
 

Charged (A)dS black hole solutions in conformal teleparallel equivalent
of general relativity

G. G. L. Nashed1,2,3,* and Kazuharu Bamba4,†
1Centre for Theoretical Physics, The British University in Egypt,

P.O. Box 43, El Sherouk City, Cairo 11837, Egypt
2Egyptian Relativity Group (ERG), Cairo University, Giza 12613, Egypt

3Mathematics Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
4Division of Human Support System, Faculty of Symbiotic Systems Science, Fukushima University,

Fukushima 960-1296, Japan

(Received 22 August 2019; accepted 27 January 2020; published 14 February 2020)

We continue our study in four dimensions to derive noncharged and charged (anti)–de Sitter black hole
solutions in conformal teleparallel equivalent of general relativity. The noncharged and charged equations
of motion are applied to a spherically symmetric tetrad and the nonlinear differential equations are derived.
It is shown that the output solutions of the two cases are identical to those obtained in teleparallel equivalent
theory to general relativity. As a result, it is found that in the conformal teleparallel equivalent theory to
general relativity, the scalar field cannot influence on the manifold of spherical symmetry, i.e., the scalar
field must equal one in order to have a well-known asymptote spacetime.
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I. INTRODUCTION

To establish a basis of the construction of the Einstein’s
general relativity (GR), Deser, Dirac, and Utyiama [1–3]
have introduced the conformal symmetry. The procedure of
the conformal invariance to GR has been constructed by
Dirac [2]. This corresponds to a new variational principle
to the action of GR through the use of a scalar field in
addition to the components of the metric gμν [3]. In fact, the
Ogievetsky’s theory [4], which states that GR with diffeo-
morphism groups can be acquired in the closure of two
groups with finite dimension, supports to deal with the
conformal theory of gravity.
For the quantization of the gravitational field [5], the

conformal symmetry is a significant subject and it is
important for the construction of GR with the modifications
of the space-time descriptions on the small or on the large
scales. To establish the formulation of quantum gravity
with its renormalizability and unitarity, the amendments of
gravitation are necessary on the small scale. On the other
hand, to modify GR on the large scale one can solve the so-
called dark energy problem, namely, realize the late-time
cosmic acceleration [6–8].
For the Einstein-Hilbert action, which is not conformally

invariant, the operation of a conformal transformation can
remove the conformal factorΩðxÞ from themetric tensor gμν
due to the fact that gμν ¼ ΩðxÞĝμν. Hence, it corresponds to

an extra degree of freedom and it can be analyzed as an
independent variable [5]. It is known that a scale invariant
effective theory can be constructed from ĝμν, which is a
nontensor quantity because of det ĝ ¼ −1 [9]. The Weyl
theory,which is conformally invariant and quadratic in terms
of the curvature tensor, has been investigated in various
aspects [10,11].
In addition to GR, there is other gravity theory proposed

by Einstein, which is called “teleparallel equivalent of
general relativity (TEGR)” [12]. In GR, the gravitational
field is expressed by the curvature; however, the case of
TEGR is represented by the torsion [13–23]. The important
advantage to useTEGR is that for the gravity system, energy,
momentum, and angular momentum can be described in a
consistent manner in the conformal frame [24–27] (for
recent reviews on various proposals for an alternative
gravitational theory to GR in order to account for the issue
of dark energy, see, for instance, [28–37]).
In terms of the conformal transformation, there exist two

descriptions of theLagrangian for the gravitational field. One
is to introduce an additional scalar field to the Einstein-
Hilbert action. This approach has been taken for the con-
structionof the conformal teleparallel theory inRefs. [38,39].
The other is to make the form of the Lagrangian for the
gravitational field composed of the quadratic term of the
Weyl tensor.
In the context of the conformal teleparallel equivalent

of general relativity (CTEGR), it has been demonstrated
that the accelerated expansion can be explained in a flat
homogenous and isotropic universe [39]. In this work, we
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explore the influence of the scalar field on the solar
system by applying the gravitational field equation of
the CTEGR to the four-dimensional spherically symmetric
space-time.
The organization of the present paper is as follows.

In Sec. II, we explain the basic formulation of the
CTEGR with the definitions of various tensors and the
gravitational field equations are presented. In Sec. III, we
apply a four-dimensional spherically symmetric vierbein
field with diagonal components to the gravitational field
equations of the CTEGR, and we show that the scalar field
has no effect due to the acquire of asymptotically flat, i.e., the
scalar field should equal 1. In Sec. IV, we explore a vierbein
with its nondiagonal spherically symmetric components in
the CTEGR and we find the solutions, whose property
resembles to the case of a vierbein with the diagonal
components. In Sec. V, we analyze the charged gravitational
field equations of the CTEGR theory for both the diagonal
and nondiagonal vielbeins. These charged gravitational field
equations are applied to the vierbein with the diagonal
components for the static case. Furthermore, we derive a
general charged solution with a physical meaning. In
addition, we investigate the charged CTEGR formalism
for the space-time with nondiagonal components and has a
spherical symmetry and derived solutions in the sameway as
the case of the space-time with the diagonal components.
We show that the only physical solution makes the scalar
field has a unit value. Finally, we summarize our results
in Sec. VI.

II. THE CONFORMAL TELEPARALLEL
EQUIVALENT OF GENERAL RELATIVITY

The TEGR is represented as1 fM;Lig with M the four-
dimensional space-time manifold and Li (i ¼ 1, 2, 3, 4) the
vectors defined on the space-time M globally, which are
regarded as the parallel vectors. In the four-dimensional
space-time, the parallel vectors are considered to the
vierbein (or tetrad) fields. The contravariant derivative
of the vierbein (tetrad) field reads

DμLi
ν ≔ ∂μLi

ν þ Γν
λμLi

λ ¼ 0: ð1Þ
Here, the differentiation is calculated in terms of the
Weitzenböck connection, Γν

λμ, which is the affine con-
nection without symmetry, defined as [40]

Γλ
μν ≔ Li

λ∂νLi
μ; ð2Þ

where

∂ν ≔
∂
∂xν :

The metric is described by

gμν ≔ ηijLi
μLj

ν; ð3Þ

where ηij ¼ ðþ;−;−;−Þ denotes the four-dimensional
Minkowski space-time. Equation (1) leads to the condition
of the metricity. We define the torsion tensor Tα

μν and the
contortion one Kμν

α by the following expressions:

Tα
μν ≔ Γα

νμ − Γα
μν ¼ Li

αð∂μLi
ν − ∂νLi

μÞ;

Kμν
α ≔ −

1

2
ðTμν

α − Tνμ
α − Tα

μνÞ: ð4Þ

By contracting the torsion, we have its vector

Tν ≔ Tμ
μν: ð5Þ

Moreover, the torsion scalar in the TEGR is represented as

T ≔ Tα
μνSαμν: ð6Þ

Here, Sαμν is the tensor of the superpotential. For the first
pair, this tensor has skew symmetry and described by

Sαμν ≔
1

2
ðKμν

α þ δμαTβν
β − δναTβμ

βÞ: ð7Þ

The Lagrangian for the TEGR is written as

LðLi
μÞg ¼

jLjT
2κ

; where L ¼ ffiffiffiffiffiffi
−g

p
; ð8Þ

where κ ¼ 8π is the coupling of the gravitational constant.
The Lagrangian in Eq. (8) will be changed through the

conformal transformation

L̄aμ ¼ eωðxÞLaμ; ð9Þ

with ωðxÞ being an arbitrary function [38]. Hence, Eq. (8)
should be modified so that the conformal transformation in
Eq. (9) cannot change the form of Eq. (8). The form of
Lagrangian that is not changed by the conformal trans-
formation is known to have the form [38]

LðLi
μ;ΦÞg¼2κjLj½−Φ2Tþ6gμν∂μΦ∂νΦ−4gμνΦð∂νΦÞTμ�

þLm: ð10Þ

Here, Φ is a scalar field and Lm means the matter-field
Lagrangian. The Lagrangian in Eq. (10) is invariant under
the transformation for the scalar field

Φ → Φ̄ ¼ e−ωðxÞΦ:

By taking the variation of the Lagrangian (10) in terms of
Φ, we get [38]

1Here, the Latin indices i; j;… show the coordinates of the
tangent space-time, while the Greek ones α; β;… denote the label
of the components of the (co-)frame.
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I ≡ ∂μðLgμν∂νΦÞ − L
6
ΦR −

κ

6

δLm

δΦ
¼ 0; ð11Þ

where the scalar curvature R is represented as

LR ¼ 2∂νðLTνÞ − LT;

with jLj ¼ L ¼ ffiffiffiffiffiffi−gp ¼ detðhaμÞ being the determinant of
the metric and T being the scalar torsion.
With the same procedure, the variation of the Lagrangian

in Eq. (10) in terms of the vierbein Laμ leads [38]

Qaν ≡ ∂αðLΦ2SaναÞ − LΦ2

�
SbανTbα

a −
1

4
LaνT

�

−
3

2
LLaνgβμ∂βΦ∂μΦþ 3LLaμgβν∂βΦ∂μΦ

þ LLaνgβμTμΦ∂βΦ − LΦLaβgνμðTμ∂βΦþ Tβ∂μΦÞ
− LgβμΦTνa

μ∂βΦ − ∂μ½LgβνLaμΦ∂βΦ�

þ ∂ρ½LgβρLaνΦ∂βΦ� − κ

2

δLm

δLaν
¼ 0; ð12Þ

where

δLm

δLaν
¼ LLa

μTμν:

For Φ ¼ 1, the gravitational field equation (12) is
equivalent to that in the TEGR case. In addition, the trace
of Eq. (11) reads

Φ
δLm

δΦ
¼ LT;

whereT is the trace of the energy-momentum tensor that is
given by

T ¼ gνμTνμ: ð13Þ

Thus, in the case of the traceless energy-momentum tensor,
δLm
δΦ is equal to zero.

III. BLACKHOLE SOLUTIONSWITH SPHERICAL
SYMMETRY: A DIAGONAL TETRAD

The gravitational field equations (11) and (12) of the
CTEGR theory are applied to the four-dimensional tetrad
having spherical symmetry and presented in the polar
coordinate (r, θ, ϕ, t) by [41–43]

ðLi
μÞ ¼

�
1ffiffiffiffiffiffiffiffiffiffi
NðrÞp ; r; r sin θ;

ffiffiffiffiffiffiffiffiffiffi
KðrÞ

p �
; ð14Þ

with NðrÞ and KðrÞ are arbitrary functions in terms of the
radial coordinate r. By combining Eqs. (14) and (4), it is
found that the torsion Tabc and contorsion Kabc have the
following nonzero components2:

Tð2Þð2Þð1Þ ¼ Tð3Þð3Þð1Þ ¼
ffiffiffiffi
N

p

r
; Tð4Þð1Þð4Þ ¼

ffiffiffiffi
N

p
K0

2K
;

Tð3Þð3Þð2Þ ¼ cotθ
r

; Tð1Þ ¼ −
4Kþ rK0

2rK
; T2 ¼ − cotθ;

Kð2Þð1Þð2Þ ¼ Kð3Þð1Þð3Þ ¼
ffiffiffiffi
N

p

r
; Kð1Þð4Þð4Þ ¼

ffiffiffiffi
N

p
K0

2K
;

Kð3Þð2Þð3Þ ¼ cotθ
r

: ð15Þ

Using Eq. (15) in Eq. (7), the superpotential has the
following nonzero components:

Sð1Þð2Þð1Þ ¼ Sð4Þð4Þð2Þ ¼ cot θ
2r

; Sð4Þð4Þð1Þ ¼
ffiffiffiffi
N

p

r
;

Sð2Þð1Þð2Þ ¼ Sð3Þð1Þð3Þ ¼
ffiffiffiffi
N

p ð2K þ rK0Þ
4rK

: ð16Þ

Substituting Eqs. (15) and (16) into Eq. (6), the torsion and
Ricci scalars are described by

T ¼ 2NðK þ rK0Þ
r2K

;

R ¼ 4rK2N0 − r2NK02 þ 2r2NKK00 þ r2KN0K0 þ 4NK2 − 4K2 þ 4rKNK0

r2K2
: ð17Þ

By using Eqs. (15)–(17) in the field equations (10) and (11) with vanishing energy-momentum tensor, i.e., Tνμ ¼ 0, we
obtain

2The tensor Tabc is represented as

Tabc ¼ La
μLb

νLc
αTμνα:

The two tensors Kμνα and Sμνα are defined by the same manner. It is important to stress on the fact that the last two indices of the
superpotential and the first two ones of the contorsion are skew symmetry.
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Qð1Þ
r ≡ 3r2NKΦ02 þ 4rNKΦΦ0 þ r2NΦK0Φ0 − KΦ2 þ NKΦ2 þ rNΦ2K0 ¼ 0;

Qð2Þ
θ ¼ Qð3Þ

ϕ ≡Φ2½f2KN0 þ 2NK0 þ rN0K0 þ 2rNK00gK − rNK02� þ 4KNΦΦ0½2K þ rK0�
þ 4rK2½N0ΦΦ0 − NΦ02 þ 2NΦΦ00� ¼ 0;

Qð4Þ
t ≡ rΦ2N0 þ NΦ2 þ 4rNΦΦ0 þ r2N0ΦΦ0 − r2NΦ02 þ 2r2NΦΦ00 −Φ2 ¼ 0;

I ≡ 4rK2N0Φ − r2NK02Φþ 2r2NKK00Φþ r2KN0K0Φþ 4NK2Φ − 4K2Φþ 4rNKK0Φþ 6r2K2N0Φ0

þ 24rNK2Φ0 þ 6r2NKK0Φ0 þ 12r2NK2Φ00 ¼ 0: ð18Þ

Clearly, it is seen from Eq. (18) that the values of the scalar
field Φ and the two unknown functions K and N cannot be
fixed. Therefore, we assume that Φ has an arbitrary value
and discuss all of its possible values, which can be taken
physically.3 Hence, the exact solution of Eq. (18) with
arbitrary value of the scalar field is represented as

Φ ¼ Φ; KðrÞ ¼ 1

Φ2
þ c1
rΦ3

;

NðrÞ ¼ ðrΦþ c1ÞΦðrÞ
rðΦþ rΦ0Þ2 : ð19Þ

Here, “ 0” denotes the differentiation w.r.t. the radial
coordinate r and c1 is an integration constant.
As a general expression, we analyze the form ΦðrÞ ¼ 1

rn,
where n is a positive integer, i.e., n ≥ 0.4 In this case, the
unknown functions NðrÞ and KðrÞ take the following
forms:

KðrÞ ¼ r2n þ c1r3n−1; NðrÞ ¼ 1þ c1rn−1: ð20Þ

By using Eq. (3), we obtain the line element of the solution
in (20) as

ds2 ¼ KðrÞdt2 − N−1ðrÞdr2 − r2ðdθ2 þ sin2θdϕ2Þ
¼ ð1þ c1rn−1Þdt2 − ðr2n þ c1r3n−1Þdr2
− r2ðdθ2 þ sin2θdϕ2Þ: ð21Þ

Equation (21) shows in a clear way that the line element
corresponding to the scalar field ΦðrÞ ¼ 1

rn is meaningless

when n > 0 because it has no well-known5 asymptote
behavior in the limit r → ∞. When n ¼ 0, the scalar field
Φ is given by6

ΦðrÞ ¼ 1; NðrÞ ¼ KðrÞ ¼ 1þ c1
r
: ð22Þ

For Eq. (22), the metric is represented as

ds2 ¼
�
1þ c1

r

�
dt2 −

�
1þ c1

r

�
−1
dr2

− r2ðdθ2 þ sin2θdϕ2Þ: ð23Þ

When c1 ¼ −2m with m being the gravitational mass
[44], the metric (23) is asymptotically flat and becomes
the Schwarzschild space-time. As a result, it is demon-
strated that in the CTEGR, for vacuum case, if the metric
is diagonal and static and it has spherical symmetry, there
exists only the Schwarzschild solution, which is also the
solution in the TEGR. In the next section, we examine
whether this consequence comes from the form of the
tetrad in Eq. (14) or not. For this purpose, we take the
nondiagonal tetrad with its spherical symmetry and
explore the possibility of the scalar field Φ either
constant or not.

IV. BLACK HOLE SOLUTIONS
WITH SPHERICAL SYMMETRY:

A NONDIAGONAL TETRAD

The gravitational field equations (10) and (11) in the
CTEGR are applied to a static space-time in four dimensions
with its nondiagonal components and spherical symmetry.
This space-time is described by the polar coordinate
(r, θ, ϕ, t) as [45,46]

3The reason why the unknown functions K, N, and Φ cannot
be determined by the system of differential equations in (18) is
that there exist four differential equations, while we have three
unknowns functions. Only if the scalar field is arbitrary, the
system (18) can be reduced to two differential equations in terms
of two unknown functions. Any other assumption cannot make
the number of the differential equations equal to that of unknown
functions. The consequence that the field equations in the
CTEGR theory are not able to fix all the unknown functions
is valid through the whole of the present study.

4The form of n < 0 is not allowed since it makes the potentials
metric, K and N, have no finite value.

5Physical solution means that a solution behaves as a flat
space-time or (anti)–de Sitter asymptotically.

6From Eq. (22), it can be seen that we have two redundant
differential equations of the system (18). The responsible field of
this redundancy is the scalar field as we discussed above.
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ðLi
μÞ ¼

0
BBBBBBBB@

sinθ cosϕffiffiffiffiffiffiffi
NðrÞ

p rcosθ cosϕ −r sinθ sinϕ 0

sinθ sinϕffiffiffiffiffiffiffi
NðrÞ

p rcosθ sinϕ r sinθ cosϕ 0

cosθffiffiffiffiffiffiffi
NðrÞ

p −r sinθ 0 0

0 0 0
ffiffiffiffiffiffiffiffiffiffi
KðrÞp

1
CCCCCCCCA
: ð24Þ

It is important to emphasize the fact that tetrad in Eq. (24) is not themost general tetrad that possesses spherical symmetry. The
tetrad in Eq. (24) can be reproduced from the diagonal tetrad in (14) and a rotation SO(3) matrix, i.e.,

0
BBBBBBBB@

sin θ cosϕffiffiffiffiffiffiffi
NðrÞ

p r cos θ cosϕ −r sin θ sinϕ 0

sin θ sinϕffiffiffiffiffiffiffi
NðrÞ

p r cos θ sinϕ r sin θ cosϕ 0

cos θffiffiffiffiffiffiffi
NðrÞ

p −r sin θ 0 0

0 0 0
ffiffiffiffiffiffiffiffiffiffi
KðrÞp

1
CCCCCCCCA

¼

0
BBB@

sin θ cosϕ cos θ cosϕ − sinϕ 0

sin θ sinϕ cos θ sinϕ cosϕ 0

cos θ − sin θ 0 0

0 0 0 1

1
CCCA ×

0
BBB@

1ffiffiffiffiffiffiffi
NðrÞ

p 0 0 0

0 r 0 0

0 0 r sin θ 0

0 0 0
ffiffiffiffiffiffiffiffiffiffi
KðrÞp

1
CCCA: ð25Þ

Similarly to the investigations to derive Eq. (15) in Sec. III for the case of the diagonal tetrad, with Eqs. (24) and (4), it is seen
that the torsion Tabc and contorsion Kabc have the following nonzero components7:

Tð1Þð2Þð1Þ ¼ Tð3Þð2Þð3Þ ¼ sin θ sinϕð1 − ffiffiffiffi
N

p Þ
r

; Tð1Þð3Þð1Þ ¼ Tð2Þð3Þð2Þ ¼ cos θð1 − ffiffiffiffi
N

p Þ
r

;

Tð2Þð1Þð2Þ ¼ Tð3Þð1Þð3Þ ¼ sin θ cosϕð1 − ffiffiffiffi
N

p Þ
r

; Tð4Þð1Þð4Þ ¼ sin θ cosϕ
ffiffiffiffi
N

p
K0

2K
;

Tð4Þð2Þð4Þ ¼ sin θ sinϕ
ffiffiffiffi
N

p
K0

2K
; Tð4Þð3Þð4Þ ¼ cos θ

ffiffiffiffi
N

p
K0

2K
; Tð1Þ ¼

4Kð1 − ffiffiffiffi
N

p Þ − r
ffiffiffiffi
N

p
K0

2r
ffiffiffiffi
N

p
K

;

Kð2Þð1Þð1Þ ¼ Kð2Þð3Þð3Þ ¼ sin θ sinϕð1 − ffiffiffiffi
N

p Þ
r

; Kð3Þð1Þð1Þ ¼ Kð3Þð2Þð2Þ ¼ cos θð1 − ffiffiffiffi
N

p Þ
r

;

Kð1Þð2Þð2Þ ¼ Kð1Þð3Þð3Þ ¼ sin θ cosϕð1 − ffiffiffiffi
N

p Þ
r

; Kð1Þð4Þð4Þ ¼ sin θ cosϕ
ffiffiffiffi
N

p
K0

2K
; Kð2Þð4Þð4Þ ¼ sin θ sinϕ

ffiffiffiffi
N

p
K0

2K
;

Kð3Þð4Þð4Þ ¼ cos θ
ffiffiffiffi
N

p
K0

2K
: ð26Þ

It follows from Eq. (26) that the superpotential has the nonzero components,

Sð1Þð1Þð2Þ ¼ Sð3Þð3Þð2Þ ¼ sin θ sinϕð2Kð1 − ffiffiffiffi
N

p Þ þ r
ffiffiffiffi
N

p
K0Þ

4rK
;

Sð2Þð2Þð1Þ ¼ Sð3Þð3Þð1Þ ¼ sin θ cosϕð2Kð1 − ffiffiffiffi
N

p Þ þ r
ffiffiffiffi
N

p
K0Þ

4rK
;

Sð2Þð2Þð3Þ ¼ Sð1Þð1Þð3Þ ¼ cos θð2Kð1 − ffiffiffiffi
N

p Þ þ r
ffiffiffiffi
N

p
K0Þ

4rK
; Sð4Þð1Þð4Þ ¼ sin θ cosϕðKð1 − ffiffiffiffi

N
p ÞÞ

r
;

Sð4Þð2Þð4Þ ¼ sin θ sinϕðKð1 − ffiffiffiffi
N

p ÞÞ
r

; Sð4Þð3Þð4Þ ¼ cos θð1 − ffiffiffiffi
N

p Þ
r

: ð27Þ

7Tabc, Kμνα, and Sμνα are written in the same manner as the one in Sec. III for the diagonal tetrad.
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By combining Eqs. (14) and (6), the torsion scalar is
described as8

T ¼ 2ð1 − ffiffiffiffi
N

p Þð2Kð1 − ffiffiffiffi
N

p Þ þ r
ffiffiffiffi
N

p
K0Þ

r2K
: ð28Þ

By applying Eq. (24) to Eq. (11) for T
e m ν

μ ¼ 0, the nonzero
components, which are equivalent to those for the diagonal
tetrad in Sec. III, are obtained. Thus, the same procedure
developed for the diagonal tetrad can be used to the
nondiagonal one.
As a consequence from the above investigations, the

scalar field Φ does not influence the physics in vacuum and
the space-time with its spherical symmetry for both
diagonal and nondiagonal tetrads. Hence, in the next
sections, we explore the nonvacuum space-time.

V. SOLUTIONS OF THE CHARGED BLACK HOLE
WITH ITS SPHERICAL SYMMETRY

In this section, we study the solutions of the charged
black hole that has a spherical symmetry.

A. For diagonal tetrad

In the CTEGR, the Lagrangian, from which the charged
gravitational field equation is derived, is given by

LðLi
μ;ΦÞg¼2κjLj½−Φ2Tþ6gμν∂μΦ∂νΦ−4gμνΦð∂νΦÞTμ�

þLem: ð29Þ

Here, Lem ¼ − 1
2
F ∧⋆ F with F ¼ dA is the Maxwell field

and A ¼ Aμdxμ is the one form of the gauge (electromag-
netic) potential, and Φ is a scalar filed. Based on the
variation principle, by varying this Lagrangian (29) in
terms of Φ, we acquire

I ≡ ∂μðLgμν∂νΦÞ − L
6
ΦR ¼ 0: ð30Þ

This field equation is equivalent to Eq. (11) without charge,
which is derived from δLm

δΦ ¼ 0, because the trace of the
energy-momentum tensor for the Maxwell fields becomes
zero. Moreover, by taking the variation principle for the
Lagrangian (29) in terms of the vierbein Laμ, we have [38]

Qaν ≡ ∂αðLΦ2SaναÞ − LΦ2

�
SbανTbα

a −
1

4
LaνT

�
−
3

2
LLaνgβμ∂βΦ∂μΦþ 3LLaμgβν∂βΦ∂μΦ

þ LLaνgβμTμΦ∂βΦ − LΦLaβgνμðTμ∂βΦþ Tβ∂μΦÞ − LgβμΦTνa
μ∂βΦ − ∂μ½LgβνLaμΦ∂βΦ�

þ ∂ρ½LgβρLaνΦ∂βΦ� − κΦ2

2

�
LaρFραFνα −

1

4
LaνFαβFαβ

�
¼ 0: ð31Þ

Furthermore, from the variation of the Lagrangian (29) w.r.t. the gauge potential A, we find

Eμ ≡ ∂νð
ffiffiffiffiffiffi
−g

p
ΦFμνÞ ¼ 0: ð32Þ

It is noted that the derived field equations (30)–(32) are equivalent to those for theMaxwell-TEGR theorywhenΦ ¼ 1 [44,46].
We apply Eqs. (30)–(32) to the space-time (14) using Eqs. (15)–(17). In this case, we also use the representation of the

gauge potential, given by

A ¼ hðrÞdt: ð33Þ

Using all the above information, we obtain the nonzero components of the field equations of CTEGR as

Qð1Þ
r ¼ 3r2NKΦ02 þ 4rNKΦΦ0 þ r2NΦK0Φ0 − KΦ2 þ NKΦ2 þ rNΦ2K0 − 4πr2Nh02Φ2 ¼ 0;

Qð2Þ
θ ¼ Qð3Þ

ϕ ¼ Φ2½f2KN0 þ 2NK0 þ rN0K0 þ 2rNK00gK − rNK02� þ 4KNΦΦ0½2K þ rK0�
þ 4rK2½N0ΦΦ0 − NΦ02 þ 2NΦΦ00� þ 16πrNKh02Φ2 ¼ 0;

Qð4Þ
t ¼ rKΦ2N0 þ NKΦ2 þ 4rNKΦΦ0 þ r2KN0ΦΦ0 − r2KNΦ02 þ 2r2KNΦΦ00 − KΦ2 − 4πr2Nh02Φ2 ¼ 0;

I ¼ 4rK2N0Φ − r2NK02Φþ 2r2NKK00Φþ r2KN0K0Φþ 4NK2Φ − 4K2Φþ 4rNKK0Φþ 6r2K2N0Φ0

þ 24rNK2Φ0 þ 6r2NKK0Φ0 þ 12r2NK2Φ00 ¼ 0;

Et ≡ 2rNKh0Φ0 − rNh0K0Φþ rKN0h0Φþ 2rNKh00Φþ 4NKh0Φ ¼ 0; ð34Þ

8The scalar curvature for (24) is equivalent to the second expression in (17).
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with h0 ¼ dh
dr. Thus, the system of differential equations (34) is equivalent to the system (18) for hðrÞ ¼ 1. In addition, the

system in (34) becomes the one for the Maxwell-TEGR theory with Φ ¼ 1 [44].
The general solution of the system of differential equation (34) is described as

ΦðrÞ ¼ΦðrÞ; hðrÞ ¼ c2þc3

Z ðrΦ0 þΦÞ
r2Φ3

dr;

NðrÞ ¼ c4
r4Φ02þ2r3ΦΦ0 þ r2Φ2

Z
r4Φ02þ2r3ΦΦ0 þ r2Φ2

r2ðrΦ0 þΦÞ drþ c5
r4Φ02þ2r3ΦΦ0 þ r2Φ2

−2

R ½ðrΦ0 þΦÞðR rΦ0drþ R
ΦdrÞ�dr− ðR rΦ0drþ R

ΦdrÞR ðrΦ0 þΦÞdr
r2ðrΦ0 þΦÞ2 ;

KðrÞ ¼−
R ½2ðrΦ0 þΦÞðR rΦ0drþ R

ΦdrÞ�dr− ð2R rΦ0drþ2
R
Φdrþc3Þ

R ðrΦ0 þΦÞdrþc5
r2Φ4½2R ðrΦ0 þΦÞðR rΦ0drþ R

ΦdrÞdrþð2rΦ−2
R
rΦ0dr−2

R
Φdr−c4Þ

R ðrΦ0 þΦÞdrþΦ2r2− rΦc3þc5�
:

ð35Þ

Equation (35) shows that explicit form of the scalar field
cannot be given. The reason of this fact can also be discussed
similarly to the neutral case. The different point from the
charged case is the fact that we have five differential
equations, while there exist four unknown quantities, Φ,
N, K, and the potential h. The only choice that makes the
number of differential equations equivalent to that of
unknown quantities is to leave the scalar field arbitrary.
We explore all of the possible values that the scalar field

can take. For this end, we take Φ as previous, i.e.,

ΦðrÞ ¼ 1

rn
: ð36Þ

As a consequence for n > 0, we find

hðrÞ ¼ c2 þ c3rn−1; NðrÞ ¼ 1þ rn−1½c4 þ c5rn−1�
ðn − 1Þ2 ;

KðrÞ ¼ r2n þ c4r3n−1 þ c5r2ð2n−1Þ; ð37Þ

where we have put c5 ¼ −4c32. The line element of the
constructed from Eq. (36) is undefined in the limit r → ∞.
Thus, the choice ΦðrÞ ¼ 1

rn is not a physical one similar to
the neutral case.
As another form, we choose

ΦðrÞ ¼ rs; s > 0: ð38Þ

The substitution of it into Eq. (35) yields

hðrÞ ¼ c2 þ
c3
rs−1

; NðrÞ ¼ 1þ r−s−1½c4 þ c5r−s−1�
ðsþ 1Þ2 ;

KðrÞ ¼ r−2s þ c4r−3s−1 þ c5r−2ð2sþ1Þ: ð39Þ

The line element of the constructed from in Eq. (39)
becomes singular in the limit r → ∞ because of K ¼ 0.

Thus, the choice ΦðrÞ ¼ rs must be excluded from our
considerations.
As one more form, we investigate the expression Φ ¼ 1,

either n ¼ 0 or s ¼ 0. For this, we acquire

ΦðrÞ ¼ 1; qðrÞ ¼ c2 −
c3
r
;

NðrÞ ¼ KðrÞ ¼ 1þ c4
r
þ c3

r2
: ð40Þ

In this case, the metric for the solution (40) is written as

ds2 ¼
�
1þ c4

r
þ c3

r2

�
dt2 −

�
1þ c4

r
þ c3

r2

�
−1
dr2

− r2ðdθ2 þ sin2θdϕ2Þ: ð41Þ

With the discussions in Sec. III, it can be seen that the
metric in Eq. (41) is asymptotically flat, and that it is
reduced to the Reissner-Nordström space-time if the con-
stant c4 ¼ −2m and c3 ¼ q [44].

B. For nondiagonal tetrad

Next, we examine the case of the nondiagonal tetrad.
Similarly to the previous subsection, we combine the field
equations (30)–(32) and the space-time of Eq. (24) in four
dimensions. We also use Eqs. (26)–(28) and the expression
of the gauge potential in Eq. (33). As a result, we obtain
the same differential equations presented in Eq. (34) which
correspond to the case of the diagonal tetrad. Thus, the
same investigations and consequences as those for the
diagonal tetrad can be found in the case of the nondiagonal
tetrad.

VI. CONCLUSIONS

In the present work, we have explored the issue to
analyze the solutions of the black hole in the framework of
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“CTEGR.” We have applied the gravitational field equa-
tions of the CTEGR in the vacuum case to a diagonal space-
time having a spherical symmetry. We have described the
resultant system of differential equations and derived the
analytic solution of this system. Consequently, we have
shown that the only solution with a physical meaning,
namely, the explicit representation of the specific solution
can be acquired for the scalar field is equal to unity, i.e.,
ΦðrÞ ¼ 1. That is, for the space-time with the spherical
symmetry, the black hole solution of CTEGR theory is
equivalent to the TEGR one.
In addition, we have investigated the case of the non-

diagonal tetrad for the space-time with the spherical
symmetry in vacuum. Based on the same procedures as
in the case of the diagonal tetrad, we have written the
gravitational field equations. We have found the set of the
solutions for this system of differential equation, which is
equivalent to that in the case of the diagonal tetrad. As a
result, it has been understood that in the space-time with the
spherical symmetry for both the diagonal and nondiagonal
tetrads, the vacuum solution of the black hole in the
CTEGR is equivalent to that in the TEGR.
Furthermore, we have studied the black hole solution in

the nonvacuum case by deriving the charged gravitational
field equations in the CTEGR. We have adopted these
equations to the four-dimensional space-time with the
spherical symmetry in the case of the diagonal tetrad. We
have obtained the system of differential equation and
derived the set of the solutions for this equation system.
Similarly, to the case in vacuum, it has been demonstrated
that the solution with a physical meaning, i.e., the explicit
expression of the specific solution is only the Ressiner-
Nordström space-time for ΦðrÞ ¼ 1. It has also been
confirmed that with the same procedures to the case of

the nondiagonal tetrad as those for that of the diagonal one, if
the charged gravitational field equations in the CTEGR are
applied to the nondiagonal tetrad, the same consequences as
those in the case of the diagonal tetrad are found.
As a result, it has been concluded that the only physical

solution of the black hole with its spherical symmetry in the
CTEGR with or without the charge, i.e., the Maxwell field,
is equivalent to the solution of the black hole for ΦðrÞ ¼ 1
in the TEGR. From this result, it can be seen that a scalar
filed in the CTEGR does not influence on the physics in the
space-time with the spherical symmetry due to the fact that
Φ ¼ 1 to have a well-known asymptote behavior. In our
viewpoint, the main reason of the corner-stone result of this
study may be due to the fact that we have not used the
general form of the tetrad that possesses spherically
symmetric or may be due to the structure of the field
equations of the CTEGR theory. The meaning of the
structure of the field equations of the CTEGR theory is
that this theory contains the field equations derived from
the variation of the Lagrangian w.r.t. the tetrad plus its trace,
which is not trivial. This is similarly to the case of fðRÞ
gravity, whose field equations are the ones that come from
the variation from the Lagrangian w.r.t. the metric plus the
trace of this equation. As far as we know, till now there is
no black hole solution in fðRÞ that deviates from GR. This
viewpoint needs more investigation that will be done
elsewhere.
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