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A Damour-Solodukhin wormhole with a metric which is similar to a Schwarzschild black hole seems to
be a black hole mimicker since it is difficult to distinguish them by practical astrophysical observations.
In this paper, we investigate a center-of-mass energy for the collision of two test particles in the Damour-
Solodukhin wormhole spacetime. We show that the center-of-mass energy for the head-on collision of
the particles is large if the difference between the metrics of the wormhole and the black hole is small.
To deeply understand the high energy particle collision, we generalize the head-on collision to static,
spherically symmetric black-hole-like wormholes.
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I. INTRODUCTION

Black holes predicted in general relativity are accepted as
common compact objects in astrophysics after the detec-
tions of gravitational waves from binary black hole systems
reported by LIGO and VIRGO collaborations [1,2]. The
detection of the shadow of a supermassive black hole
candidate in the center of a giant elliptical galaxy M87 has
been reported by Event Horizon Telescope Collaboration
[3]. The observed shadow is explained by the presence of the
Kerr black hole solution, which is a vacuum solution of
Einstein equations, but it does not exclude the possibility of
alternative compact objects with a metric similar to a black
hole metric coincidentally as discussed in Refs. [3–5].
General relativity does not prohibit spacetimes with

nontrivial topological structures such as traversable worm-
hole spacetimes [6,7], which are known as the solution of
the Einstein equations. One might consider that the worm-
holes must be prohibited since the weak energy condition
must be violated at the throat of any static and spherically
symmetric traversable wormhole in general relativity [7].
However, we can make wormhole solutions without the
violation of the weak energy condition in alternative
gravitational theories [8].
The hunting of wormholes in nature can be one of

interesting topics in general relativity and alternative
gravitational theories to understand our Universe. The
upper bound of the number density of wormholes in the
Universe is investigated in Ref. [9] with gravitational

lensing [10–12]. Observations of phenomena in strong
gravitational fields with a high accuracy will help us to
distinguish wormholes from black holes since the worm-
holes and black holes are characterized by a throat and an
event horizon, respectively. Thus, the phenomena related
with light rays passing through the wormhole throat in the
strong gravitational field, such as visualizations [13,14],
shadows [15–18], deflection angles [19], gravitational
lensing [20–24], and wave optics [25], have been inves-
tigated eagerly.
Damour and Solodukhin considered a wormhole with a

metric which is similar to the Schwarzschild black hole [4].
They concluded that we cannot distinguish the black holes
from the wormholes with practical and astrophysical
observations on a limited timescale Δt, which is a coor-
dinate time, if their metrics are similar each other. Lemos
and Zaslavskii calculated the Riemann tensor in an ortho-
normal frame and a tidal force acting on a falling body in
the Damour-Solodukhin wormhole spacetime [26]. They
pointed out that the tidal force near the wormhole is larger
than the one near the Schwarzschild black hole and that
the wormhole and the black hole can be distinguished
if the falling body emits light rays near them. Recently,
emissions from its accretion disk [27], quasinormal modes
[28,29], images of its accretion disks [17], the shadow
image [30], and gravitational lensing [31–33] in the
Damour-Solodukhin wormhole spacetime have been inves-
tigated. Gravitational-wave echoes by the wormhole [34]
have also been investigated. See Refs. [35–37] and the
references therein for the echoes.
Piran et al. found that the center-of-mass energy of the

rear-end collision of two test particles can be arbitrarily
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high near an extremal Kerr black hole [38,39]. The particle
collision is often called the Bañados-Silk-West (BSW)
mechanism or BSW collision since Bañados et al. redis-
covered that in 2009 [40]. For the arbitrarily high center-
of-mass energy, the conserved angular momentum of
either of the particles must be fine tuned, and the particle
falls into the black hole with an infinite proper time. Since
the rediscovery, the details of the rear-end particle collision
have been investigated eagerly [41,42].
The center-of-mass energy of the head-on collision

of two particles can be arbitrarily large in a near-horizon
limit in the Kerr and Schwarzschild spacetimes [38,43].1

However, particles which fall into a black hole do not cause
the head-on collision directly. We need to seek an astro-
physical scenario that outgoing particles can exist near the
event horizon to cause the head-on collision.
On the other hand, particles can collide with each other

head on directly in spacetimes without the event horizon.
Patil et al. have shown an arbitrarily high center-of-mass
energy of a head-on particle collision within a finite proper
time of two particles in the overspinning and near-extremal
Kerr spacetime [45] and in an overcharged and near-
extremal Reissner-Nordström spacetime [46] with naked
singularity. Zaslavskii has generalized the head-on collision
in the near-extremal spacetimes without the event horizon
[47], but the method works in near-extremal spacetimes
only. Krasnikov has constructed a wormhole metric and
found a center-of-mass energy for the head-on collision of
particles at a throat can be arbitrarily high in a black hole
limit [48]. A head-on particle collision near a white hole
was investigated in Ref. [49].
In this paper, we investigate the collisions of two test

particles in the Damour-Solodukhin wormhole spacetime.
We show that the center-of-mass energy of a head-on
collision at a throat is large if the metric of the wormhole
spacetime is similar to the Schwarzschild spacetime.
We generalize the particle collision to a general, static,

and spherically symmetric wormhole case. We show that
the center-of-mass energy of the head-on collision can
be large when the metrics of the wormholes are similar
to black holes. As additional examples, we consider
a Reissner-Nordström black-hole-like wormhole [26],
Krasnikov’s wormhole [48], and the Ellis wormhole
[50,51].
This paper is organized as follows. We investigate the

particle collision in the Damour-Solodukhin wormhole
spacetime in Sec. II and in a general, static, and spherically
symmetric wormhole spacetime in Sec. III. In Sec. IV, we
discuss and conclude our results. In Appendix, we consider
a relation of the center-of-mass energy of the particle

collision and the Ricci scalar in the wormhole spacetimes.
In this paper, we use the units in which a light speed and
Newton’s constant are unity.

II. DAMOUR-SOLODUKHIN
WORMHOLE SPACETIME

In this section, we review a particle motion in the
Damour-Solodukhin spacetime, and we investigate the
collision of two particles there. We also consider the colli-
sion of a particle with a circular motion at a throat and
another particle.

A. Particle motion

The metric of the Damour-Solodukhin wormhole space-
time [4] with the throat at r ¼ r0 ≡ 2M is given by

ds2 ¼ −ðfðrÞ þ Λ2Þdt2 þ dr2

fðrÞ
þ r2ðdθ2 þ sin2θdϕ2Þ; ð2:1Þ

where fðrÞ is defined by fðrÞ≡ 1–2M=r, M is a positive
mass parameter, Λ is a small and positive parameter, and a
radial coordinate r is defined in a range 2M ≤ r < ∞.
There are the time-translational and axial Killing vectors
tμ∂μ ¼ ∂t and ϕμ∂μ ¼ ∂ϕ because of the stationarity and
axisymmetry of the spacetime, respectively. We concentrate
on a particle motion on an equatorial plane θ ¼ π=2 in
this paper.
A particle has a conserved energy E≡ −gμνtμpν ¼

−gttpt ¼ ðfðrÞ þ Λ2Þpt, where pμ is the 4-momentum
of the particle, and a conserved angular momentum
L≡ gμνϕμpν ¼ gϕϕpϕ ¼ r2pϕ. From the conserved
energy E, the conserved angular momentum L and the
4-momentum pμ ¼ dxμ=dλ, where λ is a parameter along
the world line of the particle, we obtain

dt
dλ

¼ pt ¼ E
fðrÞ þ Λ2

; ð2:2Þ

dϕ
dλ

¼ pϕ ¼ L
r2
: ð2:3Þ

From pμpμ ¼ −m2, wherem is the mass of the particle, the
equation of the radial motion of the particle is given by�

dr
dλ

�
2

þ VðrÞ ¼ 0; ð2:4Þ

where VðrÞ is an effective potential for the radial motion
defined by

VðrÞ≡ fðrÞ
�
m2 −

E2

fðrÞ þ Λ2
þ L2

r2

�
: ð2:5Þ

1In Ref. [44], the upper bound of the center-of-mass energy of
two falling particles which are at rest at infinity with an equal
mass m is obtained as Ecm ¼ 2

ffiffiffi
5

p
m in the Schwarzschild

spacetime.
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The particle can be in a region where the effective
potential VðrÞ is nonpositive. Note that the particle with
E ≥ m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Λ2

p
can exist at a spacial infinity. From

Eq. (2.4), we obtain

dr
dλ

¼ pr ¼ σ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
−VðrÞ

p
; ð2:6Þ

where σ is defined by σ ¼ 1 (−1) for an outgoing (ingoing)
particle.
The radial coordinate r is not defined well at the throat

r ¼ 2M [4]. To cover the wormhole spacetime globally, we
introduce a proper radial coordinate ρ defined by

jρj ¼
Z

r

2M

drffiffiffiffiffiffiffiffiffi
fðrÞp

¼ r
ffiffiffiffiffiffiffiffiffi
fðrÞ

p
þM log

�
−1þ r

M
þ r
M

ffiffiffiffiffiffiffiffiffi
fðrÞ

p �
ð2:7Þ

in the range −∞ < ρ < ∞.2 Using the proper radial
coordinate ρ, the line element (2.1) is rewritten as

ds2 ¼ −ðfðρÞ þ Λ2Þdt2 þ dρ2 þ r2ðρÞðdθ2 þ sin2θdϕ2Þ;
ð2:8Þ

where fðρÞ is given by

fðρÞ ¼ fðrðρÞÞ ¼ 1 −
2M
rðρÞ : ð2:9Þ

The wormhole throat is located at ρ ¼ 0. The equation of
the radial motion is rewritten as�

dρ
dλ

�
2

þ vðρÞ ¼ 0; ð2:10Þ

where vðρÞ is an effective potential for the radial motion in
the radial coordinate ρ given by

vðρÞ≡m2 −
E2

fðρÞ þ Λ2
þ L2

r2ðρÞ ð2:11Þ

and the particle can exist in a region where vðρÞ is
nonpositive. When Λ is small, the bump of the effective
potential at the throat, which is given by vð0Þ ¼ m2−
E2=Λ2 þ L2=ð4M2Þ, is deep, while the effective potential
in the radial coordinate r at the throat is given by
Vð2MÞ ¼ 0. Figure 1 shows the dimensionless effective
potential v=m2 of a particle with a specific conserved
energy e≡ E=m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Λ2

p
and vanishing conserved

angular momentum L ¼ 0 as the function of a dimen-
sionless radial proper distance ρ=M. At the throat, the

dimensionless effective potential of the particle is obtained
as vð0Þ=m2 ¼ −1=Λ2.
Under assumptions e ≥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Λ2

p
, Λ2 ≪ 1, and L ¼ 0,

we consider a coordinate time Δt that a particle reaches to
the throat at r ¼ 0 from r ¼ l > 2M. The coordinate time
Δt is obtained as

Δt ¼ e
Z

l

2M

drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞðfðrÞ þ Λ2Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 − fðrÞ − Λ2

p : ð2:12Þ

We also assume that the particle almost stops but moves
slowly near the throat from the point of view of a distant
observer, in other words, it is frozen there, and that the
coordinate time Δt is dominated not by l but by Λ.3 Under
the assumptions, the coordinate time Δt is given by

Δt ∼
Z

l

2M

drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞðfðrÞ þ Λ2Þ

p
∼ −4M logΛ: ð2:13Þ

In the black hole limit Λ → 0, the coordinate time Δt
diverges. Equation (2.13) is rewritten as

Λ ∼ exp

�
−

Δt
4M

�
: ð2:14Þ

FIG. 1. The examples of the dimensionless effective potential
v=m2 as the function of a dimensionless radial proper distance
ρ=M for the radial motion of the particle with e≡ E=m ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Λ2

p
and L ¼ 0. The solid (red) and dashed (green) curves

denote the dimensionless effective potentials vðρ=MÞ=m2 in the
wormhole spacetime with Λ ¼ 10−1 and 10−2, respectively.
There is a deep bump of the dimensionless effective potential
with vð0Þ=m2 ¼ −1=Λ2 at the throat ρ=M ¼ 0.

2The proper radial coordinate ρ is denoted by y in Ref. [4].

3From Eq. (2.13), we notice that a condition l ≪ Δt∼
−4M logΛ must be satisfied so that the coordinate time Δt is
dominated by Λ.
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As Damour and Solodukhin assumed [4], we assume
that matters near the wormhole started to fall into a
wormhole Δt ¼ 6 × 109 years ago. If Λ ≪ exp ð−1018Þ
and if the mass of the wormhole is M ¼ 6.5 × 109 M⊙,

4

from Eq. (2.12), the falling matters cannot pass the throat,
and they cannot be reflected by the throat because they are
almost frozen near the throat. Thus, an observer cannot
distinguish the wormhole from a black hole with the
same mass as the mass of the wormhole. On the other
hand, if exp ð−1018Þ≲ Λ ≪ 1 is satisfied, we could dis-
tinguish the wormhole from the black hole with observa-
tions near the throat such as a shadow because of outgoing
flows from the throat in principle.
The proper time τ≡mλ of the particle with E >

m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Λ2

p
, 0 < Λ ≪ 1, and L ¼ 0 initially at r ¼ l >

2M to reach the throat at r ¼ 2M is given by, from
Eqs. (2.5) and (2.6),

τ ∼
Z

l

2M

ffiffiffiffiffiffiffi
r
2M

r
dr ∼

l
ffiffiffiffi
2l

p

3
ffiffiffiffiffi
M

p : ð2:15Þ

The proper time does not diverge even in the black hole
limit Λ → 0.

B. Center-of-mass energy of two particles

We consider that particles 1 and 2 collide at a point in the
Damour-Solodukhin wormhole spacetime. The center-of-
mass energy EcmðrÞ of the particles at the collisional point
is given by

E2
cmðrÞ≡ −gμνðpμ

1 þ pμ
2Þðpν

1 þ pν
2Þ

¼ m2
1 þm2

2 þ
2E1E2

fðrÞ þ Λ2

−
2σ1σ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V1ðrÞV2ðrÞ

p
fðrÞ −

2L1L2

r2

¼ m2
1 þm2

2 þ
2E1E2

fðrÞ þ Λ2
−
2L1L2

r2

− 2σ1σ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 −
E2
1

fðrÞ þ Λ2
þ L2

1

r2

s

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

2 −
E2
2

fðrÞ þ Λ2
þ L2

2

r2

s
; ð2:16Þ

where pμ
i , mi, Ei, σi, ViðrÞ, and Li are pμ, m, E, σ, VðrÞ,

and L for particle i ¼ 1 or 2, respectively. We set σ1σ2 ¼
−1 and 1 for a head-on collision and a rear-end collision,
respectively. Using the effective potential viðrÞ ¼ viðρðrÞÞ
for particle i ¼ 1 or 2 in the proper radial coordinate
ρ ¼ ρðrÞ, the center-of-mass energy EcmðrÞ is expressed as

E2
cmðrÞ ¼ m2

1 þm2
2 þ

2E1E2

fðrÞ þ Λ2

− 2σ1σ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v1ðrÞv2ðrÞ

p
−
2L1L2

r2
: ð2:17Þ

The center-of-mass energy of the collision is large when the
relative velocity of the colliding particles is large [52].
We assume that Λ is small and it satisfies Λ ≪ E1=m1,

E2=m2, E1M=jL1j,5 and E2M=jL2j in the rest of Sec. II. B.

1. Head-on particle collision with σ1σ2 = − 1

For a head-on collision, we set σ1σ2 ¼ −1. As we have
shown in Sec. II. A, the effective potential vðρÞ in the
proper radial coordinate ρ has a deep depth at the throat.
The colliding particles have large velocities in a facing
direction, and the relative velocity is large. Thus, the center-
of-mass energy of the collision of the head-on particles
becomes large. The center-of-mass energy of the particles
at the throat r ¼ r0 ¼ 2M is given by

Ecmðr0Þffiffiffiffiffiffiffiffiffiffiffi
E1E2

p ∼
2

Λ
: ð2:18Þ

It can be arbitrarily large in a black hole limitΛ → 0 as well
as the center-of-mass energy of a head-on particle collision
in a near-horizon limit in the Schwarzschild spacetime [43].
We consider a wormhole with a massM ¼ 6.5× 109 M⊙

and into which particles started to fall Δt ¼ 6 × 109 years
ago. From observations, we would distinguish a wormhole
with exp ð−1018Þ≲ Λ ≪ 1 from a black hole with the
same mass in principle. The center-of-mass energy for
the head-on particle collision is given by 1 ≪ Ecm=ffiffiffiffiffiffiffiffiffiffiffi
E1E2

p ≲ exp 1018 and it can be large.

2. Rear-end particle collision with σ1σ2 = 1

For a rear-end particle collision, we set σ1σ2 ¼ 1. In the
rear-end particle case, the colliding particles have large
velocities in a same direction, and the relative velocity is
small. Thus, the center-of-mass energy of the collision of
the rear-end particles becomes small. The center-of-mass
energy of the rear-end collision at the throat r ¼ r0 ¼ 2M
is obtained as

E2
cmðr0Þ ∼m2

1 þm2
2 −

L1L2

2M2

þ
�
m2

1 þ
L2
1

4M2

�
E2

E1

þ
�
m2

2 þ
L2
2

4M2

�
E1

E2

;

ð2:19Þ

and it is small unlessmi, jLij=M, E1=E2, or E2=E1 is large.
4The mass M ¼ 3 × 106 M⊙ has been used in Ref. [4], while

we use M ¼ 6.5 × 109 M⊙, which is the same mass as the mass
of a supermassive black hole candidate in M87 [3].

5When Λ ≪ EM=jLj is satisfied, the third terms in the
effective potentials VðrÞ (2.5) and vðρÞ (2.11) can be ignored.
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C. Circular orbit particle case

The Damour-Solodukhin wormhole spacetime has a
circular orbit at the throat ρ ¼ 0 or r ¼ M as shown below.
The existence of the circular orbit is a remarkable feature
in the Damour-Solodukhin wormhole spacetime because
such a circular orbit does not exist at r ¼ 2M in the
Schwarzschild spacetime. From

vð0Þ ¼ dv
dρ

����
ρ¼0

¼ 0; ð2:20Þ

the circular orbit exists at the throat ρ ¼ 0 for a particle
with a fine-tuned angular momentum L ¼ Lc, where Lc is
given by

Lc ≡�2M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2

Λ2
−m2

r
: ð2:21Þ

The second derivative of the effective potential vðρÞ with
respect to ρ for the particle with a circular motion at
the throat ρ ¼ 0 with the conserved angular momentum
L ¼ Lc is given by

v00ð0Þ≡ d2v
dρ2

����
ρ¼0

¼ e2 − 2e2Λ2 þ 2Λ4

8m2M2Λ4
: ð2:22Þ

In the case e ≥
ffiffiffi
2

p
, the circular orbit is stable ðv00ð0Þ >

0Þ for 0 < Λ < Λ− or Λþ < Λ, it is marginally stable
ðv00ð0Þ ¼ 0Þ for Λ ¼ Λ�, and it is unstable ðv00ð0Þ < 0Þ for
Λ− < Λ < Λþ. Here, Λ� are defined by

Λ� ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2eðe�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 − 2

p
Þ

q
2

: ð2:23Þ

In the other case, e <
ffiffiffi
2

p
, the circular orbit is stable

for 0 < Λ.
We have an interest in the wormhole with small Λ ≪ 1

and a marginal particle with e ∼Oð1Þ. In this case, the
circular orbit at the throat is stable, and the absolute value of
the conserved angular momentum of the particle

jLj ¼ jLcj ∼
2ME
Λ

ð2:24Þ

must be large.
We consider that either of two particles rotates at the

throat and the other particle falls into the throat and they
collide there. The particle with the circular orbit does not
move in the radial direction, i.e., the ρ direction, and the
other particle has a large velocity in the radial direction.
Therefore, the relative velocity of the particles is large, and
the center-of-mass energy of the collision of the particles
becomes large as given by

Ecmðr0Þffiffiffiffiffiffiffiffiffiffiffi
E1E2

p ∼
2

Λ
: ð2:25Þ

III. GENERAL, STATIC, AND SPHERICALLY
SYMMETRIC WORMHOLE SPACETIME

In this section, we generalize the center-of-mass energy
of two particles in the Damour-Solodukhin wormhole
spacetime obtained in Sec. II. B to the one in a general,
static, and spherically symmetric wormhole spacetime.
Then, for examples of the wormhole spacetime, we con-
sider the center-of-mass energy in a Reissner-Nordström
black-hole-like wormhole [26], Krasnikov’s wormhole
[48], and Ellis wormhole spacetime [50,51].
The line element in the general, static, and spherically

symmetric wormhole spacetime is expressed by

ds2 ¼ −AðrÞdt2 þ BðrÞdr2 þ r2ðdθ2 þ sin2θdϕ2Þ; ð3:1Þ

where AðrÞ is a positive function and a wormhole throat
exists at r ¼ r0, which satisfies 1=Bðr0Þ ¼ 0. From a
straightforward calculation, we get the center-of-mass
energy Ecm of two particles in the form

E2
cmðrÞ ¼ m2

1 þm2
2 þ

2E1E2

AðrÞ
− 2σ1σ2BðrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V1ðrÞV2ðrÞ

p
−
2L1L2

r2

¼ m2
1 þm2

2 þ
2E1E2

AðrÞ −
2L1L2

r2

− 2σ1σ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 −
E2
1

AðrÞ þ
L2
1

r2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

2 −
E2
2

AðrÞ þ
L2
2

r2

s
;

ð3:2Þ

where the effective potential ViðrÞ for the radial motion of
particle i ¼ 1 or 2 in a radial coordinate r is given by

ViðrÞ ¼
1

BðrÞ
�
m2

i −
E2
i

AðrÞ þ
L2
i

r2

�
: ð3:3Þ

We notice that the center-of-mass energy Ecm does not
depend on BðrÞ. Introducing a proper radial coordinate ρ
given by

dρ
dr

¼
ffiffiffiffiffiffiffiffiffi
BðrÞ

p
; ð3:4Þ

the center-of-mass energy Ecm is expressed as

E2
cmðrÞ ¼ m2

1 þm2
2 þ

2E1E2

AðrÞ
− 2σ1σ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v1ðrÞv2ðrÞ

p
−
2L1L2

r2
; ð3:5Þ

where viðrÞ≡ viðρðrÞÞ is the effective potential of particle
i ¼ 1 or 2 given by
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viðrÞ ¼ viðρðrÞÞ ¼ m2
i −

E2
i

AðrÞ þ
L2
i

r2
; ð3:6Þ

for the motion in the ρ direction.
If

ffiffiffiffiffiffiffiffiffiffiffi
Aðr0Þ

p
≪ E1=m1, E2=m2, E1r0=jL1j, and E2r0=jL2j

are satisfied, the center-of-mass energy of a head-on
collision with σ1σ2 ¼ −1 at the throat r ¼ r0 is given by

Ecmðr0Þffiffiffiffiffiffiffiffiffiffiffi
E1E2

p ∼
2ffiffiffiffiffiffiffiffiffiffiffi
Aðr0Þ

p : ð3:7Þ

A. Reissner-Nordström black-hole-like wormhole [26]

We consider a Reissner-Nordström black-hole-like
wormhole with

AðrÞ ¼ fðrÞ þ Λ2; ð3:8Þ

BðrÞ ¼ 1

fðrÞ ; ð3:9Þ

fðrÞ ¼ 1 −
2M
r

þQ2

r2
; ð3:10Þ

where Q is a constant and we assume −M ≤ Q ≤ M. The
wormhole was investigated by Lemos and Zaslavskii [26].
The wormhole becomes the Damour-Solodukhin worm-
hole whenQ ¼ 0. The throat is at r¼ r0¼Mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2−Q2

p
.

Under the assumption Λ ≪ E1=m1, E2=m2, E1r0=jL1j, and
E2r0=jL2j, the center-of-mass energy Ecm of the head-on
collision at the throat r ¼ r0 is given by

Ecmðr0Þffiffiffiffiffiffiffiffiffiffiffi
E1E2

p ∼
2

Λ
: ð3:11Þ

This is the same as the center-of-mass energy (2.18) in the
Damour-Solodukhin wormhole spacetime with Q ¼ 0. It
can be arbitrarily large in a black hole limit Λ → 0 as well
as the center-of-mass energy of a head-on particle collision
in an extremal limit in a overcharged Reissner-Nordström
spacetime [46]. See Eq. (18) in Ref [46].
In Ref. [47], Zaslavskii considered almost-extremal,

stationary, and axisymmetric spacetime without an event
horizon. In a static case, the (t; t) component of the metric
tensor is given by

gttðrÞ ¼ −CðrÞ½ðr − rcolÞ2 þ r2colε
2�; ð3:12Þ

where CðrÞ is a positive function, ε is a small positive
parameter ε ≪ 1, and rcol is a positive constant.6 The

center-of-mass energy for the head-on collision of two
particles at r ¼ rcol is given by

EcmðrcolÞffiffiffiffiffiffiffiffiffiffiffi
E1E2

p ∼
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

CðrcolÞ
p

rcolε
: ð3:13Þ

See Eqs. (1), (4), (11), and (13) in Ref. [47].
We can apply Zaslavskii’s method for the near-extremal

case withQ ¼ �M and with Λ ≪ 1 only. In this case, from
CðrÞ, rcol, and ε, which are given by

CðrÞ ¼ 1þ Λ2

r2
; ð3:14Þ

rcol ¼
M

1þ Λ2
; ð3:15Þ

and

ε ¼ Λ; ð3:16Þ

respectively, the center-of-mass energy (3.13) for the head-
on collision at r ¼ rcol is obtained as

EcmðrcolÞffiffiffiffiffiffiffiffiffiffiffi
E1E2

p ∼
2

Λ
: ð3:17Þ

We notice rcol ∼ r0 ¼ M. Thus, we have recovered
Ecmðr0Þ=

ffiffiffiffiffiffiffiffiffiffiffi
E1E2

p
given by Eq. (3.11) by Zaslavskii’s

method. See Zaslavskii [47,53] for the details of the
head-on collision in the near-extremal case.

B. Krasnikov’s wormhole metric [48]

Krasnikov considered a black-hole-like wormhole as a
particle accelerator with a high center-of-mass energy of a
head-on collision of two particles [48]. The functions AðrÞ
and BðrÞ are given by

AðrÞ ¼ e2hðrÞ; ð3:18Þ

BðrÞ ¼ 1

1 − 2M
r

; ð3:19Þ

where

hðrÞ ¼ 1

2
ln

�
1 −

2M
r

�
for 6M ≤ r ð3:20Þ

hðrÞ ¼ −
1

2

�
k −

1

12

��
r
2M

− 3

�
2

þ 1

12

�
r
2M

− 3

�

þ 1

2
ln
2

3
for 4M ≤ r < 6M ð3:21Þ

hðrÞ ¼ kr
2M

−
5k
2
−

1

24
þ 1

2
ln
3

2
for 2M ≤ r < 4M;

ð3:22Þ

6Note that CðrÞ and rcol are denoted by BðrÞ and r0,
respectively, in Ref. [47], while BðrÞ denotes the (r; r) component
of the metric tensor grrðrÞ, and r0 denotes the position of a throat
in this paper.
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where k ≫ 1 is a positive constant and the wormhole throat
is at r ¼ r0 ¼ 2M. Krasnikov considered the collision of
head-on particles at the throat in a limit k → ∞. We notice
that the wormhole becomes a black-hole-like wormhole in
the limit k → ∞ because of Aðr0Þ → 0. From Eq. (3.7) and
Aðr0Þ → 0, the center-of-mass energy of the head-on
particle collision in the black hole limit k → ∞ could
diverge.

C. Ellis wormhole

The Ellis wormhole filled with a phantom scalar field
[50,51] is the first and the simplest example of the Morris-
Thorne wormhole [7]. The phenomena of the Ellis worm-
hole, such as the deflection angle of light [19,20,54–64],
gravitational lensing [21,22,24,54,61,62,65–78], visualiza-
tions [13], shadows [15,16,18,79], the quasinormal mode
[80,81], quantum metrology [82,83], the uniqueness [84], a
rotation curve [85], and so on, have been investigated
because of its simplicity. The upper bound of the number
density from observations [9] has been also obtained. Its
instability [86] is known contrary to an earlier work [87].
Wormholes supported by various matter with the same

metric as the Ellis wormhole have been investigated
[88–99], and the stability of the wormhole with electrically
charged dust with negative energy density under linearly
spherically symmetric and axial perturbations has been
found [100].
The Ellis wormhole metric has

AðrÞ ¼ 1; ð3:23Þ

BðrÞ ¼ 1

1 − a2

r2
; ð3:24Þ

where a is a positive constant and the throat is at
r ¼ r0 ¼ �a. From Eq. (3.2), the center-of-mass energy
is given by

E2
cmðrÞ ¼ m2

1 þm2
2 þ 2E1E2 −

2L1L2

r2

− 2σ1σ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
m2

1 − E2
1 þ

L2
1

r2

��
m2

2 − E2
2 þ

L2
2

r2

�s
;

ð3:25Þ

and it is not large when E1 and E2 are not large as discussed
in Ref. [101]. If we use a proper radial distance ρ given by
jρj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − a2

p
, the line element is rewritten as

ds2 ¼ −dt2 þ dρ2 þ ðρ2 þ a2Þðdθ2 þ sin2θdϕ2Þ; ð3:26Þ

and the center-of-mass energy (3.25) is rewritten as (A3)
and (A4) in Ref. [101].

IV. CONCLUSION

Damour and Solodukhin considered a wormhole with a
metric which is similar to the Schwarzschild spacetime [4].
We have shown that the center-of-mass energy for the head-
on collision of two particles in the Damour-Solodukhin
wormhole spacetime can be large. The center-of-mass
energy is equal to an upper bound of the total mass of
products after the particle collision.
We comment on differences between the collision of

particles with the large center-of-mass energy in the
Damour-Solodukhin wormhole spacetime and the BSW
collision in an extremal black hole spacetime [40]. In the
Damour-Solodukhin wormhole, the head-on particles with
the large center-of-mass energy do not have a critical
angular momentum, and the particles reach into the throat
in a finite proper time. On the other hand, the BSW
collision is a rear-end collision between a particle with a
critical conserved angular momentum and a particle with a
noncritical conserved angular momentum near the extremal
black hole. The particle with the critical angular momentum
reaches into an extremal horizon in an infinite proper time.
We have found that the center-of-mass energy of the

head-on particle collision at the throat of a general, static,
and spherically symmetric wormhole can be large if the
(t; t) component of the metric tensor is similar to black
holes. One can apply our method for near-extremal and
non-near-extremal cases, while Zaslavskii’s method [47]
works in the near-extremal case only. The behavior of the
arbitrary high center-of-mass energy of the head-on particle
collision at the throat of non-near-extremal wormholes in a
black hole limit is the same as the near-extremal wormhole
case at least in our approach.
The center-of-mass energy will be suppressed for the

collision of celestial objects with finite sizes such as stars
and planets. On the other hand, it can be large for the
collision of fundamental particles like neutrons and pho-
tons, and then a small black hole may be formed at the
collisional point after the collision. However, the small
black hole will evaporate before it absorbs matter support-
ing the wormhole throat. The finite-size effect of falling
objects on the center-of-mass energy and the effect of the
collision on the background spacetime will depend the
gravitational sector of the theory, the matters supporting the
throat, and the falling objects. We will need an analysis
beyond a test-particle approximation to treat them.We hope
that this paper stimulates researchers to study the details of
the particle collisions near the wormhole.
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APPENDIX: RICCI SCALAR

In this Appendix, we comment on a relation of the
center-of-mass energy of two particles and the Ricci scalar
RðrÞ in wormhole spacetimes. The Ricci scalar RðrÞ of the
Damour-Solodukhin wormhole is obtained as

RðrÞ ¼ −
2Λ2M2

r2ðΛ2r − 2M þ rÞ2 ; ðA1Þ

and it is, on the throat r ¼ 2M,

Rð2MÞ ¼ −
1

8Λ2M2
: ðA2Þ

Thus, the absolute value of the Ricci scalar on the throat is
large when Λ is small.

However, we have to keep in mind that a large Ricci
scalar in wormhole spacetimes does not cause the high
center-of-mass energy of the particles always as shown
below. The Ricci scalar RðrÞ of the Ellis wormhole [50,51]
is given by

RðrÞ ¼ −
2a2

r4
; ðA3Þ

and the Ricci scalar on the throat r ¼ a is obtained as

RðaÞ ¼ −
2

a2
: ðA4Þ

Thus, the absolute value of the Ricci scalar RðaÞ on the
throat can be large if a is small. On the other hand, the
center-of-mass energy (3.25) of the collisions of two
particles, which are initially far away from the throat
and which do not have large conserved energy E, cannot
be large even if a is small and jRðaÞj is large as discussed in
Ref. [101].
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