and ér, are outside the event
horizon. That is, we assume that ér, > 6r, and 6r, > or,,
though neither 6r, nor 6r;, need be positive. In that case, we
have both Q(6r,) > 0 and Q(ér,) > 0, since the roots

ory =2(=1+/T—=}) of Q(5r) always obey

V(5r2) = (B60)

Sry < éry <ér_<ér, <. (B61)

First, we wish to prove that 0 < Q,(6r,,dr}), or equiv-
alently, that

0 < Q(6r,) + Q(ry) - (52;\/;”

Expanding and canceling terms leaves

)2. (B62)

1 51,6
0<2+:(5r + o1y + rzr”> (B63)
7

In terms of the positive quantities p, = or, — 6rg > 0 and
pp = 6r, — rg > 0, this reduces to the inequality

PaPbp

vIi-x
~ 2; 9

0<

(pa +pb) + (B64)

which is manifestly satisfied since p,, pp, 7, and /1 — )
are all positive.

Next, we need to show that Q,(6r,, r;,) < 1, or equiv-
alently, that

21/0(6r,)\/Q(6r,) < Q(6r,) + Q(6r,) — < 2\;”’)

(B65)

Completing the square and rearranging yields

<5rb2 .

From now on, we assume without loss of generality that
or, > or,. Then taking the square root of both sides leaves

(B66)

) VA0 - /aGr)P

036 2\/_ <\/Q(5rb)—\/Q5r

(B67)

or equivalently,
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A simple way to establish that this inequality holds is by
noting that the function

P(6r) = \/O(6r) — —

2V7

is monotonic on the radial range 6r > or, of interest.
Indeed, letting p = 6r — 6rg > 0, one finds that

(B69)

7;/(6’,):2\/1—__)(:_\/)?‘1'17>2\/1—:)?_\/)?>0

7 7 . (B70)

where the last inequality follows from the range of
7 €(0,3/4].

Finally, note that Q,(6r,6r) =1 for all ér, so the
upper bound may be saturated. On the other hand, the
lower bound may not, since Q,(ér,x) = 0 if and only if
x = drg < ry, which is outside the range of 5r under
consideration.
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