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We consider the Einstein-scalar-Gauss-Bonnet theory and assume that, at regimes of large curvature, the
Ricci scalar may be ignored compared to the quadratic Gauss-Bonnet term. We then look for static,
spherically symmetric, regular black-hole solutions with a nontrivial scalar field. Despite the use of a
general form of the spacetime line element, no black-hole solutions are found. In contrast, solutions that
resemble irregular particlelike solutions or completely regular gravitational solutions with a finite energy-
momentum tensor do emerge. In addition, in the presence of a cosmological constant, solutions with a
horizon also emerge, however, the latter corresponds to a cosmological rather than to a black-hole horizon.
It is found that, whereas the Ricci term works towards the formation of the positively curved topology of a
black-hole horizon, the Gauss-Bonnet term exerts a repulsive force that hinders the formation of the black
hole. Therefore, a pure scalar-Gauss-Bonnet theory cannot sustain any black-hole solutions. However, it
could give rise to interesting cosmological or particlelike solutions where the Ricci scalar plays a less
fundamental role.
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I. INTRODUCTION

After a century of searching and anticipation, at last,
gravitational waves—signals from processes taking place in
strong-gravity regimes in our Universe—have been success-
fully detected [1,2]. This development has refueled the
interest in the construction of a more fundamental theory of
gravity. In most cases, such a theory includes extra fields or
higher-curvature terms in its action [3,4], the presence of
which modifies the characteristics of the emergent gravita-
tional solutions compared to the ones arising in the context
of the traditional general relativity (GR).
The quest for novel black-hole solutions in the context of

a generalized gravitational theory has been the most intense
of all. The restrictive no-hair theorem [5] of GR, which
applied to gravitational theories including minimally
coupled scalar fields, was evaded when novel black-hole
solutions with Yang-Mills [6], Skyrme fields [7] or fields
with a conformal coupling to gravity [8] appeared in the
literature. A novel formulation of the no-hair theorem [9]

was also evaded in the context of a gravitational theory with
a scalar field coupled to the Gauss-Bonnet term, a quadratic
curvature term [10–12]: the discovery of the dilatonic black
holes [13] (see also [14–18] for some earlier studies) was
soon followed by the one of the colored black holes [19,20]
in the presence of a Yang-Mills field, and then of higher-
dimensional [21] or rotating versions [22–25] (see [26–29]
for a number of reviews).
After a dormant period, the revival of the Horndeski [30]

and Galileon [31] theories gave a significant boost to the
concept of generalized gravitational theories, which contain
a single scalar field and higher-derivative curvature terms.
Even the no-hair theorems were re-formulated [32,33] but
to no avail: novel black-hole solutions were again con-
structed [34–37]. These solutions, as well as the earlier
ones mentioned above, have the characteristic feature of the
scalar hair: a regular, nontrivial scalar field that is asso-
ciated with the black hole, a feature forbidden by GR. In a
recent work [38], it was demonstrated that a general class of
theories with a scalar field having an arbitrary coupling
function to the quadratic Gauss-Bonnet term, the Einstein-
scalar-Gauss-Bonnet class of theories, always evades the
no-hair theorem [9] and leads to regular, black-hole
solutions with scalar hair. The early dilatonic [13] and
shift-symmetric Galileon [36] solutions are particular
examples of this general statement—as are also the addi-
tional solutions [39,40] that appeared almost simultane-
ously with [38]. In addition, a large number of works has
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appeared that studied novel black holes or compact objects
in these, or similar, types of theories as well as their
properties [41–115]. The asymptotically flat black-hole
solutions were also supplemented by solutions with an
asymptotic (anti)-de Sitter behavior, a topic that has also
attracted a lot of interest in the literature [116–134].
The Einstein-scalar-Gauss-Bonnet theory has in fact

proven to be an extremely rich generalized theory of
gravity. Apart from novel black-hole solutions as described
above, it has been shown to lead to families of wormholes
that require no exotic matter [135,136] and particlelike
solutions with regular spacetimes [130,137], all with non-
trivial scalar hair (see also [138–142]). The presence of the
quadratic Gauss-Bonnet term seems to be of paramount
importance for the emergence of all of these compact
solutions. It creates an effective energy-momentum tensor
that may locally violate the energy conditions while the
actual matter fields of the theory continue to respect them.
This leads to the evasion of nonexistence arguments of GR
and the emergence of novel solutions, from black holes to
wormholes, with a scalar hair.
The Einstein-scalar-Gauss-Bonnet theory has also inter-

esting cosmological implications, and these were in fact the
first ones to be studied in the literature. In the context of the
effective heterotic superstring theory, where the scalar field
was identified with one of the moduli fields of the theory, it
was shown that this theory leads to singularity-free cos-
mological solutions [143]. Later, it was demonstrated that a
similar type of solutions emerges for a variety of coupling
functions, with a number of common features, between
the scalar field and the Gauss-Bonnet term [144,145].
More recently, the same theory was studied from a novel
perspective [146]: as we go backwards in time, the
curvature of spacetime considerably increases and the
quadratic Gauss-Bonnet term becomes eventually as impor-
tant as, or even larger than, the linear Ricci term. Assuming
that such a time period exists, the Ricci term was altogether
ignored from the theory and the coupled system of the
scalar field and the Gauss-Bonnet was studied on its own. It
was found [146] that this simplified theory supported
singularity-free solutions with the same characteristics as
the ones emerging in the context of the complete theory. In
addition, a family of attractive inflationary solutions with a
natural exit mechanism was found, all in an analytical way
due to the simplification of the set of field equations.
In the context of the present work, we will keep the same

perspective but focus on the emergence of solutions with a
horizon. Our main priority will be to investigate whether
the simplified, pure scalar-Gauss-Bonnet theory leads to
regular black-hole solutions with a nontrivial scalar field.
We will therefore assume that there exists a part of
spacetime where the Gauss-Bonnet term may dominate
over the linear Ricci term. We will seek for static, spheri-
cally symmetric, regular black holes, and attempt to solve
the simplified set of field equations by using both analytical

and numerical methods. We will also use alternative forms
of line elements in an effort to increase the flexibility of our
ansatz. The presence of a cosmological constant will also
be employed, and its role to the formation of a horizon will
be investigated. As we will demonstrate, the pure scalar-
Gauss-Bonnet theory cannot support by itself black-hole
spacetimes—this will be due to the conflicting roles of the
Gauss-Bonnet and Ricci terms in the formation of a regular
black-hole horizon. Nevertheless, our quest for black-hole
solutions will lead us instead to a number of alternative
solutions—all parts of the phase space of solutions of the
pure scalar-Gauss-Bonnet theory—with a number of inter-
esting characteristics.
The outline of the present work is as follows: in Sec. II,

we present our theoretical framework and field equations.
In Sec. III, we look, in an analytical way, for solutions with
a horizon in the case where the cosmological constant
vanishes—we also perform an exact numerical study of a
family of regular solutions we derive. In Sec. IV, we
employ a generalized form of the spacetime line element,
and repeat our previous analysis. We reinstate the cosmo-
logical constant in Sec. V, and interpret the solutions we
obtain. In Sec. VI, we use exact numerical results for black-
hole solutions found in the context of the complete
Einstein-scalar-Gauss-Bonnet theory, and investigate the
role of the Gauss-Bonnet and Ricci terms in the formation
of a black-hole horizon. We finish with our conclusions in
Sec. VII.

II. THE THEORETICAL FRAMEWORK

The starting point of our analysis will be the following
action, describing a generalized theory of gravity,

S¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p �
R−

1

2
∂μϕ∂μϕþfðϕÞR2

GB−2Λ
�
: ð1Þ

The theory contains the Ricci scalar curvature R, a scalar
field ϕ and the higher-curvature, quadratic Gauss-Bonnet
(GB) term defined as

R2
GB ¼ RμνρσRμνρσ − 4RμνRμν þ R2; ð2Þ

in terms of the Riemann tensor Rμνρσ, Ricci tensor Rμν and
Ricci scalar R. The GB term, being a topological invariant
in four dimensions, must be coupled to the scalar field ϕ.
This is realized via the arbitrary coupling function fðϕÞ;
choosing different forms for the coupling function, one
may study the emergence of solutions within a whole class
of theories. The theory includes also a cosmological
constant Λ. Throughout our work, we will use units in
which G ¼ c ¼ 1.
Taking the variation of the action with respect to the

metric gμν and the scalar field ϕ, we end up with the
gravitational field equations and the equation of motion for
the scalar field. These have the following forms:
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Gμν ¼ Tμν; ð3Þ

∇2ϕþ _fðϕÞR2
GB ¼ 0; ð4Þ

respectively. In the above,Gμν is the Einstein tensor and Tμν

is the total energy-momentum tensor of the theory,

Tμν¼−
1

4
gμν∂ρϕ∂ρϕþ1

2
∂μϕ∂νϕ

−
1

2
ðgρμgλνþgλμgρνÞηκλαβR̃ργ

αβ∇γ∂κfðϕÞ−Λgμν; ð5Þ

which receives contributions from the kinetic term of the
scalar field, the GB term and the cosmological constant.
The dot over the coupling function denotes its derivative
with respect to the scalar field (i.e., _f ¼ df=dϕ). We have
also used the definition

R̃ργ
αβ ≡ ηργστRσταβ ≡ ϵργστffiffiffiffiffiffi−gp Rσταβ: ð6Þ

The emergence of regular black-hole solutions with a
nontrivial scalar field, in the context of the theory (1) and
for a variety of coupling functions fðϕÞ, was demonstrated
in [38,131] with either Minkowski or anti-de Sitter asymp-
totic behavior. Here, we will investigate whether regular,
black-hole solutions with scalar hair emerge in the context
of the pure scalar-GB theory, i.e., in the absence of the
Ricci scalar from the theory. In that case, the derived
solutions would rely solely on the synergy between the
scalar field and the GB term. From the field equations (3)
and (4), we may see that such a synergy is in principle
possible: a nontrivial scalar field ensures the presence of the
GB term in the theory whereas the GB term provides in its
turn a nontrivial potential for the scalar field. It is this same
synergy that leads to singularity-free or inflationary cos-
mological solutions, even in the absence of the Ricci scalar
from the theory, as was analytically demonstrated in [146].
The assumption that the linear gravitational Ricci term

may be ignored from the theory when compared to the
quadratic GB term may be justified only in regimes of
spacetime where the curvature is particularly large. This
may be realized only near the black-hole horizon whereas
in the asymptotic regime the Ricci scalar must be neces-
sarily reinstated. Therefore, the question we would like to
pose, and investigate in what follows, is the following: does
the curvature of spacetime ever become so strong that a
black-hole horizon may be formed only due to the effect of
the GB term (supplemented by that of the scalar field)?
To this end, we will assume a static, spherically

symmetric ansatz for the spacetime line element of the
form:

ds2 ¼ −eAðrÞdt2 þ eBðrÞdr2 þ r2ðdθ2 þ sin2θdφ2Þ: ð7Þ

In accordance to the above discussion, we will focus on the
“near” regime of spacetime, i.e., on the small-r regime, and
assume that, there, all terms associated with the Ricci term
may be ignored from the field equations. That amounts to
ignoring altogether the components of the Einstein tensor
Gμν from the gravitational field equations (3). Then,
employing the ansatz (1), the explicit form of the compo-
nents of Einstein’s equations becomes

Tt
t ¼ −

e−2B

4r2
½ϕ02ðr2eB þ 16f̈ðeB − 1ÞÞ

− 8_fðB0ϕ0ðeB − 3Þ − 2ϕ00ðeB − 1ÞÞ� − Λ ¼ 0; ð8Þ

Tr
r ¼

e−Bϕ0

4

�
ϕ0 −

8e−BðeB − 3Þ _fA0

r2

�
− Λ ¼ 0; ð9Þ

Tθ
θ ¼ Tφ

φ ¼ −
e−2B

4r
½ϕ02ðreB − 8f̈A0Þ

− 4_fðA02ϕ0 þ 2ϕ0A00 þ A0ð2ϕ00 − 3B0ϕ0ÞÞ� − Λ ¼ 0:

ð10Þ

We observe that, upon ignoring the components of the
Einstein tensor from the field equations, the total effective
energy-momentum tensor vanishes. However, this is due
not to the triviality of the matter distribution in our theory
but to the cancellation of the positive contribution of the
kinetic term of the scalar field and the negative contribution
of the GB term to the effective energy-density and pressure
components of the system. We therefore look for nontrivial
configurations of the scalar field and metric functions that
satisfy the above equations and thus correspond to locally
zero-energy and zero-pressure solutions.
The scalar field equation (4) on the other hand remains

unaltered by the elimination of the Ricci scalar in the small-
r regime, and assumes the following explicit form:

2rϕ00 þ ð4þ rA0− rB0Þϕ0

þ4_fe−B

r
½ðeB−3ÞA0B0− ðeB−1Þð2A00 þA02Þ� ¼ 0; ð11Þ

where we have assumed that the scalar field shares the
symmetry of spacetime and thus is also static and spheri-
cally symmetric, ϕ ¼ ϕðrÞ. In all the above equations, the
prime denotes differentiation with respect to the radial
coordinate r.

III. SOLUTIONS IN THE NEAR REGIME
FOR Λ= 0

The issue of the emergence of regular, black-hole
solutions from the system of Eqs. (8)–(11), with Λ ¼ 0,
was briefly discussed in [38]. Here, we will first review and
expand on the mathematical arguments involved in that
analysis and, second, study and characterize the families of
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solutions we obtain. We will again assume that the
cosmological constant is zero and postpone the study of
its role for a later section.
As our priority is to find solutions with a black-hole

horizon, we will demand that, for some value of the radial
coordinate r ¼ rh, the following conditions should hold:

gttjr¼rþh
→ 0; grrjr¼rþh

→ ∞: ð12Þ

The above conditions amount to assuming that A0 → ∞ and
B0 → −∞. In fact, one may consider any of the two
conditions as the starting point of the analysis—in the
case of the emergence of a spherically symmetric black
hole, these two conditions are equivalent; however, in the
absence of such a solution, each condition allows us to
explore different parts of the phase space of the solutions of
the theory. We investigate these two different lines of
thinking in the following two subsections.

A. Expanding around A0 → ∞
Before applying any limit, we may observe that Eq. (9)

can be solved to yield an expression for the metric
component eB, that is

eB ¼ 24A0 _f
8A0 _f − r2ϕ0 ; ð13Þ

from which we may easily deduce an expression for the
first derivative of B, namely

B0 ¼ r½A0ð _fðrϕ00 þ 2ϕ0Þ − rϕ02f̈Þ − rA00ϕ0 _f�
A0 _fð8A0 _f − r2ϕ0Þ : ð14Þ

Employing Eqs. (13) and (14), we may eliminate the metric
function BðrÞ and its derivative from the remaining field
equations (8), (10) and (11). The latter reduce to a set of
two independent second-order, coupled, ordinary differ-
ential equations that may be brought to the following form:

A00 ¼ P
S
; ϕ00 ¼ Q

S
; ð15Þ

where

S ¼ 16eB _fð16A0 _f − r2ϕ0Þ þ 16_fð5r2ϕ0 − 16A0 _fÞ; ð16Þ

P ¼ e2Bð32rA0ϕ0 _f − 6r3ϕ02Þ
þ eBð−64r2A0ϕ02f̈ þ 40r2A02ϕ0 _f þ 32rA0ϕ0 _f

−128A03 _f2 − 5r4A0ϕ02 þ 10r3ϕ02Þ − 40r2A02ϕ0 _f

þ 128A03 _f2; ð17Þ

Q¼ −
1

A0 ½eBϕ02ð16r2A0ϕ0f̈þ 8r2A02 _f − 32rA0 _f

þ 256A02 _f f̈þr4A0ϕ0 − 6r3ϕ0Þ
þϕ02ð−16r2A0ϕ0f̈þ 24r2A02 _fþ 96rA0 _f − 256A02 _f f̈Þ
þ 2r3e2Bϕ03�: ð18Þ

In the above expressions, we have eliminated B0 but, for
simplicity of notation, we kept eB—the latter should be
considered as a dependent function of the remaining
independent variables according to Eq. (13).
We will now assume that, as r → rh, A0 diverges. The

regularity of the horizon, if existent, demands that the scalar
field ϕ as well as its first and second derivative remain there
finite. Under these assumptions, Eq. (13) readily gives that

eB ¼ 3þO
�
1

A0

�
: ð19Þ

By replacing the above in Eqs. (15)–(18), we find that, near
the point of interest, the following relations hold:

A00 ¼ −
1

2
A02 þOðA0Þ; ϕ00 ¼ Oð1Þ: ð20Þ

The above equations may be easily integrated with respect
to the radial coordinate to give

A0 ¼ 2

r − rh
þOð1Þ; ϕ0 ¼ ϕ1ðr − rhÞ þOð1Þ: ð21Þ

The first of the above equations consistently gives that, near
rh, A0 → ∞ as assumed above. Integrating once more, we
find the complete form of the asymptotic solution for the
metric functions A, B and the scalar field ϕ near rh:

eA ¼ a2ðr − rhÞ2 þOððr − rhÞ3Þ; ð22Þ

eB ¼ 3þ b1ðr − rhÞ þOððr − rhÞ2Þ; ð23Þ

ϕ¼ ϕ0þϕ1ðr− rhÞþϕ2ðr− rhÞ2þOððr− rhÞ3Þ: ð24Þ

In the above, b1, a2 and ϕi are arbitrary integration
constants. As demanded, the scalar field and its derivatives
are regular at rh while the metric function eA vanishes thus
exhibiting the expected behavior near a black-hole horizon.
However, the behavior of the second metric function eB, as
given by Eq. (23), does not describe a black hole as it
remains regular near rh. In order to gain more information
about the form of spacetime around rh, we calculate the
scalar gravitational quantities, the exact expressions of
which may be found in the Appendix A. We then find
the following results:
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R ¼ −
10b1

3ðr − rhÞ
þOð1Þ; ð25Þ

RμνRμν ¼ 50b1
9ðr − rhÞ2

þO
�

1

r − rh

�
; ð26Þ

RμνρσRμνρσ ¼ 100b1
9ðr − rhÞ2

þO
�

1

r − rh

�
; ð27Þ

R2
GB ¼ −

40b1
3r2hðr − rhÞ

þOð1Þ: ð28Þ

According to the above, all curvature invariant quantities R,
RμνRμν and RμνρσRμνρσ are diverging near rh while the
Gauss-Bonnet combination exhibits a softer divergence
than expected as the dominant terms of order ðr − rhÞ−2
exactly cancel.
Under the change of coordinate l ¼ r − rh, the expan-

sions (24) resemble the asymptotic form of a particlelike
solution near the origin. As discussed above, our solution is
characterized by a spacetime singularity that, at first, may
be considered as unphysical. However, particlelike solu-
tions plagued by singularities, either in spacetime or in
the profile of the scalar field, are quite common in the
literature in the context of scalar-tensor theories of gravity
(see, for instance [137,139]). These solutions are physical
whenever they are characterized by a finite total energy-
momentum tensor as is the case also for the solutions
derived here.

B. Expanding around B0 → −∞
Alternatively, we may employ the fact that near a black-

hole horizon it holds that eB → ∞. As we will shortly
confirm, this amounts to assuming that B0 → −∞. The
metric function A will now be considered as a dependent
variable, and Eq. (9) may be readily solved to give

A0 ¼ r2eBϕ0

8ðeB − 3Þ _f : ð29Þ

Computing also the second derivative of A from the above
expression, we may eliminate the metric function A and its
derivatives from the remaining field equations. Then, we
form a system of two coupled, ordinary differential
equations, one first order and one second order, for the
metric function B and the scalar field ϕ, respectively. These
have the form

B0 ¼ Y
W

; ϕ00 ¼ X
W

; ð30Þ

where

W ¼ 32A0 _f; ð31Þ

Y ¼ 2e−B½−2ðeB − 1ÞðreBϕ0 − 8A00 _fÞ þ 8ðeB − 1ÞA02 _f

þ r2ð−eBÞA0ϕ0�; ð32Þ

X ¼ 2e−Bϕ0ðeB − 3ÞðreBϕ0 − 8A00 _fÞ
þ eBA0ϕ0ð32f̈ þ 3r2Þ − 8ðeB − 3ÞA02 _f: ð33Þ

Again, for notational simplicity we have kept A0 and A00 in
the expressions above, however, these quantities are now
dependent functions of the independent variables B and ϕ.
Let us now focus on the regime near rh, where eB and B0

are assumed to diverge. First, we expand there Eq. (29) to
obtain

A0 ¼ r2ϕ0

8_f
þOðe−BÞ: ð34Þ

Substituting the above result into Eqs. (30)–(32), we find
that near rh the following relations hold:

B0 ¼ −
2

r
eB þOðe−BÞ; ð35Þ

ϕ00 ¼ −
eB

r
ϕ0 þOðe−BÞ: ð36Þ

According to Eq. (35), near rh, B0 diverges indeed to minus
infinity as assumed. If we integrate this equation with
respect to the radial coordinate, we find that

e−B ¼ 2 ln

�
r
rh

�
: ð37Þ

Indeed, as demanded, the metric function eB exhibits the
desired behavior near a black-hole horizon. In order for this
horizon to be also regular, the scalar field and its derivatives
should be finite. Then, Eq. (36) dictates that we must
necessarily have ϕ0ðrhÞ ¼ 0. We may in fact solve ana-
lytically Eqs. (34) and (36) to obtain the solutions

ϕ¼ϕ0þϕ1

�
−
1

2

ffiffiffi
π

p
rhErfiðξÞþ rξ

�
; ϕ0 ¼ϕ1ξ; ð38Þ

and

A ¼ a0 −
r3ϕ1ð

ffiffiffi
3

p
FDð

ffiffiffi
3

p
ξÞ − 3ξÞ

72_fðϕ0Þ
; ð39Þ

where a0 and ϕi are again integration constants, and where
we have defined the variable
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ξ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln

�
r
rh

�s
: ð40Þ

Also, FDðxÞ and ErfiðxÞ are the Dawson and error function,
respectively, defined as

FDðxÞ ¼ e−x
2

Z
x

0

et
2

dt ¼
ffiffiffi
π

p
2

e−x
2

ErfiðxÞ: ð41Þ

Although the solution for the metric function eB (37)
hints to the presence of a horizon, on which the scalar field
remains regular according to Eq. (38), the behavior of the
metric function eA reveals that this solution is not a black
hole: in the limit r → rh, or ξ → 0, A0 remains finite and A
adopts an arbitrary constant value. Using the above
asymptotic solutions, we may calculate once again the
scalar curvature quantities, the expressions of which are
listed below:

R ¼ −
2

r2h
þOð ffiffiffiffiffiffiffiffiffiffiffiffi

r − rh
p Þ; ð42Þ

RμνRμν ¼ 4

r4h
þOð ffiffiffiffiffiffiffiffiffiffiffiffi

r − rh
p Þ; ð43Þ

RμνρσRμνρσ ¼ 12

r4h
þOð ffiffiffiffiffiffiffiffiffiffiffiffi

r − rh
p Þ; ð44Þ

R2
GB ¼ −

ϕ1

ffiffiffiffiffiffiffiffiffiffiffiffi
r − rh

p

r3=2h
_fðϕ0Þ

þOððr − rhÞ3=2Þ: ð45Þ

The above asymptotic values reveal that, near rh, the
spacetime remains regular and no singularities emerge.
All curvature invariants assume constant values apart from
the GB combination that is vanishing at exactly r ¼ rh.
We have performed a numerical integration of the system

(30) to determine the solutions for the metric function B
and scalar field ϕ in the whole radial regime. To this end,

we have used Eqs. (37) and (38) as boundary conditions,
and finally integrated Eq. (29) with a randomly chosen
boundary condition eAðrhÞ ¼ 2. In Figs. 1(a) and 1(b), we
depict the profiles of the two metric components −gtt and
grr, respectively, for a variety of forms of the coupling
function fðϕÞ. We observe that the qualitative behavior of
the two metric components remains largely unaffected by
the exact form of fðϕÞ, especially at the small-r regime. As
our analytic calculations revealed, the grr component
diverges as r → rh but the gtt remains finite thus failing
to adopt a black-hole profile. We also note that the behavior
of the two metric functions at asymptotic infinity fail to
describe an asymptotically flat spacetime: the grr metric
component approaches a constant value different from
unity whereas the gtt component diverges as → ∞. This
is due to the fact that the GB term cannot by itself support a
robust solution at asymptotic infinity since it is subdomi-
nant to the Ricci curvature in that regime. Had we found a
black-hole solution with a regular horizon at small values of
r supported only by the GB term, this would have been
smoothly matched to a solution of the complete Einstein-
scalar-GB theory for large values of r.
The regularity of the spacetime, despite the divergence of

the gtt component at large distances, as well as the domain
of dominance of the GB term are clearly reflected in Fig. 2:
this scalar gravitational quantity vanishes very close to and
far away from rh while having nontrivial values at small
and intermediate distances.
The solution for the scalar fieldϕ is presented in Fig. 3(a).

As clearly shown, it adopts finite constant values1 asymptotic
form near rh and at asymptotic infinity which leads to its first

(a) (b)

FIG. 1. (a) The −gtt component, and (b) the grr component of the metric tensor for a pure scalar-Gauss-Bonnet solution and for a
variety of forms of the coupling function fðϕÞ.

1Instead of solving the set of field equations as an initial value
problem, a shooting method could be applied in order to obtain
solutions with a vanishing scalar field at infinity. However, this
could be applied only for the scalar field and not for the metric
functions for which the correct asymptotic form is obtained only
after reinstating the Ricci scalar in the theory.
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derivative having a vanishing value at both of these regimes.
This profile results into the form of the contribution of the
scalar kinetic term to the effective energy-momentum tensor
that is shown in Fig. 3(b): as expected, this contribution has a
nonzero value at intermediate values of the radial coordinate
where the scalar field has a nontrivial profile. The same is true
for the contribution of the GB term to the total energy-
momentum tensor (5): this is again nontrivial at intermediate
distances, in accordance to Fig. 2, and has exactly the same
form as the Tϕ

t
t contribution, depicted in Fig. 3(b), but with

the exact opposite sign: it is this behavior that guarantees the
vanishing total energy-momentum tensor as our analysis
demanded. Let us stress that both families of solutions
derived in this section correspond to nontrivial gravitational
solutions with finite, zero total energy-momentum tensor
whose physical significance will be studied elsewhere.
In the aforementioned numerical analysis, we have

considered only positive values for the coupling constant
α, which appears in the expression of the coupling function
fðϕÞ. However, in the context of a generalized gravitational
theory, negative values of α could be also considered.

In fact, black-hole solutions with scalar hair do emerge in
the complete Einstein-scalar-GB theory with negative α
[38,68]. In the present, pure scalar-GB theory, we therefore
considered negative values of α, too. According to the
results we obtained, solutions with a nontrivial scalar field
emerge only if the sign of ϕ1, associated with the first
derivative of the scalar field near rh, is also reversed.
However, the obtained solutions have the same character-
istics as the ones derived for α > 0 and thus do not describe
black-hole solutions.
In a final attempt to find black-hole solutions, we have

also considered the case of an exotic scalar field with the
opposite sign in front of its kinetic term. The addition of the
GB term in the Einstein-scalar theory has the advantage of
producing novel solutions, such as black holes with scalar
hair or wormholes, without the need of any exotic matter.
However, in the context of the pure scalar-GB theory,
where black holes with scalar hair fail to emerge, an exotic
scalar field could provide an interesting alternative.
According to our calculations, the near-rh solutions for
the scalar field and the grr component in this case remain
the same, and only the sign of the second term of the metric
function AðrÞ in Eq. (39), or equivalently the sign of the
parameter ϕ1, is reversed. Once again, no black-hole
solutions emerge since the gtt component takes on a
constant value, as r → rh, instead of a vanishing one.
In Sec. VI, we will return to the study of all the

aforementioned cases of the pure scalar-GB theory in order
to investigate the deeper reason for failing to obtain black-
hole solutions.

IV. ALTERNATIVE SPACETIME
LINE ELEMENTS

The main objective of this work is to find an asymptotic
solution that describes a regular black-hole horizon.
The line element (1) employed in the previous section
has failed to accomplish this task. While retaining the

(a) (b)

FIG. 3. (a) The scalar field ϕ and (b) the ðttÞ component of the scalar kinetic-term contribution to the effective energy-momentum
tensor, for various forms of the coupling function.

FIG. 2. The Gauss-Bonnet term R2
GB for a pure scalar-Gauss-

Bonnet solution and a linear coupling function fðϕÞ ¼ aϕ, for
various values of a.
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assumptions of staticity and spherical symmetry, we could
consider alternative ansatzes for the line element of the
spacetime that could perhaps allow for more general
families of solutions. To this end, we consider the following
line element:

ds2¼−eAðrÞdt2þeBðrÞdr2þH2ðrÞðdθ2þsin2θdφ2Þ: ð46Þ

Note that, by setting HðrÞ ¼ r, we recover the line element
employed in the previous section. A line element of this
general form was used in the context of the Einstein-scalar-
GB theory in order to find traversable wormhole solutions
[136]—there, it was demonstrated that the above line
element led to more extended families of solutions even
in cases where the line element (1) did not allow for any
solutions at all. It seems therefore justified that such a line
element could be used in our quest for black-hole sol-
utions, too.
Employing then the line element (46), we find the

following explicit expressions for the components of the
gravitational field equations:

Tt
t ¼

e−2B

4H2
½8_fðB0ϕ0ðeB − 3H02Þ

− 2eBϕ00 þ 2H02ϕ00 þ 4H0H00ϕ0Þ
þ ϕ02ð−16f̈ðeB −H02Þ − eBH2Þ� ¼ 0; ð47Þ

Tr
r ¼

e−2Bϕ0

4H2
½eBH2ϕ0 − 8_fA0ðeB − 3H02Þ� ¼ 0; ð48Þ

Tθ
θ ¼ Tφ

φ ¼ e−2B

4H
½þ4_fð2A00H0ϕ0

þ A0ð−3B0H0ϕ0 þ 2H00ϕ0 þ 2H0ϕ00Þ þ ðA0Þ2H0ϕ0Þ
þ ϕ02ð8A0f̈H0 − eBHÞ� ¼ 0; ð49Þ

and the equation for the scalar field

4_fe−B

H
½−4_fð2A00ðeB −H02Þ

− A0ðB0ðeB − 3H02Þ þ 4H0H00Þ þ A02ðeB −H02ÞÞ�
þ 2Hϕ00 þ 4H0ϕ0 þHA0ϕ0 −HB0ϕ0 ¼ 0: ð50Þ

We may, as before, work first with the limit eA → 0, or
A0 → ∞, as r → rh. Then, Eq. (48) may be solved to yield
an expression for the dependent function eB:

eB ¼ 24_fA0H02

8_fA0 −H2ϕ0 : ð51Þ

From the above, we may again find an expression for B
that, together with the one for eB, could be used to eliminate
the metric function B from the remaining field equations.

These, then, reduce to a set of three, coupled, second-order,
ordinary differential equations for the metric functions A
and H and the scalar field ϕ, which may be written as2

A00 ¼ P̃

4_f S̃
; ϕ00 ¼ ϕ0Q̃

S̃
; H00 ¼ K̃

4_f S̃
: ð52Þ

In order to reduce the technicalities of our analysis, we
present the expression for B0 and the explicit forms of the
functions S̃, P̃, Q̃ and K̃ in Appendix B.
Let us instead focus on the physical implications of this

system of equations. In the limit A0 → ∞ whileH, ϕ and ϕ0
remain finite, we obtain

eB ¼ 3H02 þO
�
1

A0

�
: ð53Þ

By replacing the above in Eq. (52), we get near the point of
interest, r ≃ rh, the results

ϕ00 ¼ 1

8
ϕ0A0 þOð1Þ; ð54Þ

A00 ¼ −
3

8
A02 þOðA0Þ; ð55Þ

H00 ¼ 1

8
H0A0 þOð1Þ: ð56Þ

Again, in order to keep ϕ00 finite we demand that
ϕ0ðrhÞ ¼ 0. Integrating twice the last two equations with
respect to the radial coordinate, we obtain the asymptotic
solutions,

eA ¼ a1ðr− rhÞ8=3þ��� ; H¼ h1ðr− rhÞ4=3þ�� � ; ð57Þ

where a1 and h1 are integration constants. We observe that
the metric function eA vanishes indeed at r ¼ rh, as
expected near a black-hole horizon. However, the circum-
ferential radius H2ðrÞ also vanishes at the same point thus
signaling the presence of an additional pathology in the
coordinate system. If we define a new radial coordinate as
l≡ h1ðr − rhÞ4=3, then the line element (46) becomes

ds2 ¼ −eÃdt2 þ eB̃dl2 þ l2ðdθ2 þ sin2θdφ2Þ; ð58Þ

with eÃ ∼ a2l2 þ � � � and eB̃ ∼ b0 ¼ const. We may thus
conclude that the obtained asymptotic solution is again not
a black hole but more likely a particlelike solution with
similar characteristics as the ones derived in Sec. III A.
Let us now use the alternative condition that, as

r → rh, we have eB → ∞, or equivalently B0 → −∞.

2This holds under the assumption that H00 ≠ 0, which corre-
sponds to the case HðrÞ ¼ r studied in the previous subsections.

A. BAKOPOULOS, P. KANTI, and N. PAPPAS PHYS. REV. D 101, 044026 (2020)

044026-8



As in Sec. III B, we may then solve Eq. (48) with respect to
A0, obtaining the result

A0 ¼ H2eBϕ0

8ðeB − 3H02Þ _f : ð59Þ

For a regular black-hole spacetime,wewill demand that both
the scalar field ϕ and the circumferential radius H remain
finite near the horizon. Then, there are two distinct cases:

(i) If H0 remains finite near rh, then, in the limit
eB → ∞, Eq. (59) leads to

A0 ≃
H2ϕ0

8_f
þOðe−BÞ: ð60Þ

If, as assumed, H2, ϕ and ϕ0 adopt constant, finite
values at the black-hole horizon, then A ≃ a0 þ
a1ðr − rhÞ þ � � � and the metric component eA

adopts a constant, instead of a vanishing, value
at r ≃ rh.

(ii) IfH0 is allowed to diverge, then amore careful analysis
should be performed. As an indicative example, we
may consider the “conformal” caseH ¼ reB=2, which
was used in [136]. Then, Eq. (59) becomes

A0 ¼ −
eBr2ϕ0

2_fð8þ 12rB0 þ 3r2B02Þ : ð61Þ

For the conventional black-hole dependence where
eB ≃ b1ðr − rhÞ þ � � �, the aforementioned equation
gives A0 → 0, thus leading to a constant value for the
gtt component near rh. For an alternative dependence,
such as the logarithmic given in Eq. (37), we obtain
instead thatA0 → const, which however leads again to
a constant gtt at r ≃ rh.

Therefore, even in the context of the more general line
element (46), the condition eB → ∞ leads to a solution with

similar characteristics as the ones that emerged in Sec. III B.
Overall, the system of field equations fails to admit an
asymptotic black-hole solutionwith the anticipated behavior
(12) for both the gtt and grr metric components.

V. SOLUTIONS WITH HORIZONS WHEN Λ ≠ 0

In this section, we reinstate the cosmological constant Λ
in order to investigate its role in the emergence or not of
solutions with a horizon in the context of the pure scalar-
Gauss-Bonnet theory. ForΛ ≠ 0, Eq. (9) takes the form of a
polynomial with respect to the metric function eB, i.e.,
αe2B þ βeB þ γ ¼ 0. This may be solved to yield

eB ¼ −β �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 − 4αγ

p
2α

; ð62Þ

where

α¼−r2ΛV; β¼ r2ϕ02

4
−2_fϕ0A0; γ¼ 6_fϕ0A0: ð63Þ

Taking the derivative of the above expression with respect
to the radial coordinate, we may eliminate B0 from the field
equations replacing it by

B0 ¼ −
γ0 þ β0eB þ α0e2B

2αe2B þ βeB
: ð64Þ

The field equations then reduce to a system of two coupled,
second-order, ordinary differential equations for A and ϕ.
This system now has the form

A00 ¼ −
P1

S1
; ϕ00 ¼ −

Q1

4S1
ϕ0; ð65Þ

where

P1 ¼ eBð−17r2A02ϕ03 _f þ 64A03ϕ02 _f2 þ 18rA0ϕ03 _fÞ þ e2Bð−8r2A0ϕ04f̈ þ 9r2A02ϕ03 _f

− 20Λr2A02ϕ0 _f − 8rA0ϕ03 _f − 24A03ϕ02 _f2 þ 72ΛrA0ϕ0 _f − r4A0ϕ04 þ 2r3ϕ04Þ
× e3Bð4_fΛr2A02ϕ0 þ 6_frA0ϕ03 − 96_fΛrA0ϕ0 − 2Λr4A0ϕ02 − r3ϕ04 þ 4Λr3ϕ02Þ
þ e4Bð24_fΛrA0ϕ0 þ 8Λ2r4A0 − 16Λ2r3Þ þ 16e5BΛ2r3 − 72_f2A03ϕ02; ð66Þ

Q ¼ eBð36_fr2A0ϕ03 þ 896_fA0f̈ϕ03 − 192_f2A02ϕ02 − 16r2f̈ϕ04 − 120_frϕ03Þ
þ e2Bð−20_fr2A0ϕ03 þ 144_fΛr2A0ϕ0 − 320_fA0f̈ϕ03 þ 32_f2A02ϕ02

þ 16r2f̈ϕ04 þ 128Λr2f̈ϕ02 þ 64_frϕ03 − 96_fΛrϕ0 þ r4ϕ04Þ
þ e3Bð−80_fΛr2A0ϕ0 − 128Λr2f̈ϕ02 − 8_frϕ03 þ 128_fΛrϕ0 − 4Λr4ϕ02Þ
þ e4Bð−32_fΛrϕ0 − 32Λ2r4Þ − 576_fA0f̈ϕ03 þ 288_f2A02ϕ02; ð67Þ

S1 ¼ 8_fϕ0½2_fA0ϕ0ð−14eB þ 5e2B þ 9Þ − eBðeB − 2Þr2ϕ02 þ 4e2BðeB − 1ÞΛr2�: ð68Þ
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We will assume that, near the black-hole horizon rh,
eA → ∞, or equivalently A0 → ∞. Then, Eq. (62) takes the
expanded form:

eB ¼ −2_fϕ0

r2ΛV
A0 þ −24ΛV _fϕ0 þ 2_fϕ03

8ΛV _fϕ0 þO
�
1

A0

�
: ð69Þ

If we replace the above expansion, too, into the system
(65), we obtain the following equations in the limit
A0 → ∞:

A00 ¼ −
2_fϕ0

r3ΛV
A02 þOðA0Þ; ð70Þ

ϕ00 ¼
�
1 −

2_fϕ0

r3ΛV

�
ϕ0A0 þOð1Þ: ð71Þ

The finiteness of ϕ00 at the horizon dictates that the
following relation should hold:

ϕ0
h ¼

r3hΛ
2_fðϕhÞ

: ð72Þ

The above condition on the first derivative of the scalar
field at the horizon is analogous to the one derived in the
context of the Einstein-scalar-Gauss-Bonnet theory—there,
that condition also related ϕ0

h to the parameters of the
theory and ensured the regularity of the black-hole horizon.
Here, we observe that the condition (72) relates ϕ0 with the
value of the cosmological constant.
Let us proceed to derive the complete form of the

asymptotic solution near rh. By using the above condition
on ϕ0

h, the system (70) and (71) takes the simplified form:

A00 ¼ −A02 þOðA0Þ; ð73Þ

ϕ00 ¼ Oð1Þ: ð74Þ

Again, this resembles the behavior obtained around a
black-hole horizon. Integrating Eq. (73) with respect to
r, we obtain the usual behavior

A0 ¼ 1

r − rh
; ð75Þ

while a second integration leads to the complete asymptotic
solution for the metric functions and the scalar field
near rh:

eA ¼ a1ðr − rhÞ þ � � � ; ð76Þ

e−B ¼ b1ðr − rhÞ þ � � � ; ð77Þ

ϕ ¼ ϕh þ ϕ0
hðr − rhÞ þ ϕ00

hðr − rhÞ2 þ � � � : ð78Þ

The above describes indeed a solution with a horizon and
a regular scalar field. There is, however, a caveat: if we
replace ϕ0

h from Eq. (72) into Eq. (69), we find

b1 ¼ −1=rh: ð79Þ

The robustness of the metric is then ensured only if
Eqs. (76)–(78) are rewritten as

eA ¼ ja1jðrc − rÞ þ � � � ; ð80Þ

e−B ¼ 1

rc
ðrc − rÞ þ � � � ð81Þ

ϕ ¼ ϕc þ ϕ0
cðrc − rÞ þ ϕ00

cðrc − rÞ2 þ � � � : ð82Þ

Note that a1 is a completely arbitrary constant and thus
may be appropriately chosen. The above reveal that, when
Λ > 0, the asymptotic solution we have found corresponds
to a cosmological horizon rc with a nontrivial scalar field.
Such solutions have indeed been derived in the context of
the pure scalar-Gauss-Bonnet theory but from the perspec-
tive of a homogeneous, isotropic universe [146]. Here, we
have in fact rederived those solutions describing a de Sitter
universe using isotropic, spherically symmetric coordi-
nates. In the case of an anti-de Sitter spacetime with
Λ < 0, no cosmological horizon exists and no robust
black-hole solution emerges either in the context of our
theory. Therefore, even in the presence of a nonvanishing
cosmological constant, the pure scalar-Gauss-Bonnet
theory fails to support a regular black-hole solution with
scalar hair.
We close this section by noticing that the asymptotic

solution (80)–(82) emerges also in the case where we work
with the assumption that near the horizon it is eB, or B0, that
diverges; this is expected for a physical, spherically sym-
metric horizon. Also, similar solutions which possess again
a cosmological rather than a black-hole horizon emerge ifwe
employ the more general line element (46)—as their
characteristics are similar to the ones derived above, we
refrain from presenting the corresponding analysis.

VI. SYNERGY BETWEEN THE RICCI
AND GB TERMS

In order to shed more light on the fact that the pure
scalar-Gauss-Bonnet theory does not admit black-hole
solutions but allows for cosmological solutions with a
horizon to emerge, we turn to the complete Einstein-scalar-
GB theory. In the context of the latter, we will investigate
the contribution of each gravitational term to the formation
of a black hole. To this end, we choose the case of the
exponential coupling function fðϕÞ ¼ αe−ϕ, where α is a
positive coupling constant. This choice leads to the
dilatonic black holes that were found in [13] and studied
again in [38]. They are a one-parameter family of
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black-hole solutions, with the independent parameter being
any one of the three parameters of the theory, namely
ðα; rh;ϕhÞ, due to the rescaling symmetries of the theory.
Here, we fix the horizon radius rh to unity while the value
of the scalar field at the horizon ϕh is determined by
the boundary condition ϕ∞ ¼ 1 at infinity. These leave the
coupling constant α as the independent parameter of the
theory.
A theoretical argument for the regularity of the formed

black-hole horizon, analogous to the one that led to
Eq. (72), leads to the following condition on the first
derivative of the scalar field at the horizon [38]:

ϕ0
h ¼

rh
4_fh

 
−1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

96_f2h
r4h

s !
: ð83Þ

The reality of the value of ϕ0
h imposes the following

additional constraint on the coupling function:

_f2h <
r4h
96

: ð84Þ

For the choice fðϕÞ ¼ αe−ϕ, the above reduces to a
constraint on the maximum allowed value of the coupling
parameter, that is

α

r2h
≃ 0.123: ð85Þ

Black-hole solutions then arise in the context of the
Einstein-scalar-GB theory for the range of values [0, 0.123]
of the coupling constant α. When α → 0, the GB term
decouples from the theory and the only black-hole solution
is the Schwarzschild solution characterized by a trivial
scalar field. As α adopts a nonvanishing value, a GB black
hole is formed that possesses scalar hair and a horizon
radius smaller than the one of the Schwarzschild solution
[38]. In Table I, we display a number of indicative values of
α in the range [0, 0.123] and the values of the Ricci scalar
and the combination fðϕÞR2

GB near the horizon for each of
the corresponding black-hole solutions. We observe that for
small values of the coupling constant, the Ricci term adopts
a very small value—this is due to the fact that, for small α,
the obtained solution is still very close to the Schwarzschild
one that is a vacuum solution with R ¼ 0. The GB term, in
contrast, adopts a much larger value from the beginning
due to the contribution of the Riemann tensor, which is not
zero even for the Schwarzschild solution. As α moves
towards its maximum value, the curvature of spacetime
increases and this enhances the magnitude of both gravi-
tational terms. Above the maximum value amax ¼ 0.123,
no black-hole solutions emerge.
We also observe that the sign of R remains always

positive, which reflects the positive curvature of spacetime
around the formed horizon. In the Einstein-Hilbert action,

the presence of the Ricci term leads to the attractive force of
gravity. The presence of the GB term, on the other hand,
produces the opposite effect as it leads to a repulsive force
in the theory. Indeed, if we examine the components of the
effective energy-momentum tensor near the horizon, we
obtain the following expressions for the effective energy-
density and pressure components of the system:

ρ ¼ −Tt
t ¼ −

2e−B

r2
B0ϕ0 _f þOðr − rhÞ; ð86Þ

pr ¼ Tr
r ¼ −

2e−B

r2
A0ϕ0 _f þOðr − rhÞ; ð87Þ

pθ ¼ Tθ
θ ¼

2e−2B

r
A02ϕ0 _f þOðr − rhÞ; ð88Þ

whereas pφ ¼ pθ due to the spherical symmetry. Note that
the contribution of the scalar-field kinetic term vanishes
near the horizon and the dominant contribution to the
energy-momentum tensor components comes from its
effective potential, i.e., by its coupling to the GB term.
The combination ϕ0 _f is always negative at the horizon due
to the regularity constraint (83). Also, near the horizon
radius, it holds that A0 ≃ −B0 ≃ 1=ðr − rhÞ þ � � �, since eA

increases near the horizon, as r increases, while eB

decreases. Employing the above, we are led to the final
results:

pr ¼ −ρ ¼ 2b1
r2h

jðϕ0 _fÞhj > 0;

pθ ¼ pφ ¼ −
2b21
rh

jðϕ0 _fÞhj < 0: ð89Þ

Therefore, the coupling between the scalar field and the GB
term produces a negative effective energy-density and an

TABLE I. An indicative list of values of the coupling constant α
and the values of the Ricci scalar R and the combination fðϕÞR2

GB
near the black-hole horizon rh.

α=r2h R fðϕÞR2
GB

0.001 3.318 × 10−9 0.004
0.006 5.002 × 10−8 0.025
0.015 1.536 × 10−6 0.070
0.025 1.112 × 10−5 0.117
0.037 6.134 × 10−5 0.182
0.051 2.835 × 10−4 0.270
0.065 9.790 × 10−4 0.372
0.075 2.051 × 10−3 0.452
0.087 4.897 × 10−3 0.571
0.097 9.722 × 10−3 0.691
0.106 1.962 × 10−2 0.847
0.116 4.120 × 10−2 1.067
0.123 8.097 × 10−2 1.320
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equal in magnitude, but positive, radial pressure component
at the horizon. In addition, the tangential pressure compo-
nents pθ ¼ pφ come out to be negative at the black-hole
horizon. Clearly, the scalar-Gauss-Bonnet coupling violates
the weak, dominant and strong energy conditions. It is this
violation of the energy conditions that causes the evasion of
the novel no-hair theorem [9] and allows for the emergence
of black holes with nontrivial scalar hair [13,38]. The
positive, outward radial pressure signifies in addition the
repulsive role of the GB term in the system.
We may, therefore, interpret now the nonemergence of a

black-hole horizon in the context of the pure scalar-GB
theory. The presence of the Ricci term is necessary in order
to provide the attractive force that will create the positively
curved topology around the formed black hole. Even in
vacuum, the Ricci term causes the formation of a black hole
in the form of the Schwarzschild solution. When the GB
term is turned on, the Schwarzschild solution gets naturally
scalarized3 as it is automatically donned with a nontrivial,
regular scalar field. Due to the repulsive effect of the GB
term, the black-hole horizon is now formed at a smaller
horizon value than in the Schwarzschild case—indeed, in
[38], it was demonstrated that, for a fixed coupling constant,
a GB black hole has always a smaller horizon radius
compared to the one of the Schwarzschild solution with
the samemass. Apparently, gravity dominates over a smaller
regime of spacetime, creating a black-hole topology, in the
presence of theGB term. In other words, the same amount of
mass needs to be “squeezed” more to create a black hole
when the repulsive GB term is present in the theory.
Therefore, the GB term makes the formation of a black

hole more difficult. What it does facilitate is the dressing of
the black-hole solution with a nontrivial scalar field, a
feature that would have been forbidden in its absence. As
the value of the coupling constant increases, the weight of
the GB term in the theory gradually increases, too. The
same holds for its repulsive effect. Beyond the maximum
value (85) of the GB coupling parameter, no black-hole
horizon can be formed—or sustained—any more. We may
easily then justify the fact that a pure scalar-GB theory
cannot, in the absence of the Ricci scalar, create by itself a
black-hole solution.
At the end of Sec. II, we considered also the case of a

negative coupling constant α, and failed again to produce
viable black-hole solutions. As we saw, upon reversing the
sign of α in the theory, solutions with a nontrivial scalar
field emerge only if the sign of ϕ1 is also reversed. Then,
through Eq. (45), the overall sign of the GB term remains
the same, i.e., negative, leading again to a repulsive force

that cannot support by itself a black-hole horizon. We also
considered the case of an exotic scalar field with the
opposite sign in front of its kinetic term. We then found
similar solutions to the ones following for a physically
acceptable scalar field but with the sign of the parameter ϕ1

reversed. In this case, and with all the other parameters
remaining unchanged, the sign of the GB term is also
reversed leading to an attractive gravitational force similar
to the one described by the Ricci scalar. Yet, no black-hole
solution was found. The deeper reason for this is the fact
that, now, it is the exotic scalar field that exerts a repulsive
force, which once again destroys the black-hole horizon.
In the case of cosmological solutions, the presence of the

GB term in the theory leads to the emergence of singularity-
free [143,145,146] and inflationary solutions [146]. In a
cosmological context, traditional gravity, in the form of the
Ricci term, leads to the formation of the initial singularity, a
feature that is not desirable in the theory. The addition of
the GB term with its repulsive effect manages to provide the
necessary outward pressure to the system so that the initial
singularity is avoided, and a smooth transition between a
collapsing and an expanding phase of the Universe is
realized [143,145,146]. In the emergence of de Sitter,
inflationary solutions [146], the GB term is again providing
the outward pressure component that accelerates the
expansion of the Universe even in the absence of any
potential for the scalar field.

VII. CONCLUSIONS

After the derivation, in an analytical way, of cosmologi-
cal singularity-free and inflationary solutions in the context
of the pure scalar-Gauss-Bonnet theory [146], here, we
have investigated whether black-hole solutions can be
supported in the context of the same theory. We have
therefore ignored the presence of all terms associated with
the Ricci term in the field equations and used both
analytical and numerical means to integrate them. Any
solutions that could emerge would rely solely on the
synergy between the scalar field and the GB term in the
theory and would correspond to zero-energy and zero-
pressure gravitational solutions.
We initially focused on the derivation of static, spheri-

cally symmetric solutions that would describe a regular
black hole with a nontrivial scalar hair. In Sec. III, we
solved analytically the field equations near the sought-for
black-hole horizon as it is only there that ignoring the Ricci
scalar, compared to the quadratic GB term, may be
justified. Working with the assumption that there the gtt
metric component vanishes, we derived a family of
gravitational solutions with a finite grr and a regular scalar
field. The spacetime possesses a true singularity but a finite
energy-momentum tensor, a profile that resembles the one
of particlelike solutions in quadratic gravitational theories
[137,139]. Alternatively, demanding that the grr diverges at
a specific value of the radial coordinate, we determined,

3This process differs from the one of spontaneous scalariza-
tion, which takes place when a tachyonic scalar mode causes the
system to shift from the unstable Schwarzschild solution to a
more stable solution with a nontrivial scalar field. This scalariza-
tion is realized only for a particular regime of the independent
parameter where the Schwarzschild solution is destabilized.

A. BAKOPOULOS, P. KANTI, and N. PAPPAS PHYS. REV. D 101, 044026 (2020)

044026-12



first analytically and then numerically, a second family of
gravitational solutions with no spacetime singularity and a
finite, again, energy-momentum tensor. We have postponed
the study of these two families of solutions and their
physical interpretation for a future study.
Coming back to our quest for black-hole solutions, in

Sec. IV, we considered a more general line element for the
spacetime, which preserved the assumptions of staticity and
spherical symmetry. Despite the increased flexibility of the
line element, which resulted in the addition of a third
unknown metric function, no solutions with a black-hole
horizon were found. The asymptotic solutions derived
analytically in the small-r regime shared the same charac-
teristics as the ones found in Sec. III.
Reinstating the cosmological constant, which was

ignored in the first part of our analysis, we looked again
for solutions with a horizon. The analysis in this case
resembled the one that led to the derivation of regular
black-hole solutions with scalar hair [38]. Indeed, solutions
with a horizon and a regular scalar field were successfully
found in Sec. V in the case of a positive cosmological
constant, however, these were shown to correspond to a
cosmological rather than to a black-hole horizon.
In Sec. VI, we looked more carefully at the synergy

between the Ricci and GB terms. The values of the
components of the energy-momentum tensor near the
black-hole horizon reveal the repulsive effect of the GB
term as opposed to the attractive effect of the Ricci term. As
the latter is necessary in order to create the positive curvature
around a black hole, no such solution emerges in the
presence of only the GB term, which in fact works towards
pushing outwards any distribution of matter. The same
results follow also in the case where the coupling constant
α is assumed to take negative, instead of positive, values
since the GB term retains its overall negative sign, and thus
its repulsive effect. Even in the context of the complete
Einstein-scalar-GB theory, black holes emerge only up to a
maximum value of the GB coupling parameter—it is only
over this restricted parameter regime that the Ricci term
manages to form a black-hole horizon despite the presence
of the GB term. Nevertheless, the GB term justifies its
presence by supporting a nontrivial, regular scalar field, a
feature forbidden by general relativity. When an exotic
scalar field is introduced in the theory instead of a physical
one, the GB term reverses its sign exerting an attractive
force, however, it is the exotic scalar field that now destroys
the black-hole horizon with its own negative energy.
In the context of the effective-field-theory point of view,

one could imagine adding even higher-derivative terms in
the quadratic action (1). How are then the previously
derived solutions [38,131] modified by the presence of
these gravitational corrections? In light of the analysis of
Sec. VI, we conclude that this depends on the role of these
terms when it comes to their contributions to the effective
energy-momentum tensor. If such a higher-derivative term

had a positive contribution to the radial pressure as the GB
term, then it would have a destabilizing effect and black-
hole solutions could emerge for a more restricted range of
values for the coupling constant α. If, on the other hand, the
produced contribution to the radial pressure of the system
was negative, the added term would have a role similar to
that of the Ricci scalar and the emergence of black-hole
solutions would be facilitated.
Closing this work, let us return to the question we posed

in Sec. II to which we may now give a simple answer: we
may indeed find spacetime regimes where the GB term is
overwhelmingly dominant over the Ricci scalar, however,
the gravitational solution that would form will not be a
black hole. Nevertheless, solutions the existence of which
does not rely on the attractive nature of the Ricci term, and
thus on its presence in the theory, do exist and these include
a plethora of interesting solutions such as particlelike
solutions, cosmological solutions or even wormholes. As
that part of the phase space of solutions of the pure scalar-
GB theory has not been adequately explored so far, we plan
to perform such a comprehensive study soon.
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APPENDIX A: SCALAR QUANTITIES

By employing the metric components of the line element
(1), one may compute the following scalar-invariant gravi-
tational quantities:

R¼þe−B

2r2
ð4eB−4−r2A02þ4rB0−4rA0 þr2A0B0−2r2A00Þ;

ðA1Þ

RμνRμν ¼ þ e−2B

16r4
½8ð2 − 2eB þ rA0 − rB0Þ2

þ r2ðrA02 − 4B0 − rA0B0 þ 2rA00Þ2
þ r2ðrA02 þ A0ð4 − rB0Þ þ 2rA00Þ2�; ðA2Þ

RμνρσRμνρσ ¼ þ e−2B

4r4
½r4A04 − 2r4A03B0 − 4r4A0B0A00

þ r2A02ð8þ r2B02 þ 4r2A00Þ
þ 16ðeB − 1Þ2 þ 8r2B02 þ 4r4A002�; ðA3Þ

R2
GB ¼þ2e−2B

r2
½ðeB−3ÞA0B0− ðeB−1ÞA02−2ðeB−1ÞA00�:

ðA4Þ
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APPENDIX B: GENERAL SYSTEM OF COUPLED EQUATIONS

Employing the expression (51) for the metric function eB, we may easily compute the first derivative of the metric
function BðrÞ. This is found to have the form

B0 ¼ e−B

rϕ0ðH2ϕ0 − 8_fA0Þ f−2ϕ
0½ϕ0ðeBHðrH0 þHÞ − 4rA0f̈ðeB − 3H02ÞÞ þ eBH2rϕ00�

þ 8_f½rA00ϕ0ðeB − 3H02Þ þ rA0ϕ00ðeB − 3H02Þ þ 2A0ϕ0ðeB − 3H0ðrH00 þH0ÞÞ�g: ðB1Þ

Then, the field equations (47)–(50) reduce to a set of three, coupled, second-order, ordinary differential equations for the
metric functions A and H and the scalar field ϕ, given in Eq. (52). The functions S̃, P̃, Q̃ and K̃ have now the following
explicit forms:

S̃ ¼ 8r½2_fA0ðeB −H02ÞðeB þ 3H02Þ þ eBH2H02ϕ0�; ðB2Þ

P̃ ¼ 8_f2A02ð3rA0 þ 4ÞðeB −H02ÞðeB þ 3H02Þ þ eBH2rϕ02½−4eBHH0

× A0ð16f̈ðeB þH02Þ þ eBH2Þ� − 4eB _fHA0ϕ0½2eBrðHA0 þ 6H0Þ þH02ðHrA0 þ 4rH0 − 4HÞ�; ðB3Þ

Q̃ ¼ ϕ0½−4eBH02ðrA0ð8f̈ þH2Þ þHð5rH0 þHÞÞ − e2BrðA0ð16f̈ þH2Þ − 4HH0Þ
þ 48rA0f̈H04� þ 2_fA0ðrA0 − 4ÞðeB −H02ÞðeB þ 3H02Þ; ðB4Þ

K̃ ¼ 8_f2A0H0ðrA0 − 4ÞðeB −H02ÞðeB þ 3H02Þ þ eBH2rH0ϕ02½16f̈ðeB −H02Þ þ eBH2�
þ 4eB _fHϕ0½−eBrH0ðHA0 þ 12H0Þ þ 2H03ðHrA0 þ 5rH0 − 2HÞ þ 2e2Br�: ðB5Þ

[1] https://www.ligo.org/.
[2] http://www.virgo-gw.eu/.
[3] K. S. Stelle, Phys. Rev. D 16, 953 (1977).
[4] T. P. Sotiriou, Lect. Notes Phys. 892, 3 (2015); E. Berti

et al., Classical Quantum Gravity 32, 243001 (2015).
[5] J. D. Bekenstein, Phys. Rev. Lett. 28, 452 (1972); C.

Teitelboim, Lett. Nuovo Cimento 3, 397 (1972).
[6] M. S. Volkov and D. V. Galtsov, JETP Lett. 50, 346 (1989);

P. Bizon, Phys. Rev. Lett. 64, 2844 (1990); B. R. Greene,
S. D. Mathur, and C. M. O’Neill, Phys. Rev. D 47, 2242
(1993); K. i. Maeda, T. Tachizawa, T. Torii, and T. Maki,
Phys. Rev. Lett. 72, 450 (1994).

[7] H. Luckock and I. Moss, Phys. Lett. 176B, 341 (1986); S.
Droz, M. Heusler, and N. Straumann, Phys. Lett. B 268,
371 (1991).

[8] J. D. Bekenstein, Ann. Phys. (N.Y.) 82, 535 (1974); 91, 75
(1975).

[9] J. D. Bekenstein, Phys. Rev. D 51, R6608 (1995).
[10] B. Zwiebach, Phys. Lett. 156B, 315 (1985).
[11] D. J. Gross and J. H. Sloan, Nucl. Phys. B291, 41 (1987).
[12] R. R. Metsaev and A. A. Tseytlin, Nucl. Phys. B293, 385

(1987).
[13] P. Kanti, N. E. Mavromatos, J. Rizos, K. Tamvakis, and E.

Winstanley, Phys. Rev. D 54, 5049 (1996); 57, 6255
(1998).

[14] G.W. Gibbons and K. i. Maeda, Nucl. Phys. B298, 741
(1988).

[15] C. G. Callan, Jr., R. C. Myers, and M. J. Perry, Nucl. Phys.
B311, 673 (1989).

[16] B. A. Campbell, M. J. Duncan, N. Kaloper, and K. A.
Olive, Phys. Lett. B 251, 34 (1990); B. A. Campbell, N.
Kaloper, and K. A. Olive, Phys. Lett. B 263, 364 (1991).

[17] S. Mignemi and N. R. Stewart, Phys. Rev. D 47, 5259
(1993).

[18] P. Kanti and K. Tamvakis, Phys. Rev. D 52, 3506 (1995).
[19] T. Torii, H. Yajima, and K. i. Maeda, Phys. Rev. D 55, 739

(1997).
[20] P. Kanti and K. Tamvakis, Phys. Lett. B 392, 30 (1997); P.

Kanti and E. Winstanley, Phys. Rev. D 61, 084032 (2000).
[21] Z. K. Guo, N. Ohta, and T. Torii, Prog. Theor. Phys. 120,

581 (2008); K. i. Maeda, N. Ohta, and Y. Sasagawa, Phys.
Rev. D 80, 104032 (2009); N. Ohta and T. Torii, Prog.
Theor. Phys. 124, 207 (2010).

[22] B. Kleihaus, J. Kunz, and E. Radu, Phys. Rev. Lett. 106,
151104 (2011); B. Kleihaus, J. Kunz, S. Mojica, and E.
Radu, Phys. Rev. D 93, 044047 (2016).

[23] P. Pani, C. F. B. Macedo, L. C. B. Crispino, and V. Cardoso,
Phys. Rev. D 84, 087501 (2011); P. Pani, E. Berti, V.
Cardoso, and J. Read, Phys. Rev. D 84, 104035 (2011).

[24] C. A. R. Herdeiro and E. Radu, Phys. Rev. Lett. 112,
221101 (2014).

[25] D. Ayzenberg and N. Yunes, Phys. Rev. D 90, 044066
(2014); 91, 069905(E) (2015).

[26] E. Winstanley, Lect. Notes Phys. 769, 49 (2009).

A. BAKOPOULOS, P. KANTI, and N. PAPPAS PHYS. REV. D 101, 044026 (2020)

044026-14

https://www.ligo.org/
https://www.ligo.org/
https://www.ligo.org/
http://www.virgo-gw.eu/
http://www.virgo-gw.eu/
http://www.virgo-gw.eu/
https://doi.org/10.1103/PhysRevD.16.953
https://doi.org/10.1007/978-3-319-10070-8
https://doi.org/10.1088/0264-9381/32/24/243001
https://doi.org/10.1103/PhysRevLett.28.452
https://doi.org/10.1007/BF02826050
https://doi.org/10.1103/PhysRevLett.64.2844
https://doi.org/10.1103/PhysRevD.47.2242
https://doi.org/10.1103/PhysRevD.47.2242
https://doi.org/10.1103/PhysRevLett.72.450
https://doi.org/10.1016/0370-2693(86)90175-9
https://doi.org/10.1016/0370-2693(91)91592-J
https://doi.org/10.1016/0370-2693(91)91592-J
https://doi.org/10.1016/0003-4916(74)90124-9
https://doi.org/10.1016/0003-4916(75)90279-1
https://doi.org/10.1016/0003-4916(75)90279-1
https://doi.org/10.1103/PhysRevD.51.R6608
https://doi.org/10.1016/0370-2693(85)91616-8
https://doi.org/10.1016/0550-3213(87)90465-2
https://doi.org/10.1016/0550-3213(87)90077-0
https://doi.org/10.1016/0550-3213(87)90077-0
https://doi.org/10.1103/PhysRevD.54.5049
https://doi.org/10.1103/PhysRevD.57.6255
https://doi.org/10.1103/PhysRevD.57.6255
https://doi.org/10.1016/0550-3213(88)90006-5
https://doi.org/10.1016/0550-3213(88)90006-5
https://doi.org/10.1016/0550-3213(89)90172-7
https://doi.org/10.1016/0550-3213(89)90172-7
https://doi.org/10.1016/0370-2693(90)90227-W
https://doi.org/10.1016/0370-2693(91)90474-5
https://doi.org/10.1103/PhysRevD.47.5259
https://doi.org/10.1103/PhysRevD.47.5259
https://doi.org/10.1103/PhysRevD.52.3506
https://doi.org/10.1103/PhysRevD.55.739
https://doi.org/10.1103/PhysRevD.55.739
https://doi.org/10.1016/S0370-2693(96)01521-3
https://doi.org/10.1103/PhysRevD.61.084032
https://doi.org/10.1143/PTP.120.581
https://doi.org/10.1143/PTP.120.581
https://doi.org/10.1103/PhysRevD.80.104032
https://doi.org/10.1103/PhysRevD.80.104032
https://doi.org/10.1143/PTP.124.207
https://doi.org/10.1143/PTP.124.207
https://doi.org/10.1103/PhysRevLett.106.151104
https://doi.org/10.1103/PhysRevLett.106.151104
https://doi.org/10.1103/PhysRevD.93.044047
https://doi.org/10.1103/PhysRevD.84.087501
https://doi.org/10.1103/PhysRevD.84.104035
https://doi.org/10.1103/PhysRevLett.112.221101
https://doi.org/10.1103/PhysRevLett.112.221101
https://doi.org/10.1103/PhysRevD.90.044066
https://doi.org/10.1103/PhysRevD.90.044066
https://doi.org/10.1103/PhysRevD.91.069905
https://doi.org/10.1007/978-3-540-88460-6


[27] C. Charmousis, Lect. Notes Phys. 769, 299 (2009).
[28] C. A. R. Herdeiro and E. Radu, Int. J. Mod. Phys. D 24,

1542014 (2015).
[29] J. L. Blazquez-Salcedo et al., IAU Symp. 324, 265 (2017).
[30] G.W. Horndeski, Int. J. Theor. Phys. 10, 363 (1974).
[31] A. Nicolis, R. Rattazzi, and E. Trincherini, Phys. Rev. D

79, 064036 (2009).
[32] T. P. Sotiriou and V. Faraoni, Phys. Rev. Lett. 108, 081103

(2012).
[33] L. Hui and A. Nicolis, Phys. Rev. Lett. 110, 241104

(2013).
[34] T. P. Sotiriou and S. Y. Zhou, Phys. Rev. Lett. 112, 251102

(2014).
[35] E. Babichev and C. Charmousis, J. High Energy Phys. 08

(2014) 106.
[36] T. P. Sotiriou and S. Y. Zhou, Phys. Rev. D 90, 124063

(2014); R. Benkel, T. P. Sotiriou, and H. Witek, Classical
Quantum Gravity 34, 064001 (2017); Phys. Rev. D 94,
121503 (2016).

[37] N. Yunes and L. C. Stein, Phys. Rev. D 83, 104002 (2011).
[38] G. Antoniou, A. Bakopoulos, and P. Kanti, Phys. Rev. Lett.

120, 131102 (2018); Phys. Rev. D 97, 084037 (2018).
[39] D. D. Doneva and S. S. Yazadjiev, Phys. Rev. Lett. 120,

131103 (2018).
[40] H. O. Silva, J. Sakstein, L. Gualtieri, T. P. Sotiriou, and E.

Berti, Phys. Rev. Lett. 120, 131104 (2018).
[41] Y. Bardoux, M. M. Caldarelli, and C. Charmousis, J. High

Energy Phys. 05 (2012) 054.
[42] K. Yagi, L. C. Stein, N. Yunes, and T. Tanaka, Phys. Rev. D

85, 064022 (2012); 93, 029902(E) (2016); D. Ayzenberg,
K. Yagi, and N. Yunes, Phys. Rev. D 89, 044023 (2014).

[43] C. Charmousis, T. Kolyvaris, E. Papantonopoulos, and M.
Tsoukalas, J. High Energy Phys. 07 (2014) 085.

[44] F. Correa, M. Hassaine, and J. Oliva, Phys. Rev. D 89,
124005 (2014).

[45] S. R. Dolan, S. Ponglertsakul, and E. Winstanley, Phys.
Rev. D 92, 124047 (2015).

[46] J. L. Blazquez-Salcedo, C. F. B. Macedo, V. Cardoso, V.
Ferrari, L. Gualtieri, F. S. Khoo, J. Kunz, and P. Pani, Phys.
Rev. D 94, 104024 (2016).

[47] S. Bhattacharya and S. Chakraborty, Phys. Rev. D 95,
044037 (2017); I. Banerjee, S. Chakraborty, and S.
SenGupta, Phys. Rev. D 96, 084035 (2017).

[48] D. D. Doneva and S. S. Yazadjiev, J. Cosmol. Astropart.
Phys. 04 (2018) 011.

[49] H. Motohashi and M. Minamitsuji, Phys. Lett. B 781, 728
(2018); Phys. Rev. D 98, 084027 (2018).

[50] C. A. R. Herdeiro, E. Radu, N. Sanchis-Gual, and J. A.
Font, Phys. Rev. Lett. 121, 101102 (2018); T. Delsate, C.
Herdeiro, and E. Radu, Phys. Lett. B 787, 8 (2018); Y.
Brihaye, C. Herdeiro, and E. Radu, Phys. Lett. B 788, 295
(2019).

[51] D. D. Doneva, S. Kiorpelidi, P. G. Nedkova, E.
Papantonopoulos, and S. S. Yazadjiev, Phys. Rev. D 98,
104056 (2018).

[52] M. Butler, A. M. Ghezelbash, E. Massaeli, and M.
Motaharfar, Mod. Phys. Lett. A 34, 1950232 (2019).

[53] B. Danila, T. Harko, F. S. N. Lobo, and M. K. Mak, Phys.
Rev. D 99, 064028 (2019).

[54] M.M. Stetsko, arXiv:1811.05030.

[55] O. J. Tattersall, P. G. Ferreira, and M. Lagos, Phys. Rev. D
97, 084005 (2018).

[56] S. Mukherjee and S. Chakraborty, Phys. Rev. D 97,
124007 (2018).

[57] S. Chakrabarti, Eur. Phys. J. C 78, 296 (2018).
[58] E. Berti, K. Yagi, and N. Yunes, Gen. Relativ. Gravit. 50,

46 (2018).
[59] Y. Brihaye and B. Hartmann, Classical Quantum Gravity

35, 175008 (2018).
[60] K. Prabhu and L. C. Stein, Phys. Rev. D 98, 021503

(2018).
[61] Y. S. Myung and D. C. Zou, Phys. Rev. D 98, 024030

(2018); arXiv:1812.03604.
[62] J. L. Blazquez-Salcedo, D. D. Doneva, J. Kunz, and

S. S. Yazadjiev, Phys. Rev. D 98, 084011 (2018); J. L.
Blazquez-Salcedo, Z. A. Motahar, D. D. Doneva, F. S.
Khoo, J. Kunz, S. Mojica, K. V. Staykov, and S. S.
Yazadjiev, Eur. Phys. J. Plus 134, 46 (2019).

[63] R. Benkel, N. Franchini, M. Saravani, and T. P. Sotiriou,
Phys. Rev. D 98, 064006 (2018).

[64] L. Iorio and M. L. Ruggiero, J. Cosmol. Astropart. Phys.
10 (2018) 021.

[65] J. Ovalle, R. Casadio, R. da Rocha, A. Sotomayor, and Z.
Stuchlik, Europhys. Lett. 124, 20004 (2018); J. Ovalle,
Phys. Lett. B 788, 213 (2019).

[66] L. Barack et al., Classical Quantum Gravity 36, 143001
(2019).

[67] Y. X. Gao, Y. Huang, and D. J. Liu, Phys. Rev. D 99,
044020 (2019).

[68] B. H. Lee, W. Lee, and D. Ro, Phys. Rev. D 99, 024002
(2019).

[69] H. Witek, L. Gualtieri, P. Pani, and T. P. Sotiriou, Phys.
Rev. D 99, 064035 (2019).

[70] H. Motohashi and S. Mukohyama, Phys. Rev. D 99,
044030 (2019).

[71] J. Sultana and D. Kazanas, Gen. Relativ. Gravit. 50, 137
(2018).

[72] S. Nojiri, S. D. Odintsov, and V. K. Oikonomou, Phys.
Rev. D 99, 044050 (2019).

[73] S. Qolibikloo and A. Ghodsi, Eur. Phys. J. C 79, 406
(2019).

[74] P. V. P. Cunha, C. A. R. Herdeiro, and E. Radu, Phys. Rev.
Lett. 123, 011101 (2019).

[75] M. Minamitsuji and T. Ikeda, Phys. Rev. D 99, 044017
(2019); 99, 104069 (2019).

[76] M. M. Stetsko, Phys. Rev. D 99, 044028 (2019).
[77] Y. S. Myung and D.-C. Zou, Phys. Lett. B 790, 400 (2019).
[78] Y. Brihaye and L. Ducobu, Phys. Lett. B 795, 135 (2019).
[79] C. A. R. Herdeiro and E. Radu, Phys. Rev. D 99, 084039

(2019).
[80] T. Kobayashi, Rep. Prog. Phys. 82, 086901 (2019).
[81] H. O. Silva, C. F. B. Macedo, T. P. Sotiriou, L. Gualtieri, J.

Sakstein, and E. Berti, Phys. Rev. D 99, 104041 (2019).
[82] A. de la Cruz-Dombriz and F. J. M. Torralba, J. Cosmol.

Astropart. Phys. 03 (2019) 002.
[83] C.-Y. Wang, Y.-F. Shen, and Y. Xie, J. Cosmol. Astropart.

Phys. 04 (2019) 022.
[84] P.-A. Cano and A. Ruiperez, J. High Energy Phys. 05

(2019) 189.
[85] F. M. Ramazanoglu, Phys. Rev. D 99, 084015 (2019).

EXISTENCE OF SOLUTIONS WITH A HORIZON IN PURE … PHYS. REV. D 101, 044026 (2020)

044026-15

https://doi.org/10.1007/978-3-540-88460-6
https://doi.org/10.1142/S0218271815420146
https://doi.org/10.1142/S0218271815420146
https://doi.org/10.1017/S1743921316012965
https://doi.org/10.1007/BF01807638
https://doi.org/10.1103/PhysRevD.79.064036
https://doi.org/10.1103/PhysRevD.79.064036
https://doi.org/10.1103/PhysRevLett.108.081103
https://doi.org/10.1103/PhysRevLett.108.081103
https://doi.org/10.1103/PhysRevLett.110.241104
https://doi.org/10.1103/PhysRevLett.110.241104
https://doi.org/10.1103/PhysRevLett.112.251102
https://doi.org/10.1103/PhysRevLett.112.251102
https://doi.org/10.1007/JHEP08(2014)106
https://doi.org/10.1007/JHEP08(2014)106
https://doi.org/10.1103/PhysRevD.90.124063
https://doi.org/10.1103/PhysRevD.90.124063
https://doi.org/10.1088/1361-6382/aa5ce7
https://doi.org/10.1088/1361-6382/aa5ce7
https://doi.org/10.1103/PhysRevD.94.121503
https://doi.org/10.1103/PhysRevD.94.121503
https://doi.org/10.1103/PhysRevD.83.104002
https://doi.org/10.1103/PhysRevLett.120.131102
https://doi.org/10.1103/PhysRevLett.120.131102
https://doi.org/10.1103/PhysRevD.97.084037
https://doi.org/10.1103/PhysRevLett.120.131103
https://doi.org/10.1103/PhysRevLett.120.131103
https://doi.org/10.1103/PhysRevLett.120.131104
https://doi.org/10.1007/JHEP05(2012)054
https://doi.org/10.1007/JHEP05(2012)054
https://doi.org/10.1103/PhysRevD.85.064022
https://doi.org/10.1103/PhysRevD.85.064022
https://doi.org/10.1103/PhysRevD.93.029902
https://doi.org/10.1103/PhysRevD.89.044023
https://doi.org/10.1007/JHEP07(2014)085
https://doi.org/10.1103/PhysRevD.89.124005
https://doi.org/10.1103/PhysRevD.89.124005
https://doi.org/10.1103/PhysRevD.92.124047
https://doi.org/10.1103/PhysRevD.92.124047
https://doi.org/10.1103/PhysRevD.94.104024
https://doi.org/10.1103/PhysRevD.94.104024
https://doi.org/10.1103/PhysRevD.95.044037
https://doi.org/10.1103/PhysRevD.95.044037
https://doi.org/10.1103/PhysRevD.96.084035
https://doi.org/10.1088/1475-7516/2018/04/011
https://doi.org/10.1088/1475-7516/2018/04/011
https://doi.org/10.1016/j.physletb.2018.04.041
https://doi.org/10.1016/j.physletb.2018.04.041
https://doi.org/10.1103/PhysRevD.98.084027
https://doi.org/10.1103/PhysRevLett.121.101102
https://doi.org/10.1016/j.physletb.2018.09.060
https://doi.org/10.1016/j.physletb.2018.11.022
https://doi.org/10.1016/j.physletb.2018.11.022
https://doi.org/10.1103/PhysRevD.98.104056
https://doi.org/10.1103/PhysRevD.98.104056
https://doi.org/10.1142/S0217732319502328
https://doi.org/10.1103/PhysRevD.99.064028
https://doi.org/10.1103/PhysRevD.99.064028
https://arXiv.org/abs/1811.05030
https://doi.org/10.1103/PhysRevD.97.084005
https://doi.org/10.1103/PhysRevD.97.084005
https://doi.org/10.1103/PhysRevD.97.124007
https://doi.org/10.1103/PhysRevD.97.124007
https://doi.org/10.1140/epjc/s10052-018-5798-9
https://doi.org/10.1007/s10714-018-2362-8
https://doi.org/10.1007/s10714-018-2362-8
https://doi.org/10.1088/1361-6382/aad389
https://doi.org/10.1088/1361-6382/aad389
https://doi.org/10.1103/PhysRevD.98.021503
https://doi.org/10.1103/PhysRevD.98.021503
https://doi.org/10.1103/PhysRevD.98.024030
https://doi.org/10.1103/PhysRevD.98.024030
https://arXiv.org/abs/1812.03604
https://doi.org/10.1103/PhysRevD.98.084011
https://doi.org/10.1140/epjp/i2019-12392-9
https://doi.org/10.1103/PhysRevD.98.064006
https://doi.org/10.1088/1475-7516/2018/10/021
https://doi.org/10.1088/1475-7516/2018/10/021
https://doi.org/10.1209/0295-5075/124/20004
https://doi.org/10.1016/j.physletb.2018.11.029
https://doi.org/10.1088/1361-6382/ab0587
https://doi.org/10.1088/1361-6382/ab0587
https://doi.org/10.1103/PhysRevD.99.044020
https://doi.org/10.1103/PhysRevD.99.044020
https://doi.org/10.1103/PhysRevD.99.024002
https://doi.org/10.1103/PhysRevD.99.024002
https://doi.org/10.1103/PhysRevD.99.064035
https://doi.org/10.1103/PhysRevD.99.064035
https://doi.org/10.1103/PhysRevD.99.044030
https://doi.org/10.1103/PhysRevD.99.044030
https://doi.org/10.1007/s10714-018-2463-4
https://doi.org/10.1007/s10714-018-2463-4
https://doi.org/10.1103/PhysRevD.99.044050
https://doi.org/10.1103/PhysRevD.99.044050
https://doi.org/10.1140/epjc/s10052-019-6927-9
https://doi.org/10.1140/epjc/s10052-019-6927-9
https://doi.org/10.1103/PhysRevLett.123.011101
https://doi.org/10.1103/PhysRevLett.123.011101
https://doi.org/10.1103/PhysRevD.99.044017
https://doi.org/10.1103/PhysRevD.99.044017
https://doi.org/10.1103/PhysRevD.99.104069
https://doi.org/10.1103/PhysRevD.99.044028
https://doi.org/10.1016/j.physletb.2019.01.046
https://doi.org/10.1016/j.physletb.2019.06.006
https://doi.org/10.1103/PhysRevD.99.084039
https://doi.org/10.1103/PhysRevD.99.084039
https://doi.org/10.1088/1361-6633/ab2429
https://doi.org/10.1103/PhysRevD.99.104041
https://doi.org/10.1088/1475-7516/2019/03/002
https://doi.org/10.1088/1475-7516/2019/03/002
https://doi.org/10.1088/1475-7516/2019/04/022
https://doi.org/10.1088/1475-7516/2019/04/022
https://doi.org/10.1007/JHEP05(2019)189
https://doi.org/10.1007/JHEP05(2019)189
https://doi.org/10.1103/PhysRevD.99.084015


[86] P. G. S. Fernandes, C. A. R. Herdeiro, A. M. Pombo, E.
Radu, and N. Sanchis-Gual, Classical Quantum Gravity
36, 134002 (2019).

[87] Y. Brihaye and B. Hartmann, Phys. Lett. B 792, 244 (2019).
[88] M. Saravani and T. P. Sotiriou, Phys. Rev. D 99, 124004

(2019).
[89] C. F. B. Macedo, J. Sakstein, E. Berti, L. Gualtieri, H. O.

Silva, and T. P. Sotiriou, Phys. Rev. D 99, 104041 (2019).
[90] D. D. Doneva, K. V. Staykov, and S. S. Yazadjiev, Phys.

Rev. D 99, 104045 (2019).
[91] A. Saffer, H. O. Silva, and N. Yunes, Phys. Rev. D 100,

044030 (2019).
[92] T. Anson, E. Babichev, C. Charmousis, and S. Ramazanov,

J. Cosmol. Astropart. Phys. 06 (2019) 023.
[93] Y. S. Myung and D.-C. Zou, Int. J. Mod. Phys. D 28,

1950114 (2019).
[94] Y. Brihaye and B. Hartmann, J. High Energy Phys. 09

(2019) 049.
[95] O. J. Tattersall and P. G. Ferreira, Phys. Rev. D 99, 104082

(2019).
[96] N. Andreou, N. Franchini, G. Ventagli, and T. P. Sotiriou,

Phys. Rev. D 99, 124022 (2019).
[97] Q. Liang, J. Sakstein, and M. Trodden, Phys. Rev. D 100,

063518 (2019).
[98] L. Hui, D. Kabat, X. Li, L. Santoni, and S. S. C. Wong,

J. Cosmol. Astropart. Phys. 06 (2019) 038.
[99] D. Q. Tuan and S. H. Q. Nguyen, Commun. Phys. 29, 173

(2019).
[100] T. Do et al., Science 365, 664 (2019).
[101] P. G. S. Fernandes, C. A. R. Herdeiro, A. M. Pombo, E.

Radu, and N. Sanchis-Gual, Phys. Rev. D 100, 084045
(2019).

[102] R. A. Konoplya and A. Zhidenko, Phys. Rev. D 100,
044015 (2019).

[103] N. Franchini and T. P. Sotiriou, arXiv:1903.05427.
[104] A. Hees, O. Minazzoli, E. Savalle, Y. V. Stadnik, P. Wolf,

and B. Roberts, arXiv:1905.08524.
[105] T. Anson, E. Babichev, and S. Ramazanov, Phys. Rev. D

100, 104051 (2019).
[106] M. Khalil, N. Sennett, J. Steinhoff, and A. Buonanno,

Phys. Rev. D 100, 124013 (2019).
[107] C. de Rham and J. Zhang, Phys. Rev. D 100, 124023 (2019).
[108] G. Aguilar-Perez, M. Cruz, S. Lepe, and I. Moran-Rivera,

arXiv:1907.06168.
[109] R. A. Konoplya, T. Pappas, and A. Zhidenko, arXiv:

1907.10112.
[110] Y.-X. Gao and D.-J. Liu, arXiv:1908.01346.
[111] T. Ikeda, T. Nakamura, and M. Minamitsuji, Phys. Rev. D

100, 104014 (2019).
[112] F.-L. Julie and E. Berti, Phys. Rev. D 100, 104061 (2019).
[113] F. M. Ramazanoglu and K. I. Unluturk, Phys. Rev. D 100,

084026 (2019).
[114] K. V. Aelst, E. Gourgoulhon, P. Grandclement, and C.

Charmousis, Classical Quantum Gravity 37, 035007
(2020).

[115] J. Barrientos, F. Cordonier-Tello, C. Corral, F. Izaurieta, P.
Medina, E. Rodriguez, and O. Valdivia, Phys. Rev. D 100,
124039 (2019).

[116] C. Martinez, R. Troncoso, and J. Zanelli, Phys. Rev. D 67,
024008 (2003).

[117] T. J. T. Harper, P. A. Thomas, E. Winstanley, and P. M.
Young, Phys. Rev. D 70, 064023 (2004).

[118] M. Henneaux, C. Martinez, R. Troncoso, and J. Zanelli,
Phys. Rev. D 70, 044034 (2004); C. Martinez, R. Troncoso,
and J. Zanelli, Phys. Rev. D 70, 084035 (2004); C. Erices
and C. Martinez, Phys. Rev. D 97, 024034 (2018).

[119] E. Radu and E.Winstanley, Phys. Rev. D 72, 024017 (2005).
[120] A. Anabalon and H. Maeda, Phys. Rev. D 81, 041501

(2010).
[121] D. Hosler and E. Winstanley, Phys. Rev. D 80, 104010

(2009).
[122] C. Charmousis, T. Kolyvaris, and E. Papantonopoulos,

Classical Quantum Gravity 26, 175012 (2009); T. Koly-
varis, G. Koutsoumbas, E. Papantonopoulos, and G.
Siopsis, Gen. Relativ. Gravit. 43, 163 (2011).

[123] K. i. Maeda, N. Ohta, and Y. Sasagawa, Phys. Rev. D 83,
044051 (2011); Z. K. Guo, N. Ohta, and T. Torii, Prog.
Theor. Phys. 121, 253 (2009); N. Ohta and T. Torii, Prog.
Theor. Phys. 121, 959 (2009); 122, 1477 (2009).

[124] S. G. Saenz and C. Martinez, Phys. Rev. D 85, 104047
(2012).

[125] M. M. Caldarelli, C. Charmousis, and M. Hassaine, J. High
Energy Phys. 10 (2013) 015.

[126] P. A. Gonzalez, E. Papantonopoulos, J. Saavedra, and Y.
Vasquez, J. High Energy Phys. 12 (2013) 021.

[127] M. B. Gaete and M. Hassaine, Phys. Rev. D 88, 104011
(2013); J. High Energy Phys. 11 (2013) 177.

[128] G. Giribet, M. Leoni, J. Oliva, and S. Ray, Phys. Rev. D 89,
085040 (2014).

[129] J. B. Achour and H. Liu, Phys. Rev. D 99, 064042 (2019).
[130] Y. Brihaye, B. Hartmann, and J. Urrestilla, J. High Energy

Phys. 06 (2018) 074; Y. Brihaye and B. Hartmann, J. High
Energy Phys. 01 (2019) 142.

[131] A. Bakopoulos, G. Antoniou, and P. Kanti, Phys. Rev. D
99, 064003 (2019).

[132] J. B. Achour and H. Liu, Phys. Rev. D 99, 064042 (2019).
[133] P. Kanti, A. Bakopoulos, and N. Pappas, Proc. Sci.,

CORFU2018 (2019) 091.
[134] Y. Brihaye, C. Herdeiro, and E. Radu, arXiv:1910.05286.
[135] P. Kanti, B. Kleihaus, and J. Kunz, Phys. Rev. Lett. 107,

271101 (2011); Phys. Rev. D 85, 044007 (2012).
[136] G. Antoniou, A. Bakopoulos, P. Kanti, B. Kleihaus, and J.

Kunz, Phys. Rev. D 101, 024033 (2020).
[137] B. Kleihaus, J. Kunz, and P. Kanti, arXiv:1910.02121.
[138] C. A. R. Herdeiro and J. M. S. Oliveira, Classical Quantum

Gravity 36, 105015 (2019).
[139] V. I. Afonso, G. J. Olmo, E. Orazi, and D. Rubiera-Garcia,

J. Cosmol. Astropart. Phys. 12 (2019) 044.
[140] C. A. R. Herdeiro, J. M. S. Oliveira, and E. Radu, Eur.

Phys. J. C 80, 23 (2020).
[141] P. Canate, J. Sultana, and D. Kazanas, Phys. Rev. D 100,

064007 (2019).
[142] P. Canate and N. Breton, Phys. Rev. D 100, 064067 (2019).
[143] I. Antoniadis, J. Rizos, and K. Tamvakis, Nucl. Phys.

B415, 497 (1994).
[144] J. Rizos and K. Tamvakis, Phys. Lett. B 326, 57 (1994).
[145] P. Kanti, J. Rizos, and K. Tamvakis, Phys. Rev. D 59,

083512 (1999).
[146] P. Kanti, R. Gannouji, and N. Dadhich, Phys. Rev. D 92,

041302 (2015); 92, 083524 (2015).

A. BAKOPOULOS, P. KANTI, and N. PAPPAS PHYS. REV. D 101, 044026 (2020)

044026-16

https://doi.org/10.1088/1361-6382/ab23a1
https://doi.org/10.1088/1361-6382/ab23a1
https://doi.org/10.1016/j.physletb.2019.03.043
https://doi.org/10.1103/PhysRevD.99.124004
https://doi.org/10.1103/PhysRevD.99.124004
https://doi.org/10.1103/PhysRevD.99.104041
https://doi.org/10.1103/PhysRevD.99.104045
https://doi.org/10.1103/PhysRevD.99.104045
https://doi.org/10.1103/PhysRevD.100.044030
https://doi.org/10.1103/PhysRevD.100.044030
https://doi.org/10.1088/1475-7516/2019/06/023
https://doi.org/10.1142/S0218271819501141
https://doi.org/10.1142/S0218271819501141
https://doi.org/10.1007/JHEP09(2019)049
https://doi.org/10.1007/JHEP09(2019)049
https://doi.org/10.1103/PhysRevD.99.104082
https://doi.org/10.1103/PhysRevD.99.104082
https://doi.org/10.1103/PhysRevD.99.124022
https://doi.org/10.1103/PhysRevD.100.063518
https://doi.org/10.1103/PhysRevD.100.063518
https://doi.org/10.1088/1475-7516/2019/06/038
https://doi.org/10.15625/0868-3166/29/2/13677
https://doi.org/10.15625/0868-3166/29/2/13677
https://doi.org/10.1126/science.aav8137
https://doi.org/10.1103/PhysRevD.100.084045
https://doi.org/10.1103/PhysRevD.100.084045
https://doi.org/10.1103/PhysRevD.100.044015
https://doi.org/10.1103/PhysRevD.100.044015
https://arXiv.org/abs/1903.05427
https://arXiv.org/abs/1905.08524
https://doi.org/10.1103/PhysRevD.100.104051
https://doi.org/10.1103/PhysRevD.100.104051
https://doi.org/10.1103/PhysRevD.100.124013
https://doi.org/10.1103/PhysRevD.100.124023
https://arXiv.org/abs/1907.06168
https://arXiv.org/abs/1907.10112
https://arXiv.org/abs/1907.10112
https://arXiv.org/abs/1908.01346
https://doi.org/10.1103/PhysRevD.100.104014
https://doi.org/10.1103/PhysRevD.100.104014
https://doi.org/10.1103/PhysRevD.100.104061
https://doi.org/10.1103/PhysRevD.100.084026
https://doi.org/10.1103/PhysRevD.100.084026
https://doi.org/10.1088/1361-6382/ab6391
https://doi.org/10.1088/1361-6382/ab6391
https://doi.org/10.1103/PhysRevD.100.124039
https://doi.org/10.1103/PhysRevD.100.124039
https://doi.org/10.1103/PhysRevD.67.024008
https://doi.org/10.1103/PhysRevD.67.024008
https://doi.org/10.1103/PhysRevD.70.064023
https://doi.org/10.1103/PhysRevD.70.044034
https://doi.org/10.1103/PhysRevD.70.084035
https://doi.org/10.1103/PhysRevD.97.024034
https://doi.org/10.1103/PhysRevD.72.024017
https://doi.org/10.1103/PhysRevD.81.041501
https://doi.org/10.1103/PhysRevD.81.041501
https://doi.org/10.1103/PhysRevD.80.104010
https://doi.org/10.1103/PhysRevD.80.104010
https://doi.org/10.1088/0264-9381/26/17/175012
https://doi.org/10.1007/s10714-010-1079-0
https://doi.org/10.1103/PhysRevD.83.044051
https://doi.org/10.1103/PhysRevD.83.044051
https://doi.org/10.1143/PTP.121.253
https://doi.org/10.1143/PTP.121.253
https://doi.org/10.1143/PTP.121.959
https://doi.org/10.1143/PTP.121.959
https://doi.org/10.1143/PTP.122.1477
https://doi.org/10.1103/PhysRevD.85.104047
https://doi.org/10.1103/PhysRevD.85.104047
https://doi.org/10.1007/JHEP10(2013)015
https://doi.org/10.1007/JHEP10(2013)015
https://doi.org/10.1007/JHEP12(2013)021
https://doi.org/10.1103/PhysRevD.88.104011
https://doi.org/10.1103/PhysRevD.88.104011
https://doi.org/10.1007/JHEP11(2013)177
https://doi.org/10.1103/PhysRevD.89.085040
https://doi.org/10.1103/PhysRevD.89.085040
https://doi.org/10.1103/PhysRevD.99.064042
https://doi.org/10.1007/JHEP06(2018)074
https://doi.org/10.1007/JHEP06(2018)074
https://doi.org/10.1007/JHEP01(2019)142
https://doi.org/10.1007/JHEP01(2019)142
https://doi.org/10.1103/PhysRevD.99.064003
https://doi.org/10.1103/PhysRevD.99.064003
https://doi.org/10.1103/PhysRevD.99.064042
https://arXiv.org/abs/1910.05286
https://doi.org/10.1103/PhysRevLett.107.271101
https://doi.org/10.1103/PhysRevLett.107.271101
https://doi.org/10.1103/PhysRevD.85.044007
https://doi.org/10.1103/PhysRevD.101.024033
https://arXiv.org/abs/1910.02121
https://doi.org/10.1088/1361-6382/ab1859
https://doi.org/10.1088/1361-6382/ab1859
https://doi.org/10.1088/1475-7516/2019/12/044
https://doi.org/10.1140/epjc/s10052-019-7583-9
https://doi.org/10.1140/epjc/s10052-019-7583-9
https://doi.org/10.1103/PhysRevD.100.064007
https://doi.org/10.1103/PhysRevD.100.064007
https://doi.org/10.1103/PhysRevD.100.064067
https://doi.org/10.1016/0550-3213(94)90120-1
https://doi.org/10.1016/0550-3213(94)90120-1
https://doi.org/10.1016/0370-2693(94)91192-4
https://doi.org/10.1103/PhysRevD.59.083512
https://doi.org/10.1103/PhysRevD.59.083512
https://doi.org/10.1103/PhysRevD.92.041302
https://doi.org/10.1103/PhysRevD.92.041302
https://doi.org/10.1103/PhysRevD.92.083524

