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Escape probability of a photon emitted near the black hole horizon
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We investigate the escape of photons from the vicinity of the horizon to infinity in the Kerr-Newman
black hole spacetime. We assume that a light source is at rest in a locally nonrotating frame on the
equatorial plane and photons are emitted isotropically. Then, we evaluate the escape probability of the
emitted photons. The main result of this paper is the following. If the black hole is extremal with
the nondimensional spin parameter a, > 1/2, however close to the horizon the light source would be, the
escape probability remains nonzero. The near-horizon limit value of the escape probability is a
monotonically increasing function of a, and takes a maximum ~29.1% at a, = 1, i.e., for the extremal
Kerr case. On the other hand, if the black hole is extremal with 0 < a, < 1/2 or if the black hole is

subextremal, the near-horizon limit value is zero.
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I. INTRODUCTION

Very recently, the Event Horizon Telescope collaboration
has succeeded in the first observation of the black hole
shadows of the core of the galaxy M8&7 [1]. Although it
remains controversial whether the central object forming
the shadow is a black hole or not (see, e.g., Ref. [2] for a
review), at least we have observed a photon ring scale near
the ultracompact object directly through electromagnetic
waves. As the observation progresses further, we will be
able to clarify various properties of the center in the future.
The brightness around the shadow depends on how often
photons can escape from the source to infinity (i.e., the
escape probability). Therefore, the evaluation of the
probability is an important issue closely related to shadow
observation.

The escape probability is also crucial in high-energy
physics. In high-energy astrophysics, energetic particles are
produced through the Penrose process [3,4] in the ergo-
region, which plays a fundamental role in high-energy
phenomena of our Universe. On the other hand, in the
context of dark matter searches of high-energy astroparticle
physics, exotic particles are produced by arbitrarily high-
energy collisions near the horizon through the Banados-
Silk-West (BSW) process [5] (see also, e.g., Ref. [6] for a
review). More recently, an energy extraction process in a
head-on collision—a combined process of the BSW and the
Penrose—has attracted attention because the upper limit of
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its energy efficiency is of order 10 [7]. Moreover, it was
shown that arbitrarily high efficiencies are achieved in the
horizon limit by allowing that at least either of the colliding
particles is emitted outwardly in the vicinity of the horizon
before the collision. This is called the super-Penrose process
[8]. The observability of such high-energy or exotic particles
depends considerably on the escape probability.

In general, the production rate of high-energy particles
in the ergoregion increases as the generating point
approaches the horizon, while the size of the escape cone
and the escape probability of photons emitted from there
decrease [9-11].

Since a black hole is a spacetime region where nothing
can escape, we can expect that the probability becomes zero
if the emission arbitrarily approaches the horizon.
Therefore, it is most likely that the observation of such
energetic particles coming from the vicinity of the horizon
seems impossible. In a previous work, however, we showed
that the photon escape probability has a nonzero limiting
value when the emission point arbitrarily approaches the
horizon of the extremal Kerr black hole [12]. We found it in
the context of the observability of high-energy photons
produced by the super-Penrose process. This result implies
that distant observers can see high-energy photons emitted
from the vicinity of a rapidly rotating black hole.

Nonzero escape probability of photons in the horizon
limit further suggests observability of various phenomena
near the horizon. Although clarifying the conditions for this
phenomenon is of significance, we still have not fully
understood them. The extremal limit of a black hole seems
to be a key to this phenomenon, but so far it is unclear
whether this is a sufficient condition.

© 2020 American Physical Society
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The purpose of this paper is to clarify the conditions for the
escape probability remaining nonzero value when an emis-
sion point arbitrarily approaches the horizon. To achieve this,
we adopt the Kerr-Newman spacetime as the background.
Since the metric includes an electric charge parameter, the
extremal limit is a one-parameter family of the black hole
spin under fixed mass scale. The spin dependence allows us
to consider the contribution of the extremal black hole
rotation to the nonzero escape probability. In addition, we
assume that the source stays at rest in the locally nonrotating
frame (LNRF) on the equatorial plane and emits photons
isotropically. These assumptions are motivated by the fact
that the center-of-mass frame in a collisional Penrose process
coincides with the LNRF. Moreover, since the LNRF does
not corotate locally with the spacetime by definition, we can
remove the contribution of proper orbital rotational motion of
a source to the escape probability.

This paper is organized as follows. In the following
section, we introduce the LNRF and obtain the components
of the 4-momentum of a photon in the Kerr-Newman
spacetime. In Sec. III, we show the ranges of an impact
parameter for a photon that can escape from the vicinity of
the horizon to infinity. In Sec. IV, focusing on the emission
from a light source at rest in the LNRF, we introduce
emission angles. The parameter ranges obtained in the
previous section lead to the solid emission angle in which a
photon can escape to infinity. Assuming isotropic emission,
we define the escape probability. In Sec. V, we evaluate the
escape probability and confirm that it becomes zero as
the emission point approaches the horizon in general.
However, in the extremal Kerr-Newman black hole with
spin larger than a specific value, we observe that the
probability remains a finite value even in the horizon limit.
Section VI is devoted to the conclusion and discussions. In
this paper, we use units in which ¢ =1 and G = 1.

II. GENERAL GEODESIC MOTION AND
LOCALLY NONROTATING FRAME IN
THE KERR-NEWMAN SPACETIME

The Kerr-Newman metric in the Boyer-Lindquist coor-
dinates is given by

TA z
gudedt = ~=2de + 2dr? + Xdo?

A 2 2—A 2
+Esin29<d¢—%dt> Y

where

> = 12 + a?cos?6, A=r2=2Mr—+ da%+ é2,
A= (r* + a*)? — a*Asin6. (2)

This metric is parametrized by three parameters, mass M,
spin a, and charge e. The spin parameter « is related to the

angular momentum J with respect to the rotational axis
as a = J/M. Without loss of generality, we assume that
a > 0. Throughout this paper, we only consider the param-
eter range of the black hole spacetime, a” + e* < M?.
Then the event horizon is located at the radius r = rg =

M + VM? — a® — e%, where A vanishes. The spacetime is
stationary and axisymmetric with corresponding two Killing
vectors & and y*, where &0, = 0, and y*0, = 0,,.

Let us consider null geodesic motion with 4-momentum
k* in the Kerr-Newman black hole spacetime. By using the
Hamilton-Jacobi method [13], the components of k* are
given by

1 ) r*+a?
kt:f a(L—aEsin?0) + [(P+a*)E—-aLl|, (3)
k= % VR, (4)
K =26, (5)
1] L a
o — | = _ Qo g
k 3 Lin29 aE + A [(r* + a*)E aL]], (6)

where o,, 6y = £, and

R=[(r*+a®)E—-aL]> - A[(L —aE)*+ Q], (7)
O = Q —cos’d {% - azEz] ) (8)

Here E = —&'k,, L = y*k,, and Q are the conserved energy,
angular momentum, and Carter constant, respectively.

We introduce the LNRF [14] that is a tetrad basis
associated with observers who corotate with the back-
ground spacetime. The basis one-forms are given by

TA z
e = /==dr, )= \/gdr, e® =/Zdo,

A
A 24+ a?>—A)siné

o) — \/:sianq)—a(r fa —A)sinG,, 9)
h) VA

These satisty g, = n(a)(b)e,(f)e,(/b), where 7)) =

diag(—1,1,1,1), and a and b run from O to 3. The tetrad

o)

components of the 4-momentum, k(@) = ¢,/ k#, are given by

[ A r’+a?
0) — /= — in? 2 N\VE —
k sA [a(L aEsin“0) + A [(r*+a*)E-alLl|,
(10)

A (11)
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K@ = 56\/% (12)

L z

()=~ /= 1
k sind V A (13)

III. ESCAPE OF A PHOTON TO INFINITY

We consider the emission of a photon from the equatorial
plane near the horizon (r,0) = (r,,7/2) to infinity. We
adopt units in which M = 1 and assume that a # 0 in what
follows.

We derive the conditions for a photon escaping to infinity.
These are determined by investigating a radial turning point,
i.e., R = 0. Introducing the dimensionless parameters

L Q
=— =— 14
b=2. 4= (14)
for E > 0 and solving R = 0 for b, we obtain
a(e* = 2r) + /A" — q(A — a)]
b=>b = , (15
1(7‘) A — a2 ( )
and
2 _ 2r) — A 4 _ A — 2
b — bz(r) = Cl(@ r) \/ [r q( a )] . (16)

A —a?

We note that ¢ is non-negative (i.e., ¢ > 0) because ®
must be non-negative and ® = Q at the emission point
(r,0) = (r,,n/2). The allowed parameter region of b for
photon motion is given by

b<b, forrg<r<l+Vl1-¢é, (17)
by<b<b, forl+V1-e><r, (18)

where b, diverges at r = 1 + V1 — ¢>. We note that b, < b

for ry < r < 14 V1 —¢? is also the allowed region, but
for a negative energy photon. Because such a photon
cannot escape to infinity, we will not consider this region.

Now we focus on extremum points of b; (i = 1, 2). The
positions are determined by the equation

bi(r)=0. (19)
Solving these for g, we obtain the single equation

qg=f(r)

4(1—a*—e*)(r—e?)
(r—1)?

Il
QN| Yo >

+3—4e?—(r—1)(r=3)|.

(20)

Note that the first term of f vanishes in the extremal case
a* + e* = 1. Outside the horizon, f(r) has the unique local
maximum with the value f, at r = ry, where

V0 — 822
o) =200 e1)
fole) = f(r=ry) = ? (22)

It is worth noting that ry and f, depend only on e and
monotonically decrease with respect to e in the range

ro(l):2§r0§3:r0(0), (23)
fo(1) =16 < fo <27 = f4(0), (24)

and ¢ satisfies the inequality
0< g < fole). (25)

At the horizon, f takes the value

1

f(rH):4—; for a> + ¢ =1, (26a)
7

fmgz—ﬁ for a® + €% < 1. (26b)

This implies that f(ry) > 0 only holds for a*> + ¢* = 1 and
a > 1/2. Then, we define two classes according to the sign
of f(ry) as follows:

1
Class I: a*> +e¢*=1 and a> X (27a)
a?+e*=1 and a<i
Class II: ¢ or (27b)
a*+e* < 1.

Under this classification, we consider the appearance of the
roots of Eq. (20) outside the horizon, i.e., the radii of
spherical photon orbits. For class I, Eq. (20) in the range
f(ru) < g < fo has two roots r;(g) (r; < r,) outside the
horizon. On the other hand, the equation in the range 0 <
q < f(rg) only has the largest root r,(g) outside the
horizon, while has the next largest root r;(g) inside the
horizon. For class II, Eq. (20) in the range 0 < ¢ < f( has
the two roots r;(g) (r; < r,) outside the horizon. In both
classes, r; (i = 1, 2) coincide with r, in the case ¢ = f. In
particular, if ¢ = 0, the radii r; reduce to those of circular
photon orbits

rc,i = ri(o)' (28)
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Typical numerical plots of f(r) (black solid and gray dashed lines). The black solid lines show f(r) in the range r > ry and

0 < f < fo- The intersections of the blue solid lines ¢ and the black solid lines f give r; and r,. We note that r; (r,) is monotonically

increasing (decreasing) with respect to q.

Therefore, in other words, the criterion of the classification
in Eq. (26) is whether or not the radius of the innermost
spherical photon orbit reaches the horizon. Figure 1 shows
typical plots of f(r) and the relations among ry, r;, re;,
and ry.

The extremum values of b; become

b} = bi(ri)|q=f(r,~)

2l—a®—e) (r;i—1?2 3—a>—2¢
_ (I-a>=e’) (r )+ a e’ (29)
a(ri—1) a a

which are values of the impact parameter of photons on
spherical photon orbits.

Let us consider the behavior of b;(r) to determine the
range of b in which a photon can escape from r = r, to
infinity. From now on, we consider the case where r, is in
the range ry < r, < ry. We define three cases according to
the relative position of r; to ry and r,:

Case (a) : ry <ryg < r,, (30a)
Case (b) : ryp <r; <r,, (30b)
Case (¢):ry<r, <7y, (30¢)

where case (a) appears only for class I.
For case (a), as r increases from ry to oo, b begins with
by(ry), where

b](l’H):d+% (@*+e* =1), (31a)
by(ry) = 2UFVI= =)= oy (i)

a

and monotonically increases to oo. For cases (b) and (c),
as r increases from ry to oo, b, begins with b;(ry),

monotonically decreases to a local minimum b5 at r = ry,
and monotonically increases to co. For all cases, as r
increases from ry to 1 + V1 — €2, b, begins with b, (ry) =
by(ry) and monotonically increases to co. As r increases
from 1 + V1 — €2 to o0, b, begins with —co, monotonically
increases to a local maximum b5 at r = r,, and monoton-
ically decreases to —oo. Figure 2 shows the schematic
pictures of b;(r).

Then, the range of b in which a photon can escape to
infinity is given as follows. In case (a), which appears only
for class I, if photons are emitted radially inward (i.e.,
6, = —), then only those with b,(rg) < b < b;(r,) can
escape to infinity [see the band between the green dashed
lines in Fig. 2(a)]. If photons are emitted radially outward
(i.e., o, = +), then only those with b5 < b < b(r,) can
escape to infinity [see the band between the red dotted lines
in Fig. 2(a)]. In case (b), which appears for both classes,
if photons are emitted radially inward, then only those
with b} < b < b(r,) can escape to infinity [see the band
between the green dashed lines in Fig. 2(b)]. If photons are
emitted radially outward, then only those with b5 < b <
by (r,) can escape to infinity [see the band between the red
dotted lines in Fig. 2(b)]. In case (c), which appears for
both classes, if photons are emitted radially inward, then
nothing can escape to infinity. If photons are emitted
radially outward, then only those with b5 < b < b} can
escape to infinity [see the band between the red dotted lines
in Fig. 2(c)]. They are summarized in Table L.

IV. ESCAPE CONE AND CRITICAL ANGLES

We introduce the photon emission angles (a, ) from a
light source at rest with respect to the LNRF

k(a)

o & (1, cos asin B, — cos f3, sin asin 3)

(-—r<a<nx and 0<Lp<nm), (32)
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FIG. 2. Schematic pictures of b;(r) in cases (a)—(c). Upper and lower black solid lines denote b, (r) and b, (r), respectively. The range
of b in which a photon can escape from » = r, to infinity depends on two conditions. One is whether a photon is emitted initially radially
outward (o, = +) or inward (¢, = —), and the other is the relative position of 7; to r and r,. If photons are emitted radially outward, the
maximum and minimum values of b are given by the red dotted lines. If photons are emitted radially inward, the maximum and

minimum values of b are given by the green dashed lines. We note that b,(r) in the range » < 1+ V1 — ¢? is not plotted.

TABLE L.

Range of b in which a photon can escape from (r, 0) = (r,, z/2) to infinity. The last column shows two pairs (o,, b) of the

marginal parameter values with which a photon cannot escape to infinity for each cases.

Cases q

6, =+

o, =— Marginal pairs of (o,, b)

@:r <rg<r, 0<g < f(ry) (Class )

flry) < g < f(r,) (Class I)
0<q < f(r,) (Class 1I)

f(r,) £q < fo (Classes T & II)

b):rgsr <r,

Crryg<r,<n

b5 < b <b(r,)

by < b < b n/a

by(ry) < b < by(r,)
bSl <b< bl(r*)

(+,b5) and (=, b, (ru))
(+,05) and (-, b%)

(+,b5) and (+, b})

or equivalently,

, k) brivA
sina = =— ,
(k)2 4 (k32| VAR + b* AL,
9:7[72
(33)
k) o,VAR
cosa = =— ,
(K2 4 (k32| VAR + DAL,
b6=r)2
(34)
(k)2 + (K02
sinff =
VED? + (OP 4+ ;O
9:7!72
B VAR + b>r*A 35)
Calb—a)A+ (P +d?) (P —ab+a%)|,_,
—k2)
cosf=
VRO 4 (@) 4 (k)2
0=r)2
o GQ\/C]AA (36)
—alb-a)A+ (PP +a*) (P —ab+a?)|,_,

where R = R/E?. Thus a is the angle between e(!) and k
projected onto the equatorial plane, which is positive in the
direction ¢©®), and /3 is the angle between —e(?) and k, where
k is the projection of k* normal to e(®). We illustrate the

relation between the LNRF and (a,f) in Fig. 3. The
definition of @, # means that the angles are functions of
o,, 6y, b, q, and r, as

a(ara bv qs r*)a ﬂ(ge? b’ q’ r*)' (37)

_e®

northern

hemisphere

southern
hemisphere

FIG. 3. Emission angles (a, f#) defined in the LNRF where the
origin coincides with the emission point (r,0) = (r,,z/2). Here
k is the projection of k# normal to e(®). In this figure, upward and
downward directions represent northward and southward direc-
tions of the Kerr-Newman black hole, respectively.
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The range of a is restricted depending on the sign of b and
o, as follows. If photons are emitted radially inward (i.e.,
o, = —), we have

—-r<a<—= forb<0, (38)
b
55a<7z for b > 0, (39)
where a = —x holds for b = 0. If photons are emitted

radially outward (i.e., 6, = +), we have

_%SaSO for b <0, (40)
b3
OSaSE for b >0, (41)

where a = 0 holds for » = 0. The range of $ depends on
Oy as

e
IA

p

IA
N

for 6y = —, (42)

IA

p

IA
8

g for 69 = +. (43)

Note that when ¢ = 0, k is confined in the equatorial plane
(ie., p=n/2).

In terms of @ and /3, we define an escape cone S to be the
solid angle of emission that allows photons to escape to
infinity. Assuming that photons are emitted isotropically,
we can define the escape probability P(r,) by

P(r,) = 1/ dadf sin f. (44)
47 S

Since the Kerr-Newman spacetime is symmetric to the
equatorial plane, the escape probability of isotropic emis-
sion to the northern hemisphere is the same with that to the
southern hemisphere. Therefore we only need to consider
the emission to the northern hemisphere (i.e., 6y = —). To
evaluate P, we determine the critical angles, which are
points on the boundary of S. There is a one-to-one
correspondence between the critical angles and the param-
eter set (o,, b, g) of photons that cannot marginally escape
to infinity.

Let us specify such parameter sets for each case. In case
(), if photons with b = b (ry) are emitted radially inward
(i.e., 6, = —), then they arbitrarily approach the horizon but
cannot escape to infinity [see Fig. 2(a)]. If photons with
b = b5 are emitted radially outward (i.e., 6, = +), then
they arbitrarily approach r = r, but cannot escape to
infinity. In case (b), if photons with b = b} are emitted
radially inward, then they arbitrarily approach r = r; [see
Fig. 2(b)]. If photons with b = b5 are emitted radially
outward, then they arbitrarily approach r = r,. In case (c),

if photons with b = b} are emitted radially outward, then
they arbitrarily approach r = r; but cannot escape to
infinity [see Fig. 2(c)].

We find that all the parameter pairs appear as the
boundary of the ranges for photons that can escape to
infinity [see Table I]. Therefore, we call them the marginal
pairs. They are summarized in the last column of Table I.
Finally we obtain the critical angles (a;,f3;) (i=1, 2)
relevant to marginal parameter values associated with b;
and their total set OS (i.e., the boundary of S) as follows:

98 = U {(@.£)|0 < g < fo}, (45)

i=12

where

(@1, 1) = (@1, Prw) = (@ P)], o

”:Uhrl('}-[)
for 0 < g < f(ryg) [case (a)], (46a)
(a1, 81) = (a1), Biw)) = (@, ) s
for f(ru) < g < f(r.) [case (b)],  (46b)
(a1, 1) = (@1(), Bi() = (@, B) pare
for f(r) <q<fo [ease (@,  (46c)
in class I,
(a1, B1) = (@10): Piv)) = (@, B) s
for 0 < g < f(r,) |[case (b)], (47a)
(a1, p1) = (al(c)’ﬁl(c)) = (a. ) gr;g
for f(r.) <q < fo [case (c),  (47b)

in class II, and
(02 $2) = (@ )y Tor0=q<fo feases (a)-(o)].  (48)

in classes I and II. Note that once we fix the value of r,,
then the critical angles («;, 3;) depend only on ¢, i.e., a; =
a;(q) and B; = B;(q). Figure 4 shows a schematic picture of
the critical angles.

V. ESCAPE PROBABILITY

In this section, we evaluate the escape probability P for a
photon in Eq. (44). Let a,;, and o, be the minimum and
the maximum of the critical angle, and S, (@) and ., (@)
be the minimum and the maximum of the critical angle for a
given a. Assuming that S is convex, we obtain
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northern
hemisphere

Ot

(a1(q), B1(q))

l southern q= 0

hemisphere

q=20

\(a =0,8=r/2)
B

FIG. 4. Schematic picture of the critical angles with fixed r, for the northern hemisphere in @ — § plane. The blue and red solid lines
show (a,(q),B:(q)) and (a2(q), f>(q)) for 0 < g < f,, respectively. We plot the critical angles as functions of ¢ because we have
chosen o,, 64, and b for the critical angles. The critical angle ;(q) (a,(g)) is monotonically decreasing (increasing) with respect to g.
We note that the critical angles in the southern hemisphere is symmetrical about the a-axis.

1 amux ﬂmax (a) . 1 al“ﬂX
P=— da dpsing=— dacos fin(a),
¥4 Brmin (@) 2 a

Qmin ‘min

(49)

where we have used f.x = 7 — fmin- Using the critical
angles (a;, ;) and the relation between ¢ and r; given in
Eq. (20) [see also Figs. 1 and 4], we change the integration
variable a of Eq. (49) to r; as

P == Pl + P2, (50)
where
(—l)l/fo dai (—l)i/ro dai
P=" "4 cos p, = dr, 3
; 7w o q dg cos f; 2 ), T ar, cos f3;

(51)

In particular, using the definition of the critical angles in
Eqgs. (46)—(48), we can reduce P, as

P L[y
=—— r
! 271' Fel ! drl

1 r,

day )

o8 B (a)

. da
) drl l(b)
T g Iy

1

oS f1(v)

o dal(c)
d
2 I " drl

cos i) (class I),  (52a)

1 Ty dal(b)
Pp=—-—1_"4d
! 2r )., " drq

1

oS f1v)

r da
! dr1 l(C)

lass II).
2z ),. ' dr (class 1T)

cos fy¢) (52b)

It is useful to note that some of the integrands in the above
integrals have a common form

dayp day
r<1 Leos By | =i Leos i
da
= d—’;COSﬂz s = g(x) (53)

Finally, from Egs. (49)—(53), P is given by

1 ry dal l Tep
P:_ﬂ 5 dry dria)COSﬂl(a)_Z/H dxg(x) (classI),
(54a)
1 Te2
P=—o- | "drglx) (class ID). (54b)
n el

A. Extremal Kerr black hole

We evaluate the critical angles and escape probability in
the extremal Kerr black hole. Since a = 1 and ¢ = O (i.e.,
class I), the function f(r) in Eq. (20) reduces to

f(r)=r@-r). (55)
which has the maximum value f, = 27 at r, = 3 and zeros
at the radii of circular photon orbits

rcyl = O, rc‘z = 4 (56)
Furthermore, the values of b given in Egs. (29) and (31a)
are of the form

bt = —r? +2r; + 1, (57)
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0 0 0
) g . \g : \J
-f 0 f T —;l 0 f T —;" 0 g bid
(0% 8] (8]
)a=1 (i) a = 0.7 (iii) @ = 0.55
r. =17, 13 141073 r. =17 13, 141073 r,=17,13, 1+1073
0 0 0

)
)

a
—

%)

-
L

-2 0 2 ¥ -2 0 : ¥ -2 0 ¥
« (% (0%
(iv) a=0.5 (v) a=0.3 (vi) a=0.1

r. =17, 13, 1+102

FIG. 5.

r =17, 1.3, 141072

r. =17, 13, 1+102

Critical angles in a — f plane in the extremal Kerr-Newman black hole. The red, green, blue, and orange lines show

(@1()- B1(a)» (@1 (b Bi(v))s (@1(c)s Bi(e))s and (aa, Bo), respectively. We set r, = 1.7, 1.3, 1 + 1072 for class I (the upper three panels) and
r. = 1.7,1.3,1 + 1072 for class II (the lower three panels) from outside to inside. The inside of each closed solid curve shows the escape
cone S. We can see that, in the near-horizon emission case for class I, the presence of the critical angles in case (a) prevents the escape

cone from disappearing.

by(ru) =2, (58)

where ry = 1.

Using these expressions, we can evaluate the critical
angles (a;, ;). In Fig. 5, we find sets of critical angles 9S
for several values of r,. As r, decreases toward rg = 1, the
size of the escape cone S decreases. However, we should
notice that § still has enough size, even if r, is close enough
to the horizon [see , = 1.001 case]. Now let us evaluate
the escape probability P in Eq. (54a) with the above
expressions. In Fig. 6, the solid black line shows P as a
function of r,. We find that P decreases as r, decreases
toward ry but is nonzero in the horizon limit. Indeed, the
value of P in the horizon limit takes

limP = 0.2916....

r,—

(59)

This result means that about 30% of photons isotropically
emitted from a light source near the horizon of the extremal
Kerr black hole can escape to infinity.

Here let us confirm that the result of Ref. [12] can be
reproduced. Assuming that photons are emitted isotropi-
cally but confined in the equatorial plane, we can identify

the escape cone with the segment @ € [a, @;(4)]|,—o on the
line f = z/2 in Fig. 5(i). Thus the escape probability in
such a situation is given by

(al (a) — a2) |q:0
2r

—~
D
=)

~—

0.5

0.4

0.3

0.2

0.1

FIG. 6. Escape probability in the extremal Kerr-Newman
black hole.

044023-8



ESCAPE PROBABILITY OF A PHOTON EMITTED NEAR THE ...

PHYS. REV. D 101, 044023 (2020)

TABLE II. Escape probability evaluated at r, = 1 + ¢ in the extremal Kerr-Newman black hole.
a=1 a=209 a=0.7 a =0.55 a=0.5 a=203 a=0.1

e=10" 3.14 x 107! 2.96 x 107! 2.45 x 107! 1.81 x 107! 1.50 x 107! 5.52 x 1072 3.02 x 1072
e=1073 293 x 107! 2.69 x 107! 1.98 x 107! 9.92 x 1072 3.27 x 1072 1.62 x 107> 4.52 x 107°
e=107 291 x 107! 2.67 x 107! 1.95 x 107! 9.19 x 1072 9.91 x 1073 1.64 x 107° 4.54 x 10710
e—=0 291 x 107! 2.67 x 107! 1.94 x 107! 9.11 x 1072 0 0 0
and the horizon limit of this expression is 5/12. This is  This function has the maximum with the value
consistent with the result of Ref. [12].

s (V1 +8a> —1)(V1+ 8a% +3) (63)

0 p—

B. Extremal Kerr-Newman black hole

We evaluate the critical angles and escape probability in
the extremal Kerr-Newman black hole (i.e., a> + ¢2 = 1).
Therefore, we replace e in all the above expressions with

164>

atr = ry = (V1 + 8a® + 3)/2. Furthermore, the values of
b given in Egs. (29) and (31a) are of the form

V1 -=d? 2 2
1 — a*. Then, f(r) reduces to by — r?+2ri+a ’ b(r) = a +l’ (64)
a a
2
f(r) === (r—ro)(r—re), (61)  where ry = 1.
a The critical angles with the above expressions are shown
where in Fig. 5. We can confirm that even if r, is close enough to
ry, the escape cones in class I have a nonzero size in the
region a > 0. On the other hand, as r, approaches ryg
re1 =2(1-a), rea =2(1 +a). (62) sufficiently, the escape cones in class II shrink to the origin
0 0 0

NIy

5

T

% 0 H m % 0 H ﬁ -2 0 ?
(6% (6% (6%
(i) a® 4+ e? = 0.999, a = 0.98 (i) a® +e2 =0.999, a = 0.7 (iii) a® + €2 = 0.999, a = 0.3
r, =17, 13, 1+1073 r, =17, 13, 1+1073 r. =17, 13, 1+1073
0 o | o0 |
5% > ﬂ% I ﬂﬁ —
i 0 o H m -3 0 o H T -3 . : 7

(iv) e=0, a=0.98
re=17,13, 14+1073

(v)e=0, a=0.7
re=17,13, 14+1073

(vi)e=0, a=0.3
re=17,13, 14+1073

FIG. 7. Critical angles in a — f plane in nonextremal black holes. The green, blue, and orange lines show (a; ), Bi(v))s (@1(c)s Bi(c))s
and (o, f3,), respectively. The solid lines (the upper three panels) and dashed lines (the lower three panels) are the cases of a”> + ¢> =
0.999 and e = 0, respectively. For each panel, we set r, = 1.7, 1.3, 1 + 10~ from outside to inside.
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0.7+
solid lines : a? + €2 = 0.999

0.6~ dashed lines : e =0

0.5F
0.4
g
0.3F
0.2+
0.1
1 15 2 25 3
Ty
FIG. 8. Escape probability in nonextremal black holes. The

solid and dashed lines are the cases of a? + ¢ = 0.999 and
e = 0, respectively.

of the @— f plane. The critical angles (a;(,),f1()) that
appears only in class I seem to prevent the escape cones in
the horizon limit from disappearing. This is consistent with
the result of Refs. [9,10].

Figure 6 shows the numerical plots of the escape
probability for various values of a.' As r, decreases, P
monotonically decreases in common regardless of a. On
the other hand, qualitative difference depending on a
appears in near-horizon emissions. In the horizon limit,
P takes a nonzero value for class I while it vanishes for
class II. Some explicit values of P for near-horizon
emissions are shown in Table II. We should note that P
in the horizon limit monotonically increases as a increases
in class I. Hence, we find that the maximum value of P in
the horizon limit is the case of the extremal Kerr black hole.

C. Nonextremal black holes

Finally, we show some examples of the critical angles
and escape probability in nonextremal black holes, where
a? + e* = 0.999 with ¢ = 0.98, 0.7, 0.3 and e = 0 with
a =10.98, 0.7, 0.3. The critical angles and escape proba-
bility with the above cases are shown in Figs. 7 and 8§,
respectively. We find that both the sizes of S and P are

'"The integral of the first term in Eq. (54a) is evaluated
analytically:

1 H dal

1 . (14a?)r?
=— |arctan
2r alr,—1+(r, +1)(r?+a?)]

4-1/a®
(r*—l)(r*—3)
4-1/a*
(r*_l)(r*_3)

(14+a?)r?

— t.
dr— 1+t D2 rad) e

}. (65)

The horizon limit of this expression is 1/4 — 1/(8a).

monotonically decreasing as r, decreases. In the horizon
limit, S shrinks to the origin of the a — f plane and P
becomes zero. However, in rapidly rotating and near-
extremal cases, even if r, is close to ry, the escape cones
have a relatively large size [see Figs. 7(i) and 7(ii)].
Similarly, the escape probability takes a relatively large
value up to the very vicinity of the horizon, and finally
approaches zero rapidly.

VI. CONCLUSION AND DISCUSSIONS

We have examined the escape of photons from the
vicinity of the horizon to infinity in the Kerr-Newman
black hole spacetime. We have evaluated escape cones at an
emission point staying at rest in the LNRF and also the
escape probability under assuming isotropic emission. Our
main result is that when the black hole is extremal and has
the spin parameter larger than 1/2, even if the light source
arbitrarily approaches the horizon, the escape cone does
not shrink and the escape probability remains nonzero.
Furthermore, the nonzero escape probability in the horizon
limit monotonically increases as the spin increases from
1/2 with remaining extremal. Consequently, in the
extremal Kerr black hole, it takes the largest value,
0.2916.... However, we should kept in mind that this
result may not apply to light sources that are not on the
equatorial plane.

The reason for the nonvanishing photon escape proba-
bility in the horizon limit is that photons can be reflected at
a radius arbitrarily close to the horizon. This phenomenon
is also related to the fact that the radius of the innermost
spherical photon orbit coincides with the horizon radius.

Even for extremal black holes, the escape probability in
the horizon limit becomes zero if the spin parameter is
equal to or less than 1/2. Similarly, it does in the case of
nonextremal black holes. However, in rapidly rotating and
near-extremal black hole spacetime, as the emission point
approaches the horizon, the escape probability keeps a
relatively large nonzero value until it reaches a near-horizon
region, and finally becomes zero when it reaches just
outside the horizon. Even in this case, the fact that photons
can be reflected at a radius very close to the horizon is
essential [15].

Our result is that up to approximately 30% of photons
emitted from the light source near the horizon of the rapidly
rotating (near-)extremal black hole escape to infinity.
Hence, the phenomenon near the horizon of such a rapidly
rotating and (near-)extremal black hole (e.g., the Penrose
process or the black hole shadow) must be relatively visible
compared to the case of a slowly rotating black hole. We
speculate the effect of the nonzero escape probability on
black hole shadow observations. Photons arriving at the
shadow edge have been scattered at the radii of spherical
photon orbits in the past. In particular, for rapidly rotating
black holes, photons reaching the innermost shadow edge
have been scattered at almost the horizon radius. Therefore,
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observing the innermost shadow edge is equivalent to
observing a near-horizon region of the black hole. In fact,
one of the estimates based on the observations of the M&7
galactic center suggests that the central object may be
rapidly rotating [16]. Therefore, according to our results, a
sufficient number of photons scattered at almost the
horizon radius reach the innermost edge of the shadow,
so that we can observe a near-horizon region through them.

The photon emission from several sources in the Kerr
spacetime was considered by Ref. [9] and off the equatorial
plane in the Kerr—Newman spacetime was considered by
Ref. [10]. The escape cones calculated in these previous
works and the escape probability we showed have the same
qualitative behavior in that they monotonically decrease as
the photon emission point approaches the horizon.
Although we might also infer that the escape probability
off the equatorial plane might be smaller than that from the
equatorial plane, more careful comparisons would be useful

for further developments. It is also useful to calculate the
escape probability off the equatorial plane and compare
the result with the results of Ref. [10]. These studies are in
progress.
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