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In this paper, we construct rotating boson stars composed of the coexisting states of two scalar fields,
including the ground and first excited states. We show the coexisting phase with both the ground and first
excited states for rotating multistate boson stars. In contrast to the solutions of the nodeless boson stars, the
rotating boson stars with two states have two types of nodes, including the 1S2S state and the 1S2P state.
Moreover, we explore the properties of the mass M of rotating boson stars with two states as a function of
the synchronized frequency ω, as well as the nonsynchronized frequency ω2. Finally, we also study the
dependence of the mass M of rotating boson stars with two states on angular momentum for both the
synchronized frequency ω and the nonsynchronized frequency ω2.
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I. INTRODUCTION

In the mid-1950s, John Wheeler found the classical
fields of electromagnetism coupled to the Einstein gravity
theory [1,2]. In the next half century, Kaup et al. [3]
replaced electromagnetism with a free, complex scalar field
and found Klein–Gordon geons [4] that have become well-
known as boson stars (BSs).
Firstly, boson stars that were constructed with fourth and

sixth power jϕj-term potentials were considered in [5], and
there is a more detailed analysis of a potential with only the
quartic term in Ref. [6]. Moreover, by using a V-shaped
potential proportional to jϕj, one can also find the compact
boson stars [7], and the same V-shaped potential with an
additional quadratic massive term has also been studied in
[8]. In Ref. [9], the Newtonian boson stars were inves-
tigated, and the boson field coupled to an electromagnetic
field in Ref. [10]. Furthermore, the study of boson stars can
be extended to the boson nebulae charge [11–13], the
charged boson stars with a cosmological constant case [14],
and the charged, spinning Q-balls case [15]. In addition, the
fermion-boson stars were studied in Refs. [16–19]. Most of
the studies of the solutions have focused on the model of
one scalar hair with the fundamental solutions. Recently,
the spherically symmetric, nonrotating boson stars with two
coexisting states was discussed in Refs. [20,21], which
combined the ground state with the first excited state, and
the study of the case of nonrotating boson stars with two

coexisting states can be extended numerically to the phase
shift and dynamics [22], which is the individual particlelike
configurations for each complex field case [23,24].
Besides, the axisymmetric rotating radially excited boson
stars has been studied in [25] and see Ref. [26] for a review.
On other the hand, BSs with a rotation were first studied

in the work of Schunck and Mielke [27], and the rotating
boson stars in four and five dimensions have been studied
in [28]. After that, Yoshida and Eriguchi constructed the
highly relativistic spinning BSs [29]. Moreover, the study
of the spinning BSs solutions can be extended to the
quantization condition case [30,31], the quartic self-
interacting potential as well as the Kerr black hole limit
case [32]. The linear stability of boson stars with respect to
small oscillations was discussed by Lee and Pang in [33];
the study of the stability of boson stars was extended to the
quartic and sextic self-interaction term case [34] and
nonrotating multistate boson stars [20]; and the catastrophe
theory was applied to extract the stable branches of families
of boson stars in [35,36].
Recently, a class of Kerr black holes with a scalar hair

was discussed by Herdeiro and Radu [37,38]. The stability
of a Kerr black hole with a scalar hair can be found in
Refs. [39–42]. In Refs. [43–46], the cases of the Proca hair,
the Kerr-Newman black hole, nonminimal coupling case,
and spinning black holes with a Skyrme hair have been
achieved. The study on long-term numerical evolutions of
the superradiant instability of a Kerr black hole by East and
Pretorius is found in Ref. [47]. For a deeper analysis of the
numerical methods and a review, see Refs. [37,48]. The
family of a rotating Kerr black hole with a synchronized
hair exhibits, besides the physical quantities of mass and
angular momentum, a conserved Noether charge Q, which
is associated with the complex scalar field, ψn ∼ e−iwtþimφ
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(where n ∈ N0, m ∈ Z�) where the node number n and
azimuthal harmonic index m, most of the studies of the
solutions of Kerr black holes with scalar hair focused on the
model of ground state (n ¼ 0) and the smallest azimuthal
harmonic index (m ¼ 1). Very recently, a family of the Kerr
black holes with an excited state scalar hair (n ≠ 0) have
also been constructed [49], and the Kerr black holes with
odd parity scalar hair case was considered in [50] in detail.
The case of Kerr black holes with synchronized hair and
higher azimuthal harmonic index (m > 1) have also been
investigated in Ref. [51]. In addition, the study of the
spinning boson stars and hairy black holes is extended to a
two-component Friedberg-Lee-Sirlin model coupled to
Einstein gravity in four spacetime dimensions [52]. In
the present work, we are interested in rotating multistate
boson stars. We would like to know whether or not two
scalar hairs can occupy the same state; furthermore, we will
construct possible coexisting states, including the ground
and first excited states.
The paper is organized as follows. In Sec. II, we

introduce the model of the four-dimensional Einstein
gravity coupled to two complex massive scalar fields ψ i
(i ¼ 1, 2) and adopt the same axisymmetric metric with
Kerr-like coordinates as the ansatz in Ref. [38]. In Sec. III,
the boundary conditions of the rotating multistate boson
stars (RMSBS) are studied. We show the numerical results
of the equations of motion and show the characteristics of
the 1S2S state and the 1S2P state in Sec. IV. We conclude in
Sec. V with a discussion and an outline for further work.

II. THE MODEL SETUP

We start with the theory of Einstein gravity coupled to
two massive complex scalar fields ψ i (i ¼ 1, 2),

S ¼
Z
M

d4x
ffiffiffiffiffiffi
−g

p �
R

16πG
−∇aψ

�
1∇aψ1 − μ21jψ1j2

−∇aψ
�
2∇aψ2 − μ22jψ2j2

�
; ð1Þ

where μi (i ¼ 1, 2) are the mass of two scalar fields,
respectively. From henceforth, we will set G ¼ c ¼ 1. The
corresponding equations of motion are given by

Rab

8π
¼ 2∇ðaψ�

1∇bÞψ1 þ gabμ21ψ
�
1ψ1

þ 2∇ðaψ�
2∇bÞψ2 þ gabμ22ψ

�
2ψ2; ð2aÞ

□ψ1 ¼ μ21ψ1; ð2bÞ

□ψ2 ¼ μ22ψ2: ð2cÞ

When both of the two scalar fields vanish, the solution of
Eq. (2a) has the stationary axisymmetric asymptotically flat
black hole with a mass and angular momentum, which is

the well-known Kerr black hole. In terms of Boyer-
Lindquist coordinates, the Kerr metric reads

ds2 ¼ −
Δ
Σ2

ðdt − asin2θdϕÞ2 þ sin2θ
Σ2

½adt − ðr2 þ a2Þdϕ�2

þ Σ2

�
dθ2 þ dr2

Δ

�
; ð3Þ

with Δ ¼ r2 þ a2 − 2Mr and Σ2 ¼ r2 þ a2 cos2 θ. The
black hole event horizon is a null hypersurface with r ¼
rþ ≡M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
, angular velocityΩK ¼ a=ða2 þ r2þÞ,

and temperature TK ¼ ðr2þ − a2Þ=½4πrþðr2þ þ a2Þ�. The
constant M is the black hole mass and a parametrized is
the angular momentum via J ¼ Ma.
In Refs. [37,38], Herdeiro and Radu constructed a family

of boson stars as well as a Kerr black hole with a ground
state scalar hair. In order to construct stationary solutions of
the RMSBS, we also take the same numerical method with
the following ansatz:

ds2 ¼ e2F1

�
dr2

N
þ r2dθ2

�
þ e2F2r2sin2θðdφ −WdtÞ2

− e2F0Ndt2; ð4Þ

with N ¼ 1 − rH
r , and the constant rH that is related to event

horizon radius. Besides, the ansatz of two complex scalar
fields ψ i are given by

ψ i ¼ ϕiðnÞðr; θÞeiðmiφ−ωitÞ; i ¼ 1; 2; n ¼ 0; 1;…;

mi ¼ �1;�2;…: ð5Þ

Here, we note that the six functions F0, F1, F2,W, and ϕiðnÞ
(i ¼ 1, 2) depend on the radial distance r and polar angle θ.
Again, the constants ωi (i ¼ 1, 2) are the frequency of the
complex scalar field and mi (i ¼ 1, 2) are the azimuthal
harmonic index, respectively. When ω1 ¼ ω2 ¼ ω, the
frequency of the scalar field is called the synchronized
frequency, while ω1 ≠ ω2 is called the nonsynchronized
The subscript n of Eq. (5) is named as the principal
quantum number of the scalar field, and n ¼ 0 is regarded
as the ground state and n ≥ 1 as the excited states. Besides,
in the scalar ansatz (5), subscripts i are indicated by two
complex scalar fields only.
It is well known that the ground state scalar hair has no

node, that is, along the radial r direction, the value of the
scalar field has the same sign. For the rotating boson stars
with first excited state, we observe that there are two types
of nodes, radial and angular nodes. Radial nodes are the
points where the value of the scalar field can change sign
along the radial r direction, while angular nodes are the
points where the value of the scalar field can change sign
along the angular θ direction. Hence, we would like to
construct rotating boson stars composed of two coexisting
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states of the scalar fields, including the ground state and the
first excited state.

III. BOUNDARY CONDITIONS

Before numerically solving the differential equations
instead of seeking the analytical solutions, we should
obtain the asymptotic behaviors of the metric functions
F0ðr; θÞ; F1ðr; θÞ; F2ðr; θÞ, and Wðr; θÞ as well as the
scalar field ϕiðnÞðr; θÞ (i ¼ 1, 2), which is equivalent to
knowing the boundary conditions we need. Considering the
properties of the RMSBS, we will still use the boundary
conditions by following the same steps as given in
Refs. [37,38,49].
For rotating axially symmetric boson stars, exploiting the

reflection symmetry θ → π − θ on the equatorial plane, it is
enough to consider the range θ ∈ ½0; π=2� for the angular
variable. At infinity r → ∞, the boundary conditions are

F0 ¼ F1 ¼ F2 ¼ W ¼ ϕiðnÞ ¼ 0;

ði ¼ 1; 2Þ; n ¼ 0; 1;…; ð6Þ

and we require the boundary conditions,

∂θF0ðr; 0Þ ¼ ∂θF1ðr; 0Þ ¼ ∂θF2ðr; 0Þ ¼ ∂θWðr; 0Þ
¼ ϕiðnÞðr; 0Þ ¼ 0; n ¼ 0; 1;…; ð7Þ

for θ ¼ 0. For odd parity solutions, we have

∂θF0ðr; π=2Þ ¼ ∂θF1ðr; π=2Þ ¼ ∂θF2ðr; π=2Þ
¼ ∂θWðr; π=2Þ ¼ ϕiðnÞðr; π=2Þ ¼ 0;

n ¼ 1; 2;…; ð8Þ

for θ ¼ π=2, while for even parity solutions,
∂θϕiðnÞðr; π=2Þ ¼ 0 with n ¼ 1; 2;….
For rotating multistate boson stars solutions with rH ¼ 0,

ϕiðnÞð0; θÞ ¼ 0;

∂rWð0; θÞ ¼ 0: ð9Þ

We note that the values of F0ð0; θÞ; F1ð0; θÞ; F2ð0; θÞ, and
Wð0; θÞ are the constants that are not dependent of the polar
angle θ.
Near the boundary r → ∞, on the other hand, the mass of

boson stars M and the total angular momentum J are
extracted from the asymptotic behavior of the metric
functions,

gtt ¼ −1þ 2GM
r

þ � � � ;

gφt ¼ −
2GJ
r

sin2θ þ � � � : ð10Þ

IV. NUMERICAL RESULTS

In this section, we will solve the above coupled Eqs. (2a),
(2b), and (2c) with the ansatzs (4) and (5) numerically; it is
convenient to change the radial coordinate r to

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − r2H

p
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − r2H

p ; ð11Þ

which implies that the new radial coordinate x ∈ ½0; 1�.
Thus, the inner and outer boundaries of the shell are fixed at
x ¼ 0 and x ¼ 1, respectively. By exploiting the reflection
symmetry θ → π − θ on the equatorial plane, it is enough to
consider the range θ ∈ ½0; π=2� for the angular variable. In
addition, there exist two classes of solutions: horizonless
boson star solutions with rH ¼ 0 and hairy black hole
solutions with rH > 0. In this paper, however, we mainly
consider the boson star solutions with rH ¼ 0.
Before numerically solving the equations, we can study

the dependence on the synchronized frequency ω, the
nonsynchronized frequencies ω1, ω2, and the scalar field
masses μ1 and μ2, respectively. To simplify our analysis, we
can work at a fixed value of only one of the scalar field
masses; for instance, μ1 ¼ 1.
All numerical calculations are based on the finite

element methods. Typical grids used have sizes of 100 ×
100 in the integration region 0 ≤ x ≤ 1 and 0 ≤ θ ≤ π

2
. Our

iterative process is the Newton-Raphson method, and the
relative error for the numerical solutions in this work is
estimated to be below 10−5.
Next, we will discuss the RMSBS, including the princi-

pal quantum number n ¼ 0, which is the ground state case
and the principal quantum number n ¼ 1, which belongs to
the case of the first excited state. Besides, we exhibit two
classes of radial nr ¼ 1 and angular nθ ¼ 1 node solutions,
respectively. As noted above, for the case of rotating boson
stars with the first excited state, there is a similar situation
in atomic theory and quantum mechanics; the first excited
state of hydrogen has an electron in the 2s orbital and the 2p
orbital, which correspond to the radial and angle node,
respectively. Therefore, the coexisting states of two scalar
fields, which have a ground state and a first excited state
with a radial node nr ¼ 1, is named as the 1S2S state.
Besides, the coexistence of a ground state and a first excited
state with an angle node nθ ¼ 1 is called the 1S2P state.

A. 1S2S state

In this subsection, we will study the solutions with an
even-parity scalar field. Along the angular θ direction, the
values of the scalar fields ϕ1 and ϕ2 have the same sign.
Along the radial r direction, the scalar field ϕ1 keeps the
same sign, while, the scalar field ϕ2 changes sign once at
some point. From the view of the excited states, these two
states are just similar to the 1-s and 2-s states of the
hydrogen atom, respectively.

ROTATING MULTISTATE BOSON STARS PHYS. REV. D 101, 044017 (2020)

044017-3



1. Boson star

Numerical results are presented in Fig. 1. We present the
scalar field ϕ1 (left panel) and ϕ2 (middle panel) as a
function of x and θ with the azimuthal harmonic index
m1 ¼ m2 ¼ 1 for the same frequency ω1 ¼ ω2 ¼ 0.8. The
distribution of the scalar field ϕ1 (blue lines) and the scalar
field ϕ2 (red lines) versus the boundary x for several values
of frequency ω1 ¼ ω2 are exhibited in the right panel of
Fig. 1; we can observe that the scalar field ϕ2 changes sign
once from the center of the boson stars to the boundary in a
node. These behaviors are further shown in Fig. 2.
Meanwhile, to discuss the properties of the RMSBS, we

also simplify our analysis; we mainly exhibit in Figs. 2 and
4 the mass M and the angular momentum J of several sets
of the RMSBS versus the synchronized frequency ω and
the nonsynchronized frequency ω2 with the azimuthal
harmonic index m2 ¼ 1, 2, 3.

The left panel of Fig. 2 exhibits the variation of the mass
of the RMSBS versus the synchronized frequency ω with
the azimuthal harmonic index m2 ¼ 1, 2, 3, represented by
the blue, cyan, and red lines, respectively, and the black
hollowed line indicates the ground state with m1 ¼ 1. First
observe that the domain of existence of the RMSBS are
similar to the ground state boson stars in Ref. [38]. We
again observe that as the synchronized frequency ω
decreases, the mass of the RMSBS keeps increasing. In
Ref. [38], the behavior of the ground state solutions with
m1 ¼ 1 spirals to the center; however, the RMSBS case
does not occur with a second branch of unstable solutions
with m2 ¼ 1, 2, 3. In addition, we observe that, as the
azimuthal harmonic index m2 increases, the maximum
value of the synchronized frequency ω also increases, and
the minimum value of the mass of the RMSBS decreases as
m2 increases, and the multistate curves for m2 ¼ 2, 3
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FIG. 1. The distribution of the scalar field ϕ1 as a function of x and θ (left panel) and the scalar ϕ2 as a function of x and θ (middle
panel) with the same parameter ω1 ¼ ω2 ¼ 0.8, as well as the numerical solutions of the scalar fields ϕi (i ¼ 1, 2) versus the boundary x,
represented by the blue and red lines, respectively, and the horizon dashed black line represents the zero value (right panel). All solutions
have m1 ¼ m2 ¼ 1, μ1 ¼ 1, and μ2 ¼ 0.93.
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FIG. 2. Left: The massM of the RMSBS as a function of the synchronized frequency ω with an azimuthal harmonic index m2 ¼ 1, 2,
3. Three intersection points correspond to the coordinates (0.861, 1.23), (0.892, 1.15), and (0.907, 1.10), respectively. Right: The mass
M of the RMSBS as a function of the nonsynchronized frequency ω2 with the fixed parameter ω1 ¼ 0.85. The horizon red dashed line
indicate the massM ¼ 1.26, and the right ends of the blue, cyan, and red dotted lines correspond to the same value ofM with coordinates
(0.855, 1.26), (0.879, 1.26), and (0.897, 1.26), respectively. In both panels, the black hollowed line indicates the ground state solutions,
and the inset of both panels show the ground state with μ1 ¼ 1 (black line), the first excited state with μ2 ¼ 0.93 (purple line), and the
multistate with μ1 ¼ 1, μ2 ¼ 0.93 (blue line). All solutions have m1 ¼ 1.
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intersect with the ground state solutions with coordinates
(0.892, 1.15) and (0.907, 1.10), respectively. From the inset
in left panel of Fig. 2, we can see that the curves of the
ground state with μ1 ¼ 1 (black), and first excited states
with μ2 ¼ 0.93 (purple). The multistate curve with μ1 ¼ 1,
μ2 ¼ 0.93 (blue) intersects with the ground and first excited
states with the coordinates (0.861, 1.23) and (0.779, 2.10),
respectively. This means that when the synchronized
frequency ω tends to its maximum, the first excited state
could reduce to zero, and there exists only a single the
ground state. On the contrary, with the decrease of the
synchronized frequency ω, there exists only the first
excited state.

In the right panel of Fig. 2, we plot the mass of the
RMSBS versus the nonsynchronized frequency ω2 for the
fixed value of ω1 ¼ 0.85. One observes that, by increasing
the azimuthal harmonic index m2, the mass of the RMSBS
keeps increasing. Meanwhile, as ω2 increases to its
maximum, the minimum value of the mass of the
RMSBS is the constant value M ¼ 1.26; three coordinates
correspond to (0.855, 1.26), (0.879, 1.26), and (0.897,
1.26), respectively. From the inset in right panel of Fig. 2,
we show the ground state with μ1 ¼ 1 (the black lines) and
first excited states with μ2 ¼ 0.93 (the purple lines). The
multistate with μ1 ¼ 1, μ2 ¼ 0.93 (the blue line) intersects
with the ground and first excited states with coordinates
(0.855, 1.26) and (0.826, 2.01), respectively. That is, as the
nonsynchronized frequency ω2 increases, the first excited
state could decrease to zero and the mass of the RMSBS is
provided by the ground state. On the contrary, with the
decrease of the nonsynchronized frequency ω2, there exists
only the first excited state. While we fixed the value of
ω1 ¼ 0.85, the minimal mass of the RMSBS is always a
constant value M ¼ 1.26 for the different azimuthal har-
monic indexes m2 ¼ 2, 3.
In order to verify whether there exists another family of

multistate solutions between the ground state and the first
excited state, we use two methods to seek for the new
family of multistate solutions. The first way is that we adopt
the similar method as the numerical algorithm given in
Sec. VII B of [53], and the second way is at the fixed μ1 ¼
1 where we change the values of μ2 to seek for the new
family of multistate solutions for the same parameters.
However, we fail to find the other family of multistate
solutions in the maximum and minimum of the frequency
for the cases of the 1S2S and 1S2P states. As an example in
Fig. 3, the massM of RMSBS is a function of synchronized
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(0.62,1.25)

M
 1

 0.93
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FIG. 3. The mass M of RMSBS as a function of synchronized
frequency ω for the different values of μ2. The black hollowed
line denotes the ground state with μ1 ¼ 1, and all solutions have
m1 ¼ m2 ¼ 1 and μ1 ¼ 1.
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FIG. 4. Left: The mass M of the RMSBS versus the angular momentum J for the synchronized frequency ω with m2 ¼ 1, 2, 3,
respectively. Right: The massM of the RMSBS versus the angular momentum J for the nonsynchronized frequency ω2 with m2 ¼ 1, 2,
3, respectively, and we demand the parameter ω1 ¼ 0.85.
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frequency ω for the different values of μ2. We observe that
the domain of existence of the synchronized frequency ω
decreases with the decrease of the scalar field mass μ2.
Furthermore, when μ2 → 0.7121, the multistate curves
approach the turning point of the ground state curves,
and the synchronized frequency ω have a narrower range
with (0.646, 0.647). However, we fail to find the new
family of multistate solutions between the ground state and
the first excited state, but that does not mean there does not
exist any new family of multistate solutions. At present, it is
difficult for us to find the other family of multistate
solutions with numerical methods.
Moving on with our analysis, we now consider the

variation of the solutions with the mass M of the rotating
multistate boson stars that varies versus the angular
momentum J, which is dependent on the frequency. In
Fig. 4 (left panel), we exhibit the mass M of the RMSBS
versus the angular momentum J with different azimuthal
harmonic index m2 ¼ 1 (blue lines), 2 (cyan lines), and 3
(red lines) for the synchronized frequency ω. In the right
panel of Fig. 4, the massM versus the angular momentum J
with different azimuthal harmonic indexes m2 ¼ 1, 2, 3 for
the nonsynchronized frequency ω2 are shown, and we set
the frequency parameter ω1 ¼ 0.85. Comparing with the
results of the ground state boson stars in Ref. [38], we can
see that the case of the RMSBS does not occur in zigzag
patterns, and the minimum value of the mass M is larger
than that of the ground state boson stars.
In Table I, we show the domain of existence of the

mass μ2 of the scalar field ϕ2 in three different situa-
tions. The mass μ2 versus the synchronized frequency ω
in Table I(a), the nonsynchronized frequency ω1 in
Table I(b), and the nonsynchronized frequency ω2 in
Table I(c), as well as the three subtables have the same
azimuthal harmonic index parameters m2 ¼ 1, 2, 3,
respectively.
In order to explore the influence of the different typical

frequencies, the domain of existence of the mass μ2 with the
azimuthal harmonic index parameter m2 ¼ 1, 2, 3 for the
same parameters ω ¼ ω1 ¼ ω2 ¼ 0.84, 0.86, 0.88 are
shown. From Table I(a), it is obvious that the domain of
existence of the mass μ2 decreases with increasing
synchronized frequency ω. Again, by increasing the value
of the azimuthal harmonic index parameter m2, the mass
domain as the synchronized frequency ω keeps increasing.
In order to compare the results of the domain of existence
of the mass μ2 of the scalar field ϕ2 versus the synchronized
frequency ω, we exhibit the domain of existence of the
mass μ2 of the scalar field ϕ2 as a function of the
nonsynchronized frequency ω1 in Table I(b) and ω2 in
Table I(c) for the azimuthal harmonic index parameters
m2 ¼ 1, 2, 3. On the other hand, in Tables I(b) and I(c),
the domain of existence of the mass μ2 with m2 ¼ 1, 2, 3
is similar to the case of synchronized frequency ω in
Table I(a), respectively.

B. 1S2P state

In this subsection, we exhibit the solutions with one
even-parity and one odd-parity scalar field. Along the
angular θ and the radial r directions, the scalar fields ϕ1

and ϕ2 also keep the same sign. Moreover, it is noted that
the configuration with an odd parity are more unstable than
the case with an even-parity scalar field [37,49]. Form the
view of the excited states, these two states are just similar to
the 1-s and 2-p states of the hydrogen atom, respectively.

1. Boson star

In Fig. 5, we exhibit the scalar fields ϕ1 (left panel) and
ϕ2 (middle panel) as a function of x and θ with the

TABLE I. The domain of existence of the mass μ2 of the scalar
field ϕ2 in three different situations: The synchronized frequency
ω1 ¼ ω2 ¼ ω (left panel), the nonsynchronized frequency ω1

(middle panel), and the nonsynchronized frequency ω2 (right
panel) with m2 ¼ 1, 2, 3, respectively. In the middle and right
panels, we adopt ω2 ¼ 0.85 and ω1 ¼ 0.85, respectively. All
solutions have μ1 ¼ 1 and m1 ¼ 1.

(a)

μ2

m2

ω 1 2 3

0.78 0.874–0.931 0.828–0.920 0.803–0.917
0.81 0.897–0.944 0.859–0.934 0.836–0.931
0.84 0.917–0.955 0.887–0.947 0.868–0.944
0.86 0.930–0.962 0.905–0.955 0.887–0.953
0.88 0.942–0.969 0.921–0.963 0.906–0.961

(b)

μ2

m2

ω1 1 2 3

0.70 1.058–1.120 0.927–1.080 0.879–1.070
0.80 0.956–1.004 0.910–0.991 0.882–0.986
0.84 0.930–0.968 0.899–0.959 0.878–0.956
0.86 0.918–0.951 0.893–0.944 0.876–0.942
0.88 0.907–0.934 0.887–0.929 0.873–0.927

(c)

μ2

m2

ω2 1 2 3

0.83 0.899–0.935 0.873–0.928 0.855–0.926
0.84 0.911–0.947 0.884–0.940 0.866–0.937
0.85 0.924–0.959 0.896–0.951 0.878–0.949
0.86 0.936–0.971 0.908–0.963 0.889–0.960
0.88 0.959–0.994 0.930–0.985 0.911–0.983
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azimuthal harmonic indexes m1 ¼ m2 ¼ 1, ω1 ¼ ω2 ¼
0.84, and μ1 ¼ 1 and μ2 ¼ 0.93. The distribution of the
scalar field ϕ1 (blue lines) and ϕ2 (red lines) versus the
boundary x for several values of the frequency ω1 ¼ ω2 are
exhibited in the right panel of Fig. 5. Along the equatorial
plane at θ ¼ π=2, we can see that the value of the scalar
field ϕ2 tends to zero from the center of the boson stars to
the boundary. To discuss the properties of the RMSBS with
the 1S2P state, we mainly exhibit in Fig. 6 the massM of the
RMSBS versus the synchronized frequency ω and the
nonsynchronized frequency ω2 with the azimuthal har-
monic indexes m2 ¼ 1, 2, 3.
In the left panel of Fig. 6, we show the mass of the

RMSBS versus the synchronized frequencyωwithm2 ¼ 1,
2, 3, represented by the blue, cyan, and red lines, respec-
tively, and the black hollowed line indicates the ground

state solutions for m1 ¼ 1. We found that the domain of
existence of the RMSBS are similar to the ground state
boson stars in Ref. [38]. Again, the mass of the RMSBS
increases as the synchronized frequency ω decreases. The
RMSBS case exhibits only a stable branch with m2 ¼ 1, 2,
3, which is similar to the multistate with the 1S2S state.
Besides, we note that, as the azimuthal harmonic index m2

increases, this maximum value of the synchronized fre-
quency ω decreases, and the minimum value of the mass of
the RMSBS decreases as well. Hence, three sets of the
RMSBS intersect with the ground state solutions for the
coordinates (0.844, 1.26), (0.891, 1.15), and (0.908, 1.11),
respectively. From the inset in the left panel of Fig. 6, we
note that the ground state with μ1 ¼ 1 (the black lines), and
the first excited states with μ2 ¼ 0.93 (the purple lines).
The multistate with μ1 ¼ 1, μ2 ¼ 0.93 (the blue line)
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0.000

0.005
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0.030

i

X

 
1
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1
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1
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1
=0.78

  all values of 
2

FIG. 5. The distribution of the scalar field ϕ1 as a function of x and θ (left panel) as well as the scalar ϕ2 as a function of x and θ
(middle panel) with the same frequency ω1 ¼ ω2 ¼ 0.84. The numerical solutions of the scalar fields ϕi (i ¼ 1, 2) versus the boundary x
with an azimuthal harmonic index m1 ¼ 1, represented by the blue and red lines (right panel), respectively. All solutions have
m1 ¼ m2 ¼ 1, μ1 ¼ 1, and μ2 ¼ 0.93.

M
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m2=1
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m2=3

(0.844, 1.26)

(0.891,1.15)

(0.908,1.11)

(0.844, 1.26)

(0.695, 1.88)

The ground state
The multistate
The first excited state
m1=m2=1, 1=1, 2=0.93

(0.773, 1.89)

(0.823, 1.31)

The ground state
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m1=m2=1, 1=1, 2=0.93

M
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1 = 0.8

(0.823, 1.31)

(0.871, 1.31)

(0.897, 1.31)

FIG. 6. Left: The massM of the RMSBS as a function of the synchronized frequency ω with the azimuthal harmonic indexesm2 ¼ 1,
2, 3. Three intersection points correspond to the coordinates (0.844, 1.26), (0.891, 1.15), and (0.908, 1.11), respectively. Right: The mass
M of the RMSBS against the nonsynchronized frequency ω2 with the nonsynchronized frequencyω1 ¼ 0.8. The horizon red dashed line
indicate the massM ¼ 1.31, and the right ends of the blue, cyan, and red dotted lines correspond to the same value ofM with coordinates
(0.823, 1.31), (0.871, 1.31), and (0.897, 1.31), respectively. In both panels, the black hollowed line indicates the ground state solutions,
and the inset of both panels show the ground state with μ1 ¼ 1 (black line), the first excited state with μ2 ¼ 0.93 (purple line), and the
multistate with μ1 ¼ 1, μ2 ¼ 0.93 (blue line). All solutions have m1 ¼ 1.
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intersect with the ground and first excited states with
coordinates (0.844, 1.26) and (0.695, 1.88), respectively,
which is similar to the multistate curves with the 1S2S state.
In the right panel of Fig. 6, we plot the mass of the

RMSBS versus the nonsynchronized frequency ω2 for the
ω1 ¼ 0.8. We found that the mass of the RMSBS is
increasing as m2 increases. Moreover, by increasing ω2,
the minimum value of the mass of the RMSBS is heavier
than the case of the right panel of Fig. 2. Furthermore, from
the inset in the right panel of Fig. 6, we also note that the
detail of the curves of the ground state with μ1 ¼ 1 (black)
and the first excited states with μ2 ¼ 0.93 (purple). The
multistate curve with μ1 ¼ 1, μ2 ¼ 0.93 (blue) intersects
with the ground and first excited states with coordinates
(0.773, 1.89) and (0.823, 1.31), which is similar to the 1S2S

state case. Because we fixed the value of ω1 ¼ 0.8, the
minimal mass of the RMSBS is always a constant value
M ¼ 1.31 for the different azimuthal harmonic indexes
m2 ¼ 2, 3. Thus, three coordinates correspond to (0.823,
1.31), (0.871, 1.31), and (0.897, 1.31), respectively.
In Table II, we present the domain of existence of the

mass μ2 of the scalar field ϕ2 in three different situa-
tions. The mass μ2 versus the synchronized frequency ω
in Table II(a), the nonsynchronized frequency ω1 in
Table II(b), and the nonsynchronized frequency ω2 in
Table II(c). The three subtables have the same azimuthal
harmonic index parameter m2 ¼ 1, 2, 3, respectively. In
Tables II(a) and II(c), the domain of existence of the
mass μ2 with the azimuthal harmonic index parameters
m2 ¼ 1, 2, 3 for the same parameters ω ¼ ω2 ¼ 0.84, 0.86,
0.88 are shown. From Tables II(a) and II(c), we obvious
that the domain of existence of the mass μ2 decreases with
increasing synchronized frequency ω and nonsynchronized
frequency ω2.
In addition, as the value of the azimuthal harmonic index

parameter m2 increases, the domain of existence of the
mass μ2 also increases. In order to compare with the results
of the domain of existence of the mass μ2 of the scalar field
ϕ2 versus the synchronized frequency ω, in Table II(b), we
exhibit the domain of existence of the mass μ2 with the
nonsynchronized frequency ω1 for the azimuthal harmonic
index parameters m2 ¼ 1, 2, 3. We note that, for the values
of the nonsynchronized frequencies ω1 ¼ 0.82, ω1 ¼ 0.84,
and ω1 ¼ 0.86 in Table II(b), the domain of existence of the
mass μ2 has the similar behavior as the case of 1S2S state in
Table I(b).

V. CONCLUSION

In this paper, we have constructed and analyzed rotating
boson stars composed of the coexisting states of two
massive scalar fields, including the ground state and the
first excited state. Comparing with the solutions of the
rotating ground state boson stars in Ref. [38], we have
found that the RMSBS have two types of nodes, including
the 1S2S state and the 1S2P state. By calculating the
coexisting phase of the RMSBS for the two types of
nodes, we found that the domain of existence of the mass μ2
decreases with an increasing synchronized frequency ω,
meanwhile, by increasing the value of the azimuthal
harmonic index parameter m2, the mass domain as the
synchronized frequency ω keeps increasing. Furthermore,
when the nonsynchronized frequency ω2 increases, the
scalar field of the first excited state could decease to zero,
and the minimal mass of the RMSBS is provided by the
scalar field of the ground state. Therefore, the mass of the
RMSBS is always a constant value for the different
azimuthal harmonic indexes m2 ¼ 1, 2, 3. In addition,
from the numerical results, it is obvious that the mass of the
RMSBS is heavier than the case of the ground state.

TABLE II. The domain of existence of the mass μ2 of the scalar
field ϕ2 in three different situations: The synchronized frequency
ω ¼ ω1 ¼ ω2 (left panel), the nonsynchronized frequency ω1

(middle panel), and the nonsynchronized frequency ω2 (right
panel) with m2 ¼ 1, 2, 3, respectively. In the middle and right
panels, we set ω1 ¼ 0.8, ω2 ¼ 0.8, respectively. All solutions
have μ1 ¼ 1 and m1 ¼ 1.

(a)

μ2

m2

ω 1 2 3

0.74 0.837–0.950 0.771–0.918 0.757–0.910
0.78 0.881–0.962 0.819–0.936 0.811–0.932
0.82 0.914–0.972 0.864–0.951 0.844–0.945
0.84 0.928–0.976 0.885–0.958 0.864–0.952
0.86 0.940–0.980 0.904–0.964 0.885–0.959

(b)

μ2

m2

ω1 1 2 3

0.75 0.930–1.026 0.843–0.989 0.825–0.978
0.80 0.898–0.967 0.842–0.943 0.823–0.936
0.82 0.887–0.946 0.840–0.927 0.822–0.921
0.84 0.876–0.926 0.837–0.910 0.821–0.906
0.86 0.865–0.908 0.834–0.895 0.819–0.891

(c)

μ2

m2

ω2 1 2 3

0.78 0.870–0.941 0.818–0.919 0.799–0.912
0.80 0.898–0.967 0.842–0.943 0.822–0.936
0.82 0.927–0.994 0.866–0.968 0.844–0.961
0.84 0.956–1.021 0.891–0.993 0.866–0.985
0.86 0.985–1.048 0.916–1.018 0.889–1.009
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In order to better understand the stability properties of
the RMSBS, according to the numerical analysis of the
stability of the excited boson stars studied in [25], the
authors found the most stable solution will always belong
to the set of ground state solutions, and for the case of
nonrotating multistate boson stars [20], the authors also
found that there is a region of the solution space with stable
configurations, that is, the deeper gravitational potential
generated by the ground state, which is large enough to
stabilize the excited state. It is worth to point out that it is
difficult to numerically analyze the stability properties of
rotating multistate boson stars. However, a good way to
guarantee the stability of a specific solution is to have the
linear perturbation mode in [39].
Recently, motivation by the increasing interest in the

models which consider scalar fields as viable dark matter
candidates [54–58] has increased. For the ground state
boson stars, these structures could produce rotation curves
(RC), but the RC are not flat enough at large radii.
Moreover, the excited state boson stars typically produce
a more physically realistic, flatter RC, for which the
solutions are unstable. In 2010, Bernal et al. [20] have
obtained the configurations with two states, a ground and a
first existed state, and they have demonstrated that the RC
of multistate boson stars are flatter at large radii than the RC
of single boson stars. As discussed above, the case of
multistate boson stars is the spherically symmetric, non-
rotating solutions. For the axisymmetric, rotating multistate
solutions, however, we believe that the RC of rotating
multistate boson stars also are flatter at large radii than the

RC of single rotating solutions, and we hope that the RC of
rotating multistate boson stars could be better used to
accurately fit the rotation curves within the observational
data. Therefore, we will calculate the rotation curves of
rotating multistate boson stars in future work.
There are several interesting extensions of our work.

Firstly, we have studied the rotating multistate boson
stars; we would like to investigate how self-interactions
of the scalar field affects the rotating multistate boson stars
inspired by the work [34]. Secondly, the extension of our
study is to construct the multistated Kerr black hole with
scalar hairs, where two coexisting states of the scalar field
are presented, including the ground and excited states.
Finally, we are planning to numerically analyze the linear
stability properties of the rotating multistate boson stars in
future work.

ACKNOWLEDGMENTS

YQW would like to thank Yu-Xiao Liu and Jie Yang for
helpful discussions. We would also like to thank the
anonymous referee for the valuable comments which helped
to improve the manuscript. Some computations were
performed on the Shared Memory system at Institute of
Computational Physics and Complex Systems in Lanzhou
University. This work was supported by the Natural Science
Foundation of China (Grants No. 11675064, No. 11522541,
and No. 11875175), and the Fundamental Research Funds
for the Central Universities (Grants No. lzujbky-2017-182,
No. lzujbky2017-it69, and No. lzujbky-2018-k11).

[1] J. A. Wheeler, Geons, Phys. Rev. 97, 511 (1955).
[2] E. A. Power and J. A. Wheeler, Thermal Geons, Rev. Mod.

Phys. 29, 480 (1957).
[3] R. Ruffini and S. Bonazzola, Systems of self-gravitating

particles in general relativity and the concept of an equation
of state, Phys. Rev. 187, 1767 (1969).

[4] D. J.Kaup,Klein-GordonGeon, Phys. Rev. 172, 1331 (1968).
[5] E. W. Mielke and R. Scherzer, Geon-type solutions of the

nonlinear Heisenberg-Klein-Gordon equation, Phys. Rev. D
24, 2111 (1981).

[6] M. Colpi, S. L. Shapiro, and I. Wasserman, Boson Stars-
Gravitational Equilibria of Self-Interacting Scalar Fields,
Phys. Rev. Lett. 57, 2485 (1986).

[7] B. Hartmann, B. Kleihaus, J. Kunz, and I. Schaffer,
Compact boson stars, Phys. Lett. B 714, 120 (2012).

[8] S. Kumar, U. Kulshreshtha, and D. S. Kulshreshtha, Boson
stars in a theory of complex scalar field coupled to gravity,
Gen. Relativ. Gravit. 47, 76 (2015).

[9] R. L. Guenther, A numerical study of the time dependent
Schrodinger equation coupled with Newtonian gravity,
Ph.D. Thesis, University of Texas at Austin, 1995.

[10] P. Jetzer and J. J. van der Bij, Charged boson stars, Phys.
Lett. B 227, 341 (1989).

[11] C. Dariescu and M. A. Dariescu, Boson Nebulae charge,
Chin. Phys. Lett. 27, 011101 (2010).

[12] G. Murariu and G. Puscasu, Solutions for Maxwell-
equations system in a static conformal space-time, Rom.
J. Phys. 55, 47 (2010).

[13] G. Murariu, C. Dariescu, and M. A. Dariescu, MAPLE
routines for bosons on curved manifolds, Rom. J. Phys. 53,
99 (2008).

[14] S. Kumar, U. Kulshreshtha, and D. S. Kulshreshtha,
Charged compact boson stars and shells in the presence
of a cosmological constant, Phys. Rev. D 94, 125023
(2016).

[15] Y. Brihaye, T. Caebergs, and T. Delsate, Charged-spinning-
gravitating Q-balls, arXiv:0907.0913.

[16] A. B. Henriques, A. R. Liddle, and R. G. Moorhouse, Com-
bined boson-fermion stars, Phys. Lett. B 233, 99 (1989).

[17] A. B. Henriques, A. R. Liddle, and R. G. Moorhouse,
Combined boson-fermion stars: Configurations and stabil-
ity, Nucl. Phys. B337, 737 (1990).

ROTATING MULTISTATE BOSON STARS PHYS. REV. D 101, 044017 (2020)

044017-9

https://doi.org/10.1103/PhysRev.97.511
https://doi.org/10.1103/RevModPhys.29.480
https://doi.org/10.1103/RevModPhys.29.480
https://doi.org/10.1103/PhysRev.187.1767
https://doi.org/10.1103/PhysRev.172.1331
https://doi.org/10.1103/PhysRevD.24.2111
https://doi.org/10.1103/PhysRevD.24.2111
https://doi.org/10.1103/PhysRevLett.57.2485
https://doi.org/10.1016/j.physletb.2012.06.067
https://doi.org/10.1007/s10714-015-1918-0
https://doi.org/10.1016/0370-2693(89)90941-6
https://doi.org/10.1016/0370-2693(89)90941-6
https://doi.org/10.1088/0256-307X/27/1/011101
https://doi.org/10.1103/PhysRevD.94.125023
https://doi.org/10.1103/PhysRevD.94.125023
https://arXiv.org/abs/0907.0913
https://doi.org/10.1016/0370-2693(89)90623-0
https://doi.org/10.1016/0550-3213(90)90514-E


[18] C. M. G. de Sousa, J. L. Tomazelli, and V. Silveira, Model
for stars of interacting bosons and fermions, Phys. Rev. D
58, 123003 (1998).

[19] F. Pisano and J. L. Tomazelli, Stars of WIMPs, Mod. Phys.
Lett. A 11, 647 (1996).

[20] A. Bernal, J. Barranco, D. Alic, and C. Palenzuela, Multi-
state boson stars, Phys. Rev. D 81, 044031 (2010).

[21] L. A. Urena-Lopez and A. Bernal, Bosonic gas as a Galactic
dark matter halo, Phys. Rev. D 82, 123535 (2010).

[22] S. H. Hawley and M.W. Choptuik, Numerical evidence for
‘multi-scalar stars’, Phys. Rev. D 67, 024010 (2003).

[23] Y. Brihaye, T. Caebergs, B. Hartmann, and M. Minkov,
Symmetry breaking in (gravitating) scalar field models
describing interacting boson stars and Q-balls, Phys. Rev.
D 80, 064014 (2009).

[24] Y. Brihaye and B. Hartmann, Angularly excited and
interacting boson stars and Q-balls, Phys. Rev. D 79,
064013 (2009).

[25] L. G. Collodel, B. Kleihaus, and J. Kunz, Excited Boson
Stars, Phys. Rev. D 96, 084066 (2017).

[26] S. L. Liebling and C. Palenzuela, Dynamical boson stars,
Living Rev. Relativity 15, 6 (2012); 20, 5 (2017).

[27] F. E. Schunck and E.W. Mielke, Rotating boson stars, in
Relativity and Scientific Computing: Computer Algebra,
Numerics, Visualization, 152nd WE-Heraeus seminar on
Relativity and Scientific Computing, Bad Honnef, Germany,
1995, edited by F.W. Hehl, R. A. Puntigam, and H. Ruder
(Springer, Berlin, New York, 1996), pp. 138–151.

[28] N. Kan and K. Shiraishi, Analytical approximation for
Newtonian boson stars in four and five dimensions–A poor
Person’s approach to rotating boson stars, Phys. Rev. D 94,
104042 (2016).

[29] S. Yoshida and Y. Eriguchi, Rotating boson stars in general
relativity, Phys. Rev. D 56, 762 (1997).

[30] O. J. C. Dias, G. T. Horowitz, and J. E. Santos, Black holes
with only one Killing field, J. High Energy Phys. 07 (2011)
115.

[31] I. Smolic, Symmetry inheritance of scalar fields, Classical
Quantum Gravity 32, 145010 (2015).

[32] C. A. R. Herdeiro, E. Radu, and H. F. Rnarsson, Spinning
boson stars and Kerr black holes with scalar hair: The effect
of self-interactions, Int. J. Mod. Phys. D 25, 1641014
(2016).

[33] T. D. Lee and Y. Pang, Stability of mini-boson stars, Nucl.
Phys. B315, 477 (1989).

[34] B. Kleihaus, J. Kunz, and S. Schneider, Stable phases of
boson stars, Phys. Rev. D 85, 024045 (2012).

[35] F. V. Kusmartsev, E. W. Mielke, and F. E. Schunck, Gravi-
tational stability of boson stars, Phys. Rev. D 43, 3895
(1991).

[36] F. V. Kusmartsev and F. E. Schunck, Analogies and
differences between neutron and boson stars studied with
catastrophe theory, Physica (Amsterdam) 178B, 24 (1992).

[37] C. Herdeiro and E. Radu, Construction and physical proper-
ties of Kerr black holes with scalar hair, Classical Quantum
Gravity 32, 144001 (2015).

[38] C. A. R. Herdeiro and E. Radu, Kerr Black Holes with
Scalar Hair, Phys. Rev. Lett. 112, 221101 (2014).

[39] B. Ganchev and J. E. Santos, Scalar Hairy Black Holes in
Four Dimensions are Unstable, Phys. Rev. Lett. 120,
171101 (2018).

[40] J. C. Degollado, C. A. R. Herdeiro, and E. Radu, Effective
stability against superradiance of Kerr black holes with
synchronized hair, Phys. Lett. B 781, 651 (2018).

[41] S. Hod, Stationary scalar clouds around rotating black holes,
Phys. Rev. D 86, 104026 (2012).

[42] C. L. Benone, L. C. B. Crispino, C. Herdeiro, and E. Radu,
Kerr-Newman scalar clouds, Phys. Rev. D 90, 104024
(2014).

[43] C. Herdeiro, E. Radu, and H. Rnarsson, Kerr black holes
with Proca hair, Classical Quantum Gravity 33, 154001
(2016).

[44] J. F. M. Delgado, C. A. R. Herdeiro, E. Radu, and H.
Runarsson, Kerr-Newman black holes with scalar hair,
Phys. Lett. B 761, 234 (2016).

[45] C. A. R. Herdeiro and E. Radu, Spinning boson stars and
hairy black holes with nonminimal coupling, Int. J. Mod.
Phys. D 27, 1843009 (2018).

[46] C. Herdeiro, I. Perapechka, E. Radu, and Y. Shnir, Sky-
rmions around Kerr black holes and spinning BHs with
Skyrme hair, J. High Energy Phys. 10 (2018) 119.

[47] W. E. East and F. Pretorius, Superradiant Instability and
Backreaction of Massive Vector Fields around Kerr Black
Holes, Phys. Rev. Lett. 119, 041101 (2017).

[48] C. A. R. Herdeiro and E. Radu, Asymptotically flat black
holes with scalar hair: A review, Int. J. Mod. Phys. D 24,
1542014 (2015).

[49] Y. Q. Wang, Y. X. Liu, and S. W. Wei, Excited Kerr black
holes with scalar hair, Phys. Rev. D 99, 064036 (2019).

[50] J. Kunz, I. Perapechka, and Y. Shnir, Kerr black holes with
parity-odd scalar hair, Phys. Rev. D 100, 064032 (2019).

[51] J. F. M. Delgado, C. A. R. Herdeiro, and E. Radu, Kerr black
holes with synchronized scalar hair and higher azimuthal
harmonic index, Phys. Lett. B 792, 436 (2019).

[52] J. Kunz, I. Perapechka, and Y. Shnir, Kerr black holes with
synchronized scalar hair and boson stars in the Einstein-
Friedberg-Lee-Sirlin model, J. High Energy Phys. 07 (2019)
109.

[53] O. J. C. Dias, J. E. Santos, and B. Way, Numerical methods
for finding stationary gravitational solutions, Classical
Quantum Gravity 33, 133001 (2016).

[54] V. Sahni and L. M. Wang, A new cosmological model of
quintessence and dark matter, Phys. Rev. D 62, 103517
(2000).

[55] T. Matos and L. A. Urena-Lopez, Quintessence and scalar
dark matter in the universe, Classical Quantum Gravity 17,
L75 (2000).

[56] W. Hu, R. Barkana, and A. Gruzinov, Cold and Fuzzy Dark
Matter, Phys. Rev. Lett. 85, 1158 (2000).

[57] T. Bernal, V. H. Robles, and T. Matos, Scalar field dark
matter in clusters of galaxies, Mon. Not. R. Astron. Soc.
468, 3135 (2017).

[58] L. E. Padilla, J. A. Vzquez, T. Matos, and G. Germn,
Scalar field dark matter spectator during inflation: The
effect of self-interaction, J. Cosmol. Astropart. Phys. 05
(2019) 056.

LI, SUN, HU, SONG, and WANG PHYS. REV. D 101, 044017 (2020)

044017-10

https://doi.org/10.1103/PhysRevD.58.123003
https://doi.org/10.1103/PhysRevD.58.123003
https://doi.org/10.1142/S0217732396000667
https://doi.org/10.1142/S0217732396000667
https://doi.org/10.1103/PhysRevD.81.044031
https://doi.org/10.1103/PhysRevD.82.123535
https://doi.org/10.1103/PhysRevD.67.024010
https://doi.org/10.1103/PhysRevD.80.064014
https://doi.org/10.1103/PhysRevD.80.064014
https://doi.org/10.1103/PhysRevD.79.064013
https://doi.org/10.1103/PhysRevD.79.064013
https://doi.org/10.1103/PhysRevD.96.084066
https://doi.org/10.12942/lrr-2012-6
https://doi.org/10.1007/s41114-017-0007-y
https://doi.org/10.1103/PhysRevD.94.104042
https://doi.org/10.1103/PhysRevD.94.104042
https://doi.org/10.1103/PhysRevD.56.762
https://doi.org/10.1007/JHEP07(2011)115
https://doi.org/10.1007/JHEP07(2011)115
https://doi.org/10.1088/0264-9381/32/14/145010
https://doi.org/10.1088/0264-9381/32/14/145010
https://doi.org/10.1142/S0218271816410145
https://doi.org/10.1142/S0218271816410145
https://doi.org/10.1016/0550-3213(89)90365-9
https://doi.org/10.1016/0550-3213(89)90365-9
https://doi.org/10.1103/PhysRevD.85.024045
https://doi.org/10.1103/PhysRevD.43.3895
https://doi.org/10.1103/PhysRevD.43.3895
https://doi.org/10.1016/0921-4526(92)90175-R
https://doi.org/10.1088/0264-9381/32/14/144001
https://doi.org/10.1088/0264-9381/32/14/144001
https://doi.org/10.1103/PhysRevLett.112.221101
https://doi.org/10.1103/PhysRevLett.120.171101
https://doi.org/10.1103/PhysRevLett.120.171101
https://doi.org/10.1016/j.physletb.2018.04.052
https://doi.org/10.1103/PhysRevD.86.104026
https://doi.org/10.1103/PhysRevD.90.104024
https://doi.org/10.1103/PhysRevD.90.104024
https://doi.org/10.1088/0264-9381/33/15/154001
https://doi.org/10.1088/0264-9381/33/15/154001
https://doi.org/10.1016/j.physletb.2016.08.032
https://doi.org/10.1142/S0218271818430095
https://doi.org/10.1142/S0218271818430095
https://doi.org/10.1007/JHEP10(2018)119
https://doi.org/10.1103/PhysRevLett.119.041101
https://doi.org/10.1142/S0218271815420146
https://doi.org/10.1142/S0218271815420146
https://doi.org/10.1103/PhysRevD.99.064036
https://doi.org/10.1103/PhysRevD.100.064032
https://doi.org/10.1016/j.physletb.2019.04.009
https://doi.org/10.1007/JHEP07(2019)109
https://doi.org/10.1007/JHEP07(2019)109
https://doi.org/10.1088/0264-9381/33/13/133001
https://doi.org/10.1088/0264-9381/33/13/133001
https://doi.org/10.1103/PhysRevD.62.103517
https://doi.org/10.1103/PhysRevD.62.103517
https://doi.org/10.1088/0264-9381/17/13/101
https://doi.org/10.1088/0264-9381/17/13/101
https://doi.org/10.1103/PhysRevLett.85.1158
https://doi.org/10.1093/mnras/stx651
https://doi.org/10.1093/mnras/stx651
https://doi.org/10.1088/1475-7516/2019/05/056
https://doi.org/10.1088/1475-7516/2019/05/056

