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In this paper, we argue and show numerically that the threshold to form primordial black holes from an
initial spherically symmetric perturbation is, to an excellent approximation, universal, whenever given in
terms of the compaction function averaged over a sphere of radius rm, where rm is the scale on which the
compaction function is maximum. This can be understood as the requirement that, for a black hole to form,
each shell of the averaged compaction function should have an amplitude exceeding the so-called Harada-
Yoo-Kohri limit. For a radiation dominated universe we argued, supported by the numerical simulations,
that this limit is δc ¼ 0.40, which is slightly below the one quoted in the literature. Additionally, we show
that the profile dependence of the threshold for the compaction function is only sensitive to its curvature at
the maximum. We use these results to provide an analytic formula for the threshold amplitude of the
compaction function at its maximum in terms of the normalized compaction function curvature at rm.
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I. INTRODUCTION

In a Friedmann-Robertson-Walker (FRW) universe
filled with a single fluid component having equation of
state p ¼ ωρ, a spherically symmetric local perturbation
can be approximated, to leading order in gradient expan-
sion (superhorizon scales), as1

ds2 ≃ −dt2 þ aðtÞ2
�

dr2

1 − KðrÞr2 þ r2dΩ2

�
: ð1Þ

Here, the local “gravitational potential” (KðrÞr2) para-
metrizes the initial curvature perturbation. We assume in
the rest of the paper that the relevant fluctuations are all at
superhorizon scales.
In [2], numerical simulations were used to argue that the

threshold for the amplitude of an overdensity peak forming
a spherically symmetric black hole in a FRWuniverse, only
depends upon two master parameters: the integral of the
initial KðrÞ and the edge of the overdensity distribution.
Musco [3] recently refined the arguments of [2] by showing
that the threshold may be more conveniently given in terms
of the amplitude of the gravitational potential at its
maximum (r ¼ rm), as already noticed in [4], and that it

mainly depends upon the functional form (shape) of the
gravitational potential up to rm. More precisely, in [3], the
threshold was given in terms of the “compaction function”
[4] at superhorizon scales CðrÞ (here and after we shall
simply call it compaction function)2: The compaction
function, which closely resembles the Schwarzschild
gravitational potential, is defined as twice the local excess
mass over the comoving areal radius. At superhorizon
scales it is (in units GN ¼ 1)

CðrÞ ¼ fðωÞKðrÞr2; ð2Þ

where fðωÞ≡ 3ð1þ ωÞ=ð5þ 3ωÞ. From this, one finds rm
as the first root of C0ðrÞ ¼ 0. For a radiation dominated
universe, ω ¼ 1=3 and so fðωÞ≡ 2=3.
Regularity—the gravitational potential within a vanish-

ingly small volume must be zero—ensures thatKðrÞr2 → 0
for r → 0. Thus, the behavior of KðrÞ around the origin
plays little role in black hole formation. In addition, the
threshold for primordial black hole formation should be
quite insensitive to the behavior beyond rm as already
numerically noticed in [3]. The reason is simple: the
threshold is the amplitude above which a “virtual” black
hole of zero mass is formed. Therefore, all the overdensity
beyond rm will be diffused away while that just in the
vicinity of rm will hinder collapse. Hence, we also expect
the threshold to be very weakly dependent on the exact
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1The metric is gauge dependent. Nevertheless, at leading order

in gradient expansion, several gauges give the same result. To fix
ideas we considered the Kodama-Sasaki gauge [1].

2The definition in [4] differs by a factor 2 with respect to the
one used here.
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scale of rm. However, above threshold, a larger part of the
initial profile would be involved in the collapse. This is why
the mass of the black hole with peak density above
threshold also depends nontrivially on the scale rm on
which the compaction function peaks.
Summarizing, while we expect the threshold to depend

on profile shape, this dependence should come mainly from
C around rm. Since rm is the scale on which C0 ¼ 0, we
expect the threshold to depend primarily on C00 at rm. We
explore this further in the next section.

II. APPROXIMATING THE CURVATURE

We have checked numerically that the family of centrally
peaked exponentials used in [3], for the purpose of
obtaining the threshold for black hole formation, is an
efficient basis with which to approximate any compaction
function around its maximum.
By defining the parameter

q≡ −
C00ðrmÞr2m
4CðrmÞ

ð3Þ

we consider the basis

KbðrÞ ¼
CðrmÞ
fðωÞr2m

e
1
qð1−½ r

rm
�2qÞ: ð4Þ

Note that KbðrÞ → CðrmÞ=fðωÞr2mθðrm − rÞ as q → ∞.
This “homogeneous sphere” limit will be useful below.
In contrast, Kb → CðrmÞ=fðωÞr2 and so CðrÞ → CðrmÞ as
q → 0. In addition, note that rm only defines the units of
length for the scaling ofKb. Thus, as already argued before,
although the mass depends on rm, the threshold value,
defined at superhorizon scales, does not and, it is constant
in time.3

We have tested our basis by considering a representative
class of curvatures for the case of a radiation dominated
universe (ω ¼ 1=3). We have found that the threshold for
black hole formation, obtained by the use of our basis, only
differs by ð1 ÷ 2Þ% from the one obtained by the exact
curvature profiles considered.
In the next section we use the basis (4) to provide an

analytical formula for the thresholds. We demonstrate that
our formula accurately reproduces the numerical results
obtained from the publicly available code for black hole
formation of [5]. In turn, this will also show numerically
our claim that the basis (4) well approximates any realistic
desired curvature for the calculation of the threshold.

III. UNIVERSAL THRESHOLD

As noticed by [3], the threshold for CðrmÞ is not universal:
it depends upon the shape of the curvature profile. This
implies that, if initial conditions for primordial black hole
(PBH) formation are generated during inflation (see e.g.,
[6,7]), then the threshold for PBH formation strongly
depends on the form of the inflationary power spectrum
[8]. For example, for an almost Gaussianly distributed
overdensity field, the mean profile around a rare peak is
proportional to the two-point correlation function of the field
and hence, the power spectrum [8,9].4 Similarly, the param-
eter q, which will give us information about the nonlinear
evolution of the perturbation, only depends upon the details
of the inflationary power spectrum and thus is solely related
to the linear analysis of inflation.
What we show below is the remarkable fact that,

nevertheless, the threshold for the average compaction
function is, within 2% with respect to the simulations,
universal.
Let us define

C̄c ≡ 3

r3m

Z
rm

0

CcðxÞx2dx; ð5Þ

where CcðrÞ is the critical compaction function for gen-
erating a black hole with zero mass. By using the basis (4),
we have

C̄c ¼
3

2
e

1
qq−1þ

5
2q

�
Γ
�
5

2q

�
− Γ

�
5

2q
;
1

q

��
δc; ð6Þ

where ΓðxÞ is the gamma function, Γðx; yÞ the incomplete
gamma function and we have defined5 δc ≡ CcðrmÞ. Note
that δc ¼ 3 δρ

ρ
r2m

a2H2 at superhorizon scales [3], where
δρ
ρ is the

overdensity and H is the Hubble expansion.
Following [3], if the initial perturbation is not already a

black hole, the compaction function is bounded by fðωÞ.
When radiation dominates then δc → fðωÞ ¼ 2=3 as
q → ∞, as shown numerically in [3]. At large q we have
C̄c ∼ ð3=5Þδc so C̄c ¼ 2=5. Our assumption, that we will
prove both numerically and argue in the following, is that

C̄c ¼
2

5
ð7Þ

for any value of q. (For example, this implies that when
q → 0 then δc → 2=5.) More generally, we find that the

3Of course this is only strictly correct at leading order in
gradient expansion. At the full nonlinear level the threshold
would depend upon time. At superhorizon scales, where we put
the initial conditions for the gravitational collapse, however, this
dependence is negligible.

4In the estimates of PBH abundances by the use of peak theory
in overdensities (e.g., [8]), one needs a threshold for the central
amplitude of the unsmoothed overdensity, rather than CðrmÞ (see
however [10] for a nonlinear approach). The relation between
these two quantities has been worked out in [6] and only depends
on the power spectrum of curvature perturbations calculated with
linear analysis.

5Note that in [3] δc is δm.
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threshold for different curvature profiles KðrÞ (when
radiation dominates) is given by

δc ¼
4

15
e−

1
q

q1−
5
2q

Γð 5
2qÞ − Γð 5

2q ;
1
qÞ
; ð8Þ

where q is given by (3).

A. Numerical checks

In this section, we use the publicly available code
developed in [5], to check the accuracy of (7) and (8).
First, Fig. 1 shows that (8) (solid curve) provides a good

description of the threshold δNc measured in the simulations
(symbols) for profiles parametrized by (4). The subpanel
shows the relative errors d≡ jδNc − δAc j=δNc : the agreement
is better than ∼98% for all q.
To show that our results are more general than (4), we

have also considered the following families for KðrÞ:

K1 ¼
3

2

CðrmÞ
r2m

p=ðp − 2Þ
1þ 2

p−2 ð r
rm
Þp ; ð9Þ

K2 ¼
3

2

CðrmÞ
r2m

�
r
rm

�
2λ

e
1þλ
α ð1−ð r

rm
Þ2αÞ; ð10Þ

K3 ¼
3

2

CðrmÞ
r2m

r3m
r3

gðn; kp; rÞ
gðn; kp; rmÞ

; ð11Þ

where

gðn; kp; rÞ ¼ ½kprfE3þnð−ikprÞ þ E3þnðikprÞg
þ if−E4þnðikprÞ þ E4þnð−ikprÞg�; ð12Þ

with EnðxÞ≡ R∞
1 e−xtdt=tn.

Figure 2 illustrates that Kb is able to provide a good
approximation to (9), (10) and (11) around rm, for a few
representative parameter choices. The (oscillating) profile,
K3, is related to specific templates for inflationary power
spectrum [6], as explained in [5], and represents a nontrivial
test of our claims. Indeed, this family of curves differs from
the others as, generically, kp ≠ r−1m . Hence, rm (the scale on
which C0 ¼ 0) does not define a characteristic scale for K.
Nevertheless, as we have checked numerically, the asso-
ciated threshold value still mainly depends on the behavior
of K around its own rm.
Figures 3–5 are similar in format to Fig. 1: they show that

(7), using q calibrated by fitting to K, provides a good

FIG. 1. Dependence of threshold on curvature q [Eq. (3)] for
the exponential basis profile Kb [Eq. (4)]. The black curve shows
δAc [Eq. (8)]; red points show δNc obtained from simulations.

FIG. 2. Comparison between the profiles listed in Eqs. (9)–(11)
and Kb in the case of the same threshold (proportional to the
curvature value at r ¼ rm). For illustration, we have chosen the
case q ¼ 1.3 leading to δc ≈ 0.5035. For K1, this translates to
p ¼ 4.6; for K2 one has α ¼ 1 and λ ¼ 0.3; for K3, n ≈ 6.67.

FIG. 3. Threshold values for profiles given by (9) for various
values of p (red symbols). For each p, q is obtained by fitting the
profile shape to (4) around rm. This q is used in (8) to predict the
threshold value (black symbols). As in Fig. 1, the lower inset
shows the relative difference between measured and predicted
values. The upper subplot shows that the minimal threshold is
below the HYK limit δc ¼ 0.41. Note that the error bars reflect
only the numerical precision of the code.
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description of δNc . The upper inner plot of Fig. 3 shows that
δNc reaches values that are slightly smaller than the 0.41
limit quoted in [11] and later in [3], but they do not drop
below the 0.4 limit of our Eq. (7).

B. Analytical argument

The threshold for the average compaction function
(C̄c ¼ 2=5 ¼ 0.4) is very close to the so-called Harada-
Yoo-Kohri (HYK) limit which was analytically found to
be∼0.41. The value of the second significant digit is related
to assumptions about the Jeans length of the perturbation
[11]. As already mentioned, in Fig. 3, we show that this
limit is actually closer to our theoretical value of 0.40.
Nevertheless, we shall still call the minimal threshold the
HYK limit, as the interpretation of it will not change.
The HYK limit is the threshold for which a very sharply

peaked overdensity profile would collapse into a zero mass
black hole, as discussed in [3]. Let us then approximate an
initial overdensity to be a Dirac delta function:

δρ

ρ
∝ δD

�
r
rm

− 1

�
: ð13Þ

One can always find an initial time where the linear
approximation is good enough and find [8] (see also [10])

CðrÞ ∝ 1

r

Z
r

0

δρðxÞ
ρ

x2dx ð14Þ

and therefore

CðrÞ ¼ rm
r
CðrmÞθðr − rmÞ: ð15Þ

Because, as discussed above, what happens at r > rm is not
crucial for the calculation of the threshold, we can
approximate [11] as a very thin shell with finite amplitude
CðrmÞ positioned at r ¼ rm. In other words we shall cut
off the tail in [11]. The HYK limit indicates that such a
shell would collapse and form a zero mass black hole
if CðrmÞ ∼ 0.4.
Now suppose we have a continuum of concentric shells

forming a homogeneous ball. This ball would then collapse
to a black hole of zero mass if each shell had the same
amplitude equal to the HYK threshold. Our averaging
relates the problem of a generic compaction function shape
to this homogeneous one.
We then conjecture that the same would happen for any

ω and so, for a generic fluid matter, the threshold would be
obtained for

C̄c ¼ Chomc ðωÞ; ð16Þ

where Chomc is the threshold for a homogeneous ball. As a
first approximation, one then may be tempted to consider

the functional form [11] C̄c ∼ fðωÞ sin2½ π
ffiffiffi
ω

p
1þ3ω�, however, we

have numerically checked that, for ω ≠ 1=3, the HYK
formula for Chomc ðωÞ leads to large errors.
While for radiation we could exactly fix C̄c by using the

limit of very peaked compaction function, we cannot do
the same for other ω. We then leave for future work the
extensive proof of our conjecture.

IV. CONCLUSIONS

Primordial black holes can account for the majority of
dark matter if they are in the range of ½10−16; 10−12�M⊙ (see
e.g., [12]). The seeds for primordial black hole formation
might be generated by large statistical fluctuations during
inflation. The abundance of these statistical fluctuation, and
in turn of the generated PBHs, is extremely sensitive to the
threshold required to form a PBH [6,8,10,13]. This thresh-
old, depending upon the full nonlinear evolution of the
system, is typically given at superhorizon scales where the
leading order in gradient expansion is an excellent approxi-
mation (see e.g., [5]).

FIG. 4. Same as Fig. 3 but for profiles given by (10) with α ¼ 1
and various λ.

FIG. 5. Same as Fig. 3 but for profiles given by (11).
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To date, analytical estimates of it (see for example
[11,14]) are insufficiently accurate, so numerical analyses
have been employed (for the latest results see [3,5]).
In this paper, we have shown that although the threshold

to form a PBH is initial curvature profile dependent, as
noticed by [3], the threshold for the mean (i.e., volume
averaged) compaction function within a sphere of radius
r ¼ rm, is, to a very good approximation, universal and
equal to the one obtained in the Harada-Yoo-Kohri limit.
We used this remarkable result to provide an analytical
formula for the threshold that only depends upon the
normalized second derivative of the compaction function
at its maximum. Specifically, for a radiation dominated

universe, the threshold for a compaction function CðrÞ is
given by Eq. (8).
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