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We obtain new solutions of Einsteinian cubic gravity coupled to a Maxwell field that describe the near-
horizon geometry of charged and rotating black holes. We show that the AdS2 × S2 near-horizon geometry
of Reissner-Nordström black holes receives no corrections, but deviations with respect to the extremal
Kerr-Newman solution appear as we turn on the angular momentum. We construct the profile of these
corrected geometries using both numerical methods and slowly spinning expansions, but we also find
additional solutions that do not reduce to AdS2 × S2 geometries in any limit and that do not have a
counterpart in Einstein gravity. Quite remarkably, we are able to obtain closed-form exact expressions for
the area and Wald’s entropy of all of these solutions, and using this result, we analyze the phase space of
extremal back holes in this theory. To the best of our knowledge, this is the first time the entropy of a
rotating black hole in higher-order gravity has been exactly computed.
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I. INTRODUCTION

General relativity (GR) describes accurately the dynam-
ics of the gravitational field in the regime of relatively low
curvature, but modifications of this theory are expected to
appear at high energies. The fact that GR is incompatible
with quantum mechanics [1–3] indicates that it should be
regarded as an effective theory, presumably arising from an
underlying theory of quantum gravity. Independently of
what the UV completion of GR turns out to be, it is broadly
accepted that an effective low-energy description of that
theory will contain the Einstein-Hilbert action plus an
infinite tower of higher-derivative corrections—this is, in
particular, a definite prediction of string theory [4–10].
Such corrections modify the behavior of the gravitational
field when the distances involved are of the order of the
length scale of new physics. Thus, they become extremely
relevant in the very early universe or near black hole
singularities, but also at the level of the horizon of small
enough black holes. It is therefore an interesting task to
determine the properties of the modified black hole
solutions, with particular emphasis on the corrections to

the thermodynamic quantities, such as entropy and temper-
ature [11–15].
From the point of view of effective field theory (EFT),

one should treat the higher-derivative corrections as per-
turbations over the GR geometry. Obtaining the corrected
solutions in this perturbative approach is usually an
accessible task; however, perturbative solutions give us
very little information. In fact, the perturbative corrections
are only valid as long as they remain very small, and many
potentially interesting phenomena, which would appear at a
nonperturbative level, are lost. For this reason, it is
interesting to find exact black hole solutions of higher-
order gravity.
The problem of obtaining exact black hole solutions is,

of course, more complicated. Let us consider first the case
of spherically symmetric black holes. Until very recently,
the only theories in which exact solutions modifying in a
nontrivial way the Schwarzschild geometry had been
constructed were Lovelock [15–23] and quasitopological
gravities [24–27], both types of theories existing only in
D > 4 dimensions.1 The gap in D ¼ 4 has been recently
filled thanks to the construction of a new type of theories
with very interesting properties. Known as generalized
quasitopological gravities (GQTGs) [32], these theories
allow for simple spherically symmetric black hole solu-
tions whose thermodynamic properties can be studied
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1There are theories in which Einstein metrics are exact
solutions (e.g., if the Lagrangian only contains Ricci curvature
[28,29]), and others that possess “non-Schwarzschild” solutions
[30,31]. We are not including these in our discussion.
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analytically [32–34]. Besides, GQTGs exist in all dimen-
sions (including, in particular, D ¼ 4) and at all orders in
curvature [35], and very likely they provide a basis to
construct the most general EFT for gravity [36]. Spherically
symmetric solutions in these theories have been studied at
all orders in curvature in D ¼ 4 [37] and at cubic [32,38]
and quartic order [34,39] in various dimensions, and this
has allowed us to gain substantial information about
spherically symmetric black holes in higher-order gravity.
In particular, one of the most remarkable features of these
theories is that black holes become stable below certain
mass [37], hence avoiding the complete evaporation in a
finite time and the final explosion of black holes. This is
analogous to the behavior of higher-dimensional Lovelock
black holes found long ago in Ref. [11]. In this paper we
will consider an extension of Einstein gravity containing
the simplest nontrivial generalized quasitopological density
in D ¼ 4, which is known as Einsteinian cubic gravity
(ECG) [40]. This theory was the first member of the GQT
class to be discovered and we review some of its properties
as well as recent results in Sec. II.
Despite the success in the construction of spherically

symmetric black holes, a remaining issue in the world of
higher-order gravities is to find rotating black hole geom-
etries.2 In fact, exact rotating solutions have not even
been found in Lovelock gravity, which is the simplest
nontrivial extension of GR that one could consider.3

Thus, the question about what a rotating black hole in
higher-derivative gravity is like has not been answered
yet. However, this is a primordial question, since, after all,
realistic black holes will in general possess angular
momentum.
The equations of motion for an axisymmetric and sta-

tionary metric are far more complicated than those in the
spherically symmetric case. Even though we expect some
simplification of the equations taking place for GQTGs—
because they do so in the static case—obtaining a complete
rotating black hole solution would necessarily require a
laborious numeric computation. However, there are several
limits in which the problem is simplified. On the one hand,
one might consider slowly rotating solutions and stay
perturbative in the spin. This has been explored in the
case of quadratic [44] and cubic [45] Lovelock gravity. The
case for D ¼ 4 ECG will be reported in a coming
publication [46]. On the other hand, it is possible to study
the opposite limit, namely, the case of extremal black holes.
In this situation, the horizon is placed at an infinite distance

and the near-horizon limit is well defined, giving rise to a
new solution of the gravitational equations. This near-
horizon geometry has more symmetries than the global
solution, and this enormously simplifies the problem of
solving the field equations. We will show in this paper that
the equations of motion of ECG reduce in this case to a
single second-order ordinary differential equation (ODE).
This equation has to be solved numerically, but most
remarkably, we will see that it is possible to obtain the
exact expressions for the area and entropy of these black
holes without using any approximation. We are not
aware that a similar analysis has been performed for other
pure-metric higher-order gravities, but let us mention that
Ref. [47] computed the (perturbative) corrections to the
near-horizon geometry of extremal Kerr black holes in
the case of Einstein-dilaton-Gauss-Bonnet [48–50] and
dynamical Chern-Simons [51] gravities.
For generality purposes, we will add as well a Maxwell

field into the game, which will allow us to study rotating
and charged extremal black holes. This will prove to be
useful, as AdS2 × S2 geometries—corresponding to non-
rotating charged black holes—are always solutions of
higher-order gravities. The rotating black holes can then
be studied as a deformation of these geometries, which
facilitates the analysis of the solutions. However, we will
also show that there are new branches of solutions that do
not reduce to AdS2 × S2 geometries in any limit. These
solutions do not exist in the Einstein gravity limit and, as
we will see, they have somewhat exotic properties.
The paper is organized as follows. We start in Sec. II by

introducing our theory, corresponding to ECG coupled to a
Maxwell field. In Sec. III we write the metric and vector
ansätze for a rotating near-horizon geometry possessing an
SLð2;RÞ × Uð1Þ isometry group, and we evaluate and
partially solve the equations of motion. We reduce the
field equations to a single second-order ODE for one
variable. Then we discuss the boundary conditions that
need to be imposed in order to obtain fully regular
solutions. In Sec. IV we study in detail the solutions of
the previous equation that are smooth deformations of
AdS2 × S2 geometries. We construct solutions—both
numerically and in the slowly rotating approximation—
which are labeled by the total charge Q and by a parameter
x0 which we argue is related to the spin a ¼ J=M. More
interestingly, we find that both the area and the Wald’s
entropy can be obtained exactly, and we study them as
functions of Q and x0. In addition, the physically mean-
ingful relation SðA; QÞ is derived and we also study its
profile. In Sec. V we analyze the full space of near-horizon
geometries, showing that there exists an important degen-
eracy of solutions. We discuss the properties of the addi-
tional branches and comment on the structure of the
diagram SðA; QÞ. Finally, we draw our conclusions in
Sec. VI. We also include a number of Appendices that
support and extend some of the results in the main text.

2Let us note that exact rotating black hole solutions have been
constructed numerically for some scalar-tensor theories contain-
ing higher-curvature terms [41,42], but not for pure gravity
theories.

3An honorable exception is the solution found in Ref. [43],
corresponding to a rotating black hole in D ¼ 5 Gauss-Bonnet
gravity at a special point of the parameter space in which there is a
unique maximally symmetric solution.
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II. EINSTEINIAN CUBIC GRAVITY

We consider the following theory:

S¼ 1

16πG

Z
d4x

ffiffiffiffiffi
jgj

p �
−2ΛþR−

μL4

8
P−FμνFμν

�
; ð1Þ

which consists of the (cosmological) Einstein-Maxwell
action—where Fμν ¼ 2∂ ½μAν�—plus a cubic curvature cor-
rection P, the Einsteinian cubic gravity density [40]

P ¼ 12Rμ
ρ
ν
σRρ

α
σ
βRα

μ
β
ν þ Rμν

ρσRρσ
αβRαβ

μν

− 12RμνρσRμρRνσ þ 8Rμ
νRν

ρRρ
μ: ð2Þ

Also, μ is a dimensionless coupling while L is a length
scale that determines the distance at which the gravitational
interaction is modified.
As stated earlier,P is the lowest-order nontrivial member

of the GQT family of theories in D ¼ 4.4 On a historical
note, this theory was first identified by the special form of
its linearized equations on maximally symmetric back-
grounds, which turn out to be of second order in any
dimension [40]. Afterwards, the simple form of spherically
symmetric black hole solutions in this theory was noticed
[52,53], and this triggered the construction of the GQT
class of theories [32–34]. By now, many other aspects of
ECG have been explored, including the characterization of
observational deviations with respect to GR [54,55], holo-
graphic applications [56–58], inflationary cosmologies
[59–61]5 and other types of solutions [62–64].
Up to the six-derivative level, P represents the leading

parity-preserving higher-derivative correction to the
Einstein-Hilbert action [36]. However, when a Maxwell
field is included, there are other terms that we could add at
this order. Schematically, these would be of the form F4,
RF2, F6, RF4, R2F2. Nevertheless, it is not our intention to
study the most general correction to extremal Kerr-Newman
geometries. Instead, we focus on the theory above because it
will allow as to performmany explicit computations that are
practically unaccessible for other higher-derivative theories.
The equations of motion of (1) read

Eμν ¼ Tμν;

∇μFμν ¼ 0; ð3Þ

where the gravitational tensor Eμν and the energy-
momentum tensor Tμν are given by

Eμν¼GμνþΛgμν−
μL4

8

�
PμσρλRν

σρλ−
P
2
gμνþ2∇α∇βPμανβ

�
;

ð4Þ

Tμν ¼ 2FμαFν
α −

1

2
gμνFαβFαβ; ð5Þ

and where

Pμν
αβ ¼ 36R½μjσ ½αjρRjν�σjβ�ρ þ 3Rμν

σρRσρ
αβ − 12R½μ½αRν�β�

− 24RσρRσ½μjρ½αδjν�β� þ 24Rσ
½αjRσ ½μδν�jβ�: ð6Þ

III. NEAR-HORIZON GEOMETRIES

Near-horizon geometries of extremal rotating black holes
possess an isometry group SLð2;RÞ × Uð1Þ, and a general
ansatz for this type of metrics can be written as [65]

ds2 ¼ ðx2 þ n2Þ
�
−r2dt2 þ dr2

r2

�

þ dx2

fðxÞ þ NðxÞ2fðxÞðdψ − 2nrdtÞ2; ð7Þ

which depends on two functions fðxÞ and NðxÞ and on one
constant n. In addition, we consider a vector field of the
following form:

A ¼ hðxÞðdψ − 2nrdtÞ; ð8Þ

which depends on another function hðxÞ. Then, we have to
insert this ansatz in the equations of motion (3) and solve
them. Due to the symmetries of the ansatz, one can check
that the only independent components of the Einstein’s
equations are those corresponding to μν ¼ xx and
μν ¼ ψψ—the rest are related to them by the Bianchi
identities. Thus, we only need to solve those equations
together with the Maxwell equation.
An important observation is that these equations allow

for solutions that have NðxÞ ¼ 1. The reason is that, when
evaluated on NðxÞ ¼ 1, the components of the gravitational
tensor—which we show in Appendix A—become propor-
tional, namely

Eψψ jNðxÞ¼1 ¼ fðxÞ2ExxjNðxÞ¼1; ð9Þ

and the same property holds for the Maxwell energy-
momentum tensor Tμν. In general, higher-derivative
gravities do not satisfy the condition (9), meaning that
these theories do not allow for solutions with constant
NðxÞ. In turn, it is quite remarkable that this property holds
for ECG. As we are going to see, this represents a drastic
simplification of the equations of motion. Let us also note
at this point that, besides the solutions withNðxÞ ¼ 1, there
can be other solutions. In fact, Einstein gravity allows for

4At cubic order in curvature there is another GQT term that
was denoted by C in Ref. [52]. However, this term makes no
contribution to spherically symmetric solutions, and we have
checked that it is irrelevant for our present setup, too.

5In the cosmological context, the solutions appearing in
Refs. [59–61] were constructed in a modified cubic theory that
takes the form P − 8C, where P is the ECG term—see (2)—and C
is the cubic piece that we referred to in footnote 4.
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solutions with nonconstant NðxÞ, but these turn out to be
singular, and only the solutions with NðxÞ ¼ 1 represent
the near-horizon geometry of extremal Kerr-Newman black
holes. In the same way, ECG will presumably allow as well
for this type of singular solutions when NðxÞ is non-
constant. Thus, from now on we set NðxÞ ¼ 1.
Now, we can evaluate Maxwell’s equation, which turns

out to be independent of fðxÞ:

d⋆F¼
�
ðh0ðxÞðx2þn2ÞÞ0 þ4n2hðxÞ

x2þn2

�
dt∧ dt∧ dx¼ 0;

ð10Þ

where the prime denotes derivation with respect to x. The
general solution of this equation reads

hðxÞ ¼ aðx2 − n2Þ
x2 þ n2

þ 2bnx
x2 þ n2

; ð11Þ

where a and b are two integration constants that are related
to the electric and magnetic charges. Thus, at this point
we have reduced the problem to solving one equation for
fðxÞ, namely Exx ¼ Txx. However, before going into the
resolution of this equation, let us massage a bit the solution
in its current form. Let us note that the coordinate x is
compact and it will range within two values x0 > 0 and
−x0. These values are determined by the vanishing of the
function fðxÞ—which is assumed to be even—at those
points: fðx0Þ ¼ fð−x0Þ ¼ 0. Also, let us introduce the
quantity

ω≡ −
f0ðx0Þ
2

¼ f0ð−x0Þ
2

> 0: ð12Þ

Then, observe that in order to avoid a conical singularity at
x ¼ �x0—these points will correspond to the poles of the
horizon—the coordinate ψ must have period 2π=ω. Using
these results, we can already compute the electric and
magnetic charges even if we do not know explicitly the
function fðxÞ. In Planck units, these charges read

q ¼ 1

4π

Z
⋆F ¼ 2anx0

ωðx20 þ n2Þ ; ð13Þ

p ¼ 1

4π

Z
F ¼ 2bnx0

ωðx20 þ n2Þ ; ð14Þ

where the integration is performed on any surface of
constant t and r. We note that these are the actual values
of the charges that we would obtain in a global solution
containing an asymptotic region. Let us finally exchange x
and ψ in terms of two new coordinates:

x ¼ x0y; y ∈ ½−1; 1�; ð15Þ

ψ ¼ ϕ

ω
; ϕ ∈ ½0; 2πÞ; ð16Þ

and let us introduce the function

gðyÞ ¼ fðyx0Þ
x20

: ð17Þ

In this way, we rewrite our solution in the following form:

ds2 ¼ ðy2x20 þ n2Þ
�
−r2dt2 þ dr2

r2

�

þ dy2

gðyÞ þ
x20
ω2

gðyÞðdϕ − 2ωnrdtÞ2; ð18Þ

A ¼ x20 þ n2

y2x20 þ n2

�
q
y2x20 − n2

2nx0
þ py

�
ðdϕ − 2ωnrdtÞ; ð19Þ

and by construction, gðyÞ satisfies

gð1Þ ¼ 0; g0ð1Þ ¼ −
2ω

x0
: ð20Þ

Let us finally evaluate the remaining equation, which
in the new coordinates is Eyy ¼ Tyy. On the one hand,
we have

Tyy ¼
ω2ðx20 þ n2Þ2Q2

x20gðyÞðn2 þ x20y
2Þ2 ; ð21Þ

whereQ2 ¼ q2 þ p2. On the other hand, Eyy takes the form
of a total derivative, namely

Eyy ¼
y2

ðy2x20 þ n2Þ2gðyÞ
d
dy

Eðg; g0; g00; yÞ; ð22Þ

where

Eðg;g0;g00;yÞ¼−
n2

y
þyx20þg

�
n2x20
y

þyx40

�

þΛ
�
−
n4

y
þ2n2yx20þ

1

3
y3x40

�

þL4μ

�
3g3n2x60ðn2−9y2x20Þ

yðn2þy2x20Þ3

þ
�
−
3g2x60ð−17n2þy2x20Þ

2ðn2þy2x20Þ2
−

3gx40
2ðn2þy2x20Þ

�
g0

þ
�
−
3x20
4y

−
3gn2x40

2n2yþ2y3x20

�
ðg0Þ2þ1

4
x40ðg0Þ3

þg

�
3x20
2y

þ3gx40ð−4n2þy2x20Þ
2yðn2þy2x20Þ

−
3

4
x40g

0
�
g00
�
:

ð23Þ
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Hence, integrating both sides of the equation we obtain

Eðg; g0; g00; yÞ ¼ −
ω2ðx20 þ n2Þ2Q2

x20y
þ N; ð24Þ

where N is an integration constant. Thus, we have reduced
the equations of motion to a single ODE of second order
for gðyÞ.
Our task now is to solve the previous equation in order to

obtain near-horizon geometries. So far, we have included a
nonvanishing cosmological constant for generality, but for
the sake of simplicity we set Λ ¼ 0 from now on. The case
of Λ ≠ 0 is briefly discussed in Appendix D.

A. Einstein gravity

Let us first of all check that we recover the near-horizon
geometry of extremal Kerr-Newman black holes when we
set μ ¼ 0. In that case, Eq. (24) is simply algebraic and we
obtain the solution straightforwardly,

gðyÞ ¼ n2 −Q2ðn2 þ x20Þ2ω2=x20 þ Ny − x20y
2

x20ðn2 þ x20y
2Þ : ð25Þ

We can see that the parameter N breaks the symmetry y ↔
−y of the solution that we assumed in identifying the
charges q; p. More importantly, when N is present (and
x0 ≠ 0), there is necessarily a conical singularity at one
of the poles of the horizon (where g vanishes), because
the slope of g will be different in each one. In fact, N is the
NUT charge, and it is known that NUT-charged, rotating
black holes present this type of conical singularities at the
horizon [66]. In order to avoid these problems, we set
N ¼ 0. In that case, gðyÞ is even, and we have to impose the
conditions (20), which are going to fix several relations
between the parameters of the solution. We find

n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ x20

q
; ω ¼ x0

Q2 þ 2x20
; ð26Þ

and after simplifying we obtain

gðyÞ ¼ 1 − y2

Q2 þ x20ð1þ y2Þ : ð27Þ

We see that this is the near-horizon geometry of extremal
Kerr-Newman black holes (NHEKN) [67], where x0 is
nothing but the angular momentum per mass x0 ¼ a.
Likewise, n ¼ M is the total mass and ω is the angular
velocity of the horizon. In addition, we can compute the
area, which reads

A ¼ 4πx0
ω

¼ 4πðQ2 þ 2x20Þ: ð28Þ

For x0 ¼ 0we recover AdS2 × S2, which is the near-horizon
geometry of extremal Reissner-Nordstrom black holes.

B. Einsteinian cubic gravity

Let us now consider a nonvanishing μ. In analogy to the
Einstein gravity case, we set the NUT charge to zero,
N ¼ 0, in order to avoid conical singularities. Now, once
the corrections are included, the equation (24) becomes of
second order and we need to impose appropriate boundary
conditions in order to solve it. We warn that the constraints
(20) are not really boundary conditions: they are restric-
tions to the parameters of the solution. Instead, the
boundary conditions we will impose are the following:
(1) the solution is even, and this is equivalent to asking
g0ð0Þ ¼ 0. (2) The solution is regular at y ¼ �1, i.e., it is
analytic at those points. Therefore, according to (20), the
solution should have a Taylor expansion near y ¼ 1 of the
form

gðyÞ ¼ −
2ω

x0
ðy − 1Þ þ

X∞
k¼2

gkðy − 1Þk; ð29Þ

for some coefficients gk. When this expansion is inserted in
(24) we can Taylor expand the equation as well, obtaining
the following series:

yEðg;g0;g00;yÞþω2ðx20þn2Þ2Q2

x20
¼
X∞
k¼0

Ckðy−1Þk: ð30Þ

Thus, all the coefficients Ck must vanish and this gives
us a series of equations for the parameters of the solution.
Remarkably, the first two equations C0 and C1 are
independent of the gk, and instead they provide two
relations between x0, n, ω and Q:

x20−n2þQ2ω2ðn2þx20Þ2
x20

−μL4ω2ð2x0ωþ3Þ¼0;

ðn2þx20Þðn2ωþx20ω−x0ÞþμL4ω2ð−5n2ωþx20ωþ3x0Þ¼0:

ð31Þ

We have seen that in Einstein gravity x0 is identified with
the angular momentum per mass, a, while in turn n is the
mass and ω is the angular velocity. We cannot expect
that the same identifications work for higher-curvature
gravity, and, since we lack the asymptotic region, we
cannot correctly identify these quantities. Nevertheless,
since x0 controls the degree of nonsphericity of the solution,
we do expect that there will be a monotonous relation
between this parameter and the angular momentum—
we recall that this parameter enters in the metric as
ds2 ¼ ðx20y2 þ n2Þds2AdS2 þ � � �. Hence, it seems reasonable
to use x0 and the charge Q to label our solutions. Then, the
equations (31) provide us with the values of nðx0; QÞ and
ωðx0; QÞ. It is worth emphasizing that such equations are
exact; we have implemented no approximation in our
approach. Besides, this allows us to compute the area of
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these black holes even if we do not know g explicitly, since it
is given by

A ¼ 4πx0
ω

: ð32Þ

Then, once the parameters n and ω (or alternatively A) are
determined, we can solve the rest of the equations C2 ¼ 0,
C3 ¼ 0, etc. It turns out that these equations fix all the
coefficients gk>3 in (29) in terms of g2, which is the only free
parameter. Thus, we find that there is only a one-parameter
family of solutions that are regular at the pole y ¼ 1, which
means that regularity is in fact fixing one integration
constant. Now, the remaining parameter g2 is determined
by the condition that g be an even function, which is
equivalent to asking g0ð0Þ ¼ 0. Thus,we have awell-defined
boundary problem, which at most will possess a discrete
number of solutions.

IV. THE ADS2 × S2 BRANCH

Let us summarize our findings so far. Our near-horizon
geometries are labeled by two parameters which we can
choose to be Q and x0. Imposing regularity of the solution
at y ¼ �1 yields the equations (31), whose solutions give
the possible values of n and ω. Finally, the differential
equation (24) must be solved imposing the regularity
condition (29) and g0ð0Þ ¼ 0. As we will see later, the
equations (31) have more than one solution for fixed Q and
x0, which leads to an important degeneracy of near-horizon
geometries that have the same Q and x0. However, it turns
out that there is only one branch of solutions that are
smoothly connected to an AdS2 × S2 geometry in the limit
of x0 → 0. In this section we will focus our attention on
those solutions.
Let us first solve the equations (31) when x0 ≪ Q by

assuming a series expansion of the form ω ¼ P
n ωkxk0,

n2 ¼ P
k ckx

k
0. We find the following solution:

n2 ¼ Q2 þ x20

�
1þ μL4

Q4

�
þOðx40Þ;

ω ¼ x0
Q2

þ x30
Q4

�
−2þ μL4

Q4

�
þOðx50Þ; ð33Þ

where the higher-order terms can be easily computed as
well and we show a few of them in Appendix B. Now, let us
also assume a series expansion of the metric function gðyÞ,
so that

gðyÞ ¼
X∞
k¼0

x2k0 gkðyÞ: ð34Þ

Plugging this expansion together with (33) in the equa-
tion (24) we find the equation satisfied by every component
gkðyÞ. The leading term g0—which is the only one that
survives in the limit x0 → 0—satisfies the following
equation:

−1þy2þg0Q2þ3L4μ

4

�
4

Q4
− ðg00Þ2þ2g0g000

�
¼ 0: ð35Þ

We can see that a solution of this equation fulfilling the
appropriate boundary conditions is given by

g0ðyÞ ¼
1 − y2

Q2
: ð36Þ

Thus, in the limit x0 → 0 the metric (18) becomes

ds2¼Q2

�
−r2dt2þdr2

r2

�
þQ2

�
dy2

1−y2
þð1−y2Þdϕ2

�
;

ð37Þ

which corresponds to an AdS2 × S2 geometry. In fact, this
is the near-horizon geometry of extremal Reissner-
Nordstrom black holes, and, as we can see, it possesses
no corrections. Thus, this is an exact solution of ECG for
any value of μ. Let us then consider the effect of rotation by
assuming a finite x0. Analyzing the equations for the
following terms, gkðyÞ, we see that they all allow for a
solution which is a polynomial in y, and that this solution is
the only one that satisfies the boundary conditions. For
instance, up to quadratic order in x0 we have

gðyÞ ¼ ð1 − y2Þ
�
1

Q2
− x20

ðQ8 − 3μL4Q4 þ 9μ2L8 þ y2ðQ8 − 16μL4Q4ÞÞ
Q8ðQ4 − 9L4μÞ þ � � �

�
ð38Þ

and more terms are shown in Appendix C. A few comments
are in order. First, let us remark that this is a perturbative
expansion in x0, but it is exact in μ. Second, we observe that
if we put μ ¼ 0 in the expression above we get
gðyÞ ¼ ð1 − y2ÞðQ−2 − x20Q

−4ð1þ y2Þ þ � � �Þ, which coin-
cides with the perturbative expansion of the NHEKN

solution (27), and the same holds for the higher-order
terms that we show in the Appendix C. Therefore, these
solutions in principle approach the NHEKN one when
μ → 0, or more precisely, when Q ≫ μ1=4L, i.e., when the
size of the black hole is much larger than the length scale of
the corrections. However, there is a subtlety: we observe
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that the Oðx20Þ term (and also all the higher-order ones)
diverges for Q4 ¼ 9μL4. In general, we observe that all the
terms of order greater or equal than 2n diverge for
Q4 ¼ 3ððnþ 1Þ2 − 1ÞμL4. This implies that, when Q
crosses one of these values, the solution changes discon-
tinuously, and near those critical values we seem to find no
solution. Therefore, as we increase Q and x0, the solution
will approach the NHEKN one, but it will make it in a
noncontinuous way.

This is best understood by constructing the nonpertur-
bative numerical solutions. We show several of them in
Fig. 1, where we represent the function hðyÞ≡ x0gðyÞ

ωð1−y2Þ,
which allows for a more direct comparison between the
different curves. We have checked that, when x0 is small
enough, the slowly rotating expansion (38) gives a very
good approximation to the numerical curves. Looking at
Fig. 1 we observe that, indeed, the profile of the solution is
quite different for distinct values of Q, but eventually it
becomes similar to the NHEKN one for large black holes.
In addition, in Fig. 2 we show the embedding of the black
horizon in Euclidean space for some of these solutions.
One important drawback, though, is that we do not seem

to find solutions when x0=Q is large. As we can see,
Eq. (24) becomes singular at the points in which
3x2

0

2
þ 3gx4

0
ð−4n2þy2x2

0
Þ

2ðn2þy2x2
0
Þ − 3

4
x40yg

0 ¼ 0, which implies that the

coefficient of g00 vanishes. This only happens when the ratio
x0=Q is large enough. For example, if we evaluate the
previous expression for NHEKN geometries and we ask
that it does not vanish at any point, we must impose
x0=Q < 1=

ffiffiffi
3

p
. Now, if that quantity vanishes, the solution

will typically become singular at that point, unless we fix a
regularity boundary condition there. But in that case, we
cannot impose the boundary conditions of regularity at y ¼
�1 and that g0ð0Þ ¼ 0. Hence, we find that, even in the
regime where the corrections are small, the equation (24)

FIG. 1. Profile of the solution for various values of Q and x0.

We show the quantity hðyÞ≡ x0gðyÞ
ωð1−y2Þ, which measures the non-

sphericity of the solution (for S2 this quantity is constant). Top:
We show the solution for Q4 ¼ 3μL4 and x0 ¼ 0, 0.3Q, 0.35Q,
0.36Q, 0.364Q. Middle: Q4 ¼ 15μL4 and x0 ¼ 0, 0.1Q, 0.2Q,
0.3Q, 0.34Q. We observe that the profile is very different in both
cases, because we have passed the critical value of Q4 ¼ 9μL4.
Bottom: Q4 ¼ 150μL4 and x0 ¼ 0, 0.15Q, 0.3Q, 0.4Q, 0.55Q.
The size of the black hole is larger and the solution becomes more
similar to the NHEKN one, shown in blue dashed lines for
comparison.

FIG. 2. Isometric embedding of the horizon in E3 for the black
holes with Q4 ¼ 3μL4 and x0 ¼ 0, x0 ¼ 0.3Q and x0 ¼ 0.364Q.
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has no regular solutions correcting the NHEKN geometry
for x0=Q large.
In addition, our numerical exploration indicates the

existence of an important multiplicity of solutions even
when the boundary conditions are fixed. This is, once we
have solved (31) and found nðx0; QÞ, ωðx0; QÞ, the
equation (24) seems to have different solutions that differ
on the profile of gðyÞ. This already happens in the x0 → 0
equation (35), which possesses other solutions than (36)
satisfying gð�1Þ ¼ 0, g0ð�1Þ ¼∓ 2=Q2. These do not
need to be similar to the NHEKN geometry even when
μ is small, and in general they will possess a different
domain of existence from the solutions considered in the
preceding paragraph. In any case, all of these solutions are
characterized by the same set of parameters x0, Q, n, ω, so
they share a number of common properties.
In order to simplify the discussion, in the next subsection

we will remain agnostic about the existence or nonexist-
ence of solutions of Eq. (24). Providing some solution
exist, we are going to see that the area and entropy can be
obtained exactly without knowing the profile of gðyÞ.

A. Area and entropy

As we have seen, it is possible to solve the equation (24)
either perturbatively in x0 or numerically. Nevertheless,
there are some properties of these near-horizon geometries
that we can compute exactly. One of them is the area,
which is given by (32). Then, using Eq. (31) one is able to
obtain the area as a function of x0 and Q. The relation
Aðx0; QÞ for several values of Q is shown in Fig. 3. Near
x0 ¼ 0, one can use the expansions (33) in order to obtain
the approximation

A
4π

¼Q2þx20

�
2−

μL4

Q4

�
þ12μL4x40

Q10
ðμL4−Q4Þþ��� ; ð39Þ

which is valid as long as x0 ≪ Q. Thus, for x0 → 0, the area
reduces to the corresponding value of extremal Reissner-
Nordstrom black holes, but looking at Fig. 3 we see that an
interesting behavior takes place when we increase x0. If
the charge is large enough, the corresponding curve differs
slightly from the value in Einstein gravity for intermediate
values of x0, but for large x0 one recovers again the
extremal Kerr-Newman result A ∼ 4πðQ2 þ 2x20Þ. On the
other hand, if the charge is too small—the threshold
value is

Qthr ≈ 1.13μ1=4L ð40Þ

—the curve does not approach the Einstein gravity result,
and instead we see that A tends to a constant for x0 → ∞.
This represents an exotic solution that does not exist in
Einstein gravity, and it satisfies

A¼ 4πα; n2¼ x20ð2αþQ2Þ
5Q2

; when x0→∞; ð41Þ

where α is a constant determined from the equation

2α3 þ 12α2Q2 þ 18αQ4 − 25μL4Q2 ¼ 0: ð42Þ

On the other hand, near-horizon geometries allow us to
compute the entropy of black holes, even if we do not know
the behavior in the asymptotic region, thanks to Wald’s
entropy formula [12–14], which reads6

S ¼ −2π
Z
H
d2x

ffiffiffi
h

p ∂L
∂Rμνρσ

ϵμνϵρσ: ð44Þ

In this expression, the integral is taken over the horizon H,
h is the determinant of the induced metric on H and ϵμν is
the binormal of the horizon, normalized as ϵμνϵ

μν ¼ −2.
Applying Wald’s formula (44) to our theory (1), we get

S ¼ 1

4G

Z
H
d2x

ffiffiffi
h

p �
1þ μL4

16
Pμναβϵ

μνϵρσ
�
; ð45Þ

FIG. 3. Area of black holes that are smooth deformations of
AdS2 × S2 geometries as a function of x0 for various values ofQ.
From blue to red we haveQ ¼ 0.43, 0.77, 1, 1.15, 31=4, 1.45, 1.6.
We work in units such that μL4 ¼ 1. For large enough Q, the
curves tend to the Einstein gravity values in both limits x0 → 0,
∞, but when Q is too small the area tends to a constant value for
x0 → ∞.

6For Lagrangians containing covariant derivatives of the
Riemann tensor, the partial derivative of the Lagrangian should
be replaced by the Euler-Lagrange derivative of the gravitational
Lagrangian as if the Riemann tensor were an independent
variable, this is

δL
δRμνρσ

¼ ∂L
∂Rμνρσ

−∇α

� ∂L
∂∇αRμνρσ

�
þ � � � : ð43Þ
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where Pμναβ is the tensor defined in (6). The horizon of the
metric (18) is placed at r ¼ 0, but the integration can be
equivalently performed on any slice of constant t and r. The
nonvanishing components of the binormal read ϵtr¼
−ϵrt¼ðy2x20þn2Þ, so that Pμναβϵμνϵρσ¼4ðy2x20þn2Þ2Ptrtr.
Remarkably, we find that this quantity takes the form of a
total derivative,

Pμναβϵμνϵρσ ¼ 12x20
d
dy

�
−

4g2n2yx20
ðn2 þ y2x20Þ3

þ 4gn2g0

ðn2 þ y2x20Þ2
þ yðg0Þ2
n2 þ y2x20

�
: ð46Þ

Therefore, the integral can be performed without knowing
the details of gðyÞ—we only require the conditions (20)—
and the entropy reads

S ¼ πx0
Gω

�
1þ 3μL4ω2

n2 þ x20

�
: ð47Þ

Now, using again Eq. (31) we can study the entropy as a
function of x0 and Q. For instance, in the limit x0 ≪ Q, we
obtain the following approximate value:

S¼ π

G

�
Q2þ2x20

�
1þμL4

Q4

�
þ12μL4x40

Q10
ðμL4−2Q4Þ

�
;

ð48Þ

while for large x0 we have to distinguish between the two
different possibilities,

Sðx0→∞Þ¼

8>>><
>>>:

π

G
ðQ2þ2x20Þ ifQ>Qthr

πα

G

�
1þ 15μL4

α2ð2αþ6Q2Þ
�

ifQ<Qthr;
ð49Þ

where α is the parameter that we introduced in (41). The
complete profile of Sðx0Þ for various values of the charge is
shown in Fig. 4.
One disadvantage of this analysis is that, as we men-

tioned earlier, the parameter x0 cannot be identified with the
angular momentum, and therefore, the relation Sðx0; QÞ
does not have a direct physical interpretation. Nevertheless,
we can also study the entropy as a function of the area and
of the charge, i.e., SðA; QÞ, and in this case the relation is
meaningful since it involves three physically relevant
quantities. In fact, it is interesting to check that the entropy
is not only a function of the area, since it depends also on
the relative amount of charge and angular momentum of the
black hole. Manipulating the equations in (31), we can
write the entropy (47) in the following form:

S ¼ A
4G

�
1þ 48π2μL4λðA; QÞ

A2

�
; ð50Þ

where λðA; QÞ is a function obtained as a solution of the
equation

12λ3μL4

��
A
4π

�
2

− μL4

�
þ 3λ2μL4

�
5μL4 − 6

�
A
4π

�
2
�

þ λ

�
A
4π

��
2

�
A
4π

�
3

þ 2

�
A
4π

�
μL4 − 3μL4Q2

�

þ
�
A
4π

�
3
�
Q2 −

�
A
4π

��
¼ 0: ð51Þ

On general grounds, for a fixed value of the area, the
charge can vary from Q ¼ 0, which would correspond to a
neutral rotating black hole, to Q2

max ¼ A=ð4πÞ, in whose
case there is no rotation and the solution is AdS2 × S2.7 It is
then an interesting exercise to determine for which of these
black holes of fixed area the entropy is maximal. In Fig. 5
we show the ratio S

A=ð4GÞ as a function of the charge for

several fixed values of the area. First, we observe that,
indeed, the entropy does not only depend on the area, but
also on the charge. For Q ¼ Qmax we get S ¼ A=ð4GÞ,
since in that case the solution has no corrections.
Nevertheless, when we decrease the charge leaving the
area fixed—which implies that we turn on the angular
momentum—the ratio between entropy and area increases.

FIG. 4. Entropy of black holes that are smooth deformations of
AdS2 × S2 geometries as a function of x0 for various values ofQ.
From blue to red we haveQ ¼ 0.43, 0.77, 1, 1.15, 31=4, 1.45, 1.6.
We work in units such that μL4 ¼ 1. For large enough Q, the
curves tend to the Einstein gravity values in both limits
x0 → 0;∞, but when Q is too small the area tends to a constant
value for x0 → ∞.

7When the area is sufficiently small we obtain solutions that
have Q > Qmax—see Fig. 8—but here we focus only on the case
in which Q ranges from 0 to Qmax for simplicity.
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In all cases shown we see that, for a given area, a purely
rotating black hole is the one that stores more information.
We also observe an interesting phenomenon taking place
when the area is small enough: if A < 1.91 × 4π

ffiffiffi
μ

p
L2 the

corresponding curve becomes multivalued, indicating the
existence of several black holes with same area and charge,
but different entropy. This suggests the presence of a phase
transition from the black hole of smaller entropy to the one
of larger entropy. In that case, we see that the phase space
would contain a critical point at Acr ≈ 1.91 × 4π

ffiffiffi
μ

p
L2,

Qcr ≈ 1.11μ1=4L, Scr ≈ 8.63
ffiffi
μ

p
L2

G . This picture is not com-
pletely accurate, though, because one should fix the angular
momentum instead of the area in order to compare different
solutions, and also because at zero temperature one cannot
speak of phase transitions. Nevertheless, this result does
suggest that some sort of decay could take place from one
type of solution to another.

V. ADDITIONAL SOLUTIONS

In the previous section we focused on the branch of
solutions that are smoothly connected to an AdS2 × S2

geometry, since these are particularly relevant—and the
only ones that exist in Einstein gravity. However, when we
solve the system of equations (31) we observe that other
solutions for nðx0; QÞ and ωðx0; QÞ exist. A useful way of
visualizing the space of solutions is to study the relation
Aðx0Þ for fixed values of the charge, which we show in
Fig. 6. This plot contains the curves that we showed in
Fig. 3, but we see that new branches appear. In fact, for
fixed values of Q and x0 there can be up to four different

solutions, which represent black holes with very different
properties.

A. Branches of solutions

In the limit of x0 → ∞, we observe that there are
only two possible solutions; one which recovers the
properties of extremal Kerr-Newman black holes—in
particular, A → 4πðQ2 þ 2x20Þ—and another one whose
area tends to a constant—see Eq. (41). On the other hand,
near x0 ¼ 0 we have in general four different solutions,
which can be obtained by assuming different expansions of
the parameters n and ω, as we show in Appendix B. One of
them belongs to the AdS2 × S2 branch that we studied in
the previous section, so we will now analyze the additional
solutions.

1. Branch A

One possible solution of the equations (31) yields

n2 ¼ x40ð2
ffiffiffiffiffi
3μ

p
L2 þ 3Q2Þ

18μL4
þOðx60Þ ð52Þ

A ¼ 4π

� ffiffiffiffiffi
3μ

p
L2 þ x20

�
1

2
−

Q2

4
ffiffiffiffiffi
3μ

p
L2

�
þOðx40Þ

�
; ð53Þ

where we recall that A ¼ 4πx0=ω. It is important to note
that the near-horizon geometry corresponding to this choice
of parameters exists for arbitrarily small values of x0, but
not for x0 ¼ 0. One remarkable fact about this solution is
that in the limit of x0 → 0 the area tends to a constant value
which is independent of the charge. On the other hand, the
entropy can be computed using (47), and we obtain

FIG. 5. Entropy of black holes that are smooth deformations of
AdS2 × S2 geometries as a function of the charge for fixed values
of the area. We plot the ratio S=ðA=ð4GÞÞ in order to facilitate the
comparison between the different curves, while the charge is
normalized by Qmax ¼ A=ð4πÞ. From blue to red we have
A=ð4π ffiffiffi

μ
p

L2Þ ¼ 1.8, 1.91, 2, 2.1, 2.2, 2.3, 2.4. We observe
the presence of a critical point where the curve starts being
multivalued.

FIG. 6. Black hole area as a function of x0 for various values of
Q. We include all the branches of solutions. From blue to red we
have Q ¼ 1, 1.15, 31=4, 1.45, 1.6. We work in units such that
μL4 ¼ 1.
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S ¼ 2π

G

� ffiffiffiffiffi
3μ

p
L2 − x20

�
1

6
þ Q2

4
ffiffiffiffiffi
3μ

p
L2

�
þOðx40Þ

�
: ð54Þ

Thus, the entropy also tends to a universal constant value in
the limit of vanishing x0, which interestingly enough
corresponds to A=ð2GÞ. Observe that, for fixed values
of Q and x0, this solution can be entropically favored with
respect to the one belonging to the AdS2 × S2 branch. In
fact, we get the following condition for small values of x0:

SA > SAdS2×S2
⇔ Q2 < 2

ffiffiffiffiffi
3μ

p
L2 −

7x20
2

þ � � � : ð55Þ

However, this is not enough in order to argue that a
transition from one solution to another will take place
when that bound is saturated, since the angular momentum
could depend differently on x0 in both solutions, and hence,
we would be comparing black holes with different con-
served charges. In fact, this solution has x0=n ∼ 1=x0 when
x0 → 0, which implies that the geometry departs largely
from AdS2 × S2, and this suggests that it actually could
have a large angular momentum.
Finally, let us comment on how the black holes in this

branch behave as we increase the angular momentum.
Looking at Fig. 6 we observe three possibilities. If the
charge is large enough, there is a maximum value of x0 for
which we can extend the branch, and at this point it merges
with branch C. If the charge is smaller, the branch is
connected to the solutions that have a finite area in the limit
x0 → ∞, and if it is small enough (Q < Qthr ≈ 1.13μ1=4L),
it is connected to the Kerr-Newman branch. In other words,
this implies that if we take an initial black hole with little
charge but large area and angular momentum, the black
hole will approach one of the solutions in this branch
as it loses angular momentum, instead of an AdS2 × S2

geometry.

2. Branch B

The second additional solution has the following values
of n2 and A:

n2 ¼ x0

ffiffiffiffiffi
3μ

p
L2

Q
þ x20

�
25μL4

6Q4
−
4

5

�
þOðx30Þ ð56Þ

A ¼ 4π

�
x0

5
ffiffiffiffiffiffiffiffi
μ=3

p
L2

Q
þ x20

�
25μL4

2Q4
−
5

3

�
þOðx30Þ

�
: ð57Þ

In this case, the area tends to zero independently of the
charge when x0 → 0. Also, unlike in the previous case, we
have x0=n → 0, which we can interpret as a sign that the
geometry is indeed slowly rotating. Now, the most inter-
esting fact about this branch of solutions is that, even
though the area vanishes in the limit of x0 → 0, their
entropy remains finite, namely

S ¼ 3πQ2

5G
þ x02π

6Q4 − 25μL4

25G
ffiffiffiffiffi
3μ

p
L2Q

þOðx20Þ: ð58Þ

Thus, the entropy per unit area in these black holes
becomes arbitrarily large.

3. Branch C

The third and last additional solution allows for a series
expansion in powers of x1=20 , and the leading terms for n2,
area and entropy read

n2 ¼ x0

ffiffiffiffiffi
6μ

p
L2

Q
− ð ffiffiffiffiffi

x0
p Þ3 ð2=3Þ

1=4μ3=4L3

Q5=2 ; ð59Þ

A ¼ ffiffiffiffiffi
x0

p
23=431=42πμ1=4L

ffiffiffiffi
Q

p
− x0

π
ffiffiffiffiffi
6μ

p
L2

Q
; ð60Þ

S ¼ ffiffiffiffiffi
x0

p 23=431=4πμ1=4L
ffiffiffiffi
Q

p
G

þ x0
π

ffiffiffiffiffiffiffiffi
μ=6

p
L2

GQ
: ð61Þ

Note that, again, x0=n → 0, so that this solution can
actually be slowly rotating, while the entropy tends
to S → A=ð2GÞ.
Once the desired branch is chosen, it is possible to solve

the equation (24) numerically in order to obtain the profile
of gðyÞ, as we explained previously. A comparison between
these solutions is shown in Fig. 7.

B. Entropy as a function of area and charge

The preceding analysis is useful in order to character-
ize the space of near-horizon geometries of ECG, but it
has the disadvantage that we cannot interpret x0 as the
spin parameter a. Thus, it is more meaningful to study
the relation SðA; QÞ, which we can find exactly by using
Eqs. (50) and (51). In Fig. 5 we only plotted part of this
relation. The complete structure of SðA; QÞ including all
the solutions is quite involved and we show it as a three-
dimensional plot in Fig. 8. In obtaining this surface we
have taken into account that the solutions of Eq. (51)
must be such that n2 > 0 and x20 > 0. The red line
corresponds to the AdS2 × S2 geometries, and interest-
ingly these are the only ones for which S ¼ A=ð4GÞ—
any other solution has S > A=ð4GÞ. We also represent
the various x0 → 0 limits, which correspond the yellow,
black and blue curves (for branches A, B and C
respectively).
As we can see, for large enough horizon area, the

surface in Fig. 8 has only one branch, which recovers
the Einstein gravity behavior when A → ∞. Now,
imagine that we take one of these large black holes and
we start decreasing the area leaving the charge fixed—
this could be interpreted as the black hole radiating
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away the angular momentum.8 We find that there are
two possible end points of this process: if the charge is

large enough, then at some point we hit an AdS2 × S2

geometry and the black hole has radiated all the angular
momentum. In order to continue evaporating it must
now lose charge. On the other hand, if the charge is too
small (as we saw earlier, Q < Qthr ≈ 1.13μ1=4L), we
approach the yellow line, which corresponds to the
x0 → 0 limit of branch A, and for which A ¼ 4π

ffiffiffiffiffi
3μ

p
L2.

Interestingly, in this situation the area and the entropy of
the black hole remain constant even if it loses (or gains)
charge. Thus, the final product of black hole evaporation
is quite different depending on which path we follow in
the phase space. We also observe that for small A the
surface SðA; QÞ is multivalued, hence transitions or
decays between solutions might occur. This illustrates
that the phase space of (extremal) black hole solutions
may become quite complicated in higher-derivative
gravity.

VI. DISCUSSION

In this paper we have provided the first nonperturbative
examples of near-horizon geometries of rotating black
holes in higher-order gravity. This has been possible thanks
to the special form of the equations of motion of Einsteinian
cubic gravity—the density given by (2)—which can be
reduced to a single second-order differential equation for
one variable. Even more striking, we have been able to
obtain the area and the entropy exactly in terms of the
parameters of the solution, and in particular, we found the
relation between black hole area, charge and entropy,
SðA; QÞ—see Eqs. (50) and (51). It must be noted that
obtaining these quantities analytically is not possible in
general higher-order theories, where the simplification of
the equations that we reported does not take place.
However, we do expect that there is a subset of generalized
quasitopological theories for which the same simplification
takes place. This subset will correspond to the same type
of theories admitting taub-NUT solutions that was studied
in [63], where, in particular, a quartic four-dimensional
density of this kind was constructed. We expect that higher-
order versions of these densities exist as well, and it would
be interesting to study extremal near-horizon geometries
in this family of theories, thus generalizing the results
presented here. In fact, we believe that the higher-order
generalizations could solve some of the difficulties that we
have found in our analysis and that we discuss next.

A. Large angular momentum?

Perhaps the most worrisome problem we have found is
that the equation (24) seems to have no smooth solutions
when the angular momentum is large compared to the
charge. In particular, purely rotating (regular) black holes
do not exist even in the regime where the corrections are
supposed to be small. The reason, as we explained, is the
vanishing of the coefficient of g00 in Eq. (24) at some point,

FIG. 7. Different near-horizon geometries with Q ¼ ð9μÞ1=4L
and x0 ¼ 0.2μ1=4L. In each case, we show the quantity

hðyÞ≡ x0gðyÞ
ωð1−y2Þ, which allows for a simpler comparison between

the several curves. Solid red line: AdS branch. Red dashed line:
Branch A. Red dot-dashed line: Branch B. Red dotted line:
Branch C. Blue dashed line: Kerr-Newman case.

FIG. 8. Black hole entropy as a function of the area and charge.
The thick color lines represent the different x0 → 0 limits: the red
line corresponds to the AdS2 × S2 solutions, while yellow, black
and blue lines correspond to branches A, B and C, respectively.
We work in units such that μL4 ¼ 1.

8This picture is not completely accurate because we are
moving in the space of extremal black holes. Thus, one should
imagine that energy is emitted along with angular momentum, so
that we keep the black hole extremal, or near extremal, during the
process.
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which implies that the solution will not be smooth there.
This issue could go away for higher-order densities, or for
some appropriate combination of those, and it would be
interesting to explore this possibility. On the other hand,
this problem could be related to the fact that we are dealing
with extremal black holes. It is known that there are certain
difficulties associated with extremality (e.g., the instability
of horizons [68]), and these arise explicitly in the case of
higher-derivative theories—we further comment on this
below. Therefore, it might happen that the problem of
nonexistence only affects extremal black holes, but that
(arbitrarily) near-extremal ones are fine. Despite this draw-
back, we believe the values found for the entropy and area
of these black holes are meaningful even in the region of
parameter space where no solution seems to exist. Indeed,
from the point of view of EFT one should assume a
perturbative expansion of the solution, and in this scheme
the issue in the differential equation (24) disappears. Thus,
at least the perturbative corrections to the entropy,

S ¼ A
4G

�
1þ 24π2μL4ðA − 4πQ2Þ

A3
þOðL8Þ

�
; ð62Þ

should be meaningful in the full parameter space.

B. Multiplicity of solutions

Paradoxically enough, when Eq. (24) allows for sol-
utions, it has many. We have seen that for fixed values of x0
and Q, we have usually several branches of solutions with
different values of the area and the entropy. But we also
observed that, even when the corresponding branch has
been chosen, the equation (24) can have several solutions.
This is, we can have different near-horizon geometries with
the same values of the charge, x0, area and entropy, which
only differ in the shape of the horizon. Thus, in Sec. IV we
only constructed numerically the solutions that are smooth
deformations of AdS2 × S2 geometries, but in general there
are more solutions which are characterized by the same set
of integration constants. In particular, the equation (35)
corresponding to the limit x0 → 0 seems to have an
increasing number of solutions as Q grows. This means
that there are solutions of the form AdS2 ×M2, whereM2

is not a sphere, but nonetheless all of these solutions have
the same area and entropy. A similar situation occurs for
finite x0. While this is an interesting phenomenon, a
thorough classification of these solutions would consid-
erably enlarge the present manuscript, and thus these
additional solutions could be studied elsewhere. The
degeneracy of solutions seems to be related to the sign
of the higher-order coupling μ, and it would have not
appeared had we taken μ < 0. The reason for taking μ > 0
is that this is required in order for asymptotically flat/AdS
black holes to exist [53]. However, it is possible that for
other higher-order densities the sign that allows for black

holes is the same that would yield unicity of near-horizon
geometries.9

C. Global solutions?

Another relevant question is whether there exist global
black hole solutions (containing an asymptotic region) of
which the solutions we have constructed are the near-horizon
limit. Although it may appear shocking at first, we do not
expect those solutions to exist. The reason is that the
boundary problem in higher-derivative gravity is not well
posed in the presence of a degenerate horizon. This is more
easily understood in the case of static, charged black holes,
which allow for a simple description inECG.Those solutions
were briefly discussed in [53], where, similarly to the case
here, it was shown that the equations of motion reduce to a
second-order equation for one variable. Then, one has to
impose a boundary condition at infinity and another one at
the horizon, and this fixes the solution. But when the horizon
is degenerate, the condition at the horizon turns out to fix two
integration constants and it is not possible to demand the
asymptotic condition. Hence, no black hole solutions exist in
that case. Nevertheless, arbitrarily near-extremal ones exist,
and we expect that the same behavior will be found in the
rotating case. Hence, the near-horizon geometries we have
constructed make sense as a limit that nonextremal black
holes can approach, but never reach. In particular, the area
and entropy (and also the shape) of nonextremal black holes
will tend to those foundherewhen they approach extremality.

D. Asymptotic charges

Finally, one limitation of the near-horizon analysis is
that we lose the information about the mass and the angular
momentum of these black holes. We argued that the
variables x0 and n would be related, respectively, to the
spin a and to the mass M but we lack a precise relation.
Knowing the values of a and M would be very interesting
in order to study corrections to the extremality bound and to
determine the relation between the entropy and the physical
charges, Sða;QÞ. A possible direction to achieve this goal
would entail finding a generalization of Komar charge for
higher-order gravities that would allow us to write the
asymptotic charges as an integral over the horizon [69].
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APPENDIX A: EQUATIONS OF MOTION

When evaluated on NðxÞ ¼ 1, the gravitational tensor in
(4) has the following nonvanishing components:

Eψψ ¼ fðxÞ2Exx; ðA1Þ

Eψt ¼ −2nrfðxÞ2Exx; ðA2Þ

Ett ¼ −r4Err þ 4n2r2fðxÞ2Exx: ðA3Þ

In addition, we can relate Err to Exx thanks to the Bianchi
identity ∇μEμν ¼ 0,

Err ¼
ðn2 þ x2Þ
2xr2

�
fðxÞðn2 þ x2Þ dExx

dx
þ Exxððn2 þ x2Þf0ðxÞ þ 2xfðxÞÞ

�
: ðA4Þ

Thus, everything is determined by the component Exx, which reads

fExx ¼ Λþ fð−n2 þ x2Þ þ ðn2 þ x2Þð1þ xf0Þ
ðn2 þ x2Þ2 þ L4μ

�
−
3f3ðn6 þ 16n4x2 − 45n2x4Þ

ðn2 þ x2Þ6 þ
�

3fx3

ðn2 þ x2Þ4 ðA5Þ

þ 3f2ð3n4x − 62n2x3 þ x5Þ
ðn2 þ x2Þ5

�
f0 þ

�
3ðn2 − x2Þ
4ðn2 þ x2Þ3 þ

3fðn4 þ 37n2x2 − 2x4Þ
2ðn2 þ x2Þ4

�
f02 −

3n2xf03

2ðn2 þ x2Þ3 ðA6Þ

þ
�
−
3fðn2 þ 2x2Þ
2ðn2 þ x2Þ3 þ f2ð6n4 þ 45n2x2 − 3x4Þ

ðn2 þ x2Þ4 þ 3fð−5n2xþ x3Þf0
ðn2 þ x2Þ3

�
f00 −

3fx2ðf00Þ2
4ðn2 þ x2Þ2 ðA7Þ

þ
�
3f2xð−4n2 þ x2Þ

2ðn2 þ x2Þ3 þ 3fx
2ðn2 þ x2Þ2 −

3fx2f0

4ðn2 þ x2Þ2
�
fð3Þ

�
: ðA8Þ

The electromagnetic energy-momentum tensor has the same structure and hence the equations of motion are reduced to
Exx ¼ Txx.

APPENDIX B: SOLUTION OF THE THERMODYNAMIC QUANTITIES

Three of the four branches of solutions of the constraint equations (31) belong to the following class:

nðx0; QÞ ¼ xα0
X∞
k¼0

nkðQÞxk0; ωðx0; QÞ ¼ xβ0
X∞
k¼0

ωkðQÞxk0; ðB1Þ

where ðα; βÞ are real parameters and we assume n0ðQÞ ≠ 0 and ω0ðQÞ ≠ 0. The choice ðα; βÞ ¼ ð0; 1Þ corresponds to the
AdS2 × S2 branch, while the choices ðα; βÞ ¼ ð2; 1Þ and ðα; βÞ ¼ ð1=2; 0Þ lead to two other solutions. The remaining
branch belongs to the class

nðx0; QÞ ¼
X∞
k¼0

nkðQÞð ffiffiffiffiffi
x0

p Þk; ωðx0; QÞ ¼
X∞
k¼0

ωkðQÞð ffiffiffiffiffi
x0

p Þk: ðB2Þ

The solution for all coefficients in each of the expansions can be found explicitly. In the following we exhibit the first four
terms of the solutions for n2 and ω, as well as four terms of the corresponding expansions of the areaA, Wald entropy S, and
relative entropy S=SBH, where SBH ¼ A=ð4GÞ.
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For the branch corresponding to AdS2 × S2, determined by the coefficients ðα; βÞ ¼ ð0; 1Þ,

n2 ¼ Q2 þ x20

�
μL4

Q4
þ 1

�
þ x40

2μL4ð11μL4 − 13Q4Þ
Q10

þ x60
3μL4ð25μ2L8 − 90μL4Q4 þ 56Q8Þ

Q16
ðB3Þ

ω ¼ x0
1

Q2
− x30

4Q4 − 2μL4

2Q8
þ x50

−11μ2L8 þ 8μL4Q4 þ 4Q8

Q14
− x70

4ð26μ3L12 − 69μ2L8Q4 þ 36μL4Q8 þ 2Q12Þ
Q20

ðB4Þ

A ¼ 4πQ2 þ πx20

�
8 −

4μL4

Q4

�
þ x40

48πμL4ðμL4 −Q4Þ
Q10

þ x60
12πμL4ð27μ2L8 − 70μL4Q4 þ 36Q8Þ

Q16
ðB5Þ

S ¼ πQ2

G
þ x20

2πðμL4 þQ4Þ
GQ4

þ x40
12πμL4ðμL4 − 2Q4Þ

GQ10
− x60

6πμL4ð3μ2L8 þ 16μL4Q4 − 24Q8Þ
GQ16

ðB6Þ

S=SBH ¼ 1þ x20
3μL4

Q6
þ x40

3μL4ðμL4 − 6Q4Þ
Q12

þ x60
6μL4ð−22μ2L8 þ 21μL4Q4 þ 12Q8Þ

Q18
: ðB7Þ

For the branch determined by the coefficients ðα; βÞ ¼ ð2; 1Þ,

n2 ¼ x40
2

ffiffiffiffiffi
3μ

p
L2 þ 3Q2

18μL4
þ x60

2μL4 −
ffiffiffiffiffi
3μ

p
L2Q2 þ 9Q4

108μ2L8

þ x80
328μ2L8 þ 612

ffiffiffi
3

p
μ3=2L6Q2 þ 330μL4Q4 þ 117

ffiffiffiffiffi
3μ

p
L2Q6 þ 432Q8

5184
ffiffiffi
3

p
μ7=2L14 þ 7776μ3L12Q2

ðB8Þ

ω ¼ x0
1ffiffiffiffiffi
3μ

p
L2

þ x30

ffiffiffi
3

p
Q2 − 6

ffiffiffi
μ

p
L2

36μ3=2L6
− x50

−100
ffiffiffi
3

p
μL4 þ 72

ffiffiffi
μ

p
L2Q2 − 33

ffiffiffi
3

p
Q4

2592μ5=2L10

− x70
3584

ffiffiffi
3

p
μ2L8 þ 4344μ3=2L6Q2 þ 636

ffiffiffi
3

p
μL4Q4 þ 198

ffiffiffi
μ

p
L2Q6 − 765

ffiffiffi
3

p
Q8

31104μ7=2L14ð2 ffiffiffiffiffi
3μ

p
L2 þ 3Q2Þ ðB9Þ

A ¼ 4π
ffiffiffiffiffi
3μ

p
L2 þ x20π

�
2 −

Q2ffiffiffiffiffi
3μ

p
L2

�
− x40π

28μL4 þ 27Q4

72
ffiffiffi
3

p
μ3=2L6

þ x60π
2048μ2L8 þ 1224

ffiffiffi
3

p
μ3=2L6Q2 þ 588μL4Q4 − 246

ffiffiffiffiffi
3μ

p
L2Q6 − 585Q8

2592ð2μ3L12 þ ffiffiffi
3

p
μ5=2L10Q2Þ ðB10Þ

S ¼ 2π
ffiffiffiffiffi
3μ

p
L2

G
− x20

2πL2 þ π
ffiffiffiffiffiffiffiffi
3=μ

p
Q2

6GL2
þ x40

πð68 ffiffiffi
3

p
μL4 þ 48

ffiffiffi
μ

p
L2Q2 − 27

ffiffiffi
3

p
Q4Þ

432Gμ3=2L6

− x60
πð640 ffiffiffi

3
p

μ2L8 þ 2104μ3=2L6Q2 þ 284
ffiffiffi
3

p
μL4Q4 − 42

ffiffiffi
μ

p
L2Q6 þ 195

ffiffiffi
3

p
Q8Þ

1728Gμ5=2L10ð2 ffiffiffiffiffi
3μ

p
L2 þ 3Q2Þ ðB11Þ

S=SBH ¼ 2 − x20
4

3
ffiffiffiffiffi
3μ

p
L2

þ x40
4

9μL4
− x60

280μ3=2L6 þ 180
ffiffiffi
3

p
μL4Q2 þ 54

ffiffiffi
μ

p
L2Q4 − 3

ffiffiffi
3

p
Q6

216ð2 ffiffiffi
3

p
μ3L12 þ 3μ5=2L10Q2Þ : ðB12Þ

For the branch determined by the coefficients ðα; βÞ ¼ ð1=2; 0Þ

n2¼x0

ffiffiffiffiffi
3μ

p
L2

Q
þx20

�
25μL4

6Q4
−
4

5

�
þx30

128125μ2L8−32700μL4Q4þ324Q8

1800
ffiffiffiffiffi
3μ

p
L2Q7

þx40

�
53125μ2L8

81Q10
−
4745μL4

27Q6
þ 16Q2

375μL4
þ 28

3Q2

�

ðB13Þ
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ω ¼
ffiffiffiffiffiffiffiffi
3=μ

p
Q

5L2
− x0

�
3

2Q2
−

Q2

5μL4

�
þ x20

−216875μ2L8 þ 33300μL4Q4 þ 1476Q8

9000
ffiffiffi
3

p
μ3=2L6Q5

− x30

�
−

64Q4

1875μ2L8
þ 2

15μL4
þ 12475μL4

54Q8
−
1141

27Q4

�
ðB14Þ

A ¼ x0π
20

ffiffiffiffiffiffiffiffi
μ=3

p
L2

Q
þ x20π

�
50μL4

Q4
−
20

3

�
þ x30π

318125μ2L8 − 60300μL4Q4 þ 324Q8

270
ffiffiffiffiffi
3μ

p
L2Q7

þ x408π
3203125μ2L8 þ 72ðQ12=μL4Þ − 743125μL4Q4 þ 27675Q8

2025Q10
ðB15Þ

S ¼ 3πQ2

5G
þ x02π

6Q4 − 25μL4

25G
ffiffiffiffiffi
3μ

p
L2Q

þ x20π
−18125ðμL4=Q4Þ þ 108ðQ4=μL4Þ þ 6150

1125G

þ x30π
ð−34203125μ3L12 þ 6656250μ2L8Q4 − 283500μL4Q8 þ 1944Q12Þ

67500
ffiffiffi
3

p
Gμ3=2L6Q7

ðB16Þ

S=SBH ¼ 1

x0

3
ffiffiffiffiffiffiffiffi
3=μ

p
Q3

25L2
þ 27Q4

125μL4
−
13

10
þ x0

−21125μ2L8 þ 4380μL4Q4 þ 252Q8

1000
ffiffiffi
3

p
μ3=2L6Q3

þ x20

�
224Q6

3125μ2L8
−
3595μL4

18Q6
þ 64Q2

125μL4
þ 82

3Q2

�
: ðB17Þ

Finally, for the class of solutions defined by (B2)

n2 ¼ x0

ffiffiffiffiffi
6μ

p
L2

Q
− ð ffiffiffiffiffi

x0
p Þ3 ð2=3Þ

1=4μ3=4L3

Q5=2 − ð ffiffiffiffiffi
x0

p Þ4
�
7μL4

3Q4
þ 3

2

�
þ ð ffiffiffiffiffi

x0
p Þ5 μ

1=4Lð138Q4 − 439μL4Þ
21=433=424Q4ðQ2Þ3=4 ðB18Þ

ω ¼ ffiffiffiffiffi
x0

p ð2=3Þ1=4
μ1=4L

ffiffiffiffi
Q

p þ x0
1

2Q2
− ð ffiffiffiffiffi

x0
p Þ3 6Q4 − 115μL4

21=433=424μ3=4L3Q7=2 − ð ffiffiffiffiffi
x0

p Þ4 21Q
4 − 197μL4

12
ffiffiffiffiffi
6μ

p
L2Q5

ðB19Þ

A ¼ ffiffiffiffiffi
x0

p
23=431=42πμ1=4L

ffiffiffiffi
Q

p
− x0

π
ffiffiffiffiffi
6μ

p
L2

Q
þ ð ffiffiffiffiffi

x0
p Þ3 πð6Q4 − 97μL4Þ

6 23=431=4μ1=4LQ5=2 þ ð ffiffiffiffiffi
x0

p Þ43π
�
1 −

8μL4

Q4

�
ðB20Þ

S ¼ ffiffiffiffiffi
x0

p 23=431=4π μ1=4L
ffiffiffiffi
Q

p
G

þ x0
π

ffiffiffiffiffiffiffiffi
μ=6

p
L2

GQ
þ ð ffiffiffiffiffi

x0
p Þ3 πð47μL4 þ 6Q4Þ

1223=431=4Gμ1=4LQ5=2 þ ð ffiffiffiffiffi
x0

p Þ4 πð136ðμL
4=Q4Þ − 15Þ
18G

ðB21Þ

S=SBH ¼ 2þ ffiffiffiffiffi
x0

p 2ð2=3Þ3=4μ1=4L
Q3=2 þ x0

7
ffiffiffiffiffiffiffiffiffiffi
2μ=3

p
L2

Q3
þ ð ffiffiffiffiffi

x0
p Þ3 103μL4 − 10Q4

223=431=4μ1=4LQ9=2 : ðB22Þ

APPENDIX C: SOLUTIONS FOR THE gk(y)

Expanding gðyÞ as in (34) and choosing the parameter configuration of the AdS2 × S2 branch, we see that the solutions
for all gkðyÞ that satisfy the boundary conditions are polynomial in y. The first terms read as follows:

g0ðyÞ
1 − y2

¼ 1

Q2
ðC1Þ

g1ðyÞ
1 − y2

¼ −Q8ðy2 þ 1Þ þQ4μL4ð16y2 þ 3Þ − 9μ2L8

Q12 − 9Q8μL4
ðC2Þ
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g2ðyÞ
1 − y2

¼ Q24ðy2 þ 1Þ2 þQ20μL4ð−232y4 þ 39y2 − 27Þ þQ16μ2L8ð6555y4 − 2218y2 − 592Þ
Q14ðQ4 − 30μL4ÞðQ4 − 9μL4Þ3

þ 3Q12μ3L12ð−21412y4 þ 9939y2 þ 3798Þ þ 27Q8μ4L16ð7768y4 − 4248y2 − 3085Þ
Q14ðQ4 − 30μL4ÞðQ4 − 9μL4Þ3

þ −4617Q4μ5L20ð20y2 − 77Þ − 240570μ6L24

Q14ðQ4 − 30μL4ÞðQ4 − 9μL4Þ3 ðC3Þ

g3ðyÞ
1− y2

¼ −Q44ðy2 þ 1Þ3 þQ40μL4ð1273y6 þ 87y4 − 145y2 − 15Þ
Q20ðQ4 − 63μL4ÞðQ4 − 30μL4Þ2ðQ4 − 9μL4Þ5 þ 2Q36μ2L8ð−85596y6 þ 26710y4 þ 15907y2 þ 11113Þ

Q20ðQ4 − 63μL4ÞðQ4 − 30μL4Þ2ðQ4 − 9μL4Þ5

þQ32μ3L12ð8837031y6 − 4893135y4 − 730200y2 − 1854008Þ
Q20ðQ4 − 63μL4ÞðQ4 − 30μL4Þ2ðQ4 − 9μL4Þ5

þ−6Q28μ4L16ð37929171y6 − 27161595y4 þ 80490y2 − 10643708Þ
Q20ðQ4 − 63μL4ÞðQ4 − 30μL4Þ2ðQ4 − 9μL4Þ5

þ 18Q24μ5L20ð180123972y6 − 151235249y4 þ 10041658y2 − 65511537Þ
Q20ðQ4 − 63μL4ÞðQ4 − 30μL4Þ2ðQ4 − 9μL4Þ5

þ−81Q20μ6L24ð321947241y6 − 302005267y4 þ 27567259y2 − 165642213Þ
Q20ðQ4 − 63μL4ÞðQ4 − 30μL4Þ2ðQ4 − 9μL4Þ5

þ 729Q16μ7L28ð152540040y6 − 152997410y4 þ 9998425y2 − 132397703Þ
Q20ðQ4 − 63μL4ÞðQ4 − 30μL4Þ2ðQ4 − 9μL4Þ5

þ−13122Q12μ8L32ð14926950y6 − 14295073y4 − 3145538y2 − 31632593Þ
Q20ðQ4 − 63μL4ÞðQ4 − 30μL4Þ2ðQ4 − 9μL4Þ5

þ 708588Q8μ9L36ð130865y4 − 373185y2 − 1354486Þ þ 127545840Q4μ10L40ð875y2 þ 8112Þ
Q20ðQ4 − 63μL4ÞðQ4 − 30μL4Þ2ðQ4 − 9μL4Þ5

þ −348200143200μ11L44

Q20ðQ4 − 63μL4ÞðQ4 − 30μL4Þ2ðQ4 − 9μL4Þ5 : ðC4Þ

APPENDIX D: ADDING A COSMOLOGICAL CONSTANT Λ

For the sake of completeness, here we shall comment on the case of a nonvanishing cosmological constant, Λ ≠ 0. The
regularity constraints, analog to (31), for a nonvanishing Λ read

0 ¼ −n2 þ x20 þ
Q2ω2ðn2 þ x20Þ2

x20
− μL4ω2ð2x0ωþ 3Þ þ Λ

3
ð−3n4 þ 6n2x20 þ x40Þ; ðD1Þ

and

0 ¼ ðn2 þ x20Þðωðn2 þ x20Þ − x0Þ þ μL4ω2ðωðx20 − 5n2Þ þ 3x0Þ −
Λ
3
x0ðn2 þ x20Þð6n2 þ 2x20Þ: ðD2Þ

We shall focus on the neighborhood of solutions for which ω ¼ 0. Such solutions are nonrotating if x0 ¼ 0 in such a way
that limω→0ω=x0 ≠ 0, while limω→0x0=n ¼ 0. On the other hand, if limω→0ω=x0 ¼ 0 and limω→0x0=n ≠ 0, the solutions
correspond to an ultraspinning limit and exhibit a noncompact horizon—this only happens for Λ < 0. Let us first consider

the slowly rotating case. Imposing ω ¼ 0, one solution is x0 ¼ 0 and n2 ¼ ð1 − 4ΛQ2 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4ΛQ2

p
Þ=ð−2Λð1 − 4ΛQ2ÞÞ.

Then, in a neighborhood of this solution, ω and n2 read, in powers of x0,

n2 ¼ 1 − 4ΛQ2 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4ΛQ2

p
−2Λð1 − 4ΛQ2Þ

þ x20

�
Q4ð72Λ2μL4 − 6Þ − 6ΛμL4Q2ð7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4ΛQ2

p
þ 6Þ − 3μL4ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4ΛQ2

p
þ 1Þ − 8ΛQ6

6Q4ð4ΛQ2 − 1Þ
�
þOðx40Þ ðD3Þ
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ω ¼ x0
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4ΛQ2

p
2Q2

þ x30Λ2
6ΛμL4Q2ð7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4ΛQ2

p
þ 8Þ − 3μL4ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4ΛQ2

p
þ 1Þ þ 4Q4ð−36Λ2μL4 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4ΛQ2

p
þ 1Þ − 16ΛQ6

3Q4ð2ΛQ2ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4ΛQ2

p
− 2Þ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4ΛQ2

p
þ 1Þ

þOðx50Þ: ðD4Þ

On the other hand, performing an expansion of gðyÞ around x0 ¼ 0 as in (34), the first nonvanishing term reads

gðyÞ
1 − y2

¼ −Λð2ΛQ2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4ΛQ2

p
− 1Þ

ΛQ2ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4ΛQ2

p
− 3Þ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4ΛQ2

p
þ 1

þOðx20Þ: ðD5Þ

Thus, we conclude that AdS2 × S2 is not corrected by ECG also when Λ ≠ 0. However, it admits smooth corrections when
the spin is turned on. This is analogous to the AdS2 × S2 branch for Λ ¼ 0 discussed above and, in fact, taking the limit
Λ → 0, the rhs of (D5) goes to 1=Q2 as expected. The expansions for the area and the entropy are

A¼ 8πQ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−4ΛQ2

p
þ1

þx20
2πð6ΛμL4Q2ð7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−4ΛQ2

p
þ8Þ−3μL4ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−4ΛQ2

p
þ1Þþ4Q4ð−36Λ2μL4þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−4ΛQ2

p
þ1Þ−16ΛQ6Þ

3Q4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−4ΛQ2

p
þOðx40Þ ðD6Þ

S¼ 2πQ2

Gð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−4ΛQ2

p
þ1Þ

−x20
2πðQ2ð18Λ2μL4−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−4ΛQ2

p
þ1Þþ3ΛμL4ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−4ΛQ2

p
þ1Þþ4ΛQ4Þ

3GQ2ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−4ΛQ2

p
−1Þ

þOðx40Þ: ðD7Þ

Let us now focus our attention on the ultraspinning case. When ω ¼ 0 another solution is x0 ¼
ffiffiffi
3

p
=ð2 ffiffiffiffiffiffiffi

−Λ
p Þ

and n2 ¼ −1=4Λ, which of course is only valid for a negative cosmological constant, Λ < 0. For simplicity,
we shall restrict to the neutral case Q ¼ 0. In a neighborhood of this solution, ω and n read, in powers of
x0 −

ffiffiffi
3

p
=ð2 ffiffiffiffiffiffiffi

−Λ
p Þ,

n2 ¼ −
1

4Λ
þ 1

2

�
x0 −

ffiffiffi
3

p

2
ffiffiffiffiffiffiffi
−Λ

p
�2

ð−3Λ2μL4 − 1Þ þ 1

6

�
x0 −

ffiffiffi
3

p

2
ffiffiffiffiffiffiffi
−Λ

p
�3

ð
ffiffiffi
3

p ffiffiffiffiffiffiffi
−Λ

p
þ 21

ffiffiffi
3

p
Λ2

ffiffiffiffiffiffiffi
−Λ

p
μL4Þ

þO
��

x0 −
ffiffiffi
3

p

2
ffiffiffiffiffiffiffi
−Λ

p
�4�

ðD8Þ

ω ¼ Λ
�
x0 −

ffiffiffi
3

p

2
ffiffiffiffiffiffiffi
−Λ

p
�
−
1

2

ffiffiffi
3

p ffiffiffiffiffiffiffi
−Λ

p
Λ
�
x0 −

ffiffiffi
3

p

2
ffiffiffiffiffiffiffi
−Λ

p
�2

−
1

6
7Λ2

�
x0 −

ffiffiffi
3

p

2
ffiffiffiffiffiffiffi
−Λ

p
�3

ð3Λ2μL4 þ 1Þ

þO
��

x0 −
ffiffiffi
3

p

2
ffiffiffiffiffiffiffi
−Λ

p
�4�

: ðD9Þ

On the other hand, the area and the entropy are

A ¼ −
2

ffiffiffi
3

p
π

ð−ΛÞ3=2ðx0 −
ffiffi
3

p
2
ffiffiffiffiffi
−Λ

p Þ
þ 7π

Λ
þ 7πð6Λ2μL4 − 1Þ

2
ffiffiffi
3

p ffiffiffiffiffiffiffi
−Λ

p
�
x0 −

ffiffiffi
3

p

2
ffiffiffiffiffiffiffi
−Λ

p
�
þO

��
x0 −

ffiffiffi
3

p

2
ffiffiffiffiffiffiffi
−Λ

p
�2�

ðD10Þ

S ¼ −
π

ffiffiffi
3

p

2Gð−ΛÞ3=2ðx0 −
ffiffi
3

p
2
ffiffiffiffiffi
−Λ

p Þ
þ 7π

4GΛ
þ πð6Λ2μL4 − 7Þ

8
ffiffiffi
3

p
G

ffiffiffiffiffiffiffi
−Λ

p
�
x0 −

ffiffiffi
3

p

2
ffiffiffiffiffiffiffi
−Λ

p
�
þO

��
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3
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2
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−Λ

p
�2�

: ðD11Þ
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The latter pair of quantities are only well defined on an
anular neighborhood centered at x0 ¼

ffiffiffi
3

p
=2

ffiffiffiffiffiffiffi
−Λ

p
.

However, this does not mean that there is no solution
when x0 ¼

ffiffiffi
3

p
=2

ffiffiffiffiffiffiffi
−Λ

p
. Let us recall that, as long as

ω=x0 remains finite, so does g0ð1Þ, according to (20).
Then, the coordinates can be chosen to parametrize a
manifold of topology AdS2 × S2 by identifying canoni-
cally the coordinate ϕ, i.e., ϕ ∼ ϕþ 2π [see Eq. (18)],
and the metric becomes regular everywhere. However, if
ω=x0 ¼ 0 then g0ð1Þ also vanishes and the metric does
not describe a regular geometry on AdS2 × S2. Thus,
in order to obtain a solution also at the parameter
configuration

x0 ¼
ffiffiffi
3

p
=2

ffiffiffiffiffiffiffi
−Λ

p
; ω ¼ 0; n2 ¼ −1=4Λ; ðD12Þ

let us rewrite (18) in terms of a new angular coordinate

φ ¼ x0
ω
ϕ ðD13Þ

and identify it with arbitrary period, φ ∼ φþ Δφ. The
equations (D1) and (D2) are unchanged by this coordinate
transformation, so (D12) constitutes a solution. Since
g0ð1Þ ¼ 0, the topology our coordinates parametrize is that
of AdS2 × S1 ×R, and the metric is regular everywhere.
The horizon has become noncompact, with topology
S1 ×R, and is infinitely large, in the sense that the proper
length of coordinate curves tangent to∂y (which extend from
y ¼ −1 to y ¼ 1) is infinite. However, the horizon has a
finite area, A ¼ 2Δφ, and Wald’s correction to the
Bekenstein-Hawking entropy vanishes, as can be deduced
from (46), because now both gð1Þ and g0ð1Þ are zero.
Nevertheless, one can check that the profile of the solution
is not going to be the same as in Einstein gravity. This
solution of ECG is analogous to the superentropic black
holes of Ref. [70], in the sense that both have noncompact
horizons with finite area and can be understood as an
entropy-divergent limit of a rotating solution. Thus, it would
be interesting to study whether this solutions do or do not
respect the isoperimetric inequality in the context of
extended black hole thermodynamics. However, further
investigation in these lines is left for future work.
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