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A matter-coupled scalar field model is presented to obtain a scalar fifth force when the constraint of the
current cosmological constant is satisfied. The interaction potential energy density between the scalar field
and matter has a symmetry-breaking form with two potential wells. We prove that the cosmological
constant is a value of the scalar field’s self-interaction potential energy density at the minimum of
the effective matter-density-dependent potential energy density. The effective potential is a sum of the
interaction potential and the self-interaction potential of the scalar field. The scalar field can stably sit at the
minimum; then the time-dependent cosmological “constant” behaves like a constant. The scheme does not
conflict with chameleon no-go theorems. However, since the quintessence is trapped by one of the
interaction potential wells, the observed cosmic acceleration can be accounted for by the scalar field. The
scalar field is also extrapolated to account for inflation at the inflationary era of the Universe. In this era
matter fluid is relativistic, and the interaction potential wells vanish. The unconfined quintessence therefore
dominates the evolution of the Universe. We conclude that Planck 2018 results favor the closed space of the
Universe. The reasons for this are the measured value of the current Hubble constant and the observation of
a concave potential in the framework of single-field inflationary models. By invoking a pseudopotential in
the inflationary era, the concave feature can be attributed to the pseudopotential, although the self-
interaction potential is a convex function. The pseudopotential is defined by a sum of the self-interaction
potential and the energy density scale of the curvature of the Universe. The positive curvature leads to the
concave feature of the pseudopotential. Within the constraints of the cosmological constants, including the
maximum cosmological constant in the inflationary era, we find that the strength of the fifth force is large
compared with gravity. Due to the short range of the interaction, the local test of gravity is satisfied. The
coupling coefficient denoting the force strength is inversely proportional to the ambient density, while the
interaction range is inversely proportional to the square root of the density. For the current matter density
∼10−27 kg=m3 of the Universe, the corresponding interaction range is ∼5 μm and the coupling coefficient
is ∼1031. Since the fifth force is localized in an extreme thin shell, experiments might be designed so that
the test objects can pass through the thin shell.
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I. INTRODUCTION

The acceleration of the cosmic expansion has now been
firmly established [1,2], and the cosmological parameters
are constrained at the subpercent level [3,4]. A possible
origin of this repulsive gravitational effect is that of
new scalar fields coupling to matter [5–10]. According to
quantum field theory, the coupled scalar fields could
produce new fifth forces [11–16]. However, this setting
still lacks specification for how to depict the fifth forces in a
precise mathematical mode with the constraint of the
cosmological observations and laboratory experiments,
such as the cosmological constant, the ratio ofmatter density
to the total energy density in the Universe, the precision

measurements of hydrogenic energy levels [17], etc. Since
the fifth forces have not yet been observed in the laboratory
[18] or in solar system experiments, modified gravity
models—such as scalar field theories, including chameleon
[6], symmetron [8,9], and dilaton [10]—introduce screening
mechanisms to suppress the coupling strength and/or the
interaction range through dense environments. The initial
motivation for introducing scalar fields to understand dark
energy, especially to naturally obtain the cosmological
constant, remain open questions in physics.
The idea of quintessence for solving the problem of the

cosmological constant is that the potential energy of a
single scalar field dynamically relaxes with time [19–22].
The argument is that, since our Universe is old enough, the
cosmological constant becomes smaller than its “natural”
value in the Planck energy scale [23–26]. Owing to its*zhanghc@siom.ac.cn
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dynamic property [27–29], this scenario is considered as
one of the possible models to overcome Weinberg’s no-go
theorem [30,31]. However, the problem is as follows [32]:
If the dark energy evolves slowly on the cosmological time
scale, the requisite potential of the scalar field is often
regarded as very shallow. The shallowness implies that the
mass of the scalar field is smaller than ℏH0 ∼ 10−33 eV,
with H0 denoting the current Hubble constant. Then the
scalar field leads to a long-range interaction [33] if it
couples to ordinary matter. The absence of an observable
interaction and the constraint of the equivalence principle
imply the existence of some suppressing mechanism. One
even note that the scalar field does not couple to baryons
but only to dark matter.
The other natural value of the cosmological constant is

zero [5]. The coupled scalar field theory argues that the
coupling of the scalar field to matter may lead to its potential
energy dynamically evolving from zero to the observed
cosmological constant [10,34]. For a chameleonlike scalar
field (e.g., symmetron and varying-dilaton), chameleon no-
go theorems [35,36] have been proven based on the
assumption that the strength of the chameleonlike force is
comparable to gravity. Unfortunately, for chameleon no-go
theorems, a misleading corollary is extensively accepted—
that a chameleonlike scalar field cannot account for the
cosmic acceleration except as some form of dark energy
[35–37]. This seems to imply that the chameleonlike model
cannot simultaneously screen and drive dark energy.
The misleading corollary results from an additional

requirement that the scalar field should mediate a long-
range interaction in low-density regions [38] (e.g., the
current density of the Universe). The restrictive require-
ment may come from the consideration that the field should
be able to enact cosmological effects (such as the accel-
eration of the cosmic expansion) through the long-range
interaction. From the ΛCDMmodel [39], we know that it is
the cosmological constant that drives the Universe accel-
eration rather than any long-range force [40]. When a scalar
field is used to explain the cosmological constant, it is
worth noting that the potential density of the scalar field
links to the cosmological constant rather than a long-range
force. Although the existence of a scalar field will generate
a scalar fifth force, the effect of the potential density is not
equivalent to the effect of the scalar fifth force. Therefore,
the requirement that the scalar field should be light to
mediate a long-range interaction is not necessary.
The other recognition also takes effect in deriving the

misleading corollary. One of the chameleon no-go theo-
rems precludes the possibility of self-acceleration over the
last Hubble time. However, this preclusion cannot be used
to rule out the other chameleonlike model to mimic the
cosmological constant if quintessence or vacuum energy
can naturally emerge in the model.
We need to pay much more attention to the following: the

extremely small fifth force in the current precision tests of

gravity [38], the cosmological constant, and inflation of the
Universe. If the fifth force really exists, the lesser effect of
the observable interaction [38] means an extremely short
interaction range and/or an extremely low strength.
There is much literature about evading the chameleon

no-go theorems. It has been suggested to use a symmetry-
breaking self-interaction potential as a phase transition
switch and another scalar field to drive dark energy [41]. By
introducing scalar-field-dependent masses of neutrinos
[34], it has been proven that the potential of the scalar
field becomes positive (from its initial zero value) to drive
the Universe’s acceleration. But, why does not the mecha-
nism of mass-varying neutrinos apply to baryons? The
reason may be the same as mentioned above: to avoid
gravitational problems such as a long-range fifth force. This
discrimination indicates that the equivalence principle no
longer holds. By applying Gaussian potentials and their
asymptotic behavior [34], however, the adiabatic instability
[42] can be avoided. There exists an adiabatic regime in
which the dark energy scalar field instantaneously tracks
the minimum of its effective potential [43]. However, the
adiabatic regime is always subject to an instability if the
coupling strength is much larger than the gravitation,
although the instability can be evaded at weaker couplings
[42]. The screening effect in the chameleonlike models
efficiently suppresses the strength of the scalar force so as
to be in agreement with precision tests of gravity [5].
In this paper a symmetry-breaking interaction is intro-

duced to keep the minimum of the effective potential nearly
invariant and to alleviate the adiabatic instability problem in
the most cosmic epochs, except for the inflationary era. The
adiabatic instability is one of the most important features in
inflation. In order to derive a mathematical expression for
the scalar fifth force under the constraint of the cosmo-
logical constant, it is necessary to use a symmetry-breaking
coupling function rather than using symmetry breaking in
the self-interaction potential as in [41,44]. The symmetry-
breaking interaction between matter and the scalar field can
localize a vacuum expectation value (VEV) of the scalar
field in the effective potential minimum. The effective
potential is a sum of the interaction potential and the self-
interaction potential [8,9]. The parameters in the model are
determined by using Planck 2018 results [3,45] and the
naturalness of the theory.
It should be emphasized here that the theory of the

chameleonlike scalar field has introduced a very important
and crucial concept [8,14]: a scalar-field-independent
energy density of matter. Furthermore, it has potentially
introduced a corresponding field-independent pressure and
has proven a conservation law of energy density. The
conservation law is one of the foundations of this paper.
Since matter couples to the scalar field, the energy density
of matter in the Universe no longer conserves itself.
Therefore, this scalar-field-independent matter density
should be introduced to reflect a conserved quantity, such

HAI-CHAO ZHANG PHYS. REV. D 101, 044020 (2020)

044020-2



as a nonrelativistic particle number in the Universe. Only
the new conserved quantity is included in the model and
distinguished from the real physics energy density of
matter, so we can use the results of astronomical observa-
tions to fit the parameters of the model. The real physics
energy density of matter includes both the scalar-field-
independent density and the energy density coupling with
the scalar field.
To be clear, a scalar-field-independent but temperature-

dependent equation of state for matter is also introduced
and discussed. We regard the equation of state as a
hypothesis which needs to be further confirmed by cos-
mological observations. The setting with the symmetry-
breaking coupling function not only drives dark energy
without adding a cosmological constant to the self-inter-
action potential but also suppresses the interaction range of
the fifth force to satisfy the local tests of gravity. The force
strength and the interaction range are dependent on the
ambient matter density. The force strength is considerably
larger compared with gravity under an ultrahigh-vacuum
environment, which makes it possible to detect the fifth
force in the laboratory. For the further constraint of the
scalar fifth force model, we extrapolate the scalar field to
drive inflation at the inflationary era of the Universe.
For the closed space in our scenario, the Universe will

contract in the future, and the Universe will become hotter
and hotter. The ultrahigh-frequency oscillation of the scalar
field behaves like a pressureless fluid and rapidly enhances
the contraction, which may be called deflation. With the
temperature increasing, the interaction between matter and
the scalar field will approach a decoupling phase. The
vigorous scalar field will climb up along its self-interaction
potential to its maximum value when the kinetic energy is
exhausted and then roll down from the maximum to cause
the Universe’s rapid growth. As a result, a systematic
description of the cosmic acceleration expansion at the
present epoch and the very rapid expansion at the infla-
tionary epoch is possible. However, in the current literature
[4] the most probable candidate of the self-interaction
potential might be a concave shape, while the self-inter-
action potential used in our model is a convex one. This
paradox results from the assumption in the literature that _ϕ
does not pass through zero (not change sign) during inflation
in deriving the parametrization of the self-interaction poten-
tial VðϕÞ [46–52], where ϕ denotes the scalar field and the
overdot indicates the derivative with respect to cosmic time.
The result of the parametrization of VðϕÞ depends on the
initial value of _ϕ. One often chooses either _ϕ > 0 or _ϕ < 0
throughout, which is obviously not valid for the case with a
turning point from the climbing-up phase to the rolling-
down one. The concave feature means that the curvature of
the Universe plays an important role in the inflationary era.
This paper is organized as follows. In Sec. II, the

technical preliminaries are listed. The expression of the
fifth force is reviewed. Both a scalar-field-independent

matter density and a scalar-field-independent equation of
state for matter are introduced. The temperature depend-
ence of the equation of state is also discussed. In Sec. III,
the acceleration equation of the Universe is rewritten in the
scalar field coupling case, and the cosmological constant is
described by a special value of the self-interaction potential
density of the scalar field. For characterizing the fact that
the cosmological constant is nearly fixed with the dynami-
cal model, the symmetry-breaking interaction potential is
introduced and discussed. In addition, a negative damping
motion is presented, which collects energy in the scalar
field during the contraction of the Universe. In this section,
we also distinguish the adiabatic condition and the oscil-
lation condition. In Sec. IV, the important parameter of the
setting and the current matter density of the Universe are
determined by using the model with the current astronomi-
cal observation data. It is proven in this section that the
cosmological constant is nearly fixed as long as the matter
density is large enough. When the matter density becomes
extremely small due to the expansion, the cosmological
constant is proportional to the square of the density.
Comparing the total energy density of the Universe to
the critical density calculated with the Hubble constant in
the Planck 2018 results, the Universe might be a closed
universe. The maximum radius of the Universe and some
transition redshifts are also calculated. In Sec. V, we show
why our setting can avoid the physical corollary of
chameleon no-go theorems and the overshooting problem.
Interestingly, our model does not conflict with the no-go
theorems, at least mathematically. But the model can break
through their unreasonable corollary that the chameleonlike
scalar field cannot account for the cosmic acceleration.
When the symmetry-breaking coupling with matter is used,
the appropriate value of the self-interaction potential can be
easily acquired and then drive the acceleration. At the end
of the Sec. V, the problem of the zero-point energy density
is discussed briefly. In Sec. VI, the contraction of the
Universe is discussed. The minimum radius of the Universe
is estimated to be falling in a large range. The Universe
might undergo a climbing-up and rolling-down process
near the minimum radius. In this section, by introducing a
pseudopotential, which is a sum of the self-interaction
potential density of the scalar field and the energy density
scale of the curvature of the Universe, the feature of the
observed concave potential is explained as an attribute of
the pseudopotential. Then, the feature implies a closed
space. In Sec. VII, the screening effect and the strength of
the scalar fifth force are discussed. It is shown that the
matter-coupled scalar field model satisfies the constraint
of the precision measurements of hydrogenic energy
levels [17] due to the density-dependent screening effect.
Approximate expressions of the scalar fifth force are
derived in this section, which can help experimental
physicists design experiments to test the scalar fifth force.
Conclusions are presented in Sec. VIII.
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II. TECHNICAL PRELIMINARIES

Consider the action governing the dynamics of a scalar
field as follows [34,42]:

S ¼ 1

ℏ3c4

Z
d4x

ffiffiffiffiffiffi
−g

p �
ℏ3c7

16πG
R −

1

2
ℏ2c2∂μϕ∂μϕ − VðϕÞ

�

þ
X
i

SiðgμνA2ðϕÞ;ψ iÞ; ð1Þ

where ϕ is the scalar field with self-interaction potential
VðϕÞ and ψ i denotes matter fields, such as the spinor field.
The coupling between the scalar field and ψ i is given by the
conformal coupling A2ðϕÞgμν, where the coupling function
AðϕÞ > 0. Since the forces relate to the spatial gradient of
some potential, one may work in Newtonian gauge with the
perturbed line element about Minkowskian space-time as

ds2 ¼ gμνdxμdxν ¼ −ð1þ 2ΦÞc2dt2 þ ð1 − 2ΨÞdx⃗2; ð2Þ
where the metric potentialsΦ andΨ are space dependent but
time independent. For the source of a static, pressureless,
nonrelativistic matter distribution, apart from the Newtonian
force, a test particle is subject to a new fifth force [5,15,16,36]:

a⃗ ¼ −c2∇ lnAðϕÞ ¼ −c2
A;ϕðϕÞ
AðϕÞ ∇ϕ: ð3Þ

Be careful not to confuse the unfortunate notation a⃗ for the
acceleration of a test particle and aðtÞ for the scale factor of
the Universe. The scalar fifth force is strongly dependent on
the form of the coupling function AðϕÞ, besides the gradient
of the scalar field. The mathematical expression of AðϕÞ
will be speculated, and the physical parameters of AðϕÞwill
be given based on the constraint of the cosmological
constant in Sec. III B. The validness of the scheme is
tested in the rest of this paper.
Astronomical observations have not found that dark

energy evolves with time [3]. Consequently, if dark energy
originates from a dynamic scalar field, the most probable
candidate of AðϕÞ might be a symmetry-breaking form.
The symmetry-breaking shape for AðϕÞ can localize the
VEVof the scalar field, which will be discussed in detail in
Sec. III. In order to infer the form of the coupling function
from the constraints of the cosmological observation data,
one can consider a homogeneous, isotropic universe with a
scale factor aðtÞ described by the line element

ds2¼−c2dt2þa2ðtÞ
�

dr2

1−Kr2
þr2ðdθ2þsin2θdϕ2Þ

�
; ð4Þ

where the values K ¼ 1; 0; or −1 correspond to closed,
flat, or open spaces, respectively. Variation of the action (1)

with respect to the metric yields the Friedmann equation
[34,42]

H2 ¼ 8πG
3

�X
i

ρiA1−3wiðϕÞ þ 1

ℏ3c5

�
VðϕÞ þ ℏ2

2
_ϕ2

��

−
Kc2

a2
; ð5Þ

where H ≡ _a=a is the Hubble parameter which defines the
cosmic expansion rate, G is the gravitational constant,
overdots indicate derivatives with respect to cosmic time t, i
denotes several species of noninteracting perfect fluids
of matter sources, ρi is scalar-field-independent matter
density [5–10,31,36], and its equation of state is

wi ≡ pi

ρic2
; ð6Þ

with pi being the pressure of the fluid component.
According to statistical mechanics, both the energy density
ρic2 and the pressure are functions of the system temperature
T. Then, the equation of state wi is T dependent, i.e., wiðTÞ.
It is worth noting that, regardless of whether the temperature
value is large or not, the equation of state must be calculated
by relativistic statistical mechanics so that both thermal
energy and rest energy are included [34,39,53]. Then, we
can conclude that for dust, including cold dark matter
(CDM) [39],wi ¼ 0; for radiations and relativistic particles,
wi ¼ 1=3; in general, 0 ≤ wiðTÞ ≤ 1=3. As temperature
increases continuously, we see that wiðTÞ gradually
approaches 1=3 from 0, and the final value of wiðTÞ ¼
1=3will result in the decoupling of the scalar field to matter.
It should be emphasized that the choice of ρi and pi is
independent of the scalar field and satisfies the conservation
law:

_ρi ¼ −3Hρið1þ wiÞ: ð7Þ
In Eq. (7), both the number density and the corresponding
entropy are conserved. The number of particles (or the
distribution numbers for energy levels) is not altered, but the
masses of the particles (or the energy eigenvalues) are
shifted due to the coupling of matter to the scalar field.
Consequently, ρi (pi) denotes the mass densities (pressures)
in the decoupled cases, such aswi ¼ 1=3 orAðϕÞ ¼ 1. Thus,
Eq. (7) shows that the corresponding entropy is conserved.
Actually, Eq. (7) is assumed to be valid not only for
nonrelativistic particles but also for relativistic particles
(see also Appendix B 2). To distinguish between the
expansion and the contraction by the Hubble parameter,
we rewrite Eq. (5) as

_a
a
≡H� ¼ �

�
8πG
3

�X
i
ρiA1−3wiðϕÞ þ 1

ℏ3c5

�
VðϕÞ þ ℏ2

2
_ϕ2

��
−
Kc2

a2

�
1=2

: ð8Þ
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Then,Hþ andH− denote the expansion and the contraction
of the Universe, respectively. Variation of the action (1)
with respect to ϕ gives [34,42]

ℏ2ϕ̈þ 3H�ℏ2 _ϕþ Veff;ϕðϕÞ ¼ 0; ð9Þ

where the subscript “, ϕ” denotes a partial derivative with
respect to ϕ; the effective potential density is

VeffðϕÞ ¼ VðϕÞ þ V int; ð10Þ

with

V int ≡
X
i

ρiℏ3c5½A1−3wiðϕÞ − 1� ð11Þ

indicating the interaction with matter [8]. From Eq. (9), one
can deduce that when the Universe contracts, the scalar
field may grow rapidly. The details will be discussed in
Sec. VI. According to statistical mechanics, as the temper-
ature approaches infinity, the equation of state approaches
1=3 and then the interaction potential vanishes. In contrast,
for perfect fluid with cold but extremely dense matter, the
value AðϕminÞ of a symmetry-breaking coupling function
shown in the next section at the minimum of the effective
potential tends to 1, and the interaction potential also
vanishes [see Eqs. (19b) and (22a)].
In summary, the scalar field is required to account for the

observed cosmic acceleration so as to logically obtain the
fifth force from the coupled scalar field. To achieve this
goal, a scalar-field-independent matter density and the
corresponding conservation law are introduced in a defi-
nitionlike manner. The conservation law states that both the
number of particles and the corresponding entropy are
conserved regardless of whether matter couples to the
scalar field or not. Since the masses of the particles are
shifted due to the coupling, the real physics matter density
depends on the scalar field, and the corresponding entropy
is no longer conserved due to the T dependence of wi (see
also Appendix B 1). When a new degree of freedom (d.o.f.)
is introduced, it is necessary to add accordingly a new
energy form. Here, ρi and the corresponding conservation
law are introduced to reflect the aspect of the scalar-field
independence of matter.

III. A QUARTIC SELF-INTERACTION
POTENTIAL ENERGY DENSITY WITH A

SYMMETRY-BREAKING INTERACTION TO
MAKE THE UNIVERSE ACCELERATE

It has been assumed that only when the scalar field leads
to a long-range fifth force [10,33] can it represent dark
energy evolving on cosmological timescales. However, the
requirement of the long range of the interaction is not
necessary, which will be discussed in Sec. V. In this section
we introduce a symmetry-breaking interaction between the

scalar field and matter to localize the minimum of the
effective potential; then the fifth force is very short ranged.
Our setting differs from that of [32,41,42,44,54] in which
the broken symmetry is only related to the self-interaction
potential of the scalar field; then adiabatic instability occurs
or reacts very sensitively to the changes of the background
density [15,37,42,55]. It will be proven in this section that a
value of the self-interaction potential around the minimum
of the effective potential acts a constantlike dark energy
(or, equivalently, the cosmological constant) due to the
symmetry-breaking interaction. The symmetry-breaking
coupling also results in a density-dependent and short
ranged fifth force, which will be discussed in Sec. VII.

A. Driving cosmic acceleration via the
coupled scalar field

From Eqs. (5) and (9), the acceleration equation of the
Universe is obtained as

ä
a
¼ 4πG
3ℏ3c5

�
2VðϕÞ−2ℏ2 _ϕ2−

X
i

ρið1þ3wiÞℏ3c5A1−3wiðϕÞ
�
:

ð12Þ

Since Eq. (12) gives one of our foundations, it is derived in
detail in Appendix A. It is noteworthy that wi, the equation
of state for matter, is temperature dependent. With the
temperature growing, the coupling of matter to the scalar
field decreases. For pressureless matter sources wi ¼ 0, the
acceleration of the Universe becomes

ä
a
¼ 4πG

3ℏ3c5
½2VðϕÞ − 2ℏ2 _ϕ2 − ρℏ3c5AðϕÞ�; ð13Þ

where ρ ¼ P
i ρi. We emphasize again that ρ is a decoupled

total matter density which is independent of the scalar field,
and the total physics matter density in the pressureless case
should be ρAðϕÞ, which includes the interaction energy
of matter with the scalar field. The energy exchange
between the scalar field and matter is discussed in detail
in Appendix B.
Equation (12) shows that the self-interaction potential

energy density VðϕÞ of the scalar field drives the accelerat-
ing expansion of the Universe, while both the kinetic energy
density of the scalar field and any form of energy density of
matter lead to a decelerating expansion. From Eq. (9) one
sees that the evolution of the scalar field is a damping
oscillation in the expansion period of the Universe
(H ≡Hþ > 0). Therefore, if the scalar field evolves to
the minimum of the effective potential and can stably sit at
the minimum, one might obtain a cosmological constant. If
we substitute the field value ϕmin at the minimum into
Eqs. (5) and (13), and neglect the kinetic energy term of the
scalar field, we get simple expressions for the Friedmann
equation (5) and the acceleration equation (13) as follows:
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H2 ≡ _a2

a2
¼ 8πG

3

�
VðϕminÞ
ℏ3c5

þ ρAðϕminÞ
�
−
Kc2

a2
; ð14aÞ

ä
a
¼ 4πG

3

�
2VðϕminÞ
ℏ3c5

− ρAðϕminÞ
�
: ð14bÞ

We compare Eq. (14b) with the acceleration of the
Universe in the ΛCDM model [39,40] as

ä
a
¼ Λc2

3
−
4πG
3

ρm; ð15Þ

where Λ and ρm are the cosmological constant and the real
physics matter density, respectively. One can see that the
value of the self-interaction potential at ϕmin acts as the
cosmological constant,

Λ ¼ 8πGVðϕminÞ
ℏ3c7

; ð16Þ

rather than the minimum of the effective potential as used
previously [10,18]. Also, the mass density ρm of matter is
equal to ρAðϕminÞ and becomes ϕ dependent, i.e.,

ρm ¼ ρAðϕminÞ: ð17Þ
That the value of the self-interaction potential at the mini-
mum plays the role of dark energy has also been demon-
strated through a post-Newtonian approximation [56].
Physicists often use ΛE, the energy scale of the dark

energy density Λ4
E, to describe the cosmological constant,

which is defined by

Λ4
E ≡ Λℏ3c7

8πG
≡ VðϕminÞ: ð18Þ

Since the scalar field always tends towards theminimumof
the effective potential due to the positive damping coefficient
of 3Hþ > 0 in the expansion period of the Universe,
obtaining the cosmological constant is strongly dependent
on the adiabatic condition that guarantees the stability of the
scalar field sitting at the minimum of the effective potential.
Consequently, large effective masses of the scalar field and
nearly invariant minimums of the effective potential are
necessary. This can be achieved by invoking a symmetry-
breakingcoupling function,whichwill be shown inSec. III B.

B. Symmetry-breaking coupling function

In order to obtain the fifth force under the cosmic
constraints, we choose a quartic self-interaction potential
and a symmetry-breaking coupling function as follows:

VðϕÞ ¼ λ

4
ϕ4; ð19aÞ

AðϕÞ ¼ 1þ 1

4M1
4c8

ðϕ2 −M2
2c4Þ2; ð19bÞ

whereM1,M2 are parameterswithmass dimension and λ is a
dimensionless parameter. Both the self-interaction potential
and the coupling function haveZ2 (ϕ → −ϕ) symmetry. All
the parameters above can be determined by the constraints of
the cosmological observations and the theoretical natural-
ness (a detailed discussion is given in Appendix C). A
concise display of the parameters is shown in Eq. (20):

λ ¼ 1

6
; M1 ¼

M2

23
;

M2 ¼ 4.96168 meV=c2 ¼ 8.845 × 10−39 kg: ð20Þ
According to Eqs. (10) and (19), the effective potential
energy density has a very simple form in the case of wi ¼ 0
as follows:

VeffðϕÞ ¼
λ

4
ϕ4 þ ρℏ3

4M1
4c3

ðϕ2 −M2
2c4Þ2: ð21Þ

The effective potential density versus the scalar field is
shown in Fig. 1.

1. The λ-dependent minima and the
λ-independent effective mass

The two degenerate minima of the effective potential of
Eq. (21) and the effective mass around the minima are
obtained as follows (see Appendix C):

ϕmin ¼ �
�

ρℏ3M2
2c4

λM1
4c3 þ ρℏ3

�
1=2

; ð22aÞ

m2
eff ≡

Veff;ϕϕðϕminÞ
c4

¼ 2ρℏ3M2
2

M1
4c3

: ð22bÞ

FIG. 1. The effective potential VeffðϕÞ (solid curve) is the sum
of a scalar potential VðϕÞ (dotted curve) and a matter-density-
dependent interaction term V int (dot-dashed curve). The value
VðϕminÞ (dashed line) of the self-interaction potential at one of the
symmetry-breaking vacuums ϕmin acts as the cosmological
constant to drive late-time cosmic acceleration.
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The scalar field has to choose only one of the minima;
then the Z2 symmetry is spontaneously broken.
From Eqs. (22), one sees that the effective mass of the

scalar field is not dependent on λ, but ϕmin is dependent on
λ. The two properties are the main reason for the choice
shown in Eq. (19). These properties show that the self-
interaction potential of the scalar field has nothing to do
with the effective mass but can move the position of the
minimum of the effective potential. These important
properties guarantee that the observed cosmic acceleration
stems entirely from the scalar field rather than any static
vacuum energy, which will be discussed at the end of
Sec. V. The λ-independent effective mass in the general
case of wi ≠ 0 is obtained in Appendix C 2.

2. The condition of adiabatic tracking

One sees that through Eq. (22), the scalar field can
adiabatically track the minimum of the effective potential.
The changing rate _ϕmin=ϕmin of the minimum position due
to the change of the matter density can be described by
Eq. (C10) in Appendix C. The adiabatic condition guar-
antees that, if the field is initially at the minimum, it will
follow the minimum adiabatically during the later evolu-
tion. Since the reciprocal of j3H=2j is the characteristic
time of the evolution of the Universe, the adiabatic
condition can be expressed as follows:���� _ϕmin

ϕmin

���� ≤
���� 3H2

����: ð23Þ

The smaller the changing rate of the minimum position,
the stronger the stability of the scalar field sitting at the
minimum. For a pressureless matter source the scalar field
in our scheme can adiabatically follow the minimum,
which is proven by Eq. (C10) in Appendix C.
If the field is not initially at the minimum, one should

take into account the oscillation condition. The response
time for the scalar field to adjust itself to the position of the
minimum is characterized by 1=ωc, with the Compton
frequency ωc ≡meffc2=ℏ. The decay time for the evolution
of the scalar field is characterized by 2=ð3HÞ. In general
cases, the Compton frequency is considerably larger than
the Hubble expansion rate, and the oscillation condition

ωc ≥
���� 3H2

���� ð24Þ

is satisfied. For example, the energy scale of the Compton
frequency in the present matter density of the Universe is
estimated to be ℏωc0 ∼ 60meV, which is about 26 times the
cosmological constant. The energy scale of the Hubble
expansion rate at the present time is ℏH0 ∼ 10−33 eV.
However, it is worth noting that the oscillation condition
and the adiabatic condition cannot be satisfied in the
inflationary era when the Hubble rate, the effective mass
of the scalar field, and the energy density of the Universe

vary in an extreme way. Particularly, Eq. (22) is no longer
valid in the inflationary era since the assumption of the
equation of state wi ¼ 0 is invalid.

3. The Compton wavelength of the scalar field

The Compton wavelength of the scalar field is defined by
ƛc ≡ ℏ=ðmeffcÞ, which describes the interaction range
between matter and the scalar field. Using Eqs. (20) and
(22), the Compton wavelength is obtained as

ƛc½m� ¼ 1.648 × 10−19

ðρ½kg=m3�Þ1=2 : ð25Þ

The larger the ambient matter density, the shorter the
Compton wavelength of the coupled scalar field. This
interaction range is so short that it is difficult to detect even
in low-density empty space. A further discussion is given in
Sec. VII.

4. The negative-damping oscillation of the scalar field

Considering the scalar field around the minimum to
obtain an approximation for the equation of motion,
the effective potential can be expanded as VeffðϕÞ ¼
VeffðϕminÞþVeff;ϕðϕminÞðϕ−ϕminÞþm2

effc
4ðϕ−ϕminÞ2=2;

then the equation of motion (9) becomes

ϕ̈þ 3H� _ϕþ ω2
cðϕ − ϕminÞ ¼ 0; ð26Þ

which describes a damped (negative-damped) oscillation
for Hþ > 0 (H− < 0). The damped (negative-damped)
oscillation can be classified into three cases:
(a) j3H=2j > ωc overdamping (over-negative-damping);
(b) j3H=2j ¼ ωc critically damping (critically negative-

damping);
(c) j3H=2j < ωc underdamping (under-negative-damping).
The absolute value symbol is used because the damping

coefficient 3H < 0 in the contraction phase of the
Universe. The oscillation frequency of the scalar field
around the minimum is equal to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
c − 9H2=4

p
, which

is less than the Compton frequency ωc. Figure 2 shows a
schematic sketch of the curves of motion of the scalar field
in the cases of (a) the expansion and (b) the contraction of
the Universe, respectively.
The negative-damping oscillation of the scalar field

can absorb energy from the gravitational field in a nega-
tively damped manner during the contraction process of the
Universe if the contraction really occurs. Thus, the negative-
damping oscillation is different from forced oscillations. The
negative-damping oscillation of the scalar fieldmust result in
the explosion of the Universe due to the exponentially
growing oscillation magnitude.
However, if the scalar field initially sits at the minimum,

i.e., the oscillation magnitude is zero, the question is what
activates the oscillation. When the adiabatic condition of
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Eq. (23) is satisfied, the scalar field will stay at the
minimum. With the temperature of the Universe becoming
hotter and hotter, the adiabatic condition no longer holds,
and the oscillation is triggered by the quick movement of
ϕmin, which will be discussed in Sec. VI.

5. The cosmological constant in quintessence form
pinned by the symmetry-breaking coupling

Since the adiabatic tracking always holds for wi ¼ 0, the
cosmological constant can be finely defined by Eq. (18)
and can be obtained in our scheme by Eq. (19a) as follows:

Λ4
E ≡ VðϕminÞ ¼

λ

4
ϕ4
min: ð27Þ

If the symmetry is not broken, i.e., M2 ¼ 0 in Eq. (19b),
one immediately obtains ϕmin ¼ 0 and meff ¼ 0 by using
Eq. (22); then the cosmological constant goes to zero. In
this sense, the nonzero cosmological constant seems to
stem from a symmetry-breaking interaction between the
scalar field and matter. However, if λ ¼ 0, from Eq. (27)
one also obtains zero. Indeed, our setting is essentially a
quintessence model, in which the quintessence is trapped
at the bottom of the interaction potential well. When the
matter density is large enough, the value of the self-
interaction potential pinned by the symmetry-breaking
interaction approaches a constant. Whether or not the
localization works well is left to Sec. IV.

C. Summary

Since the adiabatic condition is satisfied in our setting,
the value of the quartic self-interaction potential at the

minimum of the effective potential can be localized stably
by the symmetry-breaking interaction potential. It has been
proven that the value acts as the cosmological constant.
When the density of matter is large enough, the value of the
self-interaction potential indeed approaches a constant.
In the scheme, the effective mass of the scalar field has

two important characteristics: (1) The mass, in general, is
large enough so that the adiabatic instability can be sup-
pressed. (2) The mass is unrelated to the self-interaction
potential so that the zero-point energy can be canceled out;
then the fine-tuning is avoided in deriving the cosmological
constant, which will be discussed in Sec. V D. Although it
has nothing to do with the effective mass, the self-
interaction potential moves the position of the minimum
of the effective potential. Thus, the observed cosmic
acceleration can be ascribed entirely to the scalar field
rather than any static vacuum energy.
In addition, the negative-damping oscillation of the

scalar field in this section is introduced for the contraction
process of the Universe.

IV. APPLICATION OF THE MODEL TO THE
EXPANSION OF THE UNIVERSE (H + > 0)

We now test our setting for the following: to explain the
current astronomical observations, to extrapolate backward
in early time, and to predict the future trends of the Universe.

A. Quantitative comparison with some important
astronomical observations

One can see from Eq. (20) that only one parameter
of M2 needs to be determined by experimental data.

(a) (b)

FIG. 2. The schematic sketch of the motion of the scalar field. (a) The curves of motion of the scalar field correspond to the expansion
of the Universe. The scalar field experiences three types of damped oscillation: overdamping, critically damping, and underdamping.
The underdamped oscillation will last for a long time until the adiabatic condition shown in Eq. (23) is satisfied. When the adiabatic
condition is satisfied, the scalar field will quickly decay to the minimum and stay there. (b) The curves of motion of the scalar field
correspond to the contraction of the Universe. The scalar field experiences three types of negative damped oscillation: under-negative-
damping, critically negative-damping, and over-negative-damping. In the case of under-negative-damping, the scalar field can sit at one
of the minima of the effective potential until the adiabatic condition is broken, which will be discussed in Sec. VI. When the temperature
increases, the scalar field will finally decouple with matter and shift to the case of over-negative-damping. It is worth noting that neither
graph shows the minimum moving over time. The moving rate of the minimum determines whether the adiabatic condition is satisfied.
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The parameter of M2 is chosen so as to satisfy both the
values of the current cosmological constant and the current
ratio of the energy density of matter to the total energy
density of the Universe. After the determination of M2, we
will test whether or not the setting works well.

1. Determining the adjustable parameter M2

The ratio of matter density to the total mass density is

Ωm ≡ ρm
ρtot

; ð28Þ

where the physics matter density ρm ¼ P
i ρmi with

ρmi ¼ ρiA1−3wiðϕÞ, and the total mass density is a sum of
the physics matter density and the mass density of the scalar
field. We can see from the Friedmann equation (5) why the
real physics matter density is ρm rather than ρi or

P
i ρi. For

pressureless matter sources wi ¼ 0, the physics matter
density can be written as ρm ¼ ρAðϕÞ with ρ ¼ P

i ρi.
The scalar field mass density is defined by ρϕ ¼
VðϕÞ=ðℏ3c5Þ þ _ϕ2=ð2ℏc5Þ [20], which can also be seen
from the Friedmann equation (5). When the scalar field
adiabatically follows theminimumof the effective potential,
the kinetic energy of the scalar field can be neglected and the
scalar field mass density becomes ρϕ ¼ VðϕminÞ=ðℏ3c5Þ.
Thus, Eq. (28) becomes

Ωm ¼ ρℏ3c5AðϕminÞ
ρℏ3c5AðϕminÞ þ VðϕminÞ

: ð29Þ

Substituting the current astronomical observation data [3],

Ωm0 ¼ 31.58%; ð30aÞ

ΛE0 ¼ 2.239 meV;

ðΛ0 ¼ 4.24 × 10−66 eV2 ¼ 1.089 × 10−52 m−2Þ; ð30bÞ

into Eqs. (29) and (27) together with (22a), we obtain
simultaneous equations. Noting the expressions shown in
Eq. (20) and regarding M2 as an undetermined parameter,
we solve the simultaneous equations to derive M2 and the
current matter (including CDM) density of the Universe as
follows:

M2 ¼ 4.96168 meV=c2 ¼ 8.845 × 10−39 kg; ð31aÞ

ρm0 ≡ ρ0A0ðϕminÞ ¼ 2.69271 × 10−27 kg=m3: ð31bÞ

Here the subscript 0 is the current time. The correspond-
ing scalar-field-independent matter density is

ρ0 ¼ 2.68026 × 10−27 kg=m3; ð32Þ

which is smaller than the real physics matter density ρm0.
The reason for this is that the physics matter density

includes the interaction energy between matter and the
scaler field.
The total energy density of the Universe is then obtained

as follows:

ρtot0 ¼ ρ0A0ðϕminÞ þ
V0ðϕminÞ
ℏ3c5

¼ 8.52665 × 10−27 kg · m−3: ð33Þ

Therefore, by using the current values of Ωm0 and Λ0, we
obtain not only the free parameterM2 but also all the forms
of the current energy density of the Universe.

2. The effective equation of state for the scalar field
in the present era

The effective equation of state for the coupled scalar field
in the present era is estimated by Eq. (B20) in Appendix B
to be

weff0 ≡ peff0

ρeff0c2
¼ −V0ðϕminÞ

Veff0ðϕminÞ
¼ −0.998: ð34Þ

This value is slightly larger than the result w0 ¼
−1.03� 0.03 shown in [3], but it is slightly smaller
than the result w ¼ −0.80þ0.09

−0.11 shown in [57]. The small
differences may result from the fact that the models used in
the literature [3,57] are not the same as the model in
this paper.

3. The two transition redshifts in the
past and the future

We can now calculate the transition redshifts by letting
the acceleration in Eq. (14b) equal zero. Although the
geometry curvatureK appears in the Friedmann equation, it
disappears in the acceleration equation of the Universe.
Consequently, the transition redshifts associated with the
zero acceleration are independent of the curvature of the
Universe. Since the redshift is defined by 1þ z ¼ a0=aðtÞ,
with aðtÞ the scale factor of the Universe at cosmic time t
and a0 the current value [39], the scalar-field-independent
matter density in the pressureless case can be expressed via
Eq. (7) as follows:

ρ ¼ ρ0ð1þ zÞ3: ð35Þ

The physical significance of Eq. (35) is that the particle
number of the Universe is not altered during its expansion.
However, it is worth noting that, in general, ρm ≠
ρm0ð1þ zÞ3 due to the interaction energy between matter
and the scalar field (see also Appendix B). Substituting
both ä ¼ 0 and Eq. (35) into Eq. (14b), we derive two
solutions for the transition redshift, which mark the
transition time of the Universe expansion from deceleration
to acceleration and vice versa.
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The transition redshift corresponding to the deceleration-
acceleration transition in the Universe’s past is

zpast ¼ 0.634478; ð36Þ

which is consistent with [3,45,58–60]. At this transition
time, the scalar-field-independent matter density ρpast ¼
1.1703 × 10−26 kg=m3, which is slightly smaller than
the corresponding physics matter density ρmpast ¼
1.1706 × 10−26 kg=m3. The corresponding cosmological
constant is obtained by Eqs. (22a) and (27) as ΛEpast ¼
2.241 meV or, equivalently, Λpast ¼ 1.1092 × 10−52 m−2.
The effective equation of state for the coupled scalar field is
estimated by Eq. (B20) to be weff ¼ −1.
Another transition redshift that corresponds to the

next transition of acceleration-deceleration is obtained as
follows:

zfuture ¼ −0.8977287; ð37Þ

which will occur in the future. The scalar-field-independent
matter density ρfuture ¼ 2.867 × 10−29 kg=m3 is consider-
ably smaller than the corresponding physics matter density
ρmfuture ¼ 1.3058 × 10−27 kg=m3. This means that, with the
density decreasing, the interaction potential energy between
matter and the scalar field will increase due to the symmetry-
breaking coupling function. Of course, one also finds that
the cosmological constant will decrease when the matter
density decreases. The corresponding cosmological constant
isΛEfuture ¼ 1.295 meV (Λfuture ¼ 1.219 × 10−53 m−2). The
corresponding effective equation of state for the coupled
scalar field is estimated by Eq. (B20) to be weff ¼ −0.334.

4. The nearly fixed cosmological constant
before the present era

If matter density increases in the pressureless case,
the interaction potential energy between matter and the
scalar field will decrease and finally approach zero.
According to Eqs. (19a) and (22a), when ρ approaches
infinity, the interaction potential Eq. (11) will vanish due to
AðϕminÞ ¼ 1. But the density-dependent cosmological con-
stant will increase and finally approach a constant. In other
words, when the density is large enough, the cosmological
constant obtained by Eq. (27), together with Eq. (22a), is
nearly density independent, which is a desired result. In this
sense, the cosmological constant becomes a constant. For
example, when ρ → ∞, one has

ΛE ¼ 2.242 meV; ðΛ ¼ 1.093 × 10−52 m−2Þ; ð38aÞ

weff ¼ −1: ð38bÞ

The limit towards infinity does not represent any physical
process: it is a mathematical construction that depicts a

nearly fixed value of Λ in the Universe’s past [61]. In fact,
ΛE ≃ 2.242 meValways holds as long as ρ ≫ λM1

4c3=ℏ3∼
10−30 kg=m3. This implies that an actual time variable of the
cosmological constant in the matter-coupled scalar field
model behaves as a real constant before the present era.
Figure 3 shows the cosmological constant versus the matter
density.
Due to the broken symmetry of the interaction between the

scalar field and matter, the value of the self-interaction
potential at the minimum of the effective potential is pinned
at a nearly fixed value if the density of matter is large enough.
The minimum is mainly determined by three factors: the
self-interaction potential, the shape of the coupling function,
and the density of matter. These remind us to choose the
appropriate coupling shape so that theminimum is insensitive
to the change of matter density for large density. The
requirements of adiabatic stability also imply that the effective
mass of the scalar field should be large enough, which results
in a very short-range fifth force in a wide region of ambient
matter density (see Sec. VII). It is the symmetry-breaking
coupling function that plays a pivotal role in suppressing the
scalar gradient force effect and in promoting the dark energy
role of the scalar field in a matter environment.

B. Space-curvature-dependent future
of the expansion of the Universe

The nearly fixed cosmological constant before the present
era has been proven above. We now return to the case of

FIG. 3. The cosmological constant versus the density of matter.
The density-dependent cosmological constant obtained by
Eq. (27) becomes nearly density independent when the density
is large enough, regardless of the Universe being flat, open, or
closed. However, for flat and open spaces, the cosmological
constant approaches zero when the density of matter approaches
zero. For closed spaces, the minimum cosmological constant is
ΛEmin ¼ 8.664 × 10−8 meV corresponding to the maximum ra-
dius of the Universe shown in Eq. (46a).
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matter density decreasing due to the expansion of the
Universe. The Universe will switch to a decelerating
expansion status according to the acceleration equation of
the Universe. However, in order to find whether the
expansion will continue in the distant future, one has to
consider the curvature of the Universe.

1. Λ ∝ ρ2 long after the present era

With the density decreasing further in the future, for
example, when ρ ≪ λM1

4c3=ℏ3, it can be easily obtained
from Eqs. (16), (22), and (27) that

Λ ≃
�
2πGℏ3M2

4

λc5M1
8

�
ρ2: ð39Þ

Therefore, Λ will reach a region where it decreases faster
than matter density does in the future. In other words, ä < 0
will occur according to Eq. (14b) as long as

2VðϕminÞ < ρmℏ3c5: ð40Þ

Consequently, the Universe will switch to a decelerating
expansion status. It is clear that the self-interaction
potential of the scalar field causes the accelerating expan-
sion, while matter density ρm decreases the acceleration.
Although both Λ → 0 and ρm → 0 when ρ → 0, the
different convergence rates result in the next decelerating
expansion after the transition redshift of zfuture.
What would happen next? Does the Universe keep

expanding forever or switch to a contracting? This
cannot be solved by the acceleration equation (14b) alone.
Applying the current Hubble constant H0 to the Friedmann
equation (14a), the question may be answered. Due to the
Hubble tension [62,63], however, another criterion is needed,
which will be shown in Sec. VI.

2. Flat space

Let us discuss the flat space first, i.e.,K ¼ 0. In this case,
since only the combination _a=a appears in the Friedmann
equation (14a), one is free to rescale aðtÞ as one chooses.
For example, one can choose a0 ¼ 1 at the present time,
which means that the physical coordinate system coincides
with the comoving one at the present time. The scalar-field-
independent matter density in the pressureless case can be
expressed via Eq. (7) as follows:

ρ ¼ a30ρ0
a3

; ð41Þ

where the value of the current scalar-field-independent
matter density ρ0 has been estimated as shown by Eq. (32).
Substituting (41) into Eqs. (22a) and (27), and then
substituting both into the Friedmann equation (14a), we
obtain a complicated differential equation about the scale
factor in time.

However, we can study the asymptotic behavior for the
late-time evolution of the Universe. When the matter
density becomes smaller and smaller with the expansion
so that ϕ2

min ≪ M2
2c

4, one finds that the solution is
aðtÞ ∝ t2=3, and then ρðtÞ ∝ 1=t2, which is the same as
the traditional matter-dominated solution in flat space. The
Universe expands forever, but the Hubble parameter
decreases with time as H ¼ 2=ð3tÞ, meaning that it will
infinitely approach zero as the time approaches infinity.
Substituting K ¼ 0 and the total density Eq. (33) into the
Friedmann equation (14a), one can calculate the current
Hubble constant for flat space as follows:

H0ðK ¼ 0Þ ¼ 67.376 km s−1 Mpc−1: ð42Þ

This value is close to the measured value of the current
Hubble constant [3,45], such as H0 ¼ 67.36 km s−1Mpc−1

[3] or H0 ¼ 67.8 km s−1Mpc−1 [45]. The Hubble tension
is not completely resolved [62,63]. Although the Universe
is close to a flat space at the present time, it still has the
possibility of being positive or negative curvature space.
However, a closed space is favored by the observed feature
of a concave potential [3], which will be discussed in
Sec. VI B. In addition, since the measured Hubble constant
corresponds to the Jordan frame, it should be transformed
into the Einstein frame due to the calculation performed
here in the Einstein frame. The relationship between the
two frames will be discussed in Sec. VA.

3. Open space

In the case of K ≠ 0, one often rescales the scale factor
aðtÞ by setting jKj ¼ 1 as shown in Eq. (4). When this
rescaling is used, the freedom to set a0 ¼ 1 in flat space is
lost, and the scale factor has definite meaning in the
physical scale, e.g., curvature radius.
For the negative curve space K ¼ −1 [45], one can

deduce from the Friedmann equation (14a) that the
Universe expands forever, but the Hubble parameter
decreases with time and will infinitely approach zero as
the time approaches infinity. These conclusions are the same
as that in flat space. The asymptotic behavior of theUniverse
evolution in the future is also the same as the traditional
matter-dominated solution in open space, i.e., a ∝ t.
Besides, it is very clear from Eq. (14a) that _a, the

expansion speed of the Universe, exceeds the speed of light
forever in this situation. This means that there is an infinite
space of the Universe that cannot be observed. Thus, it
should be stressed that, essentially, the expansion based on
the cosmological principle results from the entire homo-
geneous energy density and the corresponding pressure in
the Universe. Due to the homogeneity, there is no gradient
force driving the expansion. Because of the entirety, all of
the density and pressure contribute their effect to the
expansion. More specifically, the expansion does not
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involve any gradient force and is not related to the Compton
wavelength of the scalar field.

4. Closed space

We now discuss the case of K ¼ 1. If we use the current
Hubble constant [3] H0 ¼ 67.36 km s−1Mpc−1, the critical
density can be estimated as

ρc ≡ 3H0
2

8πG
¼ 8.52261 kg · m−3: ð43Þ

Since the total density ρtot shown by Eq. (33) is slightly
larger than the critical density ρc, the Universe might be
closed, i.e., K ¼ 1, and the current radius of the Universe is
derived from Eq. (14a) as

a0 ¼ 6.305 × 1027 m ¼ 204.3 Gpc: ð44Þ

This value satisfies the constraint condition a0 > 81 Gpc
shown in the Planck 2018 results (X. Constraints on
inflation) [4].
From the Friedmann equation (14a), one can easily

deduce that the Universe must go through infinite cycles
of two stages: contraction and expansion. At the end of the
decelerating expansion, the Universe will reach its maxi-
mum radius amax, where the expansion speed _a ¼ 0.
Substituting _a ¼ 0 into Eq. (14a) (noticing that the equa-
tion is only valid in the pressureless case), we get a redshift

z ¼ −0.9999985281 ð45Þ

corresponding to the maximum radius of the Universe. The
maximum radius, the corresponding matter density, and the
cosmological constant are given, respectively, as follows:

amax ≡ a0
1þ z

¼ 4.283 × 1033 m; ð46aÞ

ρmin ≡ ρ0ð1þ zÞ3 ¼ 8.547 × 10−45 kg · m−3; ð46bÞ

ΛEmin ¼ 8.664 × 10−8 meV: ð46cÞ

The corresponding physics matter density is ρmmin ¼
8.761 × 10−42 kg=m3, which is about 3 orders of magni-
tude larger than the scalar-field-independent matter density
shown in Eq. (46b). The cosmological constant correspond-
ing to the maximum radius should be the minimum value in
all of the permissible values of the cosmological constant,
that is, Λmin ¼ 2.44 × 10−82 m−2. Therefore, the situation
of Λ ¼ 0 does not exist. The effective equation of state for
the coupled scalar field in this case is estimated by
Eq. (B20) to be weff ¼ −1.494 × 10−15.
After the expansion of _a ¼ 0, the Universe will begin its

contraction [61], which will be discussed in Sec. VI.
However, for completeness, the sketch of the whole

evolution, including both the expansion and the contraction
of the Universe, is presented here in Fig. 4. Figure 4(a)
shows a sketch of the expansion speed versus the cosmic
time. Correspondingly, the sketch of the scalar field versus
the cosmic time during the evolution of the Universe is
plotted schematically in Figs. 4(b)–4(d). The current value
of the scalar field is chosen to be positive in Figs. 4(b)–4(d).
However, the next new inflation due to the contraction may
occur at either the same sign or opposite sign with the
current choice of the sign of the scalar field. Figure 4(b)
denotes both the next inflation and the second acceleration
occurring at ϕ > 0. Figures 4(c) and 4(d) denote the next
inflation occurring at ϕ < 0, with the second acceleration
occurring at ϕ < 0 and ϕ > 0, respectively. Since the
potential density of the scalar field is equal to ϕ4=4!, the
three cases of Figs. 4(b)–4(d) present the same results of
the Universe’s evolution.

C. Summary

Using the only free parameter in the symmetry-breaking
interaction model, the nearly fixed cosmological constant is
obtained. The cosmological constant is estimated to be
ΛE ≃ 2.242 meV before the present era, which is slightly
larger than the current value ΛE ¼ 2.239 meV. Long after
the present era, the cosmological constant is proven to be
proportional to the square of the density of matter.
Therefore, the energy density of the scalar field will
decrease faster than that of matter, and the Universe will
shift into a decelerating expansion. Based on the current
observational precision of the Hubble constant, one can
deduce that the Universe is a nearly flat space in the present
era. Due to the Hubble tension, it is necessary to invoke
another criterion to judge the curvature of the Universe. The
criterion will be shown in Sec. VI, and the positive
curvature is preferred. For a closed Universe, the expansion
will stop, and the Universe will then contract.
The problem of how to reconcile our scheme with

chameleon no-go theorems will be discussed in Sec. V.

V. EVADING THE PHYSICAL COROLLARY
OF CHAMELEON NO-GO THEOREMS

The main purpose of this paper is to find out how to
obtain a scalar fifth force under the requirement that the
model should reflect the measured value of the cosmo-
logical constant as much as possible. The model should not
add a cosmological constant to drive cosmic acceleration
since any force involves a spatial gradient and the effect of
the added constant disappears in the differentiation. This
reminds us that it is the energy density of the scalar
field that drives cosmic acceleration rather than the spatial
gradient fifth force.
It is well known that the cosmological constant model

provides the simplest explanation of cosmic acceleration.
Apparently, there is no local fifth force in this model, albeit
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the nature of its negative pressure guarantees acceleration
of the Universe. One does not regard this as a satisfactory
solution based on the viewpoint of quantum field theory.
When the vacuum expectation value of a conventional
quantum field theory is used to mimic the cosmological
constant, however, Weinberg’s no-go theorem occurs [30],
which states that no tuning of the corresponding energy
density can be achieved naturally.
Scalar field theories of dark energy, such as quintessence

with a time-dependent energy density but without coupling
to matter [19,22,27,28], may be able to circumvent
Weinberg’s no-go theorem. If the scalar field does not
couple tomatter, i.e.,AðϕÞ ¼ 1, ourmodelmentioned above
becomes one of the typical quintessence forms. To mimic a

cosmological constant, the scalar field must be in a very
slow-roll state so that its kinetic energy is negligible. This
requires that the Compton frequency of the scalar field is
smaller than the Hubble rate, i.e.,mϕc2 < ℏH0 ∼ 10−33 eV,
with mϕ being the mass of the scalar field. In this case, the
scalar fifth force does not appear, but the scalar field is still
used to act as the dark energy field. The drawback of the
models is that the mass of the scalar field is too small. In any
case, one can see that the Universe’s accelerating expansion
is independent of any gradient force of the scalar field. Thus,
the interaction range of the scalar field does not play an
important role in the observed cosmic acceleration.
In scalar-tensor theories, such as the chameleon [6] and

symmetron [9] models, there is a coupling of the scalar field

(a)

(c) (d)

(b)

FIG. 4. The schematic sketch of the Universe’s evolution with time. (a) The sketch of the expansion speed of the Universe versus the
cosmic time from the present to the future. Note that c is the speed of light. For acceleration expansion, ä > 0 and _a > 0; for decelerating
expansion, ä < 0 and _a > 0; for accelerating contraction, ä < 0 and _a < 0; for deceleration contraction, ä > 0 and _a < 0; for the
biggest radius of the Universe, ä < 0 and _a ¼ 0; for the smallest radius of the Universe, ä > 0 and _a ¼ 0; for the transitions between
deceleration and acceleration expansion (contraction), ä ¼ 0; and such a pattern repeats itself. (b) The sketch of the scalar field versus
cosmic time during the evolution of the Universe for both the next new inflation and the second accelerating expansion occurring at
ϕ > 0. (c) The sketch of the scalar field versus the cosmic time during the evolution of the Universe for both the next new inflation and
the second accelerating expansion occurring at ϕ < 0. (d) The sketch of the scalar field versus cosmic time during the evolution of the
Universe for the next new inflation ϕ < 0 but with the second accelerating expansion still occurring at ϕ > 0. The current value of the
scalar field is chosen to be positive in all of the situations of (b)–(d). Since the potential density of the scalar field is equal to ϕ4=4!, all of
the cases present the same results of the Universe’s evolution.
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to matter, and then scalar fifth forces appear. Unfortunately,
a corollary based on chameleon no-go theorems states that
the chameleonlike fields cannot drive the observed cosmic
acceleration [35,36]. A detailed analysis of the conclusion
is given below.

A. Self-acceleration problem

The acceleration equation (14b) clearly shows that accel-
eration will take place when 2VðϕminÞ > ρmℏ3c5. The
acceleration is caused by the stable value of 2VðϕminÞ, with
ϕmin being the minimum of the effective potential. The
coupling function indirectly affects the acceleration through
the matter-density-dependent interaction potential.
Let us check the possibility of self-acceleration in our

scheme. We need to introduce the Jordan frame, which,
indeed, has been implied in the second term on the right-
hand side of the action equation (1). The Jordan-frame
metric gJμν is related to the Einstein-frame metric gμν by the
positive coupling function AðϕÞ as follows [35,36]:

gJμν ¼ A2ðϕÞgμν: ð47Þ

Self-accelerating theories attempt to attribute the
observed (Jordan-frame) cosmic acceleration to the self-
acceleration [35]. That is, the cosmic acceleration stems
entirely from the conformal transformation shown in
Eq. (47). The literature [35] has proven that this is
impossible. This is one of the chameleon no-go theorems.
Later in this subsection, we show that our model does not
conflict with this no-go theorem, albeit the scalar field can
account for the observed cosmic acceleration, as has been
shown in Sec. IV.
To obtain the observable quantities in the Jordan frame,

we need to use the following translation between the
Einstein and Jordan frames:

aJðtJÞ ¼ AðϕÞaðtÞ; ð48aÞ

dtJ ¼ AðϕÞdt; ð48bÞ

where aJ and tJ are the scale factor and the cosmic time in
the Jordan frame, respectively.
Suppose that the scalar field is stable at theminimumof the

effective potential; then the coupling function is completely
determined by the density of matter due to AðϕÞ ¼
A½ϕminðρÞ�. In our scheme, when wi¼0, the function
ϕminðρÞ has been shown as Eq. (22a). Following [35], in
the case of a pressureless matter source, w can easily obtain
that

_aJ ¼ _a − 3_a
d lnA
d ln ρ

; ð49aÞ

äJ ¼ ä
A

�
1 − 3

d lnA
d ln ρ

�
þ 9_a2

Aa
d2 lnA
ðd ln ρÞ2; ð49bÞ

where ρ is scalar-field-independent matter density, _aJ≡
daJ=dtJ, and äJ ≡ d2aJ=ðdtJÞ2, respectively. Apparently,
if the expansion speed in the Einstein frame is equal to zero,
i.e., _a ¼ 0, the expansion speed in the Jordan frame is also
equal to zero, i.e., _aJ ¼ 0. However, if the acceleration in the
Einstein frame is equal to zero, i.e., ä ¼ 0, the acceleration in
the Jordan frame is no longer equal to zero, i.e., äJ ≠ 0. This
no-zero acceleration in the Jordan frame can be regarded as
self-acceleration, i.e., a genuine modified gravity effect.
The existence of the self-acceleration implies that the

transition redshifts calculated in Sec. IV should be cor-
rected because cosmological observations are implicitly
performed in the Jordan frame. To obtain the correction to
the transition redshifts, one should use äJ ¼ 0 rather than
ä ¼ 0. The calculation of the transition redshifts can still be
performed in the Einstein frame. After obtaining the
transition redshifts z in the Einstein frame, one can use
the following translation to obtain the transition redshift zJ

in the Jordan frame,

1þ zJ ¼ A0

A
ð1þ zÞ; ð50Þ

where 1þ zJ ¼ a0J=aJ and the subscript 0 marks the
current time. The Hubble parameter should also be con-
verted into the appropriate frame. It is worth noting that the
previous calculation in the last section is indeed in the
Einstein frame. When the measured Hubble parameter (in
the Jordan frame HJ ¼ _aJ=aJ) is used in the calculation, it
should be transformed into the Einstein frame as H ¼ _a=a,
which is ignored in the last section. According to Eqs. (19b)
and (22a), the coupling function AðϕminÞ is nearly fixed
to the value of 1 in the Universe’s past of due to
ρ ≫ λM1

4c3=ℏ3 ∼ 10−30 kg=m3. Therefore, the correction
to the Hubble parameter related to the different frames can
be approximately neglected [64]. We may introduce a
notation CðρÞ to mark the part of the self-acceleration in
Eq. (49b) as follows:

CðρÞ ¼ 9_a2

Aa
d2 lnA
ðd ln ρÞ2 : ð51Þ

Of course, the second term in the parentheses on the right-
hand side of Eq. (49b) can also contribute to the so-called
self-acceleration. In any case, when the density of matter is
larger than the current matter density, from Eq. (19b),
together with Eq. (22a), one can easily obtain that
AðϕminÞ ≅ 1. Therefore, self-acceleration is approximated
to zero, and then the Jordan- and Einstein-frame metrics
are indistinguishable. Substituting Eqs. (19b) and (22a)
into Eq. (51), one can also obtain that Cðρ ¼
4.5 × 10−29 kg · m−3Þ ¼ 0, and CðρÞ > 0 (CðρÞ < 0) when
ρ>4.5×10−29 kg·m−3 (ρ < 4.5 × 10−29 kg · m−3). If the
matter density is small enough, self-acceleration (self-
deceleration) occurs. Figure 5(a) shows that the value of
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the coupling function at the minimum varies with the
density of matter in the pressureless case. Figure 5(b)
describes the trend of self-acceleration varying with
the density of matter.
From Eq. (49a), together with Fig. 5(b), one sees that

_aJ > _a due to ðd lnAÞ=ðd ln ρÞ < 0. From Fig. 5, with the
Universe expanding, the self-acceleration marked by
Eq. (51) will occur in the future and then turn to self-
deceleration, with the matter density decreasing further.
Before the present time, since the coupling function nearly
keeps a constant value of 1 (which is equivalent to the
statement of ΔA=A ≪ 1 in [35]), the self-acceleration
vanishes. Clearly, our scheme coincides with the second
chameleon no-go theorem [35]. Unfortunately, based
on the chameleon no-go theorem, a misleading corollary
is deduced, which states that the chameleonlike scalar field
cannot impact cosmological observations [35]. Apparently,

the corollary conflicts with our scheme. By adopting a
symmetry-breaking coupling function, the cosmological
constant has been obtained in Sec. IV since the chameleon-
like scalar field in our proposal is indeed also a quintes-
sence field. The vanishing of self-acceleration does not
mean that the quintessence effect of the scalar field must
vanish. One cannot deduce the above corollary from the
almost zero-self-acceleration. There is no convincing no-go
theorem that hinders the establishment of a chameleonlike
model to mimic the cosmological constant.

B. Overshooting problem

Since the minimum of the effective potential changes
with time, a characteristic time has been introduced in
Sec. III B to describe whether the minimum moves quickly
or slowly. The changing rate of the minimum position has
been naturally defined by _ϕmin=ϕmin. If the rate is smaller
than the damping rate of j3HðtÞ=2j, with HðtÞ being the
Hubble parameter, the scalar field can adiabatically follow
the minimum of the effective potential; on the contrary,
overshooting must occur. The overshooting problem in
the chameleonlike model is sometimes regarded as another
no-go theorem, although it is not explicitly mentioned
in [35,36].
In our scheme, it has been demonstrated that

j _ϕmin=ϕminj ≤ j3H=2j [see Eq. (C10) in Appendix C]. The
higher the density of matter, the smaller the changing rate of
ϕmin. This means that the scalar field sits more stably at the
minimum in a higher density ofmatter. The transition redshift
denoting the deceleration-acceleration transition has been
estimated in Sec. IV. At the transition redshift, the matter
density ρpast ¼ 1.17 × 10−26 kg=m3. That is, when matter
density ρ > ρpast, the Universe is in the decelerating expan-
sion phase, and vice versa. Near the transition density, the
scalar field sits very stably at the time-dependent minimum
due to ρpast ≫ λM1

4c3=ℏ3 ∼ 10−30 kg=m3. We conclude
that the large effective mass around the minimum results
in the small changing rate of the minimum position and
suppresses the possibility of overshooting.
Now, we explain why the overshooting occurs in the

symmetron model [8], one of the chameleonlike models, in
which the self-interaction is a symmetry-breaking potential
and the coupling function is not a symmetry-breaking
one, i.e.,

VðϕÞ ¼ −
μ2c4

2
ϕ2 þ λ

4
ϕ4; ð52aÞ

AðϕÞ ¼ 1þ 1

2M2c4
ϕ2: ð52bÞ

One can easily obtain the minima of their effective
potential as follows:

(a)

(b)

FIG. 5. (a) The matter-density-dependent value of the coupling
function at the minimum of the effective potential. When the
density of matter is large enough, e.g., larger than the current
matter density of the Universe, the value of the coupling function
is almost equal to 1, and the corresponding self-acceleration is
nearly equal to zero. (b) The coefficient ðd lnAÞ=ðd ln ρÞ varies
with the density of matter in the pressureless case. Since the
coefficient is always negative, the cosmological observation value
of the expansion speed (performed in the Jordan frame) is larger
than the corresponding value obtained in the Einstein frame. The
derivative of the coefficient with respect to the density of matter
can roughly reflect the effect of self-acceleration. If the derivative
is positive, the self-acceleration is positive in the Jordan frame,
even if the corresponding acceleration in the Einstein frame is
zero, and vice versa. When the density of matter is large enough,
e.g., larger than the current matter density of the Universe, the
coefficient and its derivative, with respect to the density of matter,
are nearly equal to zero. Therefore, Jordan- and Einstein-frame
metrics are indistinguishable before the current era for the
pressureless fluid of matter sources.
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ϕmin ¼
(
0 ρ ≥ μ2M2c3

ℏ3

�½1λ ðμ2c4 − ρℏ3c
M2 Þ�1=2 ρ < μ2M2c3

ℏ3 :
ð53Þ

The corresponding effective masses around the minima are

m2
eff ¼

(
ρℏ3

M2c3 − μ2 ρ ≥ μ2M2c3

ℏ3

2ðμ2 − ρℏ3

M2c3Þ ρ < μ2M2c3

ℏ3 :
ð54Þ

It should be emphasized that the effective mass equals zero
at the critical value of matter density.
The literature [8] has attempted to mimic the deceler-

ation-acceleration transition redshift in the recent past
by a phase transition when the effective mass vanishes.
Apparently, the vanishing undoubtedly causes a serious
overshooting. When the effective mass is far smaller than
the Hubble rate in the mass scale, the stability of the
minimum is too fragile to resist perturbations. A little
energy from the perturbations can result in a quick moving
speed of the minimum.
Substituting Eqs (52) and (53) into Eq. (C9b) in

Appendix C, one has

_ϕmin

ϕmin
¼ H ·

3ℏ3ρ

M2m2
effc

3
: ð55Þ

Since the effective mass m2
eff → 0 at the critical value

of matter density, Eq. (55) gives the changing rate
_ϕmin=ϕmin → ∞. Thus, the minimum of the effective
potential moves too quickly for the scalar field to follow
it adiabatically during the expansion of the Universe. In no-
adiabatic tracking cases, when the Compton frequency of
the scalar field is smaller than the damping rate of j3H=2j, it
undergoes an overdamped evolution; when the Compton
frequency is larger than the damping rate, the scalar field
undergoes underdamped oscillations. These two phenom-
ena are what have been shown in the literature [8] near
the transition redshift. In addition, when the symmetry-
breaking potential (52a) is chosen as a quintessence
field, its value at the minima is too small to drive cosmic
acceleration.
The symmetronlike generalized potential and coupling

function shown in [8] cannot avoid the overshooting
problem because the effective mass still vanishes at the
critical value of matter density.

C. Compton wavelength problem

At the beginning of this section, we have shown, by way
of example, that the observed cosmic acceleration is
ascribed to the self-interaction potential density of the
scalar field rather than any form of the spatial gradient of
the scalar field. Although the gradient may contribute its
effect to the Universe locally, its resulting contribution to
the cosmic acceleration should be zero. The reason for this

is that the positive values of the gradient have to be offset
by the corresponding negative values; otherwise the cos-
mological principle would be violated.
In our scheme, as long as the matter density is large

enough, the minimum of the effective potential of the scalar
field becomes almost matter-density independent [see
Eq. (C7a) in Appendix C]. In this case of large matter
density, even if the matter density varies with space, the
minimum almost keeps the same value. Thus, dark energy
behaves like the cosmological constant not only in the
temporal scale but also in the spatial scale. Unlike the
minimum, however, the corresponding effective mass of
the scalar field is strongly dependent on the density of
matter and is very large in the general case. The very large
mass guarantees the stability of the minimum to perturba-
tions. The large effective mass means that the Compton
wavelength of the scalar field is short ranged, and the
effects of the corresponding fifth force are considerably
suppressed, which will be discussed in Sec. VII.
Although the symmetry-breaking coupling function has

been used to explain the cosmological constant and will be
used to explain the inflation of the Universe in Sec. VI, a
seriously misleading problem of the short interaction range
of the scalar field needs to be presented. Unfortunately, the
problem cannot be clearly resolved by some mathematical
equations, as we have done above, because it essentially
results from the misunderstanding of the physical concept
related to the accelerating expansion. It has always been
considered that the scalar fieldmust be light if it is to address
the cosmological-constant problem [38]. This questionable
viewpoint stems from two requirements. One results from
the case inwhich the scalar field does not couplewithmatter,
i.e., the traditional quintessence situation. A shallow poten-
tial is required so that the evolution of the scalar field can
satisfy the slow-roll condition. This requirement is unrea-
sonably extrapolated to the coupling case [38]. We call this
the shallow-potential requirement. In the other case, the
scalar field should mediate a long-range interaction so as to
explain the acceleration expansion of the Universe [65–67].
We call the second requirement the long-range-interaction
requirement.
The long-range-interaction requirement is not the same

as the shallow-potential one. In the quintessence situation
where the light scalar field does not interact directly with
matter, the shallow potential guarantees that the quintes-
sence field can roll down slowly; then its kinetic energy can
be neglected. Thus, as long as the self-interaction potential
is large enough, the quintessence model can mimic the
cosmological constant. In the quintessence model, there is
no long-range interaction. This also implies that a long-
range interaction is not a necessary condition to explain the
cosmological constant with a scalar field. Apparently, the
shallow-potential requirement is not necessary in our
scheme because the value of the self-interaction potential
can now be localized by the symmetry-breaking coupling.
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Therefore, in the rest of the section, we focus on whether or
not the long-range-interaction requirement is necessary.

1. The Compton wavelength of the scalar field

We now review the second chameleon no-go theorem.
The theorem is an upper bound on the chameleon Compton
wavelength at the present cosmological density [35,36],
which is given as follows:

ƛc ≡ ℏ
meffc

≲Mpc: ð56Þ

In our model, the Compton wavelength is estimated to be
about 5 μm at the present cosmological density, which of
course satisfies the constraint denoted byEq. (56).According
to [35], any cosmological observable probing linear scales
should see no deviation from general relativity in our model
due to the short range. From the mathematical point of view,
our model does not conflict with the chameleon theorems.
Based on chameleon theorems, however, the literature [35]
claims that chameleons have a negligible effect on the linear
growth of structure and cannot account for the observed
cosmic acceleration except as some formof dark energy. This
creates a paradox since the cosmological constant is obtained
in our chameleonlike setting.
How can one deduce the wrong physical corollary using

the correct chameleon theorems? It is because of the
misunderstanding of the concept of the energy density
and pressure. One confuses the effect of the energy density
and pressure with that of their gradient. Many works
suggest that it is the long-range interaction that drives
the accelerating expansion. However, as pointed out by
[40], there are no forces in a homogeneous universe
because the density and pressure are the same everywhere.
To supply a force, some gradient is required. Energy
density and pressure do not contribute any force to help
the expansion along. It is the density and pressure that drive
the Universe’s accelerating expansion. One should not
confuse the acceleration of the Universe’s expansion with
the acceleration of a test particle in a scalar field, where the
force originates from the spatial gradient and which will be
discussed in Sec. VII. It is worth noting that the fifth force
is not the same as the pressure gradient force, albeit the fifth
force is also a gradient force. A concrete example of the
pressure gradient force is the buoyant force, while the scalar
fifth force is a fundamental force.
The acceleration of the Universe is determined by all of

the density and pressure, including the observable and
nonobservable parts of the Universe, which has been
discussed in Sec. IV B 3. The observable Universe is
defined by a region with a radius that light can travel
through during the lifetime of the Universe. Even the fastest
light cannot establish the causal relationship in all parts of
the Universe. Of course, a light scalar field cannot achieve
it, either, due to its nonzero mass. It is unreasonable and

unrealistic to suggest that using a light scalar field mediates
a long-range interaction, and it is also in disagreement with
the current precision tests of gravity that there is no
evidence of the long-range fifth force. The requirement
that the scalar field should be light is not necessary because
the acceleration of the Universe is essentially related to the
density and pressure of matter, the potential energy density,
and the kinetic energy density of the scalar field. Only the
potential energy density of the scalar field drives the
Universe’s accelerating expansion. There is no evidence
that the interaction range plays an important role in the
expansion. This conclusion can be derived directly from the
acceleration equation (12) of the Universe, in which there is
no term related to the Compton wavelength of the scalar
field. The Compton wavelength of the scalar field is related
to the second derivative of the effective potential with
respect to the scalar field, while the acceleration of the
Universe expansion is related to the self-interaction poten-
tial itself.
However, another long Compton wavelength is needed

in our scheme, which will be discussed in the following.

2. The Compton wavelength of dark matter

The matter-density-dependent cosmological constant in
the symmetry-breaking coupling model requires matter to
permeate all of the Universe’s space according to Eqs. (22)
and (27). Due to the nature of the asymptote shown in
Fig. 3, a locally concentrative distribution of matter cannot
enhance the cosmological constant further, but the presence
of voids that are completely empty of matter may lower the
cosmological constant. The observed spatial independent
cosmological constant implies that the distribution region
of the complete voids is smaller if they exist and dark
matter should be cold and/or fuzzy in the present time.
Since the rapid motion of relativistic particles may

destroy the inhomogeneous seed structures generated in
inflation, the current dark matter model assumes that dark
matter gas is cold [39,68–70]. That is to say, its thermal
velocity is negligible with respect to the Hubble flow [70].
But the mass m of its particles is not determined [70–72],
which is widely ranging, for example, from the so-called
axion, ∼10−6 − 10−4 eV [71], to weakly interacting mas-
sive particles (WIMPs), ∼102–103 GeV [73]. The require-
ment that matter permeates all of space is not incompatible
with the CDM model. When dark matter gas is cold, the
thermal de Broglie wavelength h=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3mkBT

p
, with Planck’s

constant h and Boltzmann’s constant kB, of the particles
can be large due to the small values of the root-mean-square
speed in the low temperature T, and there will be a large
extension of the wave functions for the particles. The colder
the dark matter gas, the more notable the quantum effect of
the gas. Thus, the dark matter wave can permeate the
Universe everywhere.
Fuzzy dark matter is also permissible [74,75]. Its gas

corresponds to ultralight particles, such as the mass of dark
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matter particles, ∼10−22 eV [74,75]. If the ultralight par-
ticles are fermions, the Fermi energy of the Fermi gas is
ultrahigh, and the gas is in a state of complete quantum
degeneracy, although it may also be a relativistic gas [53].
Thus, when a structure forms, it will be stable and nearly
undisturbed by collision of another particle due to the Pauli
principle. If they are bosons, since the characteristic
temperature is inversely proportional to the particle mass
[53], the characteristic temperature will be extremely high.
Thus, when a structure forms, it will be a stable Bose-
Einstein condensation. The lighter the particles, the more
notable the quantum effect of the gas.
Of course, as time goes on, a nearly void distribution

region may occur and even exceed the concentrative
distribution region of matter, which will decrease the
cosmological constant. Consequently, the Universe’s
expansion rate will decelerate and shift to a contraction
phase. A detailed dark matter model that matches the scalar
fifth force model needs further investigation.

3. Relationship between the cosmological
constant and dark matter

As the isotropic microwave background has the same
temperature, there exists light dark matter that distributes
the space almost homogeneously and isotropically, at least
at the Universe scale. As we have demonstrated, the
cosmological constant can be obtained by the scalar field
via the symmetry-breaking coupling to matter. Apparently,
like the isotropic temperature of the microwave back-
ground, the current cosmological constant still needs an
inflation era. The reason for this is given below.
Although the late-time acceleration is ascribed to the self-

interaction potential of the scalar field in our setting, only
light darkmatter can localize the value of the self-interaction
potential through the symmetry-breaking coupling. If most
of the space is completely empty and dark matter is cluster
distributed in space, the cosmological constant will be
so small since the larger matter density cannot further
enhance the cosmological constant. To acquire a cosmo-
logical constant, a homogeneous background is needed for
dark matter. The homogeneous distribution of dark matter
can be established during the inflationary era because
different regions of the Universe are able to interact and
move towards thermodynamics equilibrium. That is to say,
temperature, pressure, and density of matter have the same
values everywhere in the inflationary era.
If there is no light dark matter but only agglomerate

ordinary matter, the current cosmological constant cannot
be obtained from our setting. Our model is dependent on
both the scalar field and dark matter with light mass. The
light dark matter helps the Universe generate the homo-
geneous cosmological constant through the scalar field
and the symmetry-breaking coupling to matter. The prop-
erty of light mass [76–78] guarantees that dark matter fills
the space everywhere. Even if dark matter itself is not

very homogeneous, the cosmological constant is still
spatially homogeneous and time independent, as long
as the density of dark matter is large enough, i.e.,
ρ ≫ λM1

4c3=ℏ3 ∼ 10−30 kg=m3.
If one wants a light mass field as a medium to permeate

all the space of the Universe, it should be dark matter. One
can say that the scalar field, though its Compton wave-
length is short at the present cosmological density, makes a
cosmological impact mediated by light dark matter. In this
sense, the light dark matter seems to play a role to mediate a
long-range interaction that does not really exist. In our
setting, both of the Compton wavelengths indeed vary with
time: The Compton wavelength of the scalar field will
become longer and longer as the Universe expands, while
the Compton wavelength of dark matter will increase, to
some extent, limited by the value of the symmetry-breaking
coupling function at ϕ ¼ 0.
Recently, fuzzy dark matter has become a topic of

interest [79,80]. This means that the requirement of ultra-
light particles for dark matter is not a disadvantage of our
setting.

D. The zero-point energy problem

Essentially, Weinberg’s no-go theorem results from the
problem of the zero-point energy of quantum field theory
[30,31]. In order to evade Weinberg’s no-go theorem, it is
possible to use a new dynamical scalar field [19,20,31]
(e.g., quintessence), instead of the assumption of the
vacuum energy density, to mimic the cosmological con-
stant. Therefore, we introduce a space-time-dependent
scalar field that preserves Lorentz invariance to mimic a
material-free dynamical vacuum instead of the traditional
vacuum in quantum field theory. When the kinetic energy
density of the scalar field is much less than its self-
interaction potential density, the potential density is defined
as a cosmological constant.
Of course, even if a new d.o.f. is introduced, one still

faces the problem of the traditional zero-point energy. Since
we require that the new d.o.f. accounts entirely for the
cosmic acceleration, the zero-energy problem must be
avoided in our scheme. The reason is that the lowest
energy density of the system in question is always divergent
whether the new d.o.f. is invoked or not. We call the scalar
field here a dynamical vacuum to distinguish it from the
lowest energy state of quantum field theory. Although the
scalar field sits at the minimum of the effective potential in
the case of pressureless matter fluid, the definition of the
cosmological constant [see Eq. (16)] makes the dynamical
vacuum different from the vacuum of quantum field theory.
In Sec. VI, we discuss the case in which the scalar field
departs from the minimum. Therefore, the dynamical
vacuum does not always correspond to the lowest energy
state of the system. Even so, we have to face the zero-
energy problem since the current cosmological constant is
related to the minimum of the effective potential.
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The absence of the value of the static vacuum energy
density in our scheme indicates that some counteracting
mechanism is hidden and used in the model. The counter-
acting mechanism requires that the cosmological constant
is related to the difference of the energy density values of
the system in some parameter space rather than the zero-
point energy density itself. The parameter can be naturally
defined by a so-called self-coupling coefficient, which
marks the strength of the self-interaction of the scalar
field. In the self-interaction potential shown in Eq. (19a), λ
can act as a parameter, in spite of the fact that its value has
been determined in our scheme.
We now discuss how the scheme can avoid the zero-point

energy problem. We assume that the scalar field has been
sitting at theminimumof the effective potential.Without the
self-interaction potential, the minimum is completely fixed
as a constant. When the self-interaction is considered,
the minimum is shifted, but the effective mass around the
minimum keeps the same value as in the absence of the self-
interaction. We can see from Eq. (22b) that meff does not
depend on λ, which is a very important character to
guarantee the validity of the following discussion. Note
that λ ¼ 0 denotes the absence of the self-interaction of the
scalar field. Thus, if we apply the second quantization and
discuss the lowest energy states of the coupled scalar field in
both cases of λ ¼ 0 and λ ≠ 0, the biggest difference
between the two cases is the λ-dependent lowest states.
The λ dependence of ϕmin has been shown clearly in
Eq. (22a). Since both the equation of motion for the scalar
field and the effective mass around the minimum are just
related to the partial derivative of potentials with respect to
the scalar field, one naturally deduces that the choice of the
zero potential energy should be arbitrary. However, in the
traditional quintessencemodel, the self-interaction potential
needs to be small or zero at the value ofϕwhereV;ϕðϕÞ ¼ 0

[81]. Weinberg argues that theories of quintessence offer no
explanation as to why this should be the case [81].
Let us give a brief explanation of our model. Assume

that the first derivative of the self-interaction potential has a
λ-dependent form as follows:

V;ϕðϕÞ ¼ λf;ϕðϕÞ: ð57Þ

If one wants to discuss the case without the self-interaction
potential, one can let λ ¼ 0, which corresponds to a
completely conformal transformation theory. When the
scalar field is added to the physical system, the minimum
of the effective potential should be shifted. Then the
value of the self-interaction potential corresponding to
the minimum appears, which indeed is the definition of
the cosmological constant when the scalar field sits at the
minimum, i.e.,

Λ4
E ¼

Z
ϕminðλ≠0Þ

ϕminðλ¼0Þ
V;ϕðϕminÞdϕmin: ð58Þ

Thus, the self-interaction potential has a general form as
follows:

VðϕÞ ¼ V0 þ λfðϕÞ; ð59Þ

where V0 is an integration constant. If V0 has any
observable effect, it must be the other form of energy.
Consequently, if one genuinely wants to use the coupled
scalar field to entirely describe the cosmological constant
without any other form of energy to drive the cosmic
acceleration, one must choose V0 ¼ 0. That is, the self-
interaction potential should have the form VðϕÞ ¼ λfðϕÞ.
Otherwise, the other form of energy will contribute to dark
energy. This is the main reason that we have chosen
VðϕÞ ¼ λϕ4=4 without V0.
In brief, the strong constraint that the coupled scalar field

should account entirely for the observed cosmic acceler-
ation leads to the following mathematical requirements:
The cosmological constant should vanish if there is no
scalar field, i.e., ϕ ¼ 0; the cosmological constant should
also vanish if there is no self-interaction potential in the
presence of the scalar field, i.e., λ ¼ 0.
Of course, the scalar field does not need to stay in the

lowest energy state according to its equation of motion.
Due to the expansion, however, the scalar field can be
damped to sit at the lowest energy state. In this situation, the
cosmological constant is defined by the part of the energy-
density difference between the two cases of the lowest
energy state: one with the self-interaction potential and the
other without the self-interaction potential. Since the
effective masses are the same in both cases, the parts of
the zero-point energy density exactly cancel each other out
in the subtraction. The left part in the subtraction is a sum of
the two expectation values in the lowest energy state of the
system with the self-interaction. The two expectation
values include both the expectation value of the interaction
potential energy density with matter and the expectation
value of the self-interaction potential energy density of the
scalar field. It is the expectation value of the self-interaction
potential density that acts as the cosmological constant due
to the scalar field stably sitting at the minimum.

E. Summary

The scalar field can entirely account for the cosmic
acceleration. Our model does not conflict with chameleon
no-go theorems, at least mathematically. But our model
conflicts with the corollary that a chameleonlike scalar field
cannot account for the observed cosmic acceleration. The
corollary gives a misleading conclusion for the following
reasons. First, the negligible self-acceleration shown by one
of the no-go theorems only implies that a (narrowly
defined) appropriate value of the self-interaction potential
of the scalar field is needed to drive the Universe’s
accelerating expansion. It does not imply that none of
the chameleonlike scalar fields can entirely explain the
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cosmological constant. Second, the short chameleon
Compton wavelength shown by the other no-go theorem
also misleadingly implies that chameleonlike fields have a
negligible effect on the large scale of the Universe. This
misleading corollary results from the assumption that only
a long-range force mediated by the scalar field can impact
the cosmic acceleration. However, it is the pressure of the
scalar field that drives the cosmic acceleration rather than
any force from the pressure gradient or from the field
gradient. Third, the overshooting problem in the symme-
tron model can be avoided in our setting due to the heavy
effective mass of the coupled scalar field.
At the end of this section, we show briefly that the zero-

point energy density exactly cancels out in our scheme, and
the expectation value of the self-interaction potential in the
lowest energy state acts as the cosmological constant. Thus,
Weinberg’s no-go theorem is circumvented.

VI. APPLICATION OF THE MODEL TO THE
CONTRACTION OF THE UNIVERSE (H − < 0)

We have obtained the cosmological constant, which is
dependent on the adiabatic condition. In the pressureless
fluid of the matter source, the adiabatic condition always
holds. In this section, we discuss the unavailability of the
adiabatic condition of the scalar field when the matter
source becomes hotter and hotter due to the contraction of
the Universe.
In Sec. IV, we deduced that the Universe might be

closed, i.e., K ¼ 1. In the closed space, the Universe must
pass through both _ϕ ¼ 0 and H ¼ 0, which is schemati-
cally shown in Fig. 4. Consequently, if the scalar field that
accounts for the late-time acceleration is used as an
inflation field, one of the slow-roll conditions jϕ̈j ≪
3jH _ϕj is apparently not satisfied. In fact, in the slow-roll
approximation in inflation, one often requires that neither _ϕ
nor the Hubble parameter passes through zero [46].
Therefore, we discuss the unavailability of the slow-roll
approximation in this section.

A. The mechanism of the quasicyclic Universe

The end of the expansion that has been discussed in
Sec. IV is also the beginning of the contraction. After the
expansion stops ( _a ¼ 0, ä < 0) in the closed Universe, the
contraction process will start and the nonrelativistic matter
density will increase. The scalar field can adiabatically
follow the minimum of the effective potential at the initial
stage of the contraction period. In this stage, the value of the
self-interaction potential at ϕmin still acts as the cosmo-
logical constant. With the density of nonrelativistic matter
increasing, the cosmological constant approaches a fixed
value, which has been estimated by using ρ → ∞ to be
ΛE ¼ 2.242 meV (Λ ¼ 1.093 × 10−52 m−2). However,
ρ → ∞ for wi ¼ 0 is just a mathematical construction.
In the contraction process, the parameterwi of the equation-

of-matter state must depart from zero due to the collision of
matter particles.

1. Start of the negative-damping evolution
of the scalar field

With further contraction, violent particle collisions occur,
and the temperature becomes higher and higher. As a result,
the parameter of the equation of state for matter fluid is no
longer equal to zero. The better stability of the minimum of
the scalar field at the higher matter density gradually
becomes weaker and weaker until entering an unstable
stage, which can be seen by Eq. (C17) in Appendix C.
In this nonadiabatic tracking case, with the density of

matter increasing further, the kinetic energy density of the
scalar field has to increase much more quickly to store the
redundant part of the scalar field energy increased during
the contraction process. The field can no longer remain
stable at the minimum, which can be described by the
negative damping oscillation shown in Figs. 2(b) and
4(b)–4(d). The negative damping, which exponentially
grows the magnitude of the oscillation rather than attenu-
ating the magnitude, is one of the most prominent char-
acteristics of the contraction process. It is worth noting that,
although the adiabatic condition of j _ϕmin=ϕminj ≤ j3H=2j
no longer holds, the oscillation condition of j3H=2j ≤ ωc
still holds when the oscillation is activated by the quick
movement of ϕmin. Thus, the start of the under-negative-
damping oscillation stems from the adiabatic instability.
With matter fluid approaching the extremely relativistic
case of wi → 1=3, the effective mass of the scalar field
approaches zero, which can be seen by Eq. (C14) in
Appendix C. Since both the adiabatic condition and the
oscillation condition are no longer satisfied in the relativ-
istic case, over-negative damping occurs.

2. Energy exchange between the scalar field and matter

Let us now analyze the energy exchange among the
scalar field, matter, and gravitational field more mathemati-
cally. In the absence of any coupling to the scalar field, both
the density and the temperature of matter would grow due
to the contraction of the Universe, and it can be regarded as
adiabatic compression for matter systems according to
thermodynamics. However, the presence of interactions
between the scalar field and matter allows for the con-
version of the scalar field energy density and matter energy
density. By using Eqs. (7)–(9), the coupled equations are
easily obtained as follows (the detailed derivation is shown
in Appendix B):

_ρϕ þ 3H−
�
ρϕ þ

pϕ

c2

�
¼ −

X
i

ρi
dA1−3wiðϕÞ

dt
; ð60aÞ

_ρm þ 3H−
�
ρm þ pm

c2

�
¼

X
i

ρi
dA1−3wiðϕÞ

dt
: ð60bÞ
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In Eq. (60),

ρϕ ¼ VðϕÞ
ℏ3c5

þ
_ϕ2

2ℏc5
; ð61aÞ

pϕ ¼ −
VðϕÞ
ℏ3c3

þ
_ϕ2

2ℏc3
ð61bÞ

are the scalar field energy density and the pressure of the
scalar field, respectively [20]. And

ρm ¼
X
i

ρiA1−3wiðϕÞ; ð62aÞ

pm ¼
X
i

piA1−3wiðϕÞ ð62bÞ

are the mass density and pressure of the matter fluid,
respectively. If only pressureless matter sources wi ¼ 0 are
considered, matter energy density and pressure can be
simplified as ρm ¼ ρAðϕÞ and pm ¼ pAðϕÞ, respectively.
The superscript “−” on the right-hand side of the Hubble
parameter H in Eq. (60) is used to emphasize that the
Hubble parameter describes a contraction process of the
Universe. If the adiabatic condition is not satisfied due to
the increase of temperature, the scalar field will undergo a
negative-damping motion in the contraction process. It is
the contraction in the adiabatic instability case that can
drive the negative-damping motion of the scalar field.
Equation (60) is different from Eq. (4.88) in Ref. [31]
because the total energy density is defined by ρþ ρϕ and is
considered to be conserved, as shown in Eqs. (4.82) and
(4.83) in that work. The total energy should be ρm þ ρϕ
rather than ρþ ρϕ, which is discussed in Appendix B.
In the contraction process, besides the increase of the

energy density of both matter and the scalar field due to
the contraction, there also exists a complicated energy
exchange between matter and the scalar field as shown in
Eq. (60). In the adiabatic instability case, the energy
exchange is more complicated and can be roughly classi-
fied into two types: One corresponds to the high-frequency
oscillations of the scalar field in the case of under-negative
damping, which can cause the rapid energy exchanges
between matter and the scalar field and, accordingly, obtain
much more energy from matter heated by the contraction
and the oscillating field; the other corresponds to the
exponential growth magnitude in the cases of negative-
damping oscillations (such as over-negative-damping evo-
lution, critically negative damping oscillations, and the
exponential growth profile of the curve of under-negative-
damping oscillations).
During high-frequency oscillations of the scalar field, the

attractive gravitational effect grows rapidly. If we average
both the kinetic energy and the self-interaction potential of
the scalar field in Eqs. (8) and (12) over a period of time

that is large compared with the period of oscillation, it can
be easily proven that the high-frequency oscillating field
corresponds to a nearly pressureless fluid [39]. Thus, with
the magnitude growing exponentially, a rapid contraction
occurs. Consequently, not only is the adiabatic condition
not satisfied, but also the oscillation condition is no longer
satisfied due to the huge Hubble parameter and the
extremely small mass of the scalar field. In this case, the
field will experience an over-negative damping motion with
huge kinetic energy density. It is well known that, when the
kinetic energy density is far larger than the potential energy,
the parameter of the equation of state for the scalar field
approaches 1 [see Eq. (B22)]. The scalar field will now
generate an attractive gravitational effect that is more
effective than matter; then a more dramatic contraction
will occur, which may be called deflation in contrast with
inflation.
The scalar field can also be used to drive the inflation of

the Universe, which will be discussed in Sec. VI B.

3. Minimum radius of the Universe corresponding
to the maximum of the scalar field

The contraction heats matter and causes energy to
transfer from matter to the scalar field. When wiðTÞ →
1=3, matter particles become relativistic, and matter fluid
decouples from the scalar field. After the decoupling is
completed, the Universe continues contracting. The vigo-
rous scalar field will climb up along its self-interaction
potential to the maximum value VðϕmaxÞ, with ϕmax > 0
[one could equivalently consider the case ϕmax < 0 as
shown in Figs. 4(c) and 4(d)] and then roll down from the
maximum. It should be emphasized that the maximum
value VðϕmaxÞ exceeds the initial maximum of the kinetic
energy density that corresponds to the zero value of the
self-interaction potential of the scalar field. The reason is
that the scalar field can also acquire additional energy from
the gravitational field due to the contraction. If the scalar
field passes through its zero value, overshooting would
occur due to the zero mass of the scalar field. Since the
Hubble rate at this time approaches huge values, this very
light mass marks a over-negative-damped evolution of
the scalar filed. The higher the Hubble parameter, the
stronger the scalar field absorbing energy from the gravi-
tational field.
During the contracting process, there exists a transition

from accelerating contraction ( _a < 0, ä < 0) to deceler-
ation contraction ( _a < 0, ä > 0) due to the increase of the
potential of the scalar field. Then the Universe gradually
approaches the end of the decelerating contraction. At the
end of the decelerating contraction, the Universe will reach
its minimum radius corresponding to _a ¼ 0 and ä > 0.
Substituting _a ¼ 0 and wi ¼ 1=3 into Eq. (5) and assuming
that the scalar field is close to the maximum of its self-
interaction potential, i.e., VðϕmaxÞ with _ϕ ¼ 0, the mini-
mum radius of the Universe can be estimated by
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amin ¼
�

3ℏ3c7

8πGðVðϕmaxÞ þ ℏ3c5ρmaxÞ
�

1=2

: ð63Þ

The scalar-field-independent matter density ρmax ¼
P

i ρi
will also reach its highest value due to the minimum
volume of the Universe. However, when the Universe
departs from its minimum volume, the energy density of
matter decreases more rapidly than the potential energy
density of the scalar field. Thus, to roughly estimate the
minimum radius of the Universe, one may neglect the
matter density in Eq. (63), which gives

amin ¼
�

3ℏ3c7

8πGVðϕmaxÞ
�

1=2

: ð64Þ

Substituting _ϕ ¼ 0 and wi ¼ 1=3 into Eq. (12), the accel-
erating expansion of the Universe at its minimum radius is
given by

ämin

amin
¼ 8πG

3ℏ3c5
ðVðϕmaxÞ − ℏ3c5ρmaxÞ: ð65Þ

According to the astronomical observation and the big
bang nucleosynthesis calculation, we can deduce the
decoupling temperature as T ≥ 0.1 MeV [82]. Therefore,
the scalar field will approach its maximum of jϕmaxj ≥
0.1 MeV and correspondingly climb to the maximum
of its self-interaction potential density of VðϕmaxÞ ≥
ð0.1 MeVÞ4=4! because of VðϕÞ ¼ ϕ4=4! shown in
Eq. (19a). The upper bound of the scalar field is
plausibly assumed as the reduced Planck energy MPlc2 ¼
2.4 × 1018 GeV with MPl ≡ ðℏc=8πGÞ1=2, and the corre-
sponding self-interaction potential density is VðϕmaxÞ ¼
ð2.4 × 1018 GeVÞ4=4!. Correspondingly, the minimum
radius of the Universe is estimated from Eq. (64) to be

10−33 m ≤ amin ≤ 1012 m: ð66Þ

When the scalar field achieves its maximum value, the
equation of state wϕ ≡ pϕ=ðρϕc2Þ for the scalar field

equals −1 due to _ϕ2 ¼ 0.

4. Maximum of the cosmological constant
for relativistic matter fluid

Comparing Eq. (12) with the acceleration of the Universe
in the ΛCDM model, the maximum of the self-interaction
potential acts as the maximum of the cosmological constant
due to the zero kinetic energy of the scalar field, i.e.,

Λ4
Emax ≡ VðϕmaxÞ ¼

1

4!
ϕ4
max: ð67Þ

In addition, ρm ¼ ρ is obtained due to wi ¼ 1=3, which
indicates that matter particle masses are no longer affected

by the scalar field. This conclusion is natural because wi ¼
1=3 describes the decoupling case for the scalar field and
matter. It is interesting to note one aspect of the coupling
case wi ¼ 0. According to Eq. (22a), when the matter
density is so large that jϕminj reaches M2c2, AðϕminÞ then
approaches 1. As a result, ρm ¼ ρ almost completely holds
in the coupling case, which implies that matter particle
masses are hardly affected by the scalar field. The larger the
matter density, the less the influence of the scalar field on
the particle mass. This does not mean that the interaction
does not play an important role in this density case. It
localizes the scalar field around jϕminj. The confinement
strength can be described by the curvature of the effective
potential shown in Eq. (22b). Therefore, the confinement
strength depends on the density of matter. The larger the
matter density, the stronger the confinement. The curvature
of the effective potential around the minimum is not related
to the self-interaction potential as mentioned in Sec. III B 1.
However, in the case of wi ¼ 1=3 here, when the scalar
field climbs to the highest value along its self-interaction
potential, the unstable point also corresponds to a curvature
which is completely dependent on the self-interaction
potential. One cannot confuse the two types of masses
of the scalar field.
Only in the case where the kinetic energy is considerably

smaller than the potential energy of the scalar field can we
introduce a cosmological constant. In the decoupling case
of wi ¼ 1=3, when the scalar field climbs to its highest
potential value, it must return to a rolling-down phase along
the self-interaction potential curve. Then the maximum
cosmological constant is not a stable value (see Fig. 4). In
the coupling case of wi ¼ 0, however, the scalar field is
trapped in the minimum of the effective potential. Since the
role of the cosmological constant is played by the value of
the self-interaction potential at the minimum, which is
shown by Eq. (18), it becomes stable and appears as a
constant during the Universe’s evolution.
Unlike the stable cosmological constant for wi ¼ 0,

we cannot completely determine the maximum cosmologi-
cal constant for wi ¼ 1=3 due to the lack of decoupling
parameter.

5. The quasicyclic universe

When the constraints of the cosmological constant
are satisfied, the symmetry-breaking coupling function
between matter and the scalar field is determined in
obtaining the fifth force. For the sake of completeness,
the scheme has also been extended to the cosmic evolution,
which leads to a quasicyclic universe. There are many
alternative scenarios to the standard inflationary paradigm,
such as bouncing cosmologies [83] and cyclic universes
[84,85]. However, our quasicyclic model corresponding to
a regular scalar field differs from not only the bouncing
cosmologies but also the cyclic universes. To realize a
contracting phase, many bouncing and cyclic models
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violate the null energy condition ρϕc2 þ pϕ > 0 [83–85].
For example, a negative potential energy is introduced in
[84], while a ghost field with negative kinetic energy is
introduced in [85].

B. Biggest challenge in the scheme

Until now, there have been no real challenges specific to
the scheme. However, when the scalar field is used to drive
the inflation of the Universe, the biggest challenge is
encountered. On the one hand, the quartic form of the
self-interaction potential of the scalar field in our scheme is
a convex function, i.e., V;ϕϕðϕÞ > 0 shown in Eq. (19a). On
the other hand, according to [4], in the framework of
standard single-field inflationary models with Einstein
gravity, the most probable candidate shape of the self-
interaction might be a concave potential, i.e., V;ϕϕðϕÞ < 0.
In this sense, it seems impossible to use our scheme to drive
the inflation of the Universe. The observed data are
strongly dependent on the assumption of the slow-roll
parameters. However, the slow-roll parameters are not
always valid in our scheme. We analyze the possibility
that the “observed concave behavior” can be explained by
the self-interaction potential with a convex property.

1. Solutions to equations of motion near the
neighborhood of the minimum radius

It is worth noting that the method of using the scalar field
as a time variable [39,46,47] will not work here due to the
assumption that _ϕ does not pass through zero. In our
models, the repulsive gravitational effect starts at the
beginning of the decelerating contraction process of the
Universe. When the potential energy of the scalar field
gradually grows and exceeds the sum of matter energy and
the kinetic energy of the field in the climbing-up process
along the self-interaction potential curve, the Universe
shifts from accelerating contraction to decelerating con-
traction. Unfortunately, there has been no investigation of
this climbing-up model at the present time, to our knowl-
edge. With the temperature increasing, from an under-
negative-damping oscillation around one of the minima of
the effective potential, the scalar field shifts to a climbing-
up phase. After reaching the highest value along the self-
interaction potential, the scalar field will roll down. Near
the minimum radius of the Universe, there does not exist a
stable minimum of the effective potential. Thus, the stable
vacuum expectation value of the scalar field in the effective
potential minimum is then meaningless. Dynamical vac-
uum energy has been used in the previous section and can
be used to characterize the time-variable value of the self-
interaction potential of the scalar field, which accounts for
both the late-time acceleration and inflation. Figure 6
shows the sketch of the dynamical vacuum energy appear-
ing in the climbing-up and rolling-down models of the
scalar field.

Near the neighborhood of the minimum radius of the
Universe, since VðϕmaxÞ ≫ ℏ2 _ϕ2=2þP

i ρiℏ
3c5, Eqs. (8)

and (9) become

_a
a
≡H� ¼ �

�
c2

a2min

−
c2

a2

�
1=2

; ð68aÞ

ℏ2ϕ̈þ 1

3!
ϕ3
max ¼ 0: ð68bÞ

Therefore, the evolutions of the radius and the scalar
field with cosmic time are, respectively, obtained as

aðtÞ ¼ amin cosh

�
cðt − tcÞ
amin

�
; ð69aÞ

ϕðtÞ ¼ ϕmax −
1

12
ϕ3
max

�
t − tc
ℏ

�
2

; ð69bÞ

where tc stands for the shift time from contracting to
expanding and corresponding to the minimum radius of the
Universe. It is the self-interaction potential of the scalar
field that drives the Universe’s evolution rather than the
Hubble parameter since the Hubble parameter equals zero
at the minimum radius of the Universe.
Apparently, one of the slow-roll conditions jϕ̈j ≪ 3jH _ϕj

in the literature, such as [39,49], is not satisfied and is not
necessary due to the zero Hubble rate. Because the next

FIG. 6. The sketch of the dynamical vacuum energy that
appears in the climbing-up process of the scalar field along
the self-interaction potential. With the temperature increasing
during the contraction process of the Universe, the scalar field
becomes vigorous and ultimately decouples from matter. In the
coupling case, the scalar field can oscillate around one of the
minima P1 of the effective potential. With the Universe con-
tracting further, the vigorous scalar field decouples from matter
and climbs up along its self-interaction potential (see also P2),
which results in the repulsive gravitational effect.
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rapid expansion always follows the last rapid contraction of
the Universe, one does not need to worry about the amount
of inflation being sufficient or not. The slow-roll condition,
however, is satisfied at the time when the kinetic energy
becomes nearly the same value as the potential energy of
the scalar field. Thus, whether the slow-roll condition is
valid or not is determined by the time of the expansion
process.
Near the shift time tc, both the scale factor and the scalar

field have time-reversal symmetry. The characteristic time
of the scalar field near its maximum is τϕ ∼ ℏ=jϕmaxj, while
the characteristic time of the cosmic scale factor near its
minimum is τa ∼ amin=c. Thus, τa=τϕ ∼Mplc2=jϕmaxj. If
jϕmaxj ¼ Mplc2, both of the characteristic times are the
same as the Planck time. If jϕmaxj equals the calculation
temperature of big bang nucleosynthesis, 0.1 MeV [82], the
two characteristic times become larger. But, the character-
istic time of the cosmic scale factor near its minimum value
is considerably larger than that of the scalar field. On the
face of it, this seems to mean that the Universe will remain
in the phase of the minimum radius for a longer time
compared to the time it stays in the maximum of the scalar
field. However, noticing that the Universe’s radius near the
minimum increases or decreases in the form of exponential
growth, one may conclude that a slow evolution of the
scalar field corresponds to a fast evolution of the Universe’s
radius in this case. Therefore, the total time period near the
minimum radius of the Universe is not very different for
the two physical quantities. In the language of inflation, it is
the slow evolution of the scalar field that drives the fast
inflation of the Universe. Unfortunately, the property of
slow evolution of the scalar field is always extrapolated
to such an extent that jϕ̈j needs to be neglected, i.e.,
jϕ̈j ≪ 3jH _ϕj, which is apparently not the same as the
case near the maximum value of the scalar field, i.e.,
jϕ̈j ≫ 3jH _ϕj ¼ 0. Thus, one should be careful in applying
the traditional slow-roll conditions to the closed space.
The solutions described by Eqs. (69a) and (69b) can be

rewritten as useful alternative forms by using the scalar
field as an independent variable. Since the traditional slow-
roll conditions are not always valid due to the zero Hubble
rate, the slow-roll parameters are not appropriate for
describing the inflation for the closed Universe. Notice
that the method shown in [46] cannot be used because it
assumes that _ϕ does not change sign during inflation. We
have the case that both _ϕ and H pass through zero.
Substituting Eq. (69b) into Eq. (69a) to eliminate the time
t, the ϕ-dependent aðϕÞ near the minimum radius of the
Universe can be obtained as follows:

aðϕÞ ¼ amin cosh

�
ℏc
amin

�
12ðϕmax − ϕÞ

ϕ3
max

�
1=2

�
;

for jϕj ≤ jϕmaxj: ð70Þ

Substituting Eq. (70) into Eq. (68a) and squaring it, one has

H2ðϕÞ ¼ c2

a2min

tanh2
�
ℏc
amin

�
12ðϕmax − ϕÞ

ϕ3
max

�
1=2

�
;

for jϕj ≤ jϕmaxj: ð71Þ

Apparently, H2ðϕÞ is a concave function of ϕ. It is
worth noting that these solutions are valid if VðϕmaxÞ ≫
ℏ2 _ϕ2=2þP

i ρiℏ
3c5 ≈ ℏ2 _ϕ2=2. Since the value of the self-

interaction potential corresponding to the minimum radius
of the Universe is extremely large, they are indeed good
approximations around the minimum.

2. The pseudopotential density

To investigate inflation using our scheme, we neglect the
density of matter and introduce a pseudopotential in the
Friedmann equation. Equation (5) is then rewritten as
follows:

H2 ¼ 8πG
3ℏ3c5

��
VpseðϕÞ þ

ℏ2

2
_ϕ2

��
; ð72Þ

where the pseudopotential

VpseðϕÞ≡ VðϕÞ − 3ℏ3c7

8πG
1

a2ðϕÞ ð73Þ

with K ¼ 1. Therefore, the pseudopotential plays the role
of the real potential in Eq. (1) of Ref. [46] in the inflation of
the Universe. In the traditional treatment for inflation,
however, it is always assumed that the space is flat [46].

3. A short review of slow-roll parameters

The first Hubble slow-roll parameter and the (nþ 1)st
Hubble slow-roll parameter are given, respectively, as
follows [39,46,47]: ϵ1 ¼ − _H=H2 and ϵnþ1 ¼ _ϵn=Hϵn with
n ≥ 1. Apparently, the Hubble slow-roll parameters are just
valid when the radius of the Universe is large enough to
render the curvature term small, but the term cannot be
neglected completely [see Eq. (A7) in Appendix A].
Noticing Eq. (A7) and neglecting the effect of matter in
the equation, one can easily see that only the positive
curvature of the Universe can give a positive value of _H as
long as ℏ2 _ϕ2=2 < ℏ3c7=½8πGa2ðϕÞ�. However, this does
not mean that inflation can only occur in the closed space
since inflation is described by ä rather than by _H, although
the closed space is of interest in this section only. If
enough inflation has occurred so that 3ℏ3c7=½4πGa2ðϕÞ� −
2ℏ2 _ϕ2 ≪ VðϕÞ (in fact, this means that the minimum
radius is large enough to hold the inequality in small
kinetic energies), the Hubble slow-roll parameters are good
approximations. However, the curvature term must not
vanish. If the curvature term completely vanishes, there is
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no difference between the pseudopotential and the self-
interaction potential.
When the pseudopotential is introduced, the traditional

slow-roll parameters for the real potential of the scalar field
should be replaced by the pseudopotential. Thus, the first
pseudopotential slow-roll parameter and the second pseu-
dopotential slow-roll parameter are given, respectively, as
follows:

ϵV ¼ M2
Plc

4

2

�
Vpse;ϕ

Vpse

�
2

; ð74aÞ

ηV ¼ M2
Plc

4Vpse;ϕϕ

Vpse
: ð74bÞ

4. The pseudopotential with a concave property

Wenowdemonstrate how the convex potentialwe adopted
can have a concave property. Substituting Eq. (71) into
Eq. (72) and neglecting the kinetic energy density of the
scalar field, one has

VpseðϕÞ ≃
3ℏ3c5

8πG
H2ðϕÞ: ð75Þ

Thus, VpseðϕÞ is really a concave function of ϕ due to the
concave property of H2ðϕÞ, although VðϕÞ is a convex
function. A further detailed investigation using the convex
potential to analyze the concave behavior is needed.
In fact, the conclusion can be directly obtained from

the definition of the pseudopotential marked by Eq. (73).
The minimum value of the pseudopotential corresponds to
the minimum radius of the Universe, which can be
demonstrated by substituting Eq. (70) into Eq. (73). In
this sense, the observed concave property implies that the
Universe is a closed space. Planck evidence for a closed

Universe has also been shown very recently in [86] from the
presence of an enhanced lensing amplitude in cosmic
microwave background power spectra.
Figure 7 shows the rolling down and climbing up of the

scalar field along the pseudopotential and the self-inter-
action potential, respectively, near the maximum value of
the scalar field.

C. Summary

Using the quartic self-interaction potential and the
symmetry-breaking interaction potential, the quasicyclic
Universe model is obtained. We have introduced the
pseudopotential to describe the evolution of the Universe
near its minimum radius. The pseudopotential is the sum of
the self-interaction potential density and the energy density
scale of the positive curvature of the Universe. The
observed potential concave property is explained by the
pseudopotential rather than the self-interaction potential
only. Thus, the prediction of the closed space is favored by
the observation data.

VII. SCALAR FIFTH FORCE

We have determined the parameters of the symmetry-
breaking interaction model under the constraints of the
cosmological constant. Since the cosmological constant is
based on the homogeneous and isotropic assumption, the
gradient terms in the scalar equation of motion are ignored.
If ordinary agglomerate matter couples to the scalar field in
the same way as dark matter does, the gradient force cannot
be ignored and might be tested in the laboratory, provided
that the experiments are designed properly. In this section,
we discuss the characteristics of the fifth force, such as its
strength, interaction range, thin shell, and saturation effects.
In order to obtain the modified geodesic equation

for nonrelativistic matter particles in the case of the

(a) (b)

FIG. 7. The self-interaction potential and the corresponding pseudopotential near the maximum value of the scalar field. (a) The case
of the contraction of the Universe near the minimum radius of the Universe; (b) the case of the expansion near the minimum radius of the
Universe, i.e., inflation.
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inhomogeneity and anisotropy, instead of the line element
of Eq. (4), we use a linearly perturbed form, Eq. (2), with
two potentials Φ and Ψ in the weak-gravitational-field
limit. Then, one gets the scalar field fifth force shown in
Eq. (3). Since the fifth force occurs in the extremely small
scale compared with the scale factor of the Universe, it is
not necessary to introduce the time-variable scale factor in
Eq. (2). In the equation of motion for the scalar field, the
generally covariant d’Alembertian operator DμDμ, where
Dμ is the covariant derivative with respect to the Einstein
metric, can be approximated to the common form as
DμDμ ¼ ∇2 − c−2∂2

t in the weak gravitational field [87].
Thus, to compute the scalar field in the case of the weak
gravitational field, it is sufficient to use the Minkowskian
line element as ds2 ¼ −c2dt2 þ dx⃗2. For a static, space-
variable density of a nonrelativistic matter source, the scalar
equation of motion that results from the action (1) is given
as follows:

ℏ2c2∇2ϕ ¼ Veff;ϕðϕÞ: ð76Þ

A. Klein-Gordon equation for a massive scalar field

In this subsection, we solve one of the two biggest
challenges—that the upper bound of the linear coupling
coefficient is about 1014 [17]. The other challenge of the
observed potential concave feature has been solved in
Sec. VI B.
In order to distinguish the roles of the homogeneous

ambient density and the space-variable source density that
generates the spatial gradient of the scalar field, we may
imagine a scalar field profile induced by the source
embedded in the medium of background density ρb.
Since the scalar-field-independent matter mass density is
frequently used in this section, it is often called matter
density or density for conciseness. In the homogeneous
background, ∇2ϕ ¼ 0, and the equilibrium value of the
scalar field is ϕb ¼ ϕminðρbÞ, corresponding to a minimum
of the effective potential. Assuming the density of the
source ρ ¼ ρb þ δρ, but not assuming δρ ≪ ρb, we can
still expand the field around the background value
ϕ ¼ ϕb þ δϕ. The reason is that matter density in labo-
ratory experiments is always larger than the current density
of the Universe. Correspondingly, the scalar field is almost
fixed, and δϕ ≪ ϕb [see also Fig. 3, and Eqs. (22a) and
(84)]. An equation of motion for a massive scalar field from
Eq. (76) is then obtained as follows:

�
∇2 −

m2
effc

2

ℏ2

�
δϕ ¼ A;ϕðϕbÞℏc3δρ; ð77Þ

where the effective mass is

m2
eff ≡m2

effðϕbÞ þ
A;ϕϕðϕbÞδρℏ3c5

c4
ð78Þ

with m2
effðϕbÞ ¼ Veff ;ϕϕðϕbÞ=c4. If δρ ≪ ρb, then m2

eff ¼
m2

effðϕbÞ. However, in general, the density of the source is
always larger than that of the background, i.e., δρ ≫ ρb.
Consequently, m2

eff ≫ m2
effðϕbÞ in the source region. This

means that the equation of motion is different from the
usual Klein-Gordon equation in which the value of the
mass is the same everywhere. If the masses in the equation
of motion for the scalar field vary in space, the linear
superposition principle is not valid.

1. Matter-density-dependent interaction range

From the Klein-Gordon equation (77), the interaction
range is naturally defined by ƛc ≡ ℏ=ðmeffcÞ. The density-
dependent interaction range has been estimated by Eq. (25),
which can be rewritten with the background density ρb as
an approximate expression in the following:

ƛcb½m� ≈ 1.648 × 10−19

ðρb½kg=m3�Þ1=2 : ð79Þ

Apparently, in the common density, the interaction range is
so short that the fifth force is suppressed from local tests of
gravity [65–67].
We know the four fundamental interactions well: the

gravitational, electromagnetic, strong, and weak inter-
actions. The gravitational and electromagnetic ones pro-
duce long-range forces. The strong and weak ones produce
forces at subatomic distances and govern nuclear inter-
actions. The fifth force discussed here has a density-
dependent interaction range. Even in the extreme vacuum
space, such as in the case of the current matter density of
the Universe, the interaction range is estimated to be about
5 μm. It is worth noting that the short-range force is not
responsible for the Universe’s acceleration. The force
results from the space inhomogeneity of the matter dis-
tribution. It is the pressure of the scalar field that drives the
Universe’s acceleration.

2. Matter-density-dependent coupling coefficient β

Substituting ϕ ¼ ϕb þ δϕ into Eq. (3), the acceleration
of a test particle due to the scalar field becomes

a⃗ ¼ −c2
A;ϕðϕÞ
AðϕÞ ∇δϕ ≈ −c2

A;ϕðϕbÞ
AðϕbÞ

∇δϕ: ð80Þ

The coefficient A;ϕðϕÞ=AðϕÞ defines a coupling coefficient
βðϕÞ to characterize the strength of the fifth force
[5,10,17,37], i.e.,

βðϕÞ≡MPlc2
A;ϕðϕÞ
AðϕÞ ≈ MPlc2

A;ϕðϕbÞ
AðϕbÞ

: ð81Þ

Since βðϕÞ corresponds to the slope of the coupling
function AðϕÞ, it only describes the linear part of the
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nonlinear coupling function [17]. Due to the nonlinear
property of AðϕÞ, the coupling coefficient βðϕÞ is not a
constant, and it varies with ϕ. For the symmetry-breaking
coupling function of Eq. (19b), the coupling coefficient is
derived in Appendix C in Eq. (C19). For density far
larger than the current matter density of the Universe,
the density-dependent coupling coefficient is estimated
from Eqs. (C19), (19b), and (22a) as

jβj ≈ 1.15 × 104

ρb½kg=m3� : ð82Þ

For density smaller than the current matter density of the
Universe, Eq. (82) is not valid. A complete expression for β
is shown by Eq. (C19). In addition, a mass scale Mm is
often used to describe the coupling strength [17], which is
defined by

Mm ≡Mpl

jβj : ð83Þ

Note that Mm is not a constant either due to the nonlinear
property of AðϕÞ.
Obviously, the absolute value of β can be far bigger than

Oð1Þ in a wide density region. Strong coupling to matter
does not mean that it must not satisfy experimental
constraints, which has been discussed in [88]. For lower
density in the local environment, the magnitude of the fifth
force is much larger than gravity. Figure 8 shows the
coupling β versus the ambient density of matter.
The huge values of β may mislead one to think that the

interaction should be easily experienced, and this

contradicts the absence of an observable interaction. The
coupling β has a shortcoming that it just describes the linear
property of the nonlinear coupling function. This short-
coming can be partly remedied by the parameter of the
Compton wavelength of the scalar field. The Compton
wavelength estimated by Eq. (79) is, in general, very short,
which leads to the absence of an observable interaction.

3. The constraint on β from the
precision measurements

The authors of Ref. [17] have claimed to derive the
“upper” bound of jβj. In fact, Ref. [17] reported the
equivalent “lower” bound of Mm > 104 GeV=c2 from
the precision measurements of hydrogenic energy levels.
It is a strong constraint. But it should be emphasized that,
since the coupling coefficient is dependent on ambient
density, the description “lower” is not appropriate, espe-
cially in the case of low ambient density.
We now explain the constraint using our scheme. For

hydrogen atoms, the mass density of the electron cloud
around the atomic nucleus can be estimated as ρb ∼
me=ð4πr30=3Þ ≈ 1.468 kg=m3, where r0 ¼ 5.29 × 10−11 m
and me are the Bohr radius and electron mass, respectively.
The mass density of the electron cloud should screen the
scalar field perturbation by the pointlike density of the atomic
nucleus. Substituting the background density of the electron
cloud intoEq. (82), the coupling coefficient is estimated to be
jβj ≈ 7.836 × 103. By using Eq. (83) the mass scale of the
coupling is obtained as Mm ≈ 3 × 1014 GeV=c2, which
satisfies the constraint of Mm > 104 GeV=c2 [17]. These
satisfactory results are due to the large ambient density
of 1.468 kg=m3.

B. Screening effects on the scalar fifth force

To detect the fifth force, one must uncover the shield on
the scalar field. Of course, all the screening effects to shield
the fifth force essentially originate from the symmetry-
breaking interaction between the scalar field and matter. We
now discuss the two important screening mechanisms.

1. Saturation effect at a high density

Besides the short interaction range, the fifth force is also
suppressed by the saturation effect discussed in the follow-
ing. The symmetry-breaking interaction potential acts like a
trap that confines the value of the scalar field falling in the
range of either ð0;M2c2Þ or ð−M2c2; 0Þ in the static
situation, where M2 ¼ 4.96168 meV=c2. As an example
we choose the case of VEV > 0 (one can also discuss the
case of VEV < 0). From Eq. (22), one can see that ϕmin is
almost independent of the density of matter and approaches
M2c2 as long as the matter density is large enough, i.e.,

ρ ≫
λM1

4c3

ℏ3
≃ 5.722 × 10−30 kg=m3: ð84Þ

FIG. 8. The coupling jβj versus the ambient density of matter.
The solid curve corresponds to a complete (and a little compli-
cated) expression of Eq. (C19), while the dotted curve corre-
sponds to an approximation of Eq. (82) to estimate the order of
magnitude of the coupling. When the density of matter ap-
proaches zero, the approximate expression is no longer valid.
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No matter how violently the matter density varies in space,
as long as it is large enough, the fifth force denoted by
Eq. (80) vanishes due to the scalar field keeping almost the
same value. This may be called the saturation effect.
Therefore, the strength of the fifth force cannot be further
enhanced by continuously increasing the density of
sources. It is unnecessary to use high density metal as a
source to induce the scalar field. But for detecting the fifth
force in the laboratory, an ultrahigh vacuum is necessary.

2. Thin shell of the scalar fifth force

In an unbounded homogeneous background, the
scalar field always equals ϕmin at any space point, and the
acceleration on a test particle due to the scalar field
interaction is zero. When a test particle traveling in one
mediumwithmatter density ρ1 impinges on another medium
with a different matter density ρ2, it experiences a scalar fifth
force. For simplicity, we assume that the boundary surface is
the plane z ¼ 0, and the test particle travels in the þz
direction from the left region 1 of the boundary surface to the
right region 2. It is helpful to gain intuition on how the fifth
force is localized near the interface between the two
mediums. The region is called a thin shell [89–92]. Inside
medium1 the scalar fieldϕ ¼ ϕmin 1 and insidemedium2 the
scalar fieldϕ ¼ ϕmin 2; the gradient along the z direction near
the interface can be roughly estimated as

dϕ
dz

∼
ϕmin 2 − ϕmin 1

ƛc1 þ ƛc2
: ð85Þ

Thus, an asymptotic solution to the scalar field equation of
motion can be as follows:

ϕðzÞ ¼ ϕmin 2

2

�
1þ tanh

z
ζ

�
þ ϕmin 1

2

�
1 − tanh

z
ζ

�
: ð86Þ

Then, the gradient of ϕ along the þz direction is

∇ϕ≡ dϕ
dz

ẑ ¼ ϕmin 2 − ϕmin 1

2ζ
sech2

�
z
ζ

�
ẑ; ð87Þ

where ẑ is the unit vector of the coordinate z and ζ denotes
an effective range of the fifth force. If the effective fifth
force length ζ is defined by

ζ ¼ ƛc2 þ ƛc1; ð88Þ

with ƛc2 and ƛc1 corresponding to the Compton wave-
lengths for ρ2 and ρ1, respectively, then near the surface,
dϕ=dz ∼ ðϕmin 2 − ϕmin 1Þ=ð2ζÞ, as expected in Eq. (85),
except for the factor 2.
The fifth force mainly appears in a thin-shell region

around the boundary surface. The thin-shell effect sup-
presses the scalar fifth force away from the boundary
surface. Figure 9 depicts the thin-shell region through both

(a) ϕðzÞ and (b) dϕðzÞ=dz. The thin-shell length can be
defined by the effective range ζ of the fifth force.
All in all, the peak magnitude of the gradient

shown in Eq. (87) is proportional to the difference of
ðϕmin 2 − ϕmin 1Þ. Due to the saturation effect, the largest
difference ðϕmin 2 − ϕmin 1Þ isM2c2, which cannot increase
further. Although the peak magnitude of the gradient is
inversely proportional to the thin-shell length ζ, a narrow
thin shell makes a sharp decay of the fifth force away from
the boundary surface. However, if experiments are properly
designed in which test objects are able to pass through the
thin shell [18] and performed in the ultrahigh vacuum [93],
the fifth force might be detected due to the bigger value
of the coupling β.

C. Approximate solution in the
one-dimensional case

Now, we estimate the magnitude order of the scalar
fifth force more quantitatively in the case where the
density difference between the source and background is
much smaller than the homogeneous background, that is,
δρ ≪ ρb. In this case, the effective mass of the coupled
scalar field can be seen as the same value in all of space, i e.,
m2

eff ¼ m2
effðϕbÞ, and Eq. (77) is indeed a Klein-Gordon

equation. Therefore, the linear superposition principle is
valid. Supposing that the source is homogeneously filled in
the region between the two planes z ¼ −z0 and z ¼ z0,

δρðzÞ ¼
�
δρ0 jzj ≤ z0
0 jzj > z0;

ð89Þ

with z0 and δρ0 positive values, the solution to Eq. (77) can
be easily obtained as follows:

(a)

(b)

FIG. 9. The thin shell near the boundary surface z ¼ 0. (a) ϕðzÞ
versus z. (b) dϕðzÞ=dz versus z. Here, ζ denotes the thin-shell
length. The fifth force is strongly localized in space, with a
maximum on the boundary surface z ¼ 0 and falling rapidly to
zero for jzj > ζ.
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δϕðzÞ¼A;ϕðϕbÞℏc3
Z þ∞

−∞
δρðηÞgðz;ηÞdη

¼A;ϕðϕbÞℏc3δρ0
Z þz0

−z0
gðz;ηÞdη; for δρ0≪ρb; ð90Þ

where the Green function

gðz; ηÞ ¼ −
ƛcb
2

exp

�
−
jz − ηj
ƛcb

�
ð91Þ

with the Compton wavelength ƛcb corresponding to the
ambient density ρb. The scalar fifth force along the þz
direction can be obtained by Eq. (80) as follows:

aðzÞ ¼ −
βðϕbÞ
MPl

dδϕðzÞ
dz

: ð92Þ

1. Estimation of the value of the thin shell

Since the interaction range calculated by Eq. (79) is
extremely small in the common background density of the
laboratory case, we consider another extreme case where
the interaction range can achieve about the order of
magnitude of 10 μm so that one can gain a quantitative
picture. In addition, although the extreme background
vacuum might not be achieved in the laboratory, it is
reasonable that in the dilute gas of atoms the space among
the atoms must be extreme vacuums, which can be used to
design the test experiment for the scalar fifth force.
Of course, if dark matter permeates everywhere, the

current minimum density should be ≃2.7 × 10−27 kg · m−3,
and the corresponding interaction range is 3 × 10−6 m,
which is too small to draw a clearly illustrated graph.
To clearly display the character of the fifth force, we

choose a lower value of the background density of
ρb ¼ 2 × 10−29 kg · m−3 (the corresponding Compton
wavelength ƛcb ¼ 3.684 × 10−5 m). We also choose δρ0 ¼
1 × 10−31 kg · m−3 ≪ ρb and z0 ¼ 2 × 10−4 m to calculate
δϕðzÞ and aðzÞ. The calculated results of δϕðzÞ and aðzÞ are
shown in Figs. 10(a) and 10(b), respectively.
One can see that two thin-shell regions appear on the two

boundary surfaces in Fig. 10. The maximum value of δϕðzÞ
in Fig. 10(a) appears at the center plane z ¼ 0 of the
source, which is denoted by δϕmax; the maxima of jaðzÞj
in Fig. 10(b) appear at the two boundary surfaces of
jzj ¼ 2 × 10−4 m. The positive (negative) value of the
force describes its movement along the þz (−z) direction,
and the maximum value at z ¼ −z0 is denoted by amax in
Fig. 10(b).
The source region acts as an attractive trap due to

δρ0 > 0. Oppositely, if δρ0 < 0, the region acts like a
repulsive barrier. Whether the length of the source region is
larger than the Compton wavelength ƛcb or not, the fifth
force is indeed equal to zero on the center plane of z ¼ 0.

2. Maximum value of the fifth force
at the boundary surface

As long as δρ0 ≪ ρb, both δϕmax ≡ δϕðz ¼ 0Þ and
amax ≡ aðz ¼ −z0Þ are proportional to δρ0 described by
Eqs. (90) and (92). When δρ0 > ρb, Eqs. (90) and (92) are
no longer valid. However, it can be deduced that δϕmax

cannot exceed M2c2 since the value of the scalar field falls
in the range of ð0;M2c2Þ. The gradient of δϕðzÞ can be
estimated by δϕmax=ƛcb. Then the gradient cannot exceed
M2c2=ƛcb. Consequently, one can deduce that amax cannot
exceed M2c2=ðMmƛcbÞ even if δρ0 → þ∞.

(a)
(b)

FIG. 10. (a) The scalar field difference δϕðzÞ along the z direction. The maximum difference appears at the z ¼ 0 plane. (b) The scalar
fifth force along the z direction. The two maxima of the absolute value of the fifth force are at the two boundary surfaces z ¼
−2 × 10−4 m and z ¼ 2 × 10−4 m, respectively, but the directions of the two forces are opposite. Since the Compton wavelength is too
short in the case of large matter density, we plot the pictures in the very small density of matter. That is, ρb ¼ 2 × 10−29 kg · m−3 and
δρ0 ¼ 1 × 10−31 kg · m−3 ≪ ρb, respectively.
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We now return again to the case of δρ0 ≪ ρb. Both δϕmax
and amax are dependent on the background density ρb,
but they do not increase with the increase of the background
density. To see the density dependence trend, we fix
δρ0 ¼ 1 × 10−31 kg · m3 ≪ ρb and plot the curves of
δϕmax and amax versus ρb. The background density depend-
ence of δϕmax and amax is shown in Figs. 11(a) and 11(b),
respectively.
The curve of δϕmax versus ρb is a monotonically decreas-

ing function shown in Fig. 11(a). However, the curve of amax
versus ρb is a concave function shown in Fig. 11(b), and the
maximum point appears at ρb ≈ 5 × 10−30 kg=m3. When
the background density ρb → 0 or ρb → ∞, the fifth force
rapidly approaches zero.

3. Estimation expression of the average fifth force
in the thin shell

To get an intuitive picture of how the scalar fifth force is
dependent on the background density in the case of
δρ0 ≪ ρb, we derive a concise approximation expression.
Since the force is localized in the thin shell, we now
consider an average acceleration in this region rather than
the maximum value of the acceleration discussed above.
The average gradient of the scalar field along the z direction
is roughly estimated as follows:	

dϕ
dz



∼
ϕminðρb þ δρ0Þ − ϕminðρbÞ

ƛcb
; ð93Þ

where the density-dependent ϕmin is described by
Eq. (22a). From Eq. (92), one gets the average acceleration
in the thin shell as follows:

ā ∼
jβðρbÞj
MPl

	
dϕ
dz



: ð94Þ

For δρ0 ≪ ρb, Eq. (94) becomes

ā ∼
jβðρbÞj
MPl

dϕmin

dρ

����
ρ¼ρb

δρ0
ƛcb

: ð95Þ

For ρb ≫ 10−30 kg=m3 and δρ0 ≪ ρb, using Eqs. (22a),
(79), and (82), we get a concise expression as

ā½m=s2� ∼ 3.668 × 10−20

ðρb½kg=m3�Þ5=2 δρ0½kg=m
3�: ð96Þ

It can be seen that the fifth force decreases rapidly as
the ambient density increases. Although the condition of
ρb ≫ 10−30 kg=m3 can always be easily satisfied in the
laboratory, δρ0 ≪ ρb cannot be easily achieved.

4. Estimation expression of the fifth force away
from a solid surface

In general, when δρ0 ≥ ρb, Eqs. (95) and (96) are no
longer valid. However, one can still use Eqs. (93) and (94)
to roughly estimate the average acceleration in the thin
shell. In the most experimental designs, the source objects
are solid. The test objects cannot pass through the region of
the thin shell but can only sense the fifth force away from
the surface. Supposing that the boundary surface is the
plane z ¼ z0, and noticing Eq. (91), the acceleration of a
test object to linear order from the action (1) is then
given by

aðzÞ ¼ aðz0Þe−jz−z0j=ƛcb : ð97Þ

The average acceleration in the thin shell can be
defined by

(a) (b)

FIG. 11. (a) δϕmax versus ρb. This is a monotonically decreasing function. When δρ0 is fixed, the difference of the scalar field deep
inside and outside of the source decreases rapidly with the ambient density increasing. (b) amax versus ρb. This is a concave function.
When δρ0 is fixed, the acceleration on a test particle approaches zero if the ambient density approaches either zero or infinity.
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ā≡ 1

ƛcb

Z
z0þƛcb

z0

aðzÞdz

¼ aðz0Þð1 − e−1Þ ¼ 0.632aðz0Þ: ð98Þ

Noticing Eqs. (93) and (94), Eq. (97) then becomes

aðzÞ ∼ −1.582
βðρbÞ
MPl

ϕminðρb þ δρ0Þ − ϕminðρbÞ
ƛcb

e−jz−z0j=ƛcb :

ð99Þ

Both the saturation factor of ½ϕminðρb þ δρ0Þ − ϕminðρbÞ�
and the exponential attenuation factor of expð− jz−z0j

ƛcb
Þ

suppress the scalar fifth force. Thus, the fifth force is
too small to be detected [38,79]. Apparently, the main
screening factor in detecting the fifth force is the short-
ranged interaction.
Since the fifth force mainly appears in the thin-shell

region, it might be detected if the designed experiments
allow test objects to pass through the region of the thin
shell. To obtain a huge value of the coupling coefficient
βðρbÞ, an extremely high background vacuum in the
laboratory is necessary. If dark matter permeates all of
the space of the Universe, the current minimum density
should be as small as ∼10−27 kg · m−3, and the upper
bound of the force range is ∼5 μm.

D. Summary

The scalar fifth force is investigated in our model; in
particular, some concise approximate expressions of the
fifth force are deduced. Under the requirements that the
coupled scalar field must account for the observed cosmic
acceleration, the interaction range of the fifth force is
extremely short, even at the current density of the Universe.
Therefore, the local test of gravity is satisfied. To test the
force in the laboratory, experiments may be designed that
allow test objects to pass through the thin shell of the
source.
We have also explained the so-called upper bound of

jβj ∼ 1014 from the precision measurements of hydrogenic
energy levels. It is worth noting that this value is not an
upper bound due to the matter-density dependence of jβj.
Note that jβj can acquire very huge values in the extremely
low density of matter. For the case of the precision
measurements of hydrogenic energy levels, the calculated
value of our model is ∼104, which is considerably smaller
than the upper bound of∼1014. Because the mass density of
the electron cloud around the atomic nucleus is used in our
model, the satisfactory result implies that both ordinary
matter (e.g., the electron) and dark matter can couple to the
scalar field in the same manner.

VIII. DISCUSSIONS AND CONCLUSIONS

A. Equivalence principle, Mach’s principle,
and the Copernican principle

Since the scalar field couples universally to all matter
fields as shown in the action (1), the weak equivalence
principle holds. In terms of Jordan frame variables, the
action (1) describes a Brans-Dicke-type-like scalar-tensor
theory with a field-dependent Brans-Dicke parameter. In
the original work [87], the Brans-Dicke parameter is
chosen as a constant. Since neither the self-interaction
potential nor the symmetry-breaking interaction potential is
inserted specifically in their original action, the model
describes a long-range interaction and cannot provide a
cosmological constant to drive the Universe’s accelerating
expansion in the present time.
Based on the equivalence principle, Brans and Dicke

introduced a scalar-tensor combination inducing their
gravitational field to incorporate Mach’s principle into
general relativity [87]. According to Mach, the inertial
forces observed in a laboratory may originate in distant
matter that is accelerated relative to the laboratory [87,94].
The action (1) combined with Eq. (19) may be seen as a
Machian model. Since the equation of motion for the scalar
field is determined by a sum of the self-interaction and the
interaction potential with matter, the scalar field no longer
appears to be a long-range field as in the original Brans-
Dicke model. The interaction range is dependent on the
ambient mass density, and the range is very short in the
common matter density. But the coupled scalar field can
indirectly influence matter by a global effect of driving the
Universe’s expansion since the Einstein tensor is deter-
mined by both the energy-momentum tensor and the scalar
field. In addition, the scalar field can also directly influence
matter by the short-range interaction if the local gradient of
the scalar field is present.
It is well known that the principle of a homogeneous

and isotropic universe is a spatial embodiment of the
Copernican principle. The extended Copernican principle
indicates further that there is no special space-time position
in the Universe. That is, not every part or every era of the
Universe is the center or the origin. However, suitable
initial conditions are required for inflation to start in the
current cosmological theory [82,95]. In general, a flat
potential of the inflaton is also required so that a sufficient
amount of inflation will be obtained. This starting origin of
time is at odds with the extended Copernican principle [96].
The quasicyclic model discussed in this paper may resolve
the incompatibility with the extended Copernican principle
and avoid fine-tuning in choosing initial conditions in
inflation.
When the coupled scalar field is invoked to successfully

drive the Universe’s acceleration, a strong fifth force
appears. However, the very short interaction ranges and
the screening effects enable our Brans-Dicke-type-like
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model in the calculation to converge to the results of
general relativity. Although the coupling to ordinary matter
should not lead to observable long-range forces, it may
result in observable short-range forces. The strength of the
fifth forces is dependent on the ambient density, and the
density dependence is a concave curve. In both extremely
opposite cases, that is, when the mass density approaches
zero or infinity, the fifth forces vanish.

B. Conclusions and outlook

In order to obtain the scalar fifth force, we have required
that the scalar field must entirely account for the observed
cosmic acceleration. This requirement leads to the sym-
metry-breaking coupling that can localize the value of the
self-interaction potential to act as the cosmological con-
stant. Since the interaction potential between matter and the
scalar field is directly proportional to the particle number
density of matter, the localization gives the nearly fixed
cosmological constant as long as the number density is
large enough in the nonrelativistic matter case.
Our scheme does not conflict with chameleon no-go

theorems, at least mathematically. As has been pointed out
in the original literature [35], any model that purports to
explain the cosmic acceleration and passes solar system
tests must be doing so using some form of quintessence or
vacuum energy. Our model in fact uses a coupled scalar
field as quintessence, but only the quintessence is pinned
via a symmetry-breaking coupling.
As for Weinberg’s no-go theorem, since our scheme uses

dynamic quintessence rather than static vacuum energy, the
no-go theorem is circumvented. In our model, the self-
interaction potential of the scalar field has nothing to do
with the effective mass around the minimum of the effective
potential but can move the position of the minimum. These
properties guarantee that the observed cosmic acceleration
stems entirely from the coupled scalar field rather than any
stable vacuum energy.
The scheme has also been applied to the relativistic

matter case (e.g., during inflation). In this case, matter
decouples completely with the scalar field, and the evolu-
tion of the Universe is mainly dominated by the scalar field.
The pseudopotential density has been introduced as the
sum of the self-interaction potential energy density of the
scalar field and the energy density scale of the curvature of
the Universe. It is the pseudopotential that plays the role of
the inflaton potential in the inflationary slow-roll approxi-
mation rather than only the self-interaction potential itself.
Thus, the observed concave potential feature naturally
belongs to the pseudopotential and is in favor of the closed
space of the Universe.
When the cosmic constraints are satisfied, the scheme

predicts that the magnitude of the fifth force is considerably
larger than gravity, especially for lower density in the local
environment. However, the fifth force is suppressed into a
very short interaction range. Tests of gravity are then

satisfied. A typical interaction range is estimated to be
about 5 μm for the current matter density of the Universe.
The fifth force might be significantly detectable, pro-

vided that experiments are designed that allow test particles
to pass through the thin-shell region of sources or at least
allow test particles to approach the thin shell as close as
possible.

ACKNOWLEDGMENTS

We acknowledge discussions with J. N. Zhang and
C. Liu. This work was supported by Science Challenge
Project, Grant No. TZ2018003, and the National Natural
Science Foundation of China through Grant No. 11604348.

APPENDIX A: OBTAINING THE
ACCELERATION EQUATION

OF THE UNIVERSE

We now derive the acceleration equation of the Universe
in detail from the Friedmann equation shown as Eq. (5).
For the simplification, the abbreviated notation BiðϕÞ is
introduced through BiðϕÞ≡ A1−3wiðϕÞ at the beginning in
deriving equations. The final results are obtained by using
A1−3wiðϕÞ instead of BiðϕÞ. The Friedmann equation (5)
in a Friedmann-Robertson-Walker (FRW) metric then
becomes

H2≡ _a2

a2

¼ 8πG
3ℏ3c5

�X
i

ρiℏ3c5BiðϕÞþ
�
VðϕÞþℏ2

2
_ϕ2

��
−
Kc2

a2
;

ðA1Þ

where the valuesK ¼ 1; 0, or−1 correspond to closed, flat,
or open spaces, respectively. Differentiating Eq. (A1) with
respect to time, one has

2H _H ≡ 2H

�
ä
a
−H2

�

¼ 8πG
3ℏ3c5

�X
i

ρiℏ3c5Bi;ϕðϕÞ _ϕþ
X
i

_ρiℏ3c5BiðϕÞ

þ ½V;ϕðϕÞ _ϕþ ℏ2ϕ̈ _ϕ�
�
þ 2Kc2 _a

a3
: ðA2Þ

Using Eq. (9), i.e.,

ℏ2ϕ̈þ 3Hℏ2 _ϕþ V;ϕðϕÞ þ
X
i

ρiℏ3c5Bi;ϕðϕÞ ¼ 0; ðA3Þ

one has
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2H _H ¼ 8πG
3ℏ3c5

�
−3Hℏ2 _ϕ2 þ

X
i

_ρiℏ3c5BiðϕÞ
�
þ 2H

Kc2

a2
:

ðA4Þ

Substituting the conservation law of Eq. (7), i.e.,

_ρi ¼ −3H
�
ρi þ

pi

c2

�
; ðA5Þ

into Eq. (A4), one has

2H _H ¼ 8πG
3ℏ3c5

�
−3Hℏ2 _ϕ2 − 3H

X
i

�
ρi þ

pi

c2

�
ℏ3c5BiðϕÞ

�

þ 2H
Kc2

a2
: ðA6Þ

Again, we need to emphasize that ρi and pi are independent
of the scalar field, and the satisfaction of the conservation
law is a definitionlike choice or constraint. This conserva-
tion law of Eq. (A5) shows that the corresponding entropy
is conserved. The number of particles is not altered, but the
masses of the particles are shifted due to the coupling of the
particles to the scalar field. In other words, ρi and pi denote
the matter mass density and pressure in the decoupled case
with the scalar field, but ρiA1−3wiðϕÞ describes the physics
matter density. Thus, only the expression piA1−3wiðϕÞ can
be used to describe the physics pressure of the perfect fluid,
so the parameter of the equation of state for matter is
independent of the scalar field [see Eq. (A11)].
Removing the common factor 2H in Eq. (A6), we have

_H¼ 8πG
3ℏ3c5

�
−
3

2
ℏ2 _ϕ2−

3

2

X
i

�
ρiþ

pi

c2

�
ℏ3c5BiðϕÞ

�
þKc2

a2
:

ðA7Þ

Since ä=a≡ _H þH2, from Eqs. (A1) and (A7), one has

ä
a
¼ 4πG

3ℏ3c5

�
2VðϕÞ− 2ℏ2 _ϕ2 −

X
i

�
ρi þ

3pi

c2

�
ℏ3c5BiðϕÞ

�
:

ðA8Þ

Noticing the equation of state, Eq. (6), i.e., wi ≡ pi=ðρic2Þ,
and introducing a coupled matter mass density for each
species of matter as

ρmi ¼ ρiA1−3wiðϕÞ≡ ρiBiðϕÞ; ðA9Þ

which includes the coupling energy with the scalar field,
and a corresponding coupled pressure of the perfect fluid as

pmi ¼ piA1−3wiðϕÞ≡ piBiðϕÞ; ðA10Þ

which includes the coupling pressure with the scalar field,
we immediately have

wi ≡ pi

ρic2
¼ pmi

ρmic2
: ðA11Þ

We expect that ρmiðpmiÞ denotes the real physics matter
density (physics pressure). Although ρmiðpmiÞ is ϕ depen-
dent, from Eq. (A11) we can see that the parameter wi of
the equation of state for matter is really independent of the
scalar field as we desired.
Replacing BiðϕÞ by A1−3wiðϕÞ, Eq. (A8) can be rewritten

as Eq. (12), i.e.,

ä
a
¼ 4πG

3ℏ3c5

�
2VðϕÞ − 2ℏ2 _ϕ2 −

X
i

ρmi
ð1þ 3wiÞℏ3c5

�
:

ðA12Þ

In addition, Eq. (A1) or Eq. (5) can also be rewritten as
follows:

H2 ¼ 8πG
3

�X
i

ρmiþ
1

ℏ3c5

�
VðϕÞþℏ2

2
_ϕ2

��
−
Kc2

a2

¼ 8πG
3

�
ρmþ 1

ℏ3c5

�
VðϕÞþℏ2

2
_ϕ2

��
−
Kc2

a2
; ðA13Þ

where ρm ¼ P
i ρmi denotes the total scalar-field-

dependent matter density.
In this appendix, it has also been shown through

Eq. (A11) that the equation of state for matter is temper-
ature dependent but free of the scalar field. The property of
ϕ independence is very important to get Eq. (C15) in
Appendix C 2.

APPENDIX B: CONSERVATION LAWS

When the scalar field couples with matter, the energy
exchange between the scalar field and matter occurs. Thus,
the equation of state for the scalar field should be modified.
In this appendix, the average energy of an individual matter
particle will also be introduced as a supplement to the
conservation law of Eq. (A5).

1. Coupled equations

The basic assumption of the conservation law of
Eq. (A5), and its equivalent form of Eq. (7), is that both
ρi andwi are independent of the scalar field, with i denoting
several species of noninteracting perfect fluids of matter
sources. However, this does not mean that the energy
density of matter is independent of the scalar field. The
energy exchange between matter and the scalar field is
discussed as follows: To avoid complications, we derive the
rest of the conservation laws by using BiðϕÞ instead of
A1−3wiðϕÞ. We have introduced the scalar-field-dependent
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matter density and the scalar-field-dependent pressure
shown as Eqs. (A9) and (A10), respectively. Since i-species
matter density ρmi ¼ ρiBiðϕÞ, when differentiating with
respect to time, we obtain

_ρmi ¼ _ρiBiðϕÞ þ ρi _BiðϕÞ: ðB1Þ

Substituting the conservation law of Eq. (A5) into Eq. (B1),
we get

_ρmi ¼ −3H
�
ρi þ

pi

c2

�
BiðϕÞ þ ρi _BiðϕÞ: ðB2Þ

Noticing Eqs. (A9) and (A10), we then get

_ρmi þ 3H

�
ρmi þ

pmi

c2

�
¼ ρi _BiðϕÞ: ðB3Þ

Summing over all species matter i in Eq. (B3), we get

_ρm þ 3H

�
ρm þ pm

c2

�
¼

X
i

ρi _BiðϕÞ; ðB4Þ

where ρm ¼ P
i ρmi and pm ¼ P

i pmi, respectively.
Equation (B4) is different from the conservation law of
Eq. (A5). The difference results from the interaction
between matter and the scalar field.
Since the energy density of the scalar field is defined by

ℏ3c5ρϕ¼VðϕÞþ _ϕ2ℏ2=2, differentiating this equation gives

_ρϕℏ3c5 ¼ V;ϕðϕÞ _ϕþ ℏ2 _ϕ ϕ̈ : ðB5Þ

Substituting Eq. (A3) into Eq. (B5) and noticing
the pressure definition of the scalar field ℏ3c3pϕ ¼
−VðϕÞ þ _ϕ2ℏ2=2, it follows that

_ρϕℏ3c5 ¼ −3Hðℏ3c5ρϕ þ ℏ3c3pϕÞ −
X
i

ρiℏ3c5 _BiðϕÞ:

ðB6Þ

Then, removing the common factor ℏ3c5 in Eq. (B6), we
have

_ρϕ þ 3H

�
ρϕ þ

pϕ

c2

�
¼ −

X
i

ρi _BiðϕÞ: ðB7Þ

Introducing the interaction energy density between i-species
matter and the scalar field by ρiint ¼ ρi½BiðϕÞ − 1� and the
corresponding interaction pressure by piint ¼ pi½BiðϕÞ − 1�,
and noticing the conservation equation (A5), one has

_ρiint þ 3H

�
ρiint þ

piint

c2

�
¼ ρi _BiðϕÞ: ðB8Þ

Summing over all species matter i to Eq. (B8), we get

_ρint þ 3H

�
ρint þ

pint

c2

�
¼

X
i

ρi _BiðϕÞ; ðB9Þ

where ρint ¼
P

i ρiint and pint ¼
P

i piint, respectively.
The sum of Eqs. (B7) and (B9) gives

_ρeff þ 3H

�
ρeff þ

peff

c2

�
¼ 0; ðB10Þ

with the effective energy density of the scalar field
ρeff ¼ ρϕ þ ρint and the effective pressure of the scalar
field peff ¼ pϕ þ pint, respectively. Thus, the effective
energy of the scalar field is conserved. Equation (B10)
implies that, for a coupled scalar field, the effective
equation of state becomes

weff ≡ peff

ρeffc2
: ðB11Þ

Summing over all species matter i to Eq. (A5), we get

_ρþ 3H

�
ρþ p

c2

�
¼ 0; ðB12Þ

where ρ ¼ P
i ρi and p ¼ P

i pi, respectively. The con-
served energy density implies that the corresponding
equation of state can be introduced, i.e., w≡ p=ðρc2Þ. If
we assume that all the matter species of noninteracting
perfect fluids have the same parameter wi, we have
p ¼ wiρc2. We prefer to use wi instead of w to emphasize
species of matter.
The sum of Eqs. (B12) and (B10), or the sum of

Eqs. (B7) and (B4), results in a conservation equation of
the total energy density as

_ρtotal þ 3H

�
ρtotal þ

ptotal

c2

�
¼ 0; ðB13Þ

where ρtotal ≡ ρþ ρϕ þ ρint ≡ ρþ ρeff ≡ ρm þ ρϕ, ptotal ≡
pþ pϕ þ pint ≡ pþ peff ≡ pm þ pϕ. The total energy
definition is different from Eq. (4.82) in Ref. [31] because
its total energy density is defined by ρþ ρϕ and is
considered to be conserved as shown in Eq. (4.83) in
the literature. The total energy should be ρm þ ρϕ rather
than ρþ ρϕ. Now, using A1−3wiðϕÞ instead of BiðϕÞ,
Eq. (B4) becomes

_ρm þ 3H

�
ρm þ pm

c2

�
¼

X
i

ρi
dA1−3wiðϕÞ

dt
; ðB14Þ

where ρm ¼ P
i ρiA

1−3wiðϕÞ is the physics density of
matter, and pm ¼ P

i piA1−3wiðϕÞ is the physics pressure
of matter fluid, respectively. In addition, Eq. (B7) becomes
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_ρϕ þ 3H

�
ρϕ þ

pϕ

c2

�
¼ −

X
i

ρi
dA1−3wiðϕÞ

dt
: ðB15Þ

Equations (B14) and (B15) describe the energy
exchange between matter and the scalar field, while
Eq. (B13) describes the total energy conservation law.
Since dA1−3wiðϕÞ=dt¼ð1−3wiÞA−3wi _Aþð−3 _wiÞA1−3wi lnA,
from the equation, one can get the physical image of the
energy transfer between matter and the scalar field as
follows: The first term on the right-hand side of the
equation is related to the work done on the system of
matter by the scalar field; the second term on the right-hand
side is related to the entropy variation of the system of
matter due to the temperature dependence of the equation
of state for the matter fluid.
At this time, one can see that it is necessary and

important to introduce the scalar-field-independent density
of matter and the corresponding conservation law of
Eq. (A5).

2. The average energy of an individual particle

We now analyze further the meaning of the conservation
law of Eq. (7), i.e., Eq. (A5). Its solution can be easily
obtained as follows:

ρi ¼
ρi0a

3ðwiþ1Þ
0

a3ðwiþ1Þ ; ðB16Þ

with the subscript 0 marking the current time. Since the
number of matter particles is not altered, the number
density ni that changes with the volume expansion is given
as follows:

ni ¼
n0a30
a3

: ðB17Þ

If an average energy hεcii per particle is introduced, one has

ρi ¼ nihεcii: ðB18Þ

The average energy of an individual particle corresponds
to the thermal scalar-field-independent Compton energy of
the matter particle. The ratio of Eq. (B16) to Eq. (B17)
gives

hεcii ¼ hεcii0
a3wi
0

a3wi
; ðB19Þ

with hεcii0 ¼ ρi0=ni0. Equation (7) shows that both the
number density and the corresponding entropy are con-
served. When the coupling to the scalar field is introduced,
one has to describe not only the scalar-field-independent
number density but also the scalar-field-dependent energy
density of matter. Without the scalar field coupling, these

two densities are essentially the same. Therefore, invoking
Eq. (7) is by no means an expedient measure.

3. The effective equation of state

Based on Eq. (B11), we now discuss several important
values of the effective equation of state for the scalar field
as follows: For wi ¼ 0 and _ϕ ¼ 0, one has

weff ¼
−VðϕminÞ

VðϕminÞ þ ρℏ3c5½AðϕminÞ − 1� : ðB20Þ

When matter density is large enough, i.e., AðϕminÞ ≈ 1, one
sees weff ≈ −1, which mimics the cosmological constant
before the current time in the pressureless case of the matter
source.
For wi ¼ 1=3, i.e., A1−3wi ¼ 1, and assuming that the

scalar field has climbed along its self-interaction potential
to the highest point where its kinetic energy is zero, from
Eq. (B11) one has

weff ¼
−VðϕmaxÞ
VðϕmaxÞ

¼ −1; ðB21Þ

which mimics the largest cosmological constant during the
inflation era. When the kinetic energy density is far larger
than the potential energy density, i.e., ℏ2 _ϕ2=2 ≫ VðϕÞ,
from Eq. (B11) one has

weff ¼ 1; ðB22Þ

which means that the scalar field can generate a great
deceleration effect.
Thus, in general, −1 ≤ weff ≤ 1. When the scalar field

oscillates around the minimum at high frequency in the
case of j3H=2j < ωc, the time average gives weff ¼ 0,
which means that the scalar field behaves as the pressure-
less matter fluid. In the case of j3H=2j > ωc, the over
(negative) damped evolution of the scalar field occurs when
the scalar field decouples with matter due to the ultrahigh
temperature, and the parameter weff varies with time
between −1 and 1.

APPENDIX C: THE λ-INDEPENDENT
EFFECTIVE MASS AND THE CHANGING

RATE OF _ϕmin=ϕmin

When both the quartic self-interaction potential and the
symmetry-breaking coupling function are chosen, it will be
proven in this appendix that the effective mass around
the minimum of the effective potential is independent
of the self-interaction potential of the scalar field. The
λ-independent property is very important to circumvent
Weinberg’s no-go theorem, which has been demonstrated
in Sec. V D. Since the condition of the scalar field
adiabatically following the minimum of the effective
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potential is essential in obtaining the cosmological con-
stant, the changing rate of _ϕmin=ϕmin will also be discussed
in this appendix.

1. The case of wi = 0

For the pressureless fluid of matter sources wi ¼ 0, the
effective potential is the sum of

VeffðϕÞ ¼ VðϕÞ þ V int; ðC1Þ

where

VðϕÞ ¼ λ

4
ϕ4 ðC2Þ

and

V int ¼ ρℏ3c5½AðϕÞ − 1� ¼ ρℏ3c5

4M1
4c8

ðϕ2 −M2
2c4Þ2: ðC3Þ

Note that AðϕÞ with a symmetry-breaking shape is
described by Eq. (19b). The first derivative and the second
derivative of the effective potential with respect to the scalar
field are

Veff;ϕðϕÞ ¼
�
λþ ρℏ3c5

M1
4c8

�
ϕ3 −

�
ρℏ3c5M2

2

M1
4c4

�
ϕ; ðC4Þ

Veff;ϕϕðϕÞ ¼ 3

�
λþ ρℏ3c5

M1
4c8

�
ϕ2 −

�
ρℏ3c5M2

2

M1
4c4

�
: ðC5Þ

Let the first derivative of the effective potential equal
zero, i.e.,

V;ϕ þ ρℏ3c5A;ϕ ¼ 0: ðC6Þ

Then, the extrema are obtained as

ϕ2
min ¼

ρℏ3M2
2c4

λM1
4c3 þ ρℏ3

; ðC7aÞ

ϕmax ¼ 0; ðC7bÞ

and the effective mass about the minima is

m2
eff ≡

Veff;ϕϕðϕminÞ
c4

¼ 2ρℏ3M2
2

M1
4c3

: ðC8Þ

The Z2 symmetry is spontaneously broken as the scalar
field chooses one of the minima of the effective potential.
The field values corresponding to the minima of the
effective potential are nearly the same as that of the minima
of the coupling function in the Universe’s past due to the
coupled interaction and larger matter density. However, the
difference is that the minima of the effective potential are

density dependent, while those of the coupling function are
density independent. This means that the minima of the
effective potential will depart from the fixed minima of the
coupling function in the future.
We choose λ ¼ 1=6 so that the coefficient in Eq. (C2)

can naturally be written as 1=ð4!Þ. Besides the consider-
ation of the theoretical naturalness, the choice of the value
of the parameters M2 is determined by fitting the cosmo-
logical constant. The range of the ratio M1=M2 ≥ 4 is
obtained with the following requirements: The ratio should
not only match the range of the current cosmological scale
factor under the constraint of the approximate current
density of the Universe, but it can also correspond to a
Compton wavelength of the scalar field that is as large as
possible. The larger the ratio is, the shorter the wavelength
is. As a concrete example, the ratio M1=M2 is selected in
this paper to be a slightly larger integer of 23 instead of the
lower bound of 22. Of course, the other choice is not
forbidden as long as the inequality of M1=M2 ≥ 4 is
satisfied. Indeed, we can let M1=M2 ¼ 2n and regard n
as another adjustable parameter. Through calculations, we
can find that n ¼ 2 to n ¼ 4 all work well in obtaining the
cosmological constant, which means that the symmetry-
breaking model is insensitive to the selection of the
parameter. However, the range of the fifth interaction
shown in Eq. (C8) is sensitive to the selection of the para-
meter. Since the main purpose of this paper is to display the
symmetry-breaking coupling function, the detailed deter-
mination of M1=M2 will be discussed elsewhere.
Due to the change of the matter density, the minimum

position of the effective potential will change. The chang-
ing rate can be defined by _ϕmin=ϕmin. Differentiating
Eq. (C6) with respect to time t, and using the conservation
law of Eq. (B12), assuming the pressureless matter source
p ¼ 0, one has

_ϕmin

ϕmin
¼ −H ·

3V;ϕðϕminÞ
ϕminm2

effc
4

ðC9aÞ

¼ H ·
3cℏ3ρA;ϕðϕminÞ

ϕminm2
eff

: ðC9bÞ

Therefore, the changing rate of the minimum position of
the effective potential can be expressed by the Hubble
parameter.
Using Eq. (C7a), Eq. (C9) becomes

_ϕmin

ϕmin
¼ −

3HλM4
1c

3

2ðλM4
1c

3 þ ρℏ3Þ : ðC10Þ

The negative sign on the right-hand side of the
equation describes the fact that the trend of the changing
rate is opposite to that of the Hubble rate. For ρ ≫
λM1

4c3=ℏ3 ∼ 10−30 kg=m3, the absolute value of the

HAI-CHAO ZHANG PHYS. REV. D 101, 044020 (2020)

044020-36



changing rate is much less than that of the Hubble rate. In
general, one has ���� _ϕmin

ϕmin

���� <
���� 3H2

����: ðC11Þ

Here, j3H=2j denotes the damping rate in the oscillation
equation of the scalar field. Thus, for a pressureless matter
source the scalar field can adiabatically follow the mini-
mum [see also the adiabatic condition of Eq. (23)].

2. The general case of wi ≠ 0

We now consider the general case of wi ≠ 0. In this case
the value of the scalar field at the minimum cannot be
described by a simple analytic expression. One can only
give the region 0 ≤ ϕ2

min ≤ M2
2c

4, which is the same as the
case of wi ¼ 0. Since the self-interaction potential of
Eq. (C2) is a quartic form, the effective mass of the scalar
field around the minimum can be derived only from the
interaction potential shown by Eq. (11), i.e.,

m2
eff ¼

−2V int;ϕϕðϕ ¼ 0Þ
c4

: ðC12Þ
For the sake of simplicity, we assume that all the species of
noninteracting perfect fluids of matter sources have the
same parameter wi. Thus, Eq. (11) becomes

V int ¼ ρℏ3c5½A1−3wiðϕÞ − 1� ðC13Þ
with ρ ¼ P

i ρi. Combining Eqs. (C12) and (C13) with the
symmetry-breaking coupling function of Eq. (19b), one has

m2
eff ¼

2ρℏ3M2
2ð1 − 3wiÞ
M4

1c
3

�
1þ M4

2

4M4
1

�−3wi

: ðC14Þ

When the fluid of the matter source becomes relativistic,
i.e., wi → 1=3, the effective mass around the minimum
approaches zero. In the contraction process, since the
matter fluid evolves from norelativistic to relativistic, the
scalar field must experience chirped under-negative-
damping oscillations from a higher frequency to a lower
one and then shift to an over-negative-damping motion. In
the expansion process, the evolution of the Universe is
reversed. To describe whether the scalar field is able to
adiabatically follow the minimum or not, by using the same
method as used in deriving Eq. (C9) and noticing the ϕ
independence of wi denoted by Eq. (A11), the changing
rate of the minimum position of the effective potential is
obtained as follows:

_ϕmin

ϕmin
¼ −3Hð1þ wiÞ

V;ϕðϕminÞ
ϕminm2

effc
4

ðC15aÞ

¼3Hρð1þwiÞℏ3cð1−3wiÞA−3wiðϕminÞA;ϕðϕminÞ
ϕminm2

eff

:

ðC15bÞ

Substituting

V;ϕðϕminÞ ¼ λϕ3
min; ðC16aÞ

A;ϕðϕminÞ ¼
ϕminðϕ2

min −M2
2c

4Þ
M4

1c
8

; ðC16bÞ

into Eqs. (C15a) and (15b), respectively, one has

_ϕmin

ϕmin
¼ −3Hð1þ wiÞλϕ2

min

m2
effc

4
; ðC17aÞ

¼
3Hð1þwiÞð1þ M4

2

4M4
1

Þ3wi

2A3wiðϕminÞ
ðϕ2

min−M2
2c

4Þ
M2

2c
4

: ðC17bÞ

Thus, with wi increasing from 0 to 1=3, the evolution of
the scalar field must undergo a stage where j _ϕmin=ϕminj is
larger than the damping rate j3H=2j. In this stage, the scalar
field is not able to sit stably at the minimum. In the case of
wi ¼ 0, from Eq. (C10) one can see that the stability of the
minimum is enhanced as the density of matter increases. In
the case of wi ≠ 0, the stability of the minimum cannot be
enhanced furtherwith the increase in the density ofmatter. In
fact, the stability even decays as the matter density increases
due to the decoupled effect between the scalar field and
matter at the extreme temperature. The fragile stability of the
adiabatic can lead to a great result when the effectivemass of
the scalar field around the minimum approaches zero. For
example, in the contraction process, the magnitude of the
scalar field will grow exponentially in the over-negative-
damping case. This is in sharp contrast to the case when the
Universe is at the maximum radius. At that time, the Hubble
rate is zero, but the effective mass of the scalar field is not
zero, though the mass is extremely small. Both the adiabatic
tracking of the minimum and the oscillation condition can
always hold in the case ofwi ¼ 0. The two conditions cannot
hold forever in the case ofwi ≠ 0 (see also Sec. VI A 1). The
periodically vibrational state of the scalar field only appears
when the oscillation condition is satisfied, but the adiabatic
condition is not satisfied (see caption of Fig. 2), which
corresponds to the overshooting phenomenon in the under-
(negative-)damped case.When neither condition is satisfied,
the field can neither adiabatically follow the minimum nor
oscillate around the minimum, which corresponds to the
overshooting phenomenon in the over-(negative-)damped
case (see also Sec. V B).
In addition, it is worth noting that the mass of the scalar

field corresponding to the minimum radius of the Universe
(the maximum absolute value of the scalar field) is not
related to any minimum of the effective potential. The mass
is essentially the self-mass of the scalar field since only the
self-interaction potential is considered. The evolution of
the scalar field now belongs to over-(negative-)damped
motion. In fact, it does not make sense to talk about the
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adiabatic following some minimum in this case. One often
uses so-called slow-roll conditions in this case. However,
the requirement of the slow-roll conditions is not always
reasonable (see also Sec. VI B 1).

3. The coupling coefficient β

The coupling coefficient β is dependent on the ambient
density, which corresponds to the linear part of the coupling
function AðϕÞ. Using Eqs. (81) and (19b), one has

βðϕÞ ¼ MPlc2
4ϕðϕ2 −M2

2c4Þ
4M1

4c8 þ ðϕ2 −M2
2c4Þ2 : ðC18Þ

Therefore, the coupling coefficient β is not a constant, but it
depends on ϕ. At ϕmin, the coupling coefficient β is

βðϕminÞ ¼ MPlc2
4ϕminðϕ2

min −M2
2c4Þ

4M1
4c8 þ ðϕ2

min −M2
2c4Þ2 : ðC19Þ

Thus, βðϕminÞ > 0 if ϕmin < 0, and βðϕminÞ < 0 if
ϕmin > 0. Consider a space-variable source density
embedded in a homogeneous ambient density ρb; the
coupling coefficient βðϕÞ can be approximated to βðϕbÞ
with ϕb ¼ ϕminðρbÞ. In fact, one often uses β ¼ βðϕbÞ to
denote the coupling coefficient.

The value of the coupling coefficient β denotes the
coupling strength between matter and the scalar field. For a
lower density of matter in the local environment, the
coupling strength is much larger than gravitational. This
means that the scalar fifth force might be detectable
provided that future experiments are designed properly.
If M2 ¼ 0, one has ϕmin ¼ 0 and βðϕminÞ ¼ 0 correspond-
ing to a zero fifth force at ϕmin.

APPENDIX D: FUNDAMENTAL
PHYSICAL CONSTANTS

Some of the physical constants we used in our calcu-
lations are as follows: the speed of light in vacuum
c ¼ 2.99792458 × 108 m · s−1, the gravitational constant
G¼6.67430×10−11m3 ·kg−1 ·s−2, Planck’s constant h ¼
6.62607015 × 10−34 J · s, and the elementary charge
e ¼ 1.602176624 × 10−19 C.
We do not use the units c ¼ ℏ ¼ 1, but we use the

International System of Units in which c and ℏ appear
explicitly. The purpose of this is not only to compare the
calculation with observation data but also for the mark of
the quantum effect at the cosmic scale. Quantummechanics
is often regarded as a theory for the microscale.
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