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We investigate the escape of photons from the vicinity of the horizon to infinity in the Kerr-Newman
black hole spacetime. We assume that a light source is at rest in a locally nonrotating frame on the
equatorial plane and photons are emitted isotropically. Then, we evaluate the escape probability of the
emitted photons. The main result of this paper is the following. If the black hole is extremal with
the nondimensional spin parameter a� > 1=2, however close to the horizon the light source would be, the
escape probability remains nonzero. The near-horizon limit value of the escape probability is a
monotonically increasing function of a� and takes a maximum ∼29.1% at a� ¼ 1, i.e., for the extremal
Kerr case. On the other hand, if the black hole is extremal with 0 ≤ a� ≤ 1=2 or if the black hole is
subextremal, the near-horizon limit value is zero.
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I. INTRODUCTION

Very recently, the Event Horizon Telescope collaboration
has succeeded in the first observation of the black hole
shadows of the core of the galaxy M87 [1]. Although it
remains controversial whether the central object forming
the shadow is a black hole or not (see, e.g., Ref. [2] for a
review), at least we have observed a photon ring scale near
the ultracompact object directly through electromagnetic
waves. As the observation progresses further, we will be
able to clarify various properties of the center in the future.
The brightness around the shadow depends on how often
photons can escape from the source to infinity (i.e., the
escape probability). Therefore, the evaluation of the
probability is an important issue closely related to shadow
observation.
The escape probability is also crucial in high-energy

physics. In high-energy astrophysics, energetic particles are
produced through the Penrose process [3,4] in the ergo-
region, which plays a fundamental role in high-energy
phenomena of our Universe. On the other hand, in the
context of dark matter searches of high-energy astroparticle
physics, exotic particles are produced by arbitrarily high-
energy collisions near the horizon through the Banados-
Silk-West (BSW) process [5] (see also, e.g., Ref. [6] for a
review). More recently, an energy extraction process in a
head-on collision—a combined process of the BSWand the
Penrose—has attracted attention because the upper limit of

its energy efficiency is of order 10 [7]. Moreover, it was
shown that arbitrarily high efficiencies are achieved in the
horizon limit by allowing that at least either of the colliding
particles is emitted outwardly in the vicinity of the horizon
before the collision. This is called the super-Penrose process
[8]. The observability of such high-energy or exotic particles
depends considerably on the escape probability.
In general, the production rate of high-energy particles

in the ergoregion increases as the generating point
approaches the horizon, while the size of the escape cone
and the escape probability of photons emitted from there
decrease [9–11].
Since a black hole is a spacetime region where nothing

can escape, we can expect that the probability becomes zero
if the emission arbitrarily approaches the horizon.
Therefore, it is most likely that the observation of such
energetic particles coming from the vicinity of the horizon
seems impossible. In a previous work, however, we showed
that the photon escape probability has a nonzero limiting
value when the emission point arbitrarily approaches the
horizon of the extremal Kerr black hole [12]. We found it in
the context of the observability of high-energy photons
produced by the super-Penrose process. This result implies
that distant observers can see high-energy photons emitted
from the vicinity of a rapidly rotating black hole.
Nonzero escape probability of photons in the horizon

limit further suggests observability of various phenomena
near the horizon. Although clarifying the conditions for this
phenomenon is of significance, we still have not fully
understood them. The extremal limit of a black hole seems
to be a key to this phenomenon, but so far it is unclear
whether this is a sufficient condition.
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The purpose of this paper is to clarify the conditions for the
escape probability remaining nonzero value when an emis-
sion point arbitrarily approaches the horizon. To achieve this,
we adopt the Kerr-Newman spacetime as the background.
Since the metric includes an electric charge parameter, the
extremal limit is a one-parameter family of the black hole
spin under fixed mass scale. The spin dependence allows us
to consider the contribution of the extremal black hole
rotation to the nonzero escape probability. In addition, we
assume that the source stays at rest in the locally nonrotating
frame (LNRF) on the equatorial plane and emits photons
isotropically. These assumptions are motivated by the fact
that the center-of-mass frame in a collisional Penrose process
coincides with the LNRF. Moreover, since the LNRF does
not corotate locally with the spacetime by definition, we can
remove the contribution of proper orbital rotationalmotion of
a source to the escape probability.
This paper is organized as follows. In the following

section, we introduce the LNRF and obtain the components
of the 4-momentum of a photon in the Kerr-Newman
spacetime. In Sec. III, we show the ranges of an impact
parameter for a photon that can escape from the vicinity of
the horizon to infinity. In Sec. IV, focusing on the emission
from a light source at rest in the LNRF, we introduce
emission angles. The parameter ranges obtained in the
previous section lead to the solid emission angle in which a
photon can escape to infinity. Assuming isotropic emission,
we define the escape probability. In Sec. V, we evaluate the
escape probability and confirm that it becomes zero as
the emission point approaches the horizon in general.
However, in the extremal Kerr-Newman black hole with
spin larger than a specific value, we observe that the
probability remains a finite value even in the horizon limit.
Section VI is devoted to the conclusion and discussions. In
this paper, we use units in which c ¼ 1 and G ¼ 1.

II. GENERAL GEODESIC MOTION AND
LOCALLY NONROTATING FRAME IN
THE KERR-NEWMAN SPACETIME

The Kerr-Newman metric in the Boyer-Lindquist coor-
dinates is given by

gμνdxμdxν ¼ −
ΣΔ
A

dt2 þ Σ
Δ
dr2 þ Σdθ2

þ A
Σ
sin2θ

�
dφ −

aðr2 þ a2 − ΔÞ
A

dt

�
2

; ð1Þ

where

Σ≡ r2 þ a2cos2θ; Δ≡ r2 − 2Mrþ a2 þ e2;

A≡ ðr2 þ a2Þ2 − a2Δsin2θ: ð2Þ

This metric is parametrized by three parameters, mass M,
spin a, and charge e. The spin parameter a is related to the

angular momentum J with respect to the rotational axis
as a ¼ J=M. Without loss of generality, we assume that
a ≥ 0. Throughout this paper, we only consider the param-
eter range of the black hole spacetime, a2 þ e2 ≤ M2.
Then the event horizon is located at the radius r ¼ rH ≡
M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2 − e2

p
, where Δ vanishes. The spacetime is

stationary and axisymmetric with corresponding two Killing
vectors ξμ and ψμ, where ξμ∂μ ¼ ∂t and ψμ∂μ ¼ ∂φ.
Let us consider null geodesic motion with 4-momentum

kμ in the Kerr-Newman black hole spacetime. By using the
Hamilton-Jacobi method [13], the components of kμ are
given by

kt¼ 1

Σ

�
aðL−aEsin2θÞþr2þa2

Δ
½ðr2þa2ÞE−aL�

�
; ð3Þ

kr ¼ σr
Σ

ffiffiffiffi
R

p
; ð4Þ

kθ ¼ σθ
Σ

ffiffiffiffi
Θ

p
; ð5Þ

kφ ¼ 1

Σ

�
L

sin2θ
− aEþ a

Δ
½ðr2 þ a2ÞE − aL�

�
; ð6Þ

where σr, σθ ¼ �, and

R≡ ½ðr2 þ a2ÞE − aL�2 − Δ½ðL − aEÞ2 þQ�; ð7Þ

Θ≡Q − cos2θ

�
L2

sin2θ
− a2E2

�
: ð8Þ

HereE ¼ −ξμkμ,L ¼ ψμkμ, andQ are the conserved energy,
angular momentum, and Carter constant, respectively.
We introduce the LNRF [14] that is a tetrad basis

associated with observers who corotate with the back-
ground spacetime. The basis one-forms are given by

eð0Þ ¼
ffiffiffiffiffiffiffi
ΣΔ
A

r
dt; eð1Þ ¼

ffiffiffiffi
Σ
Δ

r
dr; eð2Þ ¼

ffiffiffi
Σ

p
dθ;

eð3Þ ¼
ffiffiffiffi
A
Σ

r
sinθdφ−

aðr2þa2−ΔÞsinθffiffiffiffiffiffiffi
ΣA

p dt: ð9Þ

These satisfy gμν ¼ ηðaÞðbÞe
ðaÞ
μ eðbÞν , where ηðaÞðbÞ ¼

diagð−1; 1; 1; 1Þ, and a and b run from 0 to 3. The tetrad

components of the 4-momentum, kðaÞ ¼eðaÞμ kμ, are given by

kð0Þ ¼
ffiffiffiffiffiffiffi
Δ
ΣA

r �
aðL−aEsin2θÞþ r2þa2

Δ
½ðr2þa2ÞE−aL�

�
;

ð10Þ

kð1Þ ¼ σr

ffiffiffiffiffiffiffi
R
ΣΔ

r
; ð11Þ
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kð2Þ ¼ σθ

ffiffiffiffi
Θ
Σ

r
; ð12Þ

kð3Þ ¼ L
sin θ

ffiffiffiffi
Σ
A

r
: ð13Þ

III. ESCAPE OF A PHOTON TO INFINITY

We consider the emission of a photon from the equatorial
plane near the horizon ðr; θÞ ¼ ðr�; π=2Þ to infinity. We
adopt units in whichM ¼ 1 and assume that a ≠ 0 in what
follows.
We derive the conditions for a photon escaping to infinity.

These are determined by investigating a radial turning point,
i.e., R ¼ 0. Introducing the dimensionless parameters

b≡ L
E
; q≡ Q

E2
; ð14Þ

for E > 0 and solving R ¼ 0 for b, we obtain

b ¼ b1ðrÞ≡ aðe2 − 2rÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ½r4 − qðΔ − a2Þ�

p
Δ − a2

; ð15Þ

and

b ¼ b2ðrÞ≡ aðe2 − 2rÞ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ½r4 − qðΔ − a2Þ�

p
Δ − a2

: ð16Þ

We note that q is non-negative (i.e., q ≥ 0) because Θ
must be non-negative and Θ ¼ Q at the emission point
ðr; θÞ ¼ ðr�; π=2Þ. The allowed parameter region of b for
photon motion is given by

b ≤ b1 for rH ≤ r < 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
; ð17Þ

b2 ≤ b ≤ b1 for 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
≤ r; ð18Þ

where b2 diverges at r ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
. We note that b2 ≤ b

for rH ≤ r < 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
is also the allowed region, but

for a negative energy photon. Because such a photon
cannot escape to infinity, we will not consider this region.
Now we focus on extremum points of bi (i ¼ 1, 2). The

positions are determined by the equation

b0iðrÞ ¼ 0: ð19Þ

Solving these for q, we obtain the single equation

q¼ fðrÞ

≡ r2

a2

�
−
4ð1−a2−e2Þðr−e2Þ

ðr−1Þ2 þ3−4e2− ðr−1Þðr−3Þ
�
:

ð20Þ

Note that the first term of f vanishes in the extremal case
a2 þ e2 ¼ 1. Outside the horizon, fðrÞ has the unique local
maximum with the value f0 at r ¼ r0, where

r0ðeÞ≡ 3þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 8e2

p

2
; ð21Þ

f0ðeÞ≡ fðr ¼ r0Þ ¼
r40

r0 − e2
: ð22Þ

It is worth noting that r0 and f0 depend only on e and
monotonically decrease with respect to e in the range

r0ð1Þ ¼ 2 ≤ r0 ≤ 3 ¼ r0ð0Þ; ð23Þ

f0ð1Þ ¼ 16 ≤ f0 ≤ 27 ¼ f0ð0Þ; ð24Þ

and q satisfies the inequality

0 ≤ q ≤ f0ðeÞ: ð25Þ

At the horizon, f takes the value

fðrHÞ ¼ 4 −
1

a2
for a2 þ e2 ¼ 1; ð26aÞ

fðrHÞ ¼ −
r4H
a2

for a2 þ e2 < 1: ð26bÞ

This implies that fðrHÞ > 0 only holds for a2 þ e2 ¼ 1 and
a > 1=2. Then, we define two classes according to the sign
of fðrHÞ as follows:

Class I∶ a2 þ e2 ¼ 1 and a >
1

2
; ð27aÞ

Class II∶

8<
:

a2 þ e2 ¼ 1 and a ≤ 1
2

or

a2 þ e2 < 1.

ð27bÞ

Under this classification, we consider the appearance of the
roots of Eq. (20) outside the horizon, i.e., the radii of
spherical photon orbits. For class I, Eq. (20) in the range
fðrHÞ < q ≤ f0 has two roots riðqÞ (r1 ≤ r2) outside the
horizon. On the other hand, the equation in the range 0 ≤
q ≤ fðrHÞ only has the largest root r2ðqÞ outside the
horizon, while has the next largest root r1ðqÞ inside the
horizon. For class II, Eq. (20) in the range 0 ≤ q ≤ f0 has
the two roots riðqÞ (r1 ≤ r2) outside the horizon. In both
classes, ri (i ¼ 1, 2) coincide with r0 in the case q ¼ f0. In
particular, if q ¼ 0, the radii ri reduce to those of circular
photon orbits

rc;i ≡ rið0Þ: ð28Þ
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Therefore, in other words, the criterion of the classification
in Eq. (26) is whether or not the radius of the innermost
spherical photon orbit reaches the horizon. Figure 1 shows
typical plots of fðrÞ and the relations among rH, ri, rc;i,
and r0.
The extremum values of bi become

bsi ≡ biðriÞjq¼fðriÞ

¼ 2ð1 − a2 − e2Þ
aðri − 1Þ −

ðri − 1Þ2
a

þ 3 − a2 − 2e2

a
; ð29Þ

which are values of the impact parameter of photons on
spherical photon orbits.
Let us consider the behavior of biðrÞ to determine the

range of b in which a photon can escape from r ¼ r� to
infinity. From now on, we consider the case where r� is in
the range rH < r� ≤ r0. We define three cases according to
the relative position of r1 to rH and r�:

Case ðaÞ : r1 < rH < r�; ð30aÞ

Case ðbÞ : rH ≤ r1 < r�; ð30bÞ

Case ðcÞ : rH < r� ≤ r1; ð30cÞ

where case (a) appears only for class I.
For case (a), as r increases from rH to∞, b1 begins with

b1ðrHÞ, where

b1ðrHÞ ¼ aþ 1

a
ða2 þ e2 ¼ 1Þ; ð31aÞ

b1ðrHÞ¼
2ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−a2−e2

p
Þ−e2

a
ða2þe2< 1Þ; ð31bÞ

and monotonically increases to ∞. For cases (b) and (c),
as r increases from rH to ∞, b1 begins with b1ðrHÞ,

monotonically decreases to a local minimum bs1 at r ¼ r1,
and monotonically increases to ∞. For all cases, as r
increases from rH to 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
, b2 begins with b2ðrHÞ ¼

b1ðrHÞ and monotonically increases to ∞. As r increases
from 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
to∞, b2 begins with−∞, monotonically

increases to a local maximum bs2 at r ¼ r2, and monoton-
ically decreases to −∞. Figure 2 shows the schematic
pictures of biðrÞ.
Then, the range of b in which a photon can escape to

infinity is given as follows. In case (a), which appears only
for class I, if photons are emitted radially inward (i.e.,
σr ¼ −), then only those with b1ðrHÞ < b < b1ðr�Þ can
escape to infinity [see the band between the green dashed
lines in Fig. 2(a)]. If photons are emitted radially outward
(i.e., σr ¼ þ), then only those with bs2 < b ≤ b1ðr�Þ can
escape to infinity [see the band between the red dotted lines
in Fig. 2(a)]. In case (b), which appears for both classes,
if photons are emitted radially inward, then only those
with bs1 < b < b1ðr�Þ can escape to infinity [see the band
between the green dashed lines in Fig. 2(b)]. If photons are
emitted radially outward, then only those with bs2 < b ≤
b1ðr�Þ can escape to infinity [see the band between the red
dotted lines in Fig. 2(b)]. In case (c), which appears for
both classes, if photons are emitted radially inward, then
nothing can escape to infinity. If photons are emitted
radially outward, then only those with bs2 < b < bs1 can
escape to infinity [see the band between the red dotted lines
in Fig. 2(c)]. They are summarized in Table I.

IV. ESCAPE CONE AND CRITICAL ANGLES

We introduce the photon emission angles ðα; βÞ from a
light source at rest with respect to the LNRF

kðaÞj r¼r�
θ¼π=2

∝ ð1; cos α sin β;− cos β; sin α sin βÞ
ð−π ≤ α < π and 0 ≤ β ≤ πÞ; ð32Þ

FIG. 1. Typical numerical plots of fðrÞ (black solid and gray dashed lines). The black solid lines show fðrÞ in the range r > rH and
0 ≤ f ≤ f0. The intersections of the blue solid lines q and the black solid lines f give r1 and r2. We note that r1 (r2) is monotonically
increasing (decreasing) with respect to q.
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or equivalently,

sin α≡ kð3Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkð1ÞÞ2 þ ðkð3ÞÞ2

q
������
r¼r�
θ¼π=2

¼ br2
ffiffiffiffi
Δ

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AR̂þ b2r4Δ

p ����
r¼r�

;

ð33Þ

cos α≡ kð1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkð1ÞÞ2 þ ðkð3ÞÞ2

q
������
r¼r�
θ¼π=2

¼ σr
ffiffiffiffiffiffiffi
AR̂

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AR̂þ b2r4Δ

p ����
r¼r�

;

ð34Þ

sin β≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkð1ÞÞ2 þ ðkð3ÞÞ2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkð1ÞÞ2 þ ðkð2ÞÞ2 þ ðkð3ÞÞ2

q
������
r¼r�
θ¼π=2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AR̂þ b2r4Δ

p
aðb − aÞΔþ ðr2 þ a2Þðr2 − abþ a2Þ

����
r¼r�

; ð35Þ

cosβ≡ −kð2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkð1ÞÞ2þðkð2ÞÞ2þðkð3ÞÞ2

q
������
r¼r�
θ¼π=2

¼−
σθ

ffiffiffiffiffiffiffiffiffiffi
qΔA

p
aðb−aÞΔþðr2þa2Þðr2−abþa2Þ

����
r¼r�

; ð36Þ

where R̂ ¼ R=E2. Thus α is the angle between eð1Þ and k
projected onto the equatorial plane, which is positive in the
direction eð3Þ, and β is the angle between−eð2Þ and k, where
k is the projection of kμ normal to eð0Þ. We illustrate the
relation between the LNRF and ðα; βÞ in Fig. 3. The
definition of α, β means that the angles are functions of
σr, σθ, b, q, and r� as

αðσr; b; q; r�Þ; βðσθ; b; q; r�Þ: ð37Þ

TABLE I. Range of b in which a photon can escape from ðr; θÞ ¼ ðr�; π=2Þ to infinity. The last column shows two pairs ðσr; bÞ of the
marginal parameter values with which a photon cannot escape to infinity for each cases.

Cases q σr ¼ þ σr ¼ − Marginal pairs of (σr; b)

(a): r1 < rH < r� 0 ≤ q < fðrHÞ (Class I) bs2 < b ≤ b1ðr�Þ b1ðrHÞ < b < b1ðr�Þ (þ; bs2) and (−; b1ðrHÞ)

(b): rH ≤ r1 < r�
fðrHÞ ≤ q < fðr�Þ (Class I) bs2 < b ≤ b1ðr�Þ bs1 < b < b1ðr�Þ (þ; bs2) and (−; bs1)
0 ≤ q < fðr�Þ (Class II)

(c): rH < r� ≤ r1 fðr�Þ ≤ q ≤ f0 (Classes I & II) bs2 < b < bs1 n/a (þ; bs2) and (þ; bs1)

FIG. 3. Emission angles ðα; βÞ defined in the LNRF where the
origin coincides with the emission point ðr; θÞ ¼ ðr�; π=2Þ. Here
k is the projection of kμ normal to eð0Þ. In this figure, upward and
downward directions represent northward and southward direc-
tions of the Kerr-Newman black hole, respectively.

(a) (b) (c)

FIG. 2. Schematic pictures of biðrÞ in cases (a)–(c). Upper and lower black solid lines denote b1ðrÞ and b2ðrÞ, respectively. The range
of b in which a photon can escape from r ¼ r� to infinity depends on two conditions. One is whether a photon is emitted initially radially
outward (σr ¼ þ) or inward (σr ¼ −), and the other is the relative position of r1 to rH and r�. If photons are emitted radially outward, the
maximum and minimum values of b are given by the red dotted lines. If photons are emitted radially inward, the maximum and
minimum values of b are given by the green dashed lines. We note that b2ðrÞ in the range r < 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
is not plotted.
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The range of α is restricted depending on the sign of b and
σr as follows. If photons are emitted radially inward (i.e.,
σr ¼ −), we have

−π ≤ α ≤ −
π

2
for b ≤ 0; ð38Þ

π

2
≤ α < π for b > 0; ð39Þ

where α ¼ −π holds for b ¼ 0. If photons are emitted
radially outward (i.e., σr ¼ þ), we have

−
π

2
≤ α ≤ 0 for b ≤ 0; ð40Þ

0 ≤ α ≤
π

2
for b ≥ 0; ð41Þ

where α ¼ 0 holds for b ¼ 0. The range of β depends on
σθ as

0 ≤ β ≤
π

2
for σθ ¼ −; ð42Þ

π

2
≤ β ≤ π for σθ ¼ þ: ð43Þ

Note that when q ¼ 0, k is confined in the equatorial plane
(i.e., β ¼ π=2).
In terms of α and β, we define an escape cone S to be the

solid angle of emission that allows photons to escape to
infinity. Assuming that photons are emitted isotropically,
we can define the escape probability Pðr�Þ by

Pðr�Þ≡ 1

4π

Z
S
dαdβ sin β: ð44Þ

Since the Kerr-Newman spacetime is symmetric to the
equatorial plane, the escape probability of isotropic emis-
sion to the northern hemisphere is the same with that to the
southern hemisphere. Therefore we only need to consider
the emission to the northern hemisphere (i.e., σθ ¼ −). To
evaluate P, we determine the critical angles, which are
points on the boundary of S. There is a one-to-one
correspondence between the critical angles and the param-
eter set ðσr; b; qÞ of photons that cannot marginally escape
to infinity.
Let us specify such parameter sets for each case. In case

(a), if photons with b ¼ b1ðrHÞ are emitted radially inward
(i.e., σr ¼ −), then they arbitrarily approach the horizon but
cannot escape to infinity [see Fig. 2(a)]. If photons with
b ¼ bs2 are emitted radially outward (i.e., σr ¼ þ), then
they arbitrarily approach r ¼ r2 but cannot escape to
infinity. In case (b), if photons with b ¼ bs1 are emitted
radially inward, then they arbitrarily approach r ¼ r1 [see
Fig. 2(b)]. If photons with b ¼ bs2 are emitted radially
outward, then they arbitrarily approach r ¼ r2. In case (c),

if photons with b ¼ bsi are emitted radially outward, then
they arbitrarily approach r ¼ ri but cannot escape to
infinity [see Fig. 2(c)].
We find that all the parameter pairs appear as the

boundary of the ranges for photons that can escape to
infinity [see Table I]. Therefore, we call them the marginal
pairs. They are summarized in the last column of Table I.
Finally we obtain the critical angles ðαi; βiÞ (i ¼ 1, 2)
relevant to marginal parameter values associated with bi
and their total set ∂S (i.e., the boundary of S) as follows:

∂S ¼ ⋃
i¼1;2

fðαi; βiÞj0 ≤ q ≤ f0g; ð45Þ

where

ðα1; β1Þ≡ ðα1ðaÞ; β1ðaÞÞ≡ ðα; βÞj σr¼−
b¼b1ðrHÞ

for 0 ≤ q < fðrHÞ ½case ðaÞ�; ð46aÞ

ðα1; β1Þ≡ ðα1ðbÞ; β1ðbÞÞ≡ ðα; βÞjσr¼−
b¼bs

1

for fðrHÞ ≤ q < fðr�Þ ½case ðbÞ�; ð46bÞ

ðα1; β1Þ≡ ðα1ðcÞ; β1ðcÞÞ≡ ðα; βÞjσr¼þ
b¼bs

1

for fðr�Þ ≤ q ≤ f0 ½case ðcÞ�; ð46cÞ

in class I,

ðα1; β1Þ≡ ðα1ðbÞ; β1ðbÞÞ≡ ðα; βÞjσr¼−
b¼bs

1

for 0 ≤ q < fðr�Þ ½case ðbÞ�; ð47aÞ

ðα1; β1Þ≡ ðα1ðcÞ; β1ðcÞÞ≡ ðα; βÞjσr¼þ
b¼bs

1

for fðr�Þ ≤ q ≤ f0 ½case ðcÞ�; ð47bÞ

in class II, and

ðα2;β2Þ≡ ðα;βÞjσr¼þ
b¼bs

2

for 0≤ q≤ f0 ½cases ðaÞ–ðcÞ�; ð48Þ

in classes I and II. Note that once we fix the value of r�,
then the critical angles ðαi; βiÞ depend only on q, i.e., αi ¼
αiðqÞ and βi ¼ βiðqÞ. Figure 4 shows a schematic picture of
the critical angles.

V. ESCAPE PROBABILITY

In this section, we evaluate the escape probability P for a
photon in Eq. (44). Let αmin and αmax be the minimum and
the maximum of the critical angle, and βminðαÞ and βmaxðαÞ
be the minimum and the maximum of the critical angle for a
given α. Assuming that S is convex, we obtain
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P¼ 1

4π

Z
αmax

αmin

dα
Z

βmaxðαÞ

βminðαÞ
dβ sinβ¼ 1

2π

Z
αmax

αmin

dαcosβminðαÞ;

ð49Þ

where we have used βmax ¼ π − βmin. Using the critical
angles ðαi; βiÞ and the relation between q and ri given in
Eq. (20) [see also Figs. 1 and 4], we change the integration
variable α of Eq. (49) to ri as

P ¼ P1 þ P2; ð50Þ

where

Pi ¼
ð−1Þi
2π

Z
f0

0

dq
dαi
dq

cos βi ¼
ð−1Þi
2π

Z
r0

rc;i

dri
dαi
dri

cos βi:

ð51Þ

In particular, using the definition of the critical angles in
Eqs. (46)–(48), we can reduce P1 as

P1 ¼ −
1

2π

Z
rH

rc;1

dr1
dα1ðaÞ
dr1

cos β1ðaÞ

−
1

2π

Z
r�

rH

dr1
dα1ðbÞ
dr1

cos β1ðbÞ

−
1

2π

Z
r0

r�
dr1

dα1ðcÞ
dr1

cos β1ðcÞ ðclass IÞ; ð52aÞ

P1 ¼ −
1

2π

Z
r�

rc;1

dr1
dα1ðbÞ
dr1

cos β1ðbÞ

−
1

2π

Z
r0

r�
dr1

dα1ðcÞ
dr1

cos β1ðcÞ ðclass IIÞ: ð52bÞ

It is useful to note that some of the integrands in the above
integrals have a common form

dα1ðbÞ
dr1

cos β1ðbÞ

����
r1¼x

¼ dα1ðcÞ
dr1

cos β1ðcÞ

����
r1¼x

¼ dα2
dr2

cos β2

����
r2¼x

≡ gðxÞ: ð53Þ

Finally, from Eqs. (49)–(53), P is given by

P¼−
1

2π

Z
rH

rc;1

dr1
dα1ðaÞ
dr1

cosβ1ðaÞ−
1

2π

Z
rc;2

rH

dxgðxÞ ðclass IÞ;

ð54aÞ

P ¼ −
1

2π

Z
rc;2

rc;1

dxgðxÞ ðclass IIÞ: ð54bÞ

A. Extremal Kerr black hole

We evaluate the critical angles and escape probability in
the extremal Kerr black hole. Since a ¼ 1 and e ¼ 0 (i.e.,
class I), the function fðrÞ in Eq. (20) reduces to

fðrÞ ¼ r3ð4 − rÞ; ð55Þ

which has the maximum value f0 ¼ 27 at r0 ¼ 3 and zeros
at the radii of circular photon orbits

rc;1 ¼ 0; rc;2 ¼ 4: ð56Þ

Furthermore, the values of b given in Eqs. (29) and (31a)
are of the form

bsi ¼ −r2i þ 2ri þ 1; ð57Þ

FIG. 4. Schematic picture of the critical angles with fixed r� for the northern hemisphere in α − β plane. The blue and red solid lines
show ðα1ðqÞ; β1ðqÞÞ and ðα2ðqÞ; β2ðqÞÞ for 0 ≤ q ≤ f0, respectively. We plot the critical angles as functions of q because we have
chosen σr, σθ, and b for the critical angles. The critical angle α1ðqÞ (α2ðqÞ) is monotonically decreasing (increasing) with respect to q.
We note that the critical angles in the southern hemisphere is symmetrical about the α-axis.
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b1ðrHÞ ¼ 2; ð58Þ

where rH ¼ 1.
Using these expressions, we can evaluate the critical

angles ðαi; βiÞ. In Fig. 5, we find sets of critical angles ∂S
for several values of r�. As r� decreases toward rH ¼ 1, the
size of the escape cone S decreases. However, we should
notice that S still has enough size, even if r� is close enough
to the horizon [see r� ¼ 1.001 case]. Now let us evaluate
the escape probability P in Eq. (54a) with the above
expressions. In Fig. 6, the solid black line shows P as a
function of r�. We find that P decreases as r� decreases
toward rH but is nonzero in the horizon limit. Indeed, the
value of P in the horizon limit takes

lim
r�→1

P ¼ 0.2916…: ð59Þ

This result means that about 30% of photons isotropically
emitted from a light source near the horizon of the extremal
Kerr black hole can escape to infinity.
Here let us confirm that the result of Ref. [12] can be

reproduced. Assuming that photons are emitted isotropi-
cally but confined in the equatorial plane, we can identify

the escape cone with the segment α ∈ ½α2; α1ðaÞ�jq¼0 on the
line β ¼ π=2 in Fig. 5(i). Thus the escape probability in
such a situation is given by

P ¼
ðα1ðaÞ − α2Þjq¼0

2π
; ð60Þ

FIG. 5. Critical angles in α − β plane in the extremal Kerr-Newman black hole. The red, green, blue, and orange lines show
(α1ðaÞ; β1ðaÞ), (α1ðbÞ; β1ðbÞ), (α1ðcÞ; β1ðcÞ), and (α2, β2), respectively. We set r� ¼ 1.7, 1.3, 1þ 10−3 for class I (the upper three panels) and
r� ¼ 1.7, 1.3, 1þ 10−2 for class II (the lower three panels) from outside to inside. The inside of each closed solid curve shows the escape
cone S. We can see that, in the near-horizon emission case for class I, the presence of the critical angles in case (a) prevents the escape
cone from disappearing.

FIG. 6. Escape probability in the extremal Kerr-Newman
black hole.
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and the horizon limit of this expression is 5=12. This is
consistent with the result of Ref. [12].

B. Extremal Kerr-Newman black hole

We evaluate the critical angles and escape probability in
the extremal Kerr-Newman black hole (i.e., a2 þ e2 ¼ 1).
Therefore, we replace e in all the above expressions withffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
. Then, fðrÞ reduces to

fðrÞ ¼ −
r2

a2
ðr − rc;1Þðr − rc;2Þ; ð61Þ

where

rc;1 ¼ 2ð1 − aÞ; rc;2 ¼ 2ð1þ aÞ: ð62Þ

This function has the maximum with the value

f0 ¼
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8a2

p
− 1Þð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8a2

p
þ 3Þ3

16a2
ð63Þ

at r ¼ r0 ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8a2

p
þ 3Þ=2. Furthermore, the values of

b given in Eqs. (29) and (31a) are of the form

bsi ¼
−r2i þ 2ri þ a2

a
; b1ðrHÞ ¼ aþ 1

a
; ð64Þ

where rH ¼ 1.
The critical angles with the above expressions are shown

in Fig. 5. We can confirm that even if r� is close enough to
rH, the escape cones in class I have a nonzero size in the
region α > 0. On the other hand, as r� approaches rH
sufficiently, the escape cones in class II shrink to the origin

TABLE II. Escape probability evaluated at r� ¼ 1þ ε in the extremal Kerr-Newman black hole.

a ¼ 1 a ¼ 0.9 a ¼ 0.7 a ¼ 0.55 a ¼ 0.5 a ¼ 0.3 a ¼ 0.1

ε ¼ 10−1 3.14 × 10−1 2.96 × 10−1 2.45 × 10−1 1.81 × 10−1 1.50 × 10−1 5.52 × 10−2 3.02 × 10−2

ε ¼ 10−3 2.93 × 10−1 2.69 × 10−1 1.98 × 10−1 9.92 × 10−2 3.27 × 10−2 1.62 × 10−5 4.52 × 10−6

ε ¼ 10−5 2.91 × 10−1 2.67 × 10−1 1.95 × 10−1 9.19 × 10−2 9.91 × 10−3 1.64 × 10−9 4.54 × 10−10

ε → 0 2.91 × 10−1 2.67 × 10−1 1.94 × 10−1 9.11 × 10−2 0 0 0

FIG. 7. Critical angles in α − β plane in nonextremal black holes. The green, blue, and orange lines show (α1ðbÞ; β1ðbÞ), (α1ðcÞ; β1ðcÞ),
and (α2, β2), respectively. The solid lines (the upper three panels) and dashed lines (the lower three panels) are the cases of a2 þ e2 ¼
0.999 and e ¼ 0, respectively. For each panel, we set r� ¼ 1.7, 1.3, 1þ 10−3 from outside to inside.
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of the α − β plane. The critical angles ðα1ðaÞ; β1ðaÞÞ that
appears only in class I seem to prevent the escape cones in
the horizon limit from disappearing. This is consistent with
the result of Refs. [9,10].
Figure 6 shows the numerical plots of the escape

probability for various values of a.1 As r� decreases, P
monotonically decreases in common regardless of a. On
the other hand, qualitative difference depending on a
appears in near-horizon emissions. In the horizon limit,
P takes a nonzero value for class I while it vanishes for
class II. Some explicit values of P for near-horizon
emissions are shown in Table II. We should note that P
in the horizon limit monotonically increases as a increases
in class I. Hence, we find that the maximum value of P in
the horizon limit is the case of the extremal Kerr black hole.

C. Nonextremal black holes

Finally, we show some examples of the critical angles
and escape probability in nonextremal black holes, where
a2 þ e2 ¼ 0.999 with a ¼ 0.98, 0.7, 0.3 and e ¼ 0 with
a ¼ 0.98, 0.7, 0.3. The critical angles and escape proba-
bility with the above cases are shown in Figs. 7 and 8,
respectively. We find that both the sizes of S and P are

monotonically decreasing as r� decreases. In the horizon
limit, S shrinks to the origin of the α − β plane and P
becomes zero. However, in rapidly rotating and near-
extremal cases, even if r� is close to rH, the escape cones
have a relatively large size [see Figs. 7(i) and 7(ii)].
Similarly, the escape probability takes a relatively large
value up to the very vicinity of the horizon, and finally
approaches zero rapidly.

VI. CONCLUSION AND DISCUSSIONS

We have examined the escape of photons from the
vicinity of the horizon to infinity in the Kerr-Newman
black hole spacetime. We have evaluated escape cones at an
emission point staying at rest in the LNRF and also the
escape probability under assuming isotropic emission. Our
main result is that when the black hole is extremal and has
the spin parameter larger than 1=2, even if the light source
arbitrarily approaches the horizon, the escape cone does
not shrink and the escape probability remains nonzero.
Furthermore, the nonzero escape probability in the horizon
limit monotonically increases as the spin increases from
1=2 with remaining extremal. Consequently, in the
extremal Kerr black hole, it takes the largest value,
0.2916…. However, we should kept in mind that this
result may not apply to light sources that are not on the
equatorial plane.
The reason for the nonvanishing photon escape proba-

bility in the horizon limit is that photons can be reflected at
a radius arbitrarily close to the horizon. This phenomenon
is also related to the fact that the radius of the innermost
spherical photon orbit coincides with the horizon radius.
Even for extremal black holes, the escape probability in

the horizon limit becomes zero if the spin parameter is
equal to or less than 1=2. Similarly, it does in the case of
nonextremal black holes. However, in rapidly rotating and
near-extremal black hole spacetime, as the emission point
approaches the horizon, the escape probability keeps a
relatively large nonzero value until it reaches a near-horizon
region, and finally becomes zero when it reaches just
outside the horizon. Even in this case, the fact that photons
can be reflected at a radius very close to the horizon is
essential [15].
Our result is that up to approximately 30% of photons

emitted from the light source near the horizon of the rapidly
rotating (near-)extremal black hole escape to infinity.
Hence, the phenomenon near the horizon of such a rapidly
rotating and (near-)extremal black hole (e.g., the Penrose
process or the black hole shadow) must be relatively visible
compared to the case of a slowly rotating black hole. We
speculate the effect of the nonzero escape probability on
black hole shadow observations. Photons arriving at the
shadow edge have been scattered at the radii of spherical
photon orbits in the past. In particular, for rapidly rotating
black holes, photons reaching the innermost shadow edge
have been scattered at almost the horizon radius. Therefore,

FIG. 8. Escape probability in nonextremal black holes. The
solid and dashed lines are the cases of a2 þ e2 ¼ 0.999 and
e ¼ 0, respectively.

1The integral of the first term in Eq. (54a) is evaluated
analytically:

−
1

2π

Z
rH

rc;1

dr1
dα1ðaÞ
dr1

cosβ1ðaÞ

¼ 1

2π

"
arctan

 
ð1þa2Þr2�

a½r�−1þðr�þ1Þðr2�þa2Þ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4−1=a2

ðr�−1Þðr�−3Þ

s !

−
ð1þa2Þr2�

a½r�−1þðr�þ1Þðr2�þa2Þ�arctan
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4−1=a2

ðr�−1Þðr�−3Þ

s #
: ð65Þ

The horizon limit of this expression is 1=4 − 1=ð8aÞ.
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observing the innermost shadow edge is equivalent to
observing a near-horizon region of the black hole. In fact,
one of the estimates based on the observations of the M87
galactic center suggests that the central object may be
rapidly rotating [16]. Therefore, according to our results, a
sufficient number of photons scattered at almost the
horizon radius reach the innermost edge of the shadow,
so that we can observe a near-horizon region through them.
The photon emission from several sources in the Kerr

spacetime was considered by Ref. [9] and off the equatorial
plane in the Kerr–Newman spacetime was considered by
Ref. [10]. The escape cones calculated in these previous
works and the escape probability we showed have the same
qualitative behavior in that they monotonically decrease as
the photon emission point approaches the horizon.
Although we might also infer that the escape probability
off the equatorial plane might be smaller than that from the
equatorial plane, more careful comparisons would be useful

for further developments. It is also useful to calculate the
escape probability off the equatorial plane and compare
the result with the results of Ref. [10]. These studies are in
progress.
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